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Recombinant proteins bearing a tag are crucial tools for assessing

protein location or function. Small tags such as Cys4 tag (tetracysteine;

Cys–Cys–X–X–Cys–Cys) are less likely disrupt protein function in the

living cell than green fluorescent protein. Herein we report the first

example of the design and synthesis of a dual fluorescence and

hyperpolarized 129Xe NMR-based sensor of Cys4-tagged proteins. This

sensor becomes fluorescent when bound to such Cys4-tagged

peptides, and the 129Xe NMR spectrum exhibits a specific signal,

characteristic of the biosensor-peptide association.

Noninvasive molecular imaging methods are vital in both
biological research and clinical care. In the field of molecular
and cellular biology, fluorescence imaging techniques are the
most widely used because of their high sensitivity, high spatio-
temporal resolution, and simple experimental procedures.
Small organic probes with two arsenic moieties capable of
interacting selectively with proteins that contain a tetracysteine
tag (Cys4 = Cys–Cys–X–X–Cys–Cys where X is any amino acid
except cysteine) were introduced by Roger Tsien and co-workers.1

Covalent interaction between the Cys4 tag of recombinant
proteins and the biarsenical probe induces a significant increase
in fluorescence, allowing the in vitro and in vivo imaging of these

proteins. Biarsenical probes, FlAsH and CrAsH2 (a carboxy FlAsH
derivative), have been used as innovative tools for assessing
protein location or function and in vivo fluorescence imaging
applications, as they exhibit a low non-specific signal.3 However,
fluorescence imaging with such probes has a depth of penetration
in living tissues of only ca. 1–2 mm.

Furthermore, magnetic resonance imaging (MRI) is one of
the most powerful clinical modalities for providing in-depth
anatomical and physiological information on tissues. However,
it clearly lacks sensitivity. The recent advent of hyperpolarized
species can overcome this difficulty, and several nuclear magnetic
resonance (NMR) probes produced by dynamic nuclear polariza-
tion, para-hydrogen induced polarization or optical pumping have
been proposed for the study of biological cells (see for instance
ref. 4 for a review). Recently, 129Xe NMR-based biosensors made of
functionalized molecular cages that possess a biological ligand
and can reversibly bind xenon in solution, giving it a specific
resonance frequency, have been proposed.5 Xenon is a non-toxic
gas, soluble in biological fluids, and its nuclear spin can easily be
hyperpolarized, leading to an NMR signal enhancement by several
orders of magnitude. Such an approach was employed for the
design of sensitive pH- and temperature-reporters,6 and for detec-
tion of various biological systems, including enzymes,7 nucleic
acids8 and cell surface receptors.9 However, for the latter, owing to
the subcellular spatial resolution of MRI, distinction of biological
phenomena occurring in the cell compartment or outside is not
possible. A first approach using bimodal 129Xe NMR-fluorescence
probes enabled us and others to reveal the cell uptake of xenon
biosensors.9a,b,g Nevertheless, the 129Xe NMR spectra alone did not
allow discrimination of the out- and in-cell compartments.

In order to facilitate this assignment task and safely address
intracellular events, we propose here a dedicated molecular
construct, where both fluorescence and 129Xe NMR can be used.
It takes advantage of the high diffusivity of xenon, as so far it is
the sole hyperpolarized species that has been shown to cross
the cell membrane passively while keeping more than 90% of
its hyperpolarization.10 The idea behind this approach is to
activate both the fluorescence and the NMR response by an
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intracellular molecular actuator. The biosensor, designed to detect
recombinant Cys4-tagged proteins, is made of a water-soluble
cryptophane covalently linked to a CrAsH moiety (see Scheme 1).

The procedure of Ueno et al.11 enabled us to obtain two CrAsH
derivatives from a mixture of 5-carboxyfluorescein and 6-carboxy-
fluorescein. These derivatives were then activated in the presence of
carbodiimide and N-hydroxysuccinimide and functionalized with an
excess of ethylene diamine to afford 3a and 3b (Scheme 1 and ESI†).
Since previous investigations have demonstrated that two enantio-
mers can produce different 129Xe NMR signals upon binding to
structures bearing stereogenic centers,12 we synthesized separately
the two enantiomers MM-2 and PP-2 by a multi-step procedure from
enantiopure cryptophanol-A.13 The primary amino group of the
CrAsH derivatives 3a and 3b was directly coupled to the cryptophane
MM-2 to form a chemically stable amide linkage. The synthesis led to
the formation of two regioisomers MM-1a and MM-1b, which were
successfully separated by HPLC with 15% and 9% yield, respectively.
Compound MM-1a is soluble in water at physiological pH thanks to
the presence of the five carboxylic acid moieties attached to the
cryptophane backbone.14 Previously, the same cryptophane core on
which a nitrilotriacetic moiety was grafted, was used for detection of
trace amounts of metal cations.12 Compound MM-1a was further
used for fluorescence and NMR experiments.

The affinity of MM-1a for a tetracysteine-tag was first tested by
fluorescence on the peptide Ace-WEAAAREACCRECCARA-CONH2,
which was the peptide chosen by Tsien et al.1 for its propensity
to form a-helices. Samples with different ratios of this peptide to
MM-1a were prepared. Fluorescence was then monitored over
4 hours at room temperature at 535 nm with excitation at 480 nm
(Fig. 1). In the presence of the tagged peptide, fluorescence rapidly
increased and stabilized after one hour. Fluorescence drastically
increased with increasing amounts of Cys4-tagged peptide. Upon
binding of the peptide, the biosensor became 24 times more
fluorescent. The same results were obtained with the biosensor in
micromolar or millimolar concentrations. Interestingly, without
peptide MM-1a exhibits a 4.5 times lower fluorescence than single
CrAsH moiety (see Fig. S4, ESI†), which is in favor of our approach.

These results prompted us to evaluate this biosensor for
hyperpolarized 129Xe NMR applications.

The present 129Xe NMR spectroscopy study was conducted at
pH 7 in a phosphate buffer. In the absence of the Cys4-tagged

peptide, the 129Xe NMR spectrum of MM-1a at 293 K exhibited
two distinct signals: the signal of free xenon in the buffer
calibrated at d = 196 ppm (not shown) and the signal of
encapsulated xenon at d = 66.8 ppm (Fig. 2a). The addition of
an excess of peptide to MM-1a caused the disappearance from
the 129Xe NMR spectrum of the signal at 66.8 ppm and led to the
appearance of a new signal at d = 73.2 ppm (Fig. 2b). This
experiment clearly demonstrates the extreme sensitivity of xenon
towards its environment.

A more detailed study was then performed using both LC/MS
analysis and 129Xe NMR to clarify the interactions between the
biosensor and the tagged peptide. Solutions containing the bio-
sensor and increasing amounts of peptide (0 eq., 0.5 eq., 1 eq., and
10 eq.) were prepared and analyzed (Fig. S2, ESI†). Addition of
0.5 equivalents of peptide to a 25 mM solution of MM-1a caused the
appearance of two new caged xenon signals at 68.4 and 73.2 ppm,
which were still visible in the mixture containing one equivalent
of peptide. For the mixture with 10 eq. peptide, the xenon signals

Scheme 1 Chemical structure of cryptophanes MM-1a and MM-1b.
Fig. 1 Fluorescence intensity over time of a 50 mM solution of MM-1a in
phosphate buffer with various equivalents of the peptide Ace-WEAAAREA
CCRECCARA-CONH2 (triangles: 0.25 eq.; diamonds: 0.5 eq.; circles: 1 eq.;
squares: 2 eq.).

Fig. 2 High field part of the one-scan 129Xe NMR spectrum of a 25 mM
solution of MM-1a in phosphate buffer. (a) MM-1a alone; (b) in the presence
of 10 equivalents of the peptide. The star denotes residual MM-2.
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at 66.8 ppm and 68.4 ppm had totally disappeared. As mentioned
above, the latter signal corresponds to xenon encapsulated in the
biosensor when it binds the peptide via the two arsenic atoms.
The LC/MS analysis (Fig. S3 of the ESI†) of this mixture showed
unambiguously the presence of covalent complexes between the
biosensor and the peptide. We were not able to determine the
structure of the intermediate compounds that give the sharp signal
at 68.4 ppm, but from the 129Xe NMR spectrum some assumptions
can be made. The peak at 68.4 ppm could be due to the transient
presence of a biosensor attached to the peptide by only one arsenic
atom. Its sharpness indicates that caged xenon (and therefore
the cage itself) retains sufficient mobility,15 which supports our
hypothesis. It is unlikely that this signal corresponds to other pairs
of arsenic bridges with the cysteines at the residue i–residue i + 1 and
i + 4–i + 5 locations instead of the most probable situation of the i–i +
4 and i + 1–i + 5 positions (see Fig. 1 in ref. 1). If such forms exist, they
would rather contribute to the broadening of the signal at 73.3 ppm.
The addition of two equivalents of peptide enables the complete
formation of the complex involving two arsenic atoms as confirmed
by fluorescence, while adding 10 eq. of peptide no longer affects the
NMR signal.

In conclusion, we have described the synthesis of a smart
biosensor with dual properties. The enantiopure biosensor MM-1a
exhibits a strong fluorescence signal as well as a 129Xe NMR signal
highly specific for caged xenon and different from that of the free
biosensor, when bound to the tetracysteine-tagged peptide. The
current challenge in cryptophane chemistry is the design and synth-
esis of smart biosensors that present a net change in frequency for
encapsulated xenon in the presence of the target and therefore allow
a further gain in sensitivity, even in low or inhomogeneous magnetic
fields such as those encountered in in vivo MRI. The observed
difference of 6.4 ppm between the signals of encapsulated xenon
in the absence and presence of peptide is sufficient for spectroscopic
MRI or in vitro and even in vivo localized spectroscopy. Recent
approaches such as 129Xe UltraFast Z-spectroscopy, which very effi-
ciently detects trace concentrations of biosensors, have already shown
that distinction between the two signals is still accessible with such a
frequency difference.16

After the recent publications showing that xenon and crypto-
phane derivatives penetrate cells and allow in-cell 129Xe NMR,9 the
capacity of these types of sensors to detect intracellular tetracysteine-
tagged proteins will now be assessed.
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