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a b s t r a c t

Bismuth is one of the main trace elements found in archaeological lead and silver material in very

variable contents. As silver refining by cupellation involves the redistribution of some trace elements

contained in the initial lead bullion into the litharge and silver phases, an interdisciplinary approach has

been carried out to understand the behaviour of bismuth during this process. Twenty-eight fire-assays

were processed with seven different PbeBieAg alloys of various Bi content. A chemical characterization

of all products was carried out. Parallel to the experiments, a thermodynamic approach was undertaken.

The combination of experiments and modelling shows that the Bi/Pb ratio can be used as a tracer in silver

material throughout the whole cupellation process. Bi and Ag contents in metallic lead might as well

highlight the metallurgical process used to obtain lead. High Bi contents in silverelead bullions are

shown to notably reduce the silver extraction yield.

1. Introduction

The present work places specific attention on the behaviour of

bismuth (Bi) in ancient processes of silverelead production. Bi

content is extremely variable in both lead and silver archaeological

artefacts reported in literature. Regarding silver material, most

Carolingian deniers (silver coins) contain a few hundreds ppm Bi

(Sarah et al., 2008; Sarah, 2012). Yet, some authors also cite oriental

silver coins containing up to several percent of Bi (Mac Kerrel and

Stevenson, 1972; Cowell and Lowick, 1988). Sarah (2012) reports

as well silver dirhams with up to 0.6 wt.% Bi. Likewise in prehistoric

and ancient Spain, data summed up by Hunt Ortiz (2003) show that

Bi content in silver is usually low (<0.1 wt.%), yet a sample of un-

refined silver (91 wt.%) from RioTinto dated from the Roman period

and analysed by Craddock et al. (1985) bears as much as 4.6 wt.% Bi.

Regarding lead artefacts, very high Bi concentrations ranging

from several hundred ppm up to a few thousand ppm are observed

in Egyptian net sinkers (Rehren and Prange, 1998) and in diverse

material coming from ancient Thrace and from the Black Sea (Kuleff

et al., 1995, 2006). Kuleff et al. (2006) even report a lead anchor

from the Euxine exceeding 2 wt.% Bi. However, most archaeological

lead artefacts are below 100 ppm and very often below 10e20 ppm

Bi, e.g. medieval and modern stained-glass joints dated from the

8th to the 17th centuries (Cuzange and Texier, 2000). Among 40

lead objects from Nuragic Sardinia more than a third have less than

1 ppmBi, themaximum recorded being 80 ppm (Atzeni et al., 2003;

Cincotti et al., 2003). The Bi content of Hellenistic lead ingots,

sheets and trephines are scattered between 30 and 45 ppm

(Asderaki and Rehren, 2006). For lead objects excavated in Rhine-

land and Westphalia from AugustaneTiberian military camps

(Bode, 2008) it is usually lower than the detection limit of their

analytic procedure (10 ppm). All Roman lead ingots analysed by

Baron and Cochet (2003) are likewise below 10 ppm Bi. Eventually,

despite some very rich artefacts, most objects reported by Kuleff

et al. (1995, 2006) have a very low Bi content (<20 ppm).

These compositions offer a stunning paradox with the known

characteristics of contemporary leadmetallurgy: at the present day,

bismuth extraction from the lead bullion is a real challenge with* Corresponding author.

E-mail address: maxime.l_heritier@univ-paris8.fr (M. L'H!eritier).

http://dx.doi.org/10.1016/j.jas.2015.02.002



standard refining techniques, such as pyrolysis or electrorefining

(Ramachandra Rao, 2006). As the presence of Bi lowers mechanical

properties and corrosion resistance of Pb based alloys, bismuth

purification is a crucial operation in many domains, which actually

became one of the metallurgical challenges during the 20th cen-

tury. Several treatments (basically by the addition of alkaline ele-

ments or antimony) were developed to reduce Bi content in lead

materials down to 60 ppm on average (Kroll, 1922; Betterton and

Lebedeff, 1936; Kroll, 1938; Evers, 1949; Defonte, 1964) and

improved to reach the level of 10 ppm Bi in lead bullion (Ng and

Siviour, 1994; Lu et al., 2011), which is common in most archaeo-

logical materials. However, before the identification of the element

Bi by French and German chemists Claude Geoffroy the Younger

and J. H. Pott in the mid 17th century (Pott, 1738; Grandjean de

Fouchy 1757), debismuthizing according to the above-mentioned

processes could certainly not be used by ancient metallurgists.

Ancient lead production processes must therefore be investigated

to shed light on such compositions.

Lead was then mostly a by-product of silver production. On the

one hand, galena, i.e. lead sulphide, was among the main silver ores

processed before the modern times. On the other hand, high

amounts of lead were also required to retrieve silver from any

polymetallic oree e.g. jarosite in Rio Tinto (Anguilano et al., 2010)e

and, in particular, from low grade copper ores with the liquation

and drying process which was developed in the end of the Middle

Ages (Suhling, 1976, 1994; L'H!eritier et al., 2010). Details about the

ancient leadesilver chaîne op!eratoire are reported elsewhere

(Tylecote, 1976; Baron et al., 2009). Lead and silver were then

separated via the cupellation process, used in ancient and medieval

times to retrieve silver from argentiferous lead ingots (Tylecote,

1976; T!ereygeol and Thomas, 2003). This process involves the

oxidation of the silver-containing lead bullion in air at a tempera-

ture of about 900e950 !C, producing silver metal and lead oxide

(also called litharge) as separate phases. The trace elements con-

tained in the initial lead bullion are separated according to their

affinity with oxygen: noble elements tend to stay in the silver

button, whereas elements which oxidise end up in litharge and

therefore in the resulting metallic lead obtained after litharge

resmelting (T!ereygeol and Thomas, 2003). The impact of the

cupellation process on the chemical repartition of trace elements

and specifically Bi should thus be questioned.

Discussions regarding Bi behaviour during silver refining have

been contradictory. In the 19th century, elemental Bi was consid-

ered as strongly volatile by French assayer Chaudet (1818) and

mining engineer Berthier (1834), later endorsed byMatthey (1887).

Berthier (1834) also registered a higher silver loss when using

bismuth instead of lead for cupellation. Metallurgical treatises from

the end of the 19th century claim on the other hand that Bi, like

noble metals, has a small affinity for oxygen and therefore stays

concentrated in the metal phase (Percy, 1870; Schnabel, 1898).

Taking the example of Bi-rich litharge derived from lead ores of the

Upper Harz, Percy (1870) even adds that Bi oxidises at the end of

the operation, just shortly before the “blick” i.e. with the last

litharge. This last theory was endorsed in the 20th century by

several works (Shepard and Dietrich, 1940; Pernicka and

Bachmann, 1983; Raub, 1995). Yet, if the general behaviour of bis-

muth during cupellation is by no means controversial anymore, the

precise conditions of bismuth partitioning between lead oxide and

silver and its influence on cupellation products remain largely

understudied. Experiments carried out by Pernicka and Bachmann

(1983) show that bismuth oxidizes after lead. According to them,

when 99.9% of the lead has already oxidised, 50% of the bismuth is

still present in the silver bead. Yet, they give no interpretation about

the influence of the initial Bi content on the silver yield nor on the

lead and silver materials produced. Regarding this last point,

L'H!eritier and Tereygeol (2010) state that Bi content is ten to thirty

times lower in lead resmelted from litharge collected during

cupellation than in the initial leadesilver bullion. There is however

no further interpretation of Bi content in ancient artefacts: this

point has never been fully discussed and Bi is usually only

considered as an ore source tracer (Cuzange and Texier, 2000;

Baron and Cochet, 2003; Kuleff et al., 2006; Forel et al., 2010)

despite all issues linked to ore or metal mixing and remelting (e.g.

Anguilano et al., 2010). Thus, there is a need to estimate the impact

of the cupellation process on the impurities dispersion between

lead and silver button as well as the role of the ores elemental

composition.

The question eventually comes down to: Is Bi a tracer for

metallurgical process rather than a tracer for ores sources? And

how are technological choices and archaeological remains

impacted by the treatment of such Bi rich ores? These crucial his-

torical questions are also linked to the use of lead ores and the trade

of unrefined lead produced in certain European countries where

leadesilver production was important. It was therefore necessary

to focus on understanding Bi behaviour during the cupellation

process. For this purpose, the approach included:

" Fire-assaying (i.e. cupellation) of “home-made” lead ingots

processed on the international site dedicated to experimental

paleometallurgy in Melle (France), according to the flowchart

presented in Fig. 1. The Bi content of the ingots ranged from

130 ppm to 78 000 ppm: some of these materials were notably

much richer in Bi than most archaeological ores, since the pur-

pose was to verify the potential effect of Bi on the cupellation

process.

" Chemical characterisation of all products i.e. “home-made”

initial alloys, cupels impregnated with litharge and silver

buttons.

" A modelling of the chemical equilibrium involved in the

cupellation process, using computational thermodynamics and

modern data. This approach was driven by a model aiming at

sharpening the prediction of process performances proposed by

Swinbourne et al. (2003), in the frame of the improvement of

the modern industrial cupellation technology.

2. Materials and methods

2.1. Pb based alloys preparation

In order to evaluate the influence of the initial Bi content on the

behaviour of the other elements and on the cupellation products,

two experimental cupellation campaigns (XP1 and XP2) were car-

ried out, using as starting material PbeBieAgeSbeSn alloys of

various compositions. Overall, seven different Pb based alloys were

prepared, with constant (1 wt.%) Ag content (representative of

silver-rich lead bullions, e.g. obtained from galena smelting) and Bi

contents ranging from 130 ppm to 78 000 ppm. All alloys were

prepared using pure silver powder (Goodfellow AG006021/2 at

99.99%) and bismuth (>99% as analysed by portable XRF Thermo

Scientific Niton Xl3t). The lead source was slightly different be-

tween the two campaigns. As evidenced in Table 1, which sum-

marizes the composition of each Pb based alloy, the ingots used in

XP1 present higher Sb and Sn content than ingots used in XP2.

These “home-made” ingots can be considered as archaeological

lead analogues with different impurities reflecting the lead pro-

duction of different mining districts.

As the Pb based alloysmelt at ca. 300 !C, theywere prepared in a

laboratory furnace at 450 !C. First, lead was heated in a lidded

graphite crucible for 30 min. Then, silver and bismuth were added,



and the bath was stirred with a small wooden spatula before final

homogenisation for 30 min in the furnace. Eventually, the alloys

were cast in ingots in a sand castingmould.100 g of each alloy were

prepared, which allowed performing four assays of approx. 20 g per

batch. All Pb based alloys were characterised using ICP-MS (HR-ICP-

MS) equipment by ALS laboratory.

2.2. Cupels composition

Cupels used for the present study are industrial bone ash cupels,

with an inverted truncated cone shape and a weight of about 65 g.

Their dimensions are as follows: external diameter is 5 cm on top

and 4 cm at the bottom, height is 2.5 cm and the cavity has a

diameter of 3.5 cm and is ~1 cm deep in the middle. A preliminary

chemical characterisation of the cupels indicated no metal

contamination.

Bone ash cupels are considered as inert material which does not

react with litharge. In ancient times, however, textbooks as well as

archaeological remains testify that, if the usual preference was

indeed for bone ash, many other recipes were used depending on

metallurgical traditions or more simply due to the availability of

Fig. 1. Flowchart of the experimental cupellation process and experimental furnace used during the experiments.

Table 1

Composition of the processed Pb based alloys. The chemical characterisation was

performed using ICP-SMS (HR-ICP-MS) by ALS laboratory.

Reference Pb (wt.%) Ag (ppm) Bi (ppm) Sb (ppm) Sn (ppm)

XP1.1 94.9 7300 130 42 000 660

XP1.2 93.8 10 000 3000 42 000 6700

XP1.3 88.9 10 000 21 000 72 000 6500

XP2.1 98.0 10 100 9900 3.8 1.5

XP2.2 97.0 10 200 19 400 10.5 3.4

XP2.3 95.1 10 000 38 600 8.3 2.7

XP2.4 91.1 10 200 78 100 3.0 2.1



materials: wood ash, bone ash, a mixture of the two or even clay

hearths topped with a non-siliceous lining (Agricola, 1556; Bayley

and Eckstein, 2006; Biringuccio, 1540; Ercker, 1580; Hawthorne

and Smith, 1979; Martin!on-Torres et al., 2008, 2009). All these

materials may behave slightly differently during cupellation, and

the formation of lead silicates or calciumesilicaephosphates is

likely to diminish their capacity to absorb metallic oxides (Bayley

and Eckstein, 2006; Rehren, 1998). Martin!on-Torres et al. (2008,

2009) however proved that whenever a top layer of bone ash is

used, the separation of silver is just as easy as with an entirely bone

ash cupel. These former studies on cupellation materials also

showed that the composition of cupellation hearth has a negligible

influence on the composition of the litharge cakes produced and on

subsequent silver losses (Bayley and Eckstein, 2006).

2.3. Fire-assay of the Pb based alloys

Fire assaying was performed in a replica of fire-assay furnaces

depicted by Agricola, 1556. The internal diameter of the furnace is

26 cm and themuffle inwhich the cupels were placed is 24 cm long,

13 cm wide and 9 cm in height. During the two campaigns, the

assays were carried out one after another, in similar conditions,

starting with the lowest Bi concentrations to prevent any pollution.

The muffle temperature was monitored with a thermocouple. Prior

to the start of experimental campaigns, the furnace was preheated

for 150 min, until an adequate temperature was reached (~900 !C).

Each fire-assay was then performed as follows: a fresh cupel con-

taining the lead bullion was positioned in the centre of the muffle

and the furnace door was closed until temperature stabilised and

the alloy was melted. Then, the furnace door was slightly opened to

let air in. Regular charcoal supply helped controlling the tempera-

ture inside the furnace: the thermocouple placed right above the

cupel indicated a variation from 850 to 980 !C during the entire

session. Finally, after the “blick”, the cupel was withdrawn and the

next one placed inside the furnace. Each run lasted between 30 and

40 min and produced a silver button. Apart from the first fire-assay,

escaping of the entrapped gases during cooling created cauli-

flowering aspect on the surface of the button.

2.4. Chemical characterisation of litharge impregnated cupels and

silver buttons

Litharge impregnated cupels were analysed by SEM-EDS

(scanning electron microscopy-energy dispersive spectroscopy)

and microprobe. Elemental analyses were carried out for one cupel

of each assay of XP 1, and concentration profiles through the cupels

as well as elemental mappings were obtained. The silver buttons

were analysed by LA-ICP-MS (laser ablation inductively coupled

plasma mass spectrometry) according to a protocol published

elsewhere (Sarah et al., 2007). Reference materials whose compo-

sitions are close to the silver buttons (i.e. silver alloys containing up

to 15 wt.% Cu doped with up to 2 wt.% Zn, Sn, Au, Pb and Bi) were

used for normalisation. The composition of each silver sample was

determined by calculating mean values on the homogeneous

fraction of the signal.

An inter comparison between LA-ICP-MS and HR-ICP-MS

analytical techniques was carried out on some lead and silver

materials: the calculated analytical difference was less than 10% for

all trace elements considered (Ag, Bi, Sn, Sb), which is on the same

range as the intrinsic error of each analytical method.

2.5. Thermodynamic modelling of cupellation

Parallel to the experiments, a computational thermodynamics

study was undertaken in order to model the chemical equilibriums

involved during the cupellation process. For this purpose, the

Equilibrium Module of the FactSage™ software (Bale et al., 2002)

was used, taking into account the multicomponent system (Pb, Ag,

Bi, Sb, Sn, O2, N2) and three major phases: a liquid metal phase (i.e.

the lead bullion converted into a silver button), a liquid oxide phase

(i.e. the PbO based litharge) and a gas phase (i.e. air).

The SGTE (Scientific Group Thermodata Europe, www.stge.org)

Solution database was used to model the liquid metal phase, while

air (a mixture of 20 mol.% O2 and 80 mol.% N2) was modelled with

the SGTE Pure Substances database. No database was available for

the liquid oxide phase, it was thus modelled as an ideal PbO liquid

phase containing dilute amounts of AgO0.5, SnO2, SbO1.5 and BiO1.5,

using specific Henrian activity coefficients for each compound.

Activity coefficients were assessed based on literature data from

Ueda (2005, 2009). The selected activity coefficients are compiled

in Table 2.With these parameters, the followingmajor properties of

the systems are well reproduced at 1000 !C: Ag solubility of about

5 wt.% both in PbO (Shao et al., 1993) and in Bi2O3 (Assal et al., 1999)

in air, full miscibility of Bi2O3 and PbO (Diop et al., 2009), distri-

bution ratio of Ag in PbePbO (Ueda et al., 2005), distributions ratio

of Sn, Sb and Bi between AgePb alloy and PbO (Ueda et al., 2009).

Given that, after preliminary calculations, Sn and Sb elements

were found as themain elements to oxidise at the very beginning of

cupellation, an additional ideal SnO2eSb2O3 solid solution

described by Zaharescu (Zaharescu et al., 1991) was taken into ac-

count, while the liquid phase was considered as an ideal

Sb2O3ePbO mixture (Kopyto et al., 2009).

In order to model the cupellation process, calculations were

performed as follows:

(i) the initial system was the lead bullion (100 g) at 1000 !C,

(ii) a given amount of air (typically 1.25 mol, i.e. about 3.7 dm3)

was added in the system and the equilibriumwas computed,

(iii) litharge, formed by reaction of the alloy with air, was

removed from the system, in order to represent its flow into

the cupel,

(iv) steps (ii) and (iii) were repeated with the remaining metal

phase until the oxidation reaction was completed.

Litharge and metal compositions were stored after each calcu-

lation step, in order to follow the evolution of composition of both

phases during cupellation. Preliminary calculations using as

benchmark the modelling of a modern industrial cupellation pro-

cess, published by Swinbourne et al. (2003), gave satisfactory re-

sults regarding Ag recovery yield and final Pb content in the silver

product.

In order to compare the calculations involving initial lead bul-

lions of various AgeBieSbeSn contents, a so-called “cupellation

progress”, calculated as the amount (in mol) of O2 added at a given

step divided by the total O2 addition, was chosen to represent the

Table 2

Input data for the model of the PbO based slag phase in the Equilibrium Module of

FactSage™.

Compound (SGTE pure

substance database)

Reference

state

Form in

PbO slag

New

mixing

particle

log (g) at

1000 !C

References

PbO liq e e e e

Ag2O s AgO0.5 2 #0.65 Ueda et al.,

2005

Bi2O3 liq BiO1.5 2 #0.70 Ueda et al.,

2009

Sb2O3 liq SbO1.5 2 0.46 Ueda et al.,

2009

SnO2 liq SnO2 1 1.50 Ueda et al.,

2009



reaction advancement.With this convention, a cupellation progress

of 0 represents the initial system (i.e. the lead bullion before the

start of the reaction), while a cupellation progress of 1 represents

the final system (i.e. silver button at the end of cupellation).

3. Results

In total, 28 fire-assays were carried out. A silver button was

obtained for each of them. A summary of the experimental data is

given in Table 3.

3.1. Macroscopic observation of the cupels after fire-assays

As evidenced on pictures presented in Fig. 2, an obvious differ-

ence between the batches is the presence of a brown ring at the

initial periphery of the lead bullion for all fire-assays of XP1. As

deduced from its location, the ring formed at the beginning of

cupellation. No ring is observed for fire-assays of XP2, thus its

formation is clearly not linked to the Bi content and can rather be

attributed to the high Sb and Sn contents in lead bullions of XP1.

Themajor colour difference between the batches is located right

around the silver button where a quite distinctive brownish oxide

surrounded by a dark green circle appears in XP1-3 and all batches

from XP2. XP1-2 also shows a slight colour change to a yellow

brownish tint around the silver button, yet not as marked as on the

other cupels. This feature clearly indicates a change in the oxide

composition that penetrated the cupels at the end of the process,

and concerns Bi rich batches.

3.2. Microscopic observation and chemical mapping with SEM-EDS

One cupel per batch of XP1 was crosscut in order to characterize

and observe the distribution of metal oxides through the cupels.

The three cartographic views presented in Fig. 3 show that Pb

impregnated the entire cupels from the bottom to the top (i.e. from

the first to the last litharge respectively). The distribution of the

impurities (Bi, Sb, Sn), rather similar for each batch, is highly

dependent on the nature of the element:

" Sb and Sn are mainly located in the brown rings and at the

bottom of the cupels

" Bi is located at the top of the cupels, i.e. in the last litharge

3.3. Concentration profile of cupels using microprobe

Three chemical profiles, presented in Fig. 4, were obtained from

the bottom to the top of the cupels from XP1, vertically to the

location of the Silver button (see Fig. 3).

Ag and Bi exhibit a similar behaviour: their concentration is very

low in most of the litharge, and at approx. #2000 mm depth, a

noticeable increase is observed. Ag concentration profiles are

similar for each cupellation, which is consistent with a constant Ag

initial concentration in the initial lead bullion. Bi content increases

in the last litharge (0 to #500 mm depth) according to its initial

concentration in the lead bullion. In XP1.3, Bi content exceeds Pb

content in the last litharge. Apart from this specific case, Pb content

is rather constant and constitutes the major element of litharge.

Consistently with the chemical mapping presented in Fig. 3,

microprobe analysis indicated very low Sb and Sn contents in the

last litharge (values are scattered around the detection limits of

respectively 0.010 and 0.015wt.%) and amuch higher content in the

first litharge (notably above the quantification limits of respectively

0.10 and 0.15 wt.%). This confirms that most of Sb and Sn were

confined in the brown ring.

3.4. Silver extraction yields

For each fire-essay, the silver extraction yield (Y) was calculated

as the ratio of the silver button mass to the initial mass of silver

Table 3

Summary of the fire-assays. Bi and Ag content were analysed by ICP-SMS (HR-ICP-

MS).

Fire-assay

identification

Mass of lead

bullion (g)

Bi

content

(ppm)

Ag

content

(ppm)

Time

(min)

Mass of silver

button (g)

Ag

yield

(%)a

Experimentation 1 (XP 1)

Batch 1

XP1.1-1 20.72 130 7300 38 0.2564 169.5%b

XP1.1-2 21.2 130 7300 36 0.1481 95.7%

XP1.1-3 22.94 130 7300 31 0.1598 95.4%

XP1.1-4 16.74 130 7300 38 0.1186 97.1%

Batch 2

XP1.2-1 20.15 3000 10 000 35 0.1928 95.7%

XP1.2-2 21.2 3000 10 000 40 0.2052 96.8%

XP1.2-3 22.13 3000 10 000 37 0.2093 94.6%

XP1.2-4 17.63 3000 10 000 30 0.1718 97.4%

Batch 3

XP1.3-1 20.54 21 000 10 000 40 0.1912 93.1%

XP1.3-2 20.73 21 000 10 000 38 0.1927 93.0%

XP1.3-3 21 21 000 10 000 36 0.2003 95.4%

XP1.3-4 18.26 21 000 10 000 40 0.1520 83.2%

Experimentation 2 (XP 2)

Batch 1

XP2.1-1 18.75 9900 10 100 64 0.1775 93.9%

XP2.1-2 21.14 9900 10 100 36 0.1986 93.2%

XP2.1-3 22.35 9900 10 100 35 0.2135 94.8%

XP2.1-4 20.2 9900 10 100 30 0.1926 94.6%

Batch 2

XP2.2-1 20.23 19 400 10 200 33 0.1917 93.0%

XP2.2-2 18.1 19 400 10 200 28 0.1695 91.9%

XP2.2-3 21.71 19 400 10 200 30 0.2042 92.3%

XP2.2-4 22.3 19 400 10 200 33 0.2154 94.8%

Batch 3

XP2.3-1 22.34 38 600 10 000 34 0.2063 92.8%

XP2.3-2 19.38 38 600 10 000 32 0.1772 91.9%

XP2.3-3 19.7 38 600 10 000 32 0.1816 92.6%

XP2.3-4 23 38 600 10 000 37 0.2097 91.6%

Batch 4

XP2.4-1 19.46 78 100 10 200 35 0.1789 90.6%

XP2.4-2 21.38 78 100 10 200 32 0.1972 90.9%

XP2.4-3 22.16 78 100 10 200 34 0.2052 91.2%

XP2.4-4 23.38 78 100 10 200 38 0.2099 88.5%

a Yield ¼ Y ¼ ((m (Ag)button/m (Ag)initial))*100.
b Such yield indicates that cupellation was not completed, which is consistent

with the absence of gas expulsion observed for this sample (no cauliflowering). This

run was disregarded in the results treatment.

Fig. 2. Macroscopic view of the cupels seen from above after the seven fire-assays (one

cupel per batch).



present in the lead bullion (Table 3), assuming that silver buttons

are composed of pure silver (see below “Chemical composition of

the silver button”).

Silver extraction yields are reported in Fig. 5 versus the initial Bi

content of lead bullions. A linear decrease of the yield e from

average 96.1% for XP1.1 (130 ppm Bi) to average 90.3% for XP2.4

(7.8 wt.% Bi) e is evidenced.

3.5. Chemical composition of the silver button

Analyses of the silver buttons by LA-ICP-MS (Table 4) reveal that

they are mostly composed of pure silver (>99.9%). Pb and Bi are the

main impurities and other trace elements such as Sb and Sn are

almost totally absent with concentrations below 1 ppm. Pb con-

centration is scattered between 2 and 25 ppm, with an average

value of 15 ppm independent of the initial Bi content. Bi presents

wider variations: it is logically absent for Bi poor batches XP1-1

(0.5 ppm in average) and rises up to 10e30 ppm for XP1.2, XP1.3,

XP2.1 and XP2.2 and 100e200 ppm for XP2.3 and XP2.4. However,

no clear correlation was found between the Bi content of the final

silver button and that of the initial lead bullion.

Yet, as illustrated in Fig. 6, despite a significant standard devi-

ation in the Pb and Bi concentrations, a linear correlation between

the Bi/Pb ratio in the silver button and the Bi content in the initial

lead bullion was evidenced for both experimental campaigns.

3.6. Thermochemical calculations

The volatility of Bi element was evaluated as a preliminary

calculation, in order to verify that Bi could be considered as a tracer.

At 1000 !C, the vapour pressure of pure Bi is about 2$10#3 bar, while

the vapour pressure of pure Bi2O3 is 3$10#6 bar. These low values

indicate that negligible evaporation of the Bi element occurs. It is

thus considered that, during the cupellation process, there is no

loss of Bi in the atmosphere: either it stays in the button, or it

oxidises in litharge.

Calculations related to cupellation reaction were performed for

the seven lead bullion compositions processed in XP1 and XP2

(Table 1). Since very similar trends were obtained regarding the

Fig. 3. Optical view and elemental mapping (acquired by SEM-EDS) of cupels from experiments XP1-1-2, XP1-2-3 and XP1-3-1.



individual behaviour of Sb, Sn, Pb, Bi and Ag, the results presented

here are mostly focused on the case of XP1.2 (3000 ppm Bi, high Sn

and Sb content) and XP2.2 (19 400 ppm Bi, low Sb and Sn content).

The evolution of the composition of the metal phase vs. cupel-

lation progress is given in Fig. 7. Two plots (Fig. 7, top) represent the

mass of each element left in the metal phase related to its initial

mass, during the whole cupellation reaction. As the oxidation of

bismuth and silver mostly occurs at the end of the reaction, a focus

depicts the evolution of themass of Pb, Ag and Bi in themetal phase

for cupellation progress over 0.8 (Fig. 7, bottom).

The litharge phase composition is plotted in Fig. 8: the mass

fraction of each element is indicated, and, again, a focus for

cupellation progress over 0.8 is included.

It can be noted that, for high Bi initial content (which is typically

the case of XP2.2), litharge contains more Bi than Pb at the very end

of the reaction (cupellation progress > 0.95). This composition is

thus outside the range of the model hypothesis, which considers a

main PbO phase with diluted components.

The final Pb content in the silver buttonwas calculated between

20 and 100 ppm, depending on the value of the calculation step (i.e.

the amount of air added in the system at each step). Similarly, the

final Bi content in the silver button was highly dependent on the

step value, while the Bi/Pb ratio was found much less sensitive to

this calculation artefact. Fig. 9 shows the evolution of the Bi/Pb ratio

in the metal phase for XP1-1, XP1-2, XP1-3 and XP2-2 during

cupellation, together with the experimental ratio measured in the

silver button.

Finally, the calculation of the Ag and Bi contents in an “average”

litharge (i.e. calculated for a cupellation progress of 0.4), depending

on the initial Ag and Bi content in the lead bullion, is presented in

Fig. 10.

Fig. 4. Microprobe vertical profiles of three cupels from XP1 (1-2, 2-1 and 3-1) for Pb,

Ag and Bi elements.

Fig. 5. Evolution of experimental silver extraction yield vs. Bi content in the initial lead

bullion for all batches (except XP1-1-1 and XP1-3-4).

Table 4

Average composition of experimental silver buttons analysed by LA-ICPeMS.

Reference Number of analyses Ag (%) Sn (ppm) Sb (ppm) Pb (ppm) Bi (ppm)

XP1-1 5 99.99 <1 nda 19 ± 10 0.5 ± 0.4

XP1-2 7 99.99 <1 nd 22 ± 10 11 ± 10

XP1-3 7 99.99 <1 nd 2 ± 2 9 ± 4

XP2-1 8 99.99 <1 <1 28 ± 7 27 ± 7

XP2-2 7 99.99 <1 nd 6 ± 4 24 ± 20

XP2-3 8 99.97 <1 <1 25 ± 27 209 ± 98

XP2-4 6 99.99 <1 nd 9 ± 10 70 ± 52

a Not detected (nd) values are likely under 0.1 ppm.

Fig. 6. Evolution of experimental Bi/Pb mass ratio in silver button vs. Bi content in the

initial lead bullion.



4. Discussion

4.1. Chemical elements behaviour during cupellation

The combination of experimental results and modelling pro-

vides a clear picture of the behaviour of each element during the

cupellation process. The major element of the system, Pb, oxidises

during the whole process to form litharge, and the reaction stops

when only traces of Pb are left in the silver button. Experimental

data indicate a residual Pb concentration of 2e20 ppm in the silver

button, while calculations lead to a higher concentration, in

20e100 ppm range, in good accordance with the model of Swin-

bourne (Swinbourne et al., 2003).

Sn, Sb and Bi also fully oxidise to litharge during the reaction.

However, Sn and Sb oxidise at the beginning of cupellation (as a

dross and in the first portions of litharge), while Bi oxidises mainly

at the end of cupellation (in the last portions of litharge). A small

proportion of silver finally oxidises at the very end of cupellation.

A discussion on the specific behaviour of each element is pre-

sented in this section. Former studies on archaeological cupels

showed that cupellation hearth material does not affect the

composition of the produced litharge nor the silver yield (see x 2.2).

Thus, changes in its composition seem quite unlikely to distort

radically neither the elemental behaviour of Bi nor the silver yield.

Moreover, as silver losses and bismuth oxidation mainly occur at

the end of the reaction they should not be greatly impacted by

reactions involving the lining taking place at the beginning of the

cupellation. The following results are therefore valid for any kind of

archaeological cupellation hearth material.

4.1.1. Behaviour of Sn and Sb

Calculations indicate that Sb and Sn elements oxidise at the

beginning of the cupellation (Figs. 7 and 8). At the very beginning of

cupellation, the formation of a solid SnO2eSb2O3 phase was

computed in the case of XP1.2 and XP1.3, corresponding to Sn and

Sb-rich lead bullions. For all XP1 compositions, it was also shown

that, up to cupellation progress of about 0.2, litharge major

component was Sb (Fig. 8). These calculations are experimentally

supported by the presence of rings on the outer rim of cupels from

XP1 (Fig. 2), where Sb and Snwere located by SEM-EDS exploration

(Fig. 3). Theses rings are most probably composed of a mixture of

SnO2eSb2O3, lead antimonate (Pb2Sb2O7) and lead tin oxide

(Pb2SnO4), which are stable compounds in the SbeSnePbeO sys-

tem likely to separate as dross on the surface of the metallic bath

(Schnabel, 1898). This matches with studies published by Pernicka

et al. (1998), indicating that lead antimonates were observed in

samples of archaeological litharges formed in the first stages of

cupellation, with Sb contents up to 5 wt.% locally, near the surface

of the litharge cake. The authors suspect this feature to be the

remainder of such dross that has not completely molten and was

not properly skimmed off from the cupellation bath. Mass et al.

(2002) also report that these Sb-rich litharges and dross might

Fig. 7. Computed metal phase composition vs. cupellation progress for two initial compositions of the lead bullion (XP1-2 and XP2-2). Top: evolution of the mass ratio m/minitial of

each element during the whole reaction. Bottom: evolution of the metal composition (g for 100 g of lead bullion) for 0.8 < cupellation progress < 1.



have been used in ancient yellow and green Roman glasses. Our

experiments confirm that producing such lead antimoniate and

separating it from the cupellation bath was natural when pro-

cessing Sb-rich lead ores, due to dross formation in the early

cupellation stages. Such valorisation and trade of this by-product

should be looked for in future archaeological studies on regions

with Sb-rich lead ores deposits.

Regarding litharge composition, it seems clear that, even if

present in large proportions in the processed alloy, tin and

antimony will form solid dross rather than stay in solution in the

litharge. Nevertheless, SEM-mapping and microprobe analyses of

the experimental cupels testify that despite this behaviour a small

proportion of both elements is still present in the first portions of

litharge and thus in lead recovered from litharge resmelting.

Fig. 8. Computed litharge phase composition (in mass fraction of elements) vs. cupellation progress for two initial compositions of the lead bullion (XP1-2 and XP2-2). Top:

evolution of the litharge composition during the whole reaction. Bottom: evolution of the litharge composition for 0.8 < cupellation progress < 1.

Fig. 9. Calculation of Bi/Pb ratio evolution in the metal phase vs. cupellation progress

for four initial lead bullion compositions (XP1-1, XP1-2, XP1-3 and XP2-2). Comparison

to experimental Bi/Pb ratio in silver buttons of XP1.

Fig. 10. Calculation of Ag (left y-axis) and Bi (right y-axis) content in an average

litharge (cupellation progress ¼ 0.4) depending on the initial Ag or Bi content in the

lead bullion.



Estimating this proportion was however not possible with the

present data.

Concerning the methodology of the present work and the fact

that Sb and Sn oxidise at the beginning of cupellation, the great

difference regarding Sb and Sn contents in the initial alloys be-

tween XP1 and XP 2 is believed to have no impact on Ag and Bi

behaviours at the end of the cupellation.

4.1.2. Behaviour of Ag

Silver losses (about 2e5 wt.%) as measured in low Bi-content

fire-assays are due to silver oxidation at the end of cupellation.

Indeed, the concentration profiles in the cupels indicate a strong

increase of Ag content in the last portions of litharge (Fig. 4).

Accordingly, the present model shows that for lead bullions con-

taining 1 wt.% Ag, litharge should bear about 50e100 ppm Ag

during most of the reaction, while a content reaching up to a few

wt.% is expected in the last portions of litharge (Fig. 8), leading to a

silver reaction yield of about 96%. This result fits with experiments

conducted at Pongibaud and quoted by Percy (1870) stating that Ag

content in litharge is quite constant throughout the first stages of

the process and reaches 4e8 g of silver in 100 kg of litharge (i.e.

40e80 ppm) for lead initially bearing as much as 6000 ppm Ag. The

more recent work of Swinbourne et al. (2003), which focuses on

modern industrial cupellation process confirms that silver losses in

litharge occur at the end of the reaction. Moreover, the present

thermochemical model demonstrates that the mean Ag content in

“average” litharge (i.e. for cupellation progress ¼ 0.4) is propor-

tional to the Ag content in the initial lead bullion (Fig.10), according

to the relation: Ag(ppm in litharge) ¼ 0.007 Ag(wt.% in lead bullion). This

matches with previous experimental work (Berthier, 1834;

Shephard and Dietriech, 1940) stating that in reproducible condi-

tions silver loss is proportional to the initial Ag content. Available

archaeological litharge analyses which could be compared with our

data are however scarce in literature; first because few smelting

sites were excavated and second because litharge cakes were likely

to be reduced into metallic lead whereas the last portions of silver-

rich litharge were reprocessed in order to recover the remaining

silver. Litharge dated from the Bronze Age studied by Gale and Stos-

Gale (1981) shows a Ag content usually below 50 ppm but reaching

200 ppm for a few samples. Syrian litharge dated from 3300 BC

displays Ag content below 25 ppm for most samples but one

reaching 3000 ppm (Pernicka et al., 1998). These archaeological

values vary widely; nevertheless, based on the present work, they

seem to indicate that the present archaeological artefacts are

coming from different steps of the cupellation process: silver-rich

last portions of litharge (above 500 ppm) which could be retrea-

ted and silver-poor first portions of litharge (below 100 ppm)which

could also be retreated or reduced to metallic lead.

4.1.3. Behaviour of Bi and influence of Bi content

Bismuth compounds are not volatile in the 900e1000 !C tem-

perature range, as shown by thermochemical calculations. Ac-

cording to our experiments, Bi slightly oxidises at the beginning of

the process and mostly at the end in the last portions of litharge

alongside with Ag. This result matches with late 19th century

treatises such as Percy (1870) and Schnabel (1898) endorsed by

more recent works (Shepard and Dietrich, 1940; Pernicka and

Bachmann, 1983). Furthermore, our experimental data allow eval-

uating the influence of the initial Bi concentration on the cupella-

tion process, especially regarding the evolution of the silver

extraction yields.

The decrease of the silver reaction yield with the increase of the

initial Bi content is clearly evidenced by experimental results

(Fig. 5). The thermochemical model does however not account for

this fact, since constant silver yield of about 96% was computed for

all lead bullion compositions regardless of their Bi content. This is

likely to be due to the description of the litharge phase used in the

model: litharge is considered as a PbO phase including dilute

amounts of Ag, Bi, Sb and Sn oxides. However, as shown by the

concentration profile of XP1.3-1 (Fig. 4), the colour changes of cu-

pels (Fig. 2) and the calculations (Fig. 8), the last portions of litharge

in the case of high initial Bi contents are richer in Bi than in Pb.

Thus, the model is not adapted for calculations at cupellation

progress above 0.95e0.99, depending on the initial Bi content. The

most likely explanation is that themodel does not take into account

a possible ternary interaction in the PbOeBi2O3eAg2O system.

Indeed, even if Bi2O3 and PbO dissolve Ag2O roughly in the same

proportion (about 5 wt.%), a PbOeBi2O3 mixture might enhance

Ag2O solubility, and thus lead to an increase of Ag2O loss with

increasing Bi content. However, no thermochemical datawas found

to assess this assumption. Regarding material where bismuth is

largely in excess, Berthier (1834) also registered enhanced silver

loss and suggested that it mainly occurs by impregnation, as, ac-

cording to him, bismuth oxide is more fluid than lead oxide and

carries away more silver within the pores of the cupel. However,

modern data rule out Berthier's hypothesis, since, at 1000 !C, the

viscosity of PbO is 0.003 Pa s (Oliver, 1965) while the viscosity of

Bi2O3 is 0.01 Pa s (Meshalkin and Kaplun, 2005).

Regarding the produced silver, experimental data show (Fig. 6)

that the final Bi/Pb ratio in the silver button is increasing with the

initial Bi content, while no clear tendency could be drawn from the

final Bi content vs. the initial Bi content. As evidenced in Fig. 9,

combining calculation and experimental results, the Bi/Pb ratio in

themetal phase is clearly dependent on the initial Bi content during

the whole process.

Regarding litharge, the thermodynamic model shows that Bi

content in the first portions of litharge (“average” litharge) is

directly proportional (by a factor of about 0.14) to the initial Bi

content in the lead bullion (Fig. 10). For example, in XP1.2

(3000 ppm Bi in lead bullion), litharge should contain an average of

300e400 ppm Bi. The chemical analyses of the cupels (Fig. 4) do

however not allow to discuss about the Bi content of the first

portions of litharge (bottom of the cupel up to #2000 mm depth)

because of its low concentration, below the quantification limit

(about 800 ppm). Furthermore, comparison with published Bi-rich

litharge analysis is difficult owing to their scarcity.

4.2. Archaeological implications

These results provide newmeans for interpreting archaeological

remains linked to lead and silver production. They also shed light

on technological choices made by the ancient metallurgists when

processing Bi-rich ores or lead bullions.

4.2.1. Silver materials

Both the model and the experimentations show that Bi does not

stay in the silver bullion and mainly oxidises at the end of cupel-

lation. The amount of Bi remaining in the silver button relies

therefore on the final cupellation progress rather than on the initial

Bi concentration of the lead bullion. This final cupellation progress

depends on the type of process: whereas assaying tends to obtain

pure silver, large-scale cupellation process does not. In order to

avoid silver losses at the end of the process, large-scale cupellation

was usually conducted in several steps (Agricola, 1556; Biringuccio,

1540; Ercker,1580; Hawthorne and Smith,1979). The operationwas

stopped several times (sometimes involving further addition of

lead) and led to the production of unrefined silver containing

varying amounts of lead and other impurities such as bismuth.

Table 5 gives more details on the metal phase composition and

its evolution near the end of the process as well as of the (Bi/Ag)/



(Bi/Ag)0 ratio according to our thermodynamic model. For an initial

Bi concentration of 3000 ppm (XP 1.2), final Bi contents up to 8wt.%

can be expected in the silver depending on its refinement, whereas

for 2 wt.% initial Bi (XP 2.2), unrefined silver containing up to

30 wt.% Bi and silver containing as much as 7 wt.% Bi can be pro-

duced. High Bi contents up to several percent found in archaeo-

logical unrefined silver (Craddock et al., 1985; Renzi et al., 2007)

seem to be in very good agreement with our data.

Regarding the evolution of Bi contents throughout the reaction,

experiments carried out by Pernicka and Bachmann (1983) state

that the Bi/Ag ratio in the metal phase decreases by a ratio of about

five to ten during cupellation. Our model shows that this order of

magnitude is highly dependent on the reaction advancement as

well as on the initial Bi content. During cupellation, the (Bi/Ag)/(Bi/

Ag)0 ratio changes from a relation of approximately four (1/0.3 for

XP 1.1) to twenty (1/0.05 for XP 2.2) (Table 5), and is even likely to

be much higher when quite “pure” silver (>95%) is to be obtained,

largely amplifying the results proposed by Pernicka and Bachmann

(1983). Large portions of Bi seem therefore in any case irremediably

lost to litharge in the end of the process (see x 4.2.3).

Nonetheless, as the Bi/Pb ratio in the metal phase is clearly

dependent on the initial Bi content throughout the whole reaction

(Fig. 9), a more precise estimation of the initial Bi content of the

lead bullion can be proposed using Fig. 6. The use of this ratio is

likely to allow distinguishing between different silverelead stocks

regardless of the reaction advancement much rather than pure Bi

concentrations. It should however not be forgotten that in many

archaeological objects, further lead or copper addition, mixing of

different metal sources in mints as well as frequent remelting and

reminting of ancient coins might very much erase this signature.

However, in a production context, computing this ratio provides

estimations of the initial Bi concentration of the lead bullion pro-

cessed by cupellation and therefore on the materials which were

treated by ancient metallurgists and their recipes.

4.2.2. Lead materials

Further reflection on lead artefacts is linked to the hypothesis

that lead coming from litharge resmelting would reflect the

composition of an average litharge. This last comparison between

resmelted lead and litharge compositions is however subject to

caution, as metallic lead was not produced in our experiments. It is

therefore impossible so far to assert whether litharge resmelting

radically modifies the Bi content in lead materials or not. This

specific point would require further experiments and

investigations.

Nevertheless, assuming this hypothesis, Bi content in archaeo-

logical lead materials would mainly be a tracer of metallurgical

processes as it should represent roughly 10e15% of its content in

the initial lead bullion before cupellation (Fig. 10). This ratio is

endorsed by experiments conducted by L'H!eritier and Tereygeol

(2010) who claim that lead coming from litharge resmelting is

10e30 times poorer in Bi than the initial lead bullion prior to the

cupellation, i.e. 3e10% of the initial lead Bi content.

This result has a direct consequence on the identification means

of desilvered lead, which were so far mainly based on Ag content

only (Tylecote, 1986; Rehren and Prange, 1998; Asderaki and

Rehren, 2006). According to our study, among all chalcophile ele-

ments, alongside silver, bismuth seems best to provide a newmean

to estimate whether lead was desilvered or not. This potential

discrimination remains of course highly dependent on the

composition of the processed ores and the archaeological context.

For example, all lead ingots from the roman period analysed by

Baron and Cochet (2003) would be coming from desilvered litharge

resmelting. Most of them indeed exhibit very low Bi concentrations

(<15 ppm) associated with low Ag content (<70 ppm) typical for

this kind of lead. Even three ingots bearing respectively 100, 140

and 220 ppm of silver could be compatible with this hypothesis as

no relevant difference in their Bi content could be highlighted.

Such reflexion led on much larger sets of lead artefacts might, in

the near future, highlight the importance at a given time and place

of simple fusion and desilvered lead.

4.2.3. Processing Bi-rich ores: a metallurgical challenge?

Results on silver loss during the cupellation of Bi rich silver lead

bullions question as well the technical aspects of processing very

rich Bi ores for silver production. One can suspect that metallurgists

avoided such silver losses of 5e10% due to the presence of Bi during

cupellation. For example, silver loss can be spared when processing

CueAg ores by the addition of an excess of lead, which prevents

silver dilution in Cu2O (Bayley and Eckstein, 2006). However, as

Bi2O3 and PbO dissolve Ag2O roughly in the same proportion, the

present hypothesis favours a PbOeBi2O3 interaction enhancing

silver dilution. Lead addition might therefore not reduce silver

losses as for the case of CueAg ores. Such silver loss in litharge,

alongside a fraction of bismuth, would seem here ineluctable when

quite pure silver is to be obtained. These last silver and Bi rich

portions of litharge were certainly retreated to improve the silver

yield. Another challenge is to identify these technological decisions

in archaeological remains. Very rich lead and bismuth material also

containing silver from the Tartessian site of Pe~nalosa in Spain (Hunt

Ortiz, 2003) could indeed match with the retreatment of such Bi-

rich last portions of litharge and testify of the metallurgical

choices improving the efficiency of the process. These archaeo-

logical examples are however scarce so far and future archaeolog-

ical work should stress on this point to understand the

technological decisions taken by the ancient metallurgists for

processing this kind of ore and improve its efficiency. Comparison

between the composition of both Bi-rich ore mining sources and

lead and silver archaeological artefacts produced in the same re-

gions should be investigated to highlight the frequency but also the

technical aspects of processing such Bi-rich ores. Further archaeo-

logical investigations and fine analysis of silver and lead artefacts

such as undergoing in the French site of Castel-Minier will be

required to elucidate these interrogations.

5. Conclusions

This interdisciplinary approach focused on the behaviour of Bi,

Sb and Sn during the cupellation process. Sb and Sn are carried

away in the early stage of cupellation, and partially form solid

compounds, but noticeable amounts of these elements are still

likely to be present in the produced litharge cake. Bi is not volatile

and distributes between the litharge and metal phase with an

average ratio of one to ten during the first 80% of the reaction. It

mostly oxidises at the end of the reaction and is finally present in

very small proportions in the resulting silver button in assaying

Table 5

Evolution of Bi and Ag contents and of the (Bi/Ag)/(Bi/Ag)0 ratio in the metal phase

near the end of the cupellation process according to the thermodynamic model.

Cupellation

progress

XP 1.2 XP 2.2

Ag (%) Bi (%) (Bi/Ag)/(Bi/

Ag)0

Ag (%) Bi (%) (Bi/Ag)/(Bi/

Ag)0

0.95 16 4 0.72 24 24 0.55

0.96 22 5 0.7 29 27 0.5

0.97 31 6 0.65 38 31 0.4

0.975 36 6 0.6 47 31 0.35

0.98 44 7 0.55 60 26 0.25

0.985 57 8 0.5 77 16 0.1

0.99 80 7 0.3 92 7 0.05



conditions. Moreover, the presence of Bi in the processed alloy has a

detrimental effect on the silver yield.

Bi can be considered as an ore source tracer for silver material

using the Bi/Pb ratio. Thermodynamic calculations assessed by

experimental data offer predictive tools to estimate the initial

quantities of Bi present in the lead bullions as well as the resulting

Bi and Ag passing in litharge. These data will not be so useful for

finished objects such as coins, in which the elemental signature is

erased due to metal mixing and remelting, but could be used on

metallurgical production sites, to study ore selection, recipes and

technological choices as well as efficiency of the metallurgical

processes.

Interpretations are more complex for metallic lead based arte-

facts which are likely to come from unrefined or desilvered lead, or

mixed during recycling. However, should no important remobili-

sation of trace element between litharge and resmelted lead be

assessed, Bi would also be a tracer of sources and metallurgical

processes for archaeological leads. Low Bi contents could be

explained by the use of Bi-poor lead ores as well as by their tech-

nological origin, i.e. desilvered lead coming from cupellation.
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