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Abstract

We study the series realized by weighted two-way automata, that are strictly more pow-

erful than weighted one-way automata. To this end, we consider the Hadamard product and

the Hadamard iteration of formal power series. We introduce the representation of two-way

automata and show that the series they realize can be interpreted as the solution of fixed-point

equations. In rationally additive semirings, we prove that two-way automata are equivalent

to two-way representations, and, for some specific classes of two-way automata, rotating and

sweeping automata, we give a characterization of the series that can be realized.

1 Introduction

Two-way finite automata were introduced at the very beginning of the theory of automata. It

was then proved [16, 13] that they are not more powerful than one-way automata. Many papers

have studied the succintness of two-automata automata with respect to one-way automata (cf. for

instance [12]). In this paper, we study weighted two-way automata. This model is strictly more

powerful than weighted one-way automata: they have been introduced in [1] where two-way

Z-automata that are equivalent to one-way Z-automata have been characterized.

In this paper, we try to characterize the series realized by two-way automata. To this end,

we describe different classes of formal power series closed under rational operations, or other

operations like the Hadamard product or the mirror.

The definition of weighted two-way automata is quite straighforward from the definition of

two-way automata and the definition of weighted one-way automata. Nevertheless, the study of

their behaviour is far more complicated: by essence, there may be an infinite number of possible

computations on a given input, and it is not easy to state accurate statements for weighted two-

way automata without strong assumptions. It is the reason why we delay the study of automata

themselves to the end of the paper. We introduce first two-way representations which are alge-

braic models that are extensions of linear representations. As proved in the last part, they are,

under some assumptions on the semiring of weights, equivalent to two-way automata. The set
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of series realizable by such representations, called two-way recognizable series, is closed under

sum, Hadamard product, Hadamard iteration, mirror, and left quotient. At the very end of the

paper, we use automata to prove that two-way recognizable series are not closed under Cauchy

produt and Kleene star.

We then show that two-way recognizable series are solutions of some fixed-point systems.

The resolution of such a system would allow to compute an explicit expression for the series

realized by a two-way representation. We solve them in the case of rotating and sweeping rep-

resentations. It proves that rotating representations exactly realize the series which are in the

closure of the rational series under sum, Hadamard product and Hadamard iteration; likewise,

sweeping representations exactly realize the series which are in the closure of the former set

under mirror.

We finally define two-way weighted automata as well as their behaviour. We show that

each automaton corresponds to a two-way representation and, in the case of rationally addi-

tive semirings, we prove that every two-way weighted automaton is valid and equivalent to its

representation.

2 Formal Power Series

A semiring is a triple (K,+, .), where K is a set endowed with two binary associative operations

+ (addition) and . (multiplication) such that + is commutative and . distributes over +; K con-

tains two distinct elements 0 and 1 such that 0 is neutral for + and is a annihilator for ., and 1 is

neutral for .. Moreover, we assume that every semiring is endowed with a partial unary operation

∗ (star). The semiring K is commutative if . is commutative.

If A is a finite alphabet of symbols, A∗ is the set of words over A; this set is naturally endowed

with the concatenation as multiplication; this operation is associative and admits the empty word

ε (the word with no letter) as neutral element. For every word w, we denote |w| the length of w,

i.e. the number of letters of w.

Let K be a semiring and A be an alphabet. A formal power series s in K〈〈A∗〉〉 is a mapping

from A∗ to K; for every word w, we denote 〈s, w〉 the image (or coefficient) of w in s and we

formally denote s as an infinite sum:

s =
∑

w∈A∗
〈s, w〉w.

The support of a formal power series s is the set of words w such that 〈s, w〉 is different from

zero. A series with a finite support is called a polynomial.

2.1 Rational operations

Formal power series are extensions of languages. To describe quantitative behaviours, it is natural

to extend the regular operations on languages. Let s and t be two formal power series.
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• The sum of s and t is the formal power series

s+ t =
∑

w∈A∗
(〈s, w〉+ 〈t, w〉)w.

• The Cauchy product is

s · t =
∑

w∈A∗

(

∑

u.v=w

〈s, u〉.〈t, v〉

)

w;

the unit element for the Cauchy product is the constant series 1.

• The power of a series is inductively defined from the Cauchy product:

sk =







1 if k = 0,

s · sk−1 if k > 0.

• The Kleene star of a series is defined in two steps:

– if s is proper (〈s, ε〉 = 0),

s∗ =
∑

w∈A∗
(
∞
∑

n=0

〈sk, w〉)w =
∑

w∈A∗
(
|w|
∑

n=0

〈sk, w〉)w;

– otherwise, s = s0 + sp, where s0 = 〈s, ε〉 and sp is proper; in this case, s∗ exists if and

only if s∗0 exists and

s∗ = (s∗0.sp)
∗.s∗0.

The sum, the Cauchy product and the Kleene star are called rational operations. The set of

rational series KRatA∗ is the smallest set of series which contains polynomials and that is closed

under rational operations.

2.2 Entrywise operations

The entrywise operations on series are:

• the sum, which is also a rational operation;

• the entrywise product on series, also called Hadamard product: if s and t are two formal

power series, then the Hadamard product of s and t is

s⊙ t =
∑

w∈A∗
(〈s, w〉.〈t, w〉)w;

the unit element for this product is the characteristic series of A∗, 1⊙ =
∑

w∈A∗ w;
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• the Hadamard iteration of a series s in K〈〈A∗〉〉, which exists if and only if the star of every

coefficient of s exists, and

s⊛ =
∑

w∈A∗
〈s, w〉∗w.

The set of polynomials is closed under entrywise operations: these operations do not give access

to infinity. We can consider two different families of formal power series:

• KHadA∗ is the smallest set of series which contains rational series and that is closed under

entrywise operations.

• KRHA∗ is the smallest set of series which contains polynomials and that is closed under

rational and entrywise operations.

EXAMPLE. Let A = {a, b}, and let K = P({a, b}∗) be the semiring of languages on the alphabet

{a, b}. Let P = {a} a + {b} b. S1 = P ∗ is the rational series identity, where the coefficient of

the word is the singleton that contains the word itself.

The series S2 = (P ∗)⊙ (P ∗) maps every word onto its square; for instance 〈(P ∗)⊙ (P ∗), aba〉 =
{abaaba}. This series of KHadA∗ is not rational.

The series (({a}a)∗⊙ ({b}a)∗) · (({b}a)∗⊙ ({a}a)∗) maps every word an onto {akbnan−k | k ∈
[0;n]}. This series is in KRHA∗ \KHadA∗.

2.3 Mirror operation

The mirror of a word w = w1 . . . wn is the word w = wn . . . w1. This operation can be extended

to series: the mirror of a series s is s =
∑

w∈A∗〈s, w〉w.

Lemma 1. If the semiring K is commutative, for every alphabet A, KRatA∗ is closed under

mirror.

The proof is left to the reader; it is very easy to modify a weighted automaton or a rational

expression to represent the mirror of a series without increasing the size of the representation.

Lemma 2. The mirror commutes with the entrywise operations on series.

Proof. Let s and t be two series in K〈〈A∗〉〉. Then

s+ t =
∑

w∈A∗
〈s+ t, w〉w =

∑

w∈A∗
(〈s, w〉+ 〈t, w〉)w =

∑

w∈A∗
〈s, w〉w +

∑

w∈A∗
〈t, w〉w = s+ t.

s⊙ t =
∑

w∈A∗
〈s⊙ t, w〉w =

∑

w∈A∗
(〈s, w〉.〈t, w〉)w =

∑

w∈A∗
〈s, w〉w ⊙

∑

w∈A∗
〈t, w〉w = s⊙ t.

s⊛ =
∑

w∈A∗
〈s⊛, w〉w =

∑

w∈A∗
〈s, w〉∗w = s⊛.
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Lemma 3. If the semiring K is commutative, the mirror anticommutes with the Cauchy product

and commutes with the Kleene star of series with coefficients in K.

Proof. Let s and t be two series in K〈〈A∗〉〉. Then

s · t =
∑

w∈A∗
〈s · t, w〉w =

∑

w∈A∗

(

∑

uv=w

〈s, u〉.〈t, v〉

)

uv

=
∑

w∈A∗

(

∑

uv=w

〈t, v〉.〈s, u〉

)

v u = t · s;

s∗ =
∑

w∈A∗





∑

k∈N,u1...uk=w

〈s, u1〉 . . . 〈s, uk〉



u1 . . . uk

=
∑

w∈A∗





∑

k∈N,u′1...u
′
k
=w

〈s, u1〉 . . . 〈s, uk〉



u′1 . . . u
′
k = s∗.

Proposition 4. If the semiring K is commutative, KRatA∗, KHadA∗, and KRHA∗ are closed

under mirror.

If the semiring K is not commutative and the alphabet A contains at least two letters, the

following famillies are different from the ones defined above:

• KMirRatA∗ is the closure of KRatA∗ by mirror;

• KMirHadA∗ is the closure of KHadA∗ by mirror;

• KMirRHA∗ is the the closure of KRHA∗ by mirror.

3 Two-Way Representations

3.1 A new product of matrices

In this part, we extend the definitions made in [3] for two-way finite automata.

In one-way K-automata (without ε-transitions), the transition matrix M can be considered as

a representation of paths labeled by words of length 1, and, for every k, Mk is the matrix of paths

labeled by words of length k. The star of the matrix gives then access to the description of the

behaviour of the K-automata on every word. If M is the transition matrix of a K-automaton, if I
and T are the initial and final vector, the series realized by the automaton is I.M∗.T . Since the

entries of M∗ are computable (as rational expressions), this is the foundation of the conversion

of K-automata into rational expressions.

For two-way automata, the situation is a bit more complicated and a specific product on

K-matrices with size m+ n, must be introduced.
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Such a matrix M is divided into four blocks:

M =











→

M ∈ Km×m
←֓

M ∈ Km×n

→֒

M ∈ Kn×m
←

M ∈ Kn×n











.

Intuitively, such a matrix represents two-way computations on a given word. The upper blocks

represents computations that start at the first position of the word, and the lower blocks com-

putations that start at the last position of the word; the left blocks represents computations that

end at the last position of the word, and right blocks represents computations that end at the first

position of the word. We define now a product of matrices that reflects the computations on the

concatenation of two words.

To define this product with reasonable properties (like associativity, for instance), we need

some assumptions on the semiring of entries. These identites were introduced in [7].

Definition 1. A semiring K is a Conway semiring if there exists a star operator defined for every

element such that:

∀x, y ∈ K, (x.y)∗ = 1 + x.(y.x)∗.y, and (x+ y)∗ = x∗.(y.x∗)∗ = (x∗.y)∗.x∗.

If K is a Conway semiring, for every positive integer n, the semiring of K-matrices with

size n can be endowed with a star operation. If n = 1, M∗ = [M∗
1,1], otherwise, for every

decomposition

M =











X Y

Z T











,

where X and T are square matrix with positive sizes, the matrix











(X + Y.T ∗.Z)∗ (X + Y.T ∗.Z)∗.Y.T ∗

(T + Z.X∗.Y )∗.Z.X∗ (T + Z.X∗.Y )∗











does not depend on the decomposition and is set as the star of M . Then, the semiring Kn×n is

also Conway (cf. [4]).

If M and N are two matrices in Km+n, we set:

M sN =











→

M.(
←֓

N.
→֒

M)∗.
→

N
←֓

M +
→

M.(
←֓

N.
→֒

M)∗.
←֓

N.
←

M

→֒

N +
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
→

N
←

N.(
→֒

M.
←֓

N)∗.
←

M











.

This product depends on the pair (m,n), and not only on m + n; if needed, it can be explicitely

precised as M s
m
n N .

To prove the associativity, we also need an identity on non square matrices.
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Lemma 5. Let K be a conway semiring and let m and n be to nonnegative integers. If M is in

Km×n and N is in Kn×m, then

(M.N)∗ = Idm +M.(N.M)∗.N.

Proof. If m = n, the property holds. If m > n, let M ′ and N ′ be two matrices in Km×m:

M ′ =

[

M 0

]

, N ′ =











N

0











.

Then,

M ′.N ′ = M.N, N ′.M ′ =











N.M 0

0 0











, and (N ′.M ′)∗ =











(N.M)∗ 0

0 Idm−n











.

Hence,

(M.N)∗ = (M ′.N ′)∗ = Idm +M ′.(N ′.M ′)∗.N ′ = Idm +M.(N.M)∗.N.

Conversely,

(N ′.M ′)∗ = Idm +N ′.(M ′.N ′)∗.M ′ = Idm +











N.(M.N)∗.M 0

0 0











=











Idn +N.(M.N)∗.M 0

0 Idm−n











.

Therefore, by identification of the first block, (N.M)∗ = Idn +N.(M.N)∗.M .

Proposition 6. Let K be a Conway semiring and let m and n be to nonnegative integers. The

product son matrices in Km+n is associative and the unit is the usual identity matrix Idm+n.

Proof. To prove that (M sN) sP = M s(N sP ), we prove that the equality holds for the four
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blocks of these matrices.

−−−−−−−−−−→

(M sN) sP =
−→

M sN.(
←֓

P .
−֒→

M sN)∗.
→

P

=
→

M.(
←֓

N.
→֒

M)∗.
→

N.(
←֓

P .(
→

N +
←

N.(
→֒

M.
←֓

N)∗.
→֒

M.
→

N)∗.
→

P

=
→

M.(
←֓

N.
→֒

M)∗.
→

N.((
←֓

P .
→

N)∗.
←֓

P .
←

N.(
→֒

M.
←֓

N)∗.
→֒

M.
→

N)∗.(
←֓

P .
→

N)∗.
→

P

=
→

M.(
←֓

N.
→֒

M)∗.(
→

N.(
←֓

P .
→

N)∗.
←֓

P .
←

N.(
→֒

M.
←֓

N)∗.
→֒

M)∗.
→

N.(
←֓

P .
→

N)∗.
→

P

=
→

M.(
←֓

N.
→֒

M)∗.((
→

N.
←֓

P )∗.
→

N.
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗)∗.
→

N.(
←֓

P .
→

N)∗.
→

P

=
→

M.((
←֓

N + (
→

N.
←֓

P )∗.
→

N.
←֓

P .
←

N).
→֒

M)∗.
→

N.(
←֓

P .
→

N)∗.
→

P

=
→

M.(
←−֓

N sP .
→֒

M)∗.
−→

N sP

=
−−−−−−−−−−→

M s(N sP ).

←−−−−−−−−−֓

M s(N sP ) =
←֓

M +
→

M.(
←−֓

N sP .
→֒

M)∗.
←−֓

N sP .
←

M

=
←֓

M +
→

M.[(
←֓

N +
→

N.(
←֓

P .
→֒

N)∗.
←֓

P .
←

N).
→֒

M ]∗.(
←֓

N +
→

N.(
←֓

P .
→֒

N)∗.
←֓

P .
←

N).
←

M

=
←֓

M +
→

M.(
←֓

N.
→֒

M)∗.[
→

N.(
←֓

P .
→֒

N)∗.
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗]∗

.(
←֓

N +
→

N.(
←֓

P .
→֒

N)∗.
←֓

P .
←

N).
←

M

=
←֓

M +
→

M.(
←֓

N.
→֒

M)∗.[
→

N.(
←֓

P .
→֒

N)∗.
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗]∗.
←֓

N.
←

M

+
→

M.(
←֓

N.
→֒

M)∗.
→

N.[(
←֓

P .
→֒

N)∗.
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
→

N ]∗.(
←֓

P .
→֒

N)∗.
←֓

P .
←

N.
←

M

=
←֓

M +
→

M.(
←֓

N.
→֒

M)∗.
←֓

N.
←

M +
→

M.(
←֓

N.
→֒

M)∗.
→

N

.[(
←֓

P .
→֒

N)∗.
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
→

N ]∗.(
←֓

P .
→֒

N)∗.
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
←֓

N.
←

M

+
→

M.(
←֓

N.
→֒

M)∗.
→

N.[
←֓

P .
→֒

N + .
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
→

N ]∗.
←֓

P .
←

N.
←

M

=
←−֓

M sN

+
−→

M sN.[
←֓

P .
→֒

N +
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
→

N ]∗.
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
←֓

N.
←

M

+
−→

M sN.[
←֓

P .
→֒

N +
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
→

N ]∗.
←֓

P .
←

N.
←

M

=
←−֓

M sN +
−→

M sN.[
←֓

P .
→֒

N +
←֓

P .
←

N.
→֒

M.(
←֓

N.
→֒

M)∗.
→

N ]∗.
←֓

P .
←

N.(
→֒

M.
←֓

N)∗.
←

M

=
←−֓

M sN +
−→

M sN.(
←֓

P .
−֒→

M sN)∗.
←֓

P .
←−

M sN =
←−−−−−−−−−֓

(M sN) sP .

Similar computations show that
←−−−−−−−−−−

M s(N sP ) =
←−−−−−−−−−−

(M sN) sP ) and
−֒−−−−−−−−→

(M sN) sP ) =
−֒−−−−−−−−→

M s(N sP ).
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3.2 Definition of two-way representations

Definition 2. Let K be a Conway semiring and let A be an alphabet. Let m and n be two

nonnegative integers. A two-way representation over A∗ with dimension m + n is a tuple ρ =
(I, µ,♦, T ), where I and T are vectors in Km, µ is a morphism from A∗ into (K(m+n)×(m+n), s),

and ♦ is a matrix in K(m+n)×(m+n) such that
→

♦ = Idm and
←

♦ = 0.

The series realized by ρ is the series |ρ| defined by

|ρ| =
∑

w∈A∗

(

I.
−−−−−−−−−−→

♦ sµ(w) s♦.T
)

w.

A series is two-way K-recognizable if it can be realized by a two-way K-representation.

In the sequel, we denote, for every word w,
→
µ(w) =

−→

µ(w),
←֓
µ(w) =

←−֓

µ(w), etc.

EXAMPLE. Let ρ = (I,♦, µ, T ) be the two-way (Q+ ∪ {∞})-representation over {a}∗ with

size 1 + 1 defined by:

I = [1], T = [1], ♦ =

[

1 0
0 0

]

, µ(a) =

[

1/2 1/2
1/2 1/2

]

Hence, the weight of an in |ρ| is equal to
→
µ(an) for every n. We prove by induction that, for

every n,
→
µ(an) = [1/(n + 1)] and

←֓
µ(an) = [n/(n + 1)]. It is true for n = 0 and n = 1; if it is

true for n− 1, then

→
µ(an) =

→
µ(a).(

←֓
µ(an−1).

→֒
µ(a))∗.

→
µ(an−1) =

1

2

(

n− 1

n
·
1

2

)∗ 1

n
=

1

2n
·

1

1− n−1
2n

=
1

n+ 1
,

←֓
µ(an) =

←֓
µ(a) +

→
µ(a).(

←֓
µ(an−1).

→֒
µ(a))∗.

←֓
µ(an−1).

←
µ(a) =

1

2
+

1

2

(

n− 1

n
·
1

2

)∗ n− 1

2n

=
1

2
+

n− 1

4n
·

2n

n+ 1
=

n

n+ 1
.

Therefore, |ρ| =
∑

k>0

ak

k + 1
. This series is not in QRata∗; by [14], it is even not in the closure by

the Hadamard product. Nevertheless, it belongs to QHada∗:

a∗ −
(

a

2

)∗

.
(

a

2

)∗

=
∞
∑

k=0

(

1−
k + 1

2k

)

ak,

(

a∗ −
(

a

2

)∗

.
(

a

2

)∗)⊛

=
∞
∑

k=0

2k

k + 1
ak,

|ρ| =
(

a∗ −
(

a

2

)∗

.
(

a

2

)∗)⊛

⊙
(

a

2

)∗

.

Notice that the two-way representation is over Q+ ∪ {∞}, and this does not prove that |ρ| is in

(Q+ ∪ {∞})Hada
∗; ρ may even not be in (Q+ ∪ {∞})RHa

∗.

We propose an algorithm to compute 〈|ρ|, w〉 based on the following proposition.
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Proposition 7. Let K be a Conway semiring and let ρ = (I, µ,♦, T ) be a two-way representa-

tion. Then for every word w in A∗,

∀a ∈ A,











I.
−−−−−−−→

♦ sµ(wa) = I.
−−−−−−−→

♦ sµ(w).(
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a),

−֒−−−−−→

♦ sµ(wa) =
→֒
µ(a) +

←
µ(a).

−֒−−−−−→

♦ sµ(w).(
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a);

〈|ρ|, w〉 = I.
−−−−−−−−−−→

♦ sµ(w) s♦.T = (I.
−−−−−−−→

♦ sµ(w)).(
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗.T.

Proof. The two first equalities are straightforward from the definition of µ and the associativity

of s. The last one is also obvious since
→

♦ = Id.

Let w = w1 . . . wℓ be a word of length ℓ; to compute 〈|ρ|, w〉, we set X0 = I and Y0 =
→֒

♦.

Then, for every i from 1 to ℓ,

Xi = Xi−1.(
←֓
µ(wi).Yi−1)

∗.
→
µ(wi), Yi =

→֒
µ(wi) +

←
µ(wi).Yi−1.(

←֓
µ(wi).Yi−1)

∗.
→
µ(wi).

Finally, 〈|ρ|, w〉 = Xℓ.(
←֓

♦.Yℓ)
∗.T .

The complexity of this computation depends on the complexity of the operations in the semir-

ing K; usually, the addition is less expensive than the multiplication; moreover, the star of a ma-

trix of size n can be computed with O(n3) multiplications (for instance with the McNaughton-

Yamada algorithm [10]). Notice that we consider the naive algorithm for the multiplication of

matrices: for every n,m, r, the multiplication of M in Km×r and N in Kr×n can be performed

with O(mnr) multiplications. We evaluate the complexity of each step of the algorithm. Assume

that ρ is a representation with size m+ n; for every i, Xi is a vector of size m and Yi is a matrix

of size n×m.

• the product
←֓
µ(wi).Yi−1 requires O(m2n) multiplications;

• the star (
←֓
µ(wi).Yi−1)

∗ requires O(m3) multiplications;

• the product Xi−1.(
←֓
µ(wi).Yi−1)

∗ requires O(m2) multiplications;

• the product Xi−1.(
←֓
µ(wi).Yi−1)

∗.
→
µ(wi) requires O(m2) multiplications;

• the product Yi−1.(
←֓
µ(wi).Yi−1)

∗ requires O(m2n) multiplications;

• the product Yi−1.(
←֓
µ(wi).Yi−1)

∗.
→
µ(wi) requires O(m2n) multiplications;

• the product
←
µ(wi).Yi−1.(

←֓
µ(wi).Yi−1)

∗.
→
µ(wi) requires O(m2n) multiplications.

Thus, at each step, the cost of matrix multiplications is O(m2n) and the cost of the star of the

matrix is O(m3); notice that if n is negligible w.r.t. m, thanks to the identity (M.N)∗ = Id +
M.(N.M)∗.N , this cost can be converted into O(n3) (with O(mn2) auxilliary multiplications).

The cost of the final computation is similar, and finally:

Proposition 8. Let ρ be a two-way representation of size m + n. The coefficient of a word of

length k in |ρ| can be computed with O(k(m2n+min(m3 + n3))) multiplications.
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Classes of two-way K-representations. We shall study the expressiveness of some subclasses

of two-way K-representations. Let ρ = (I, µ,♦, T ) be a two-way K-representation of size m+n.

• ρ is a sweeping K-representation if for every letter a,
←֓
µ(a) = 0 and

→֒
µ(a) = 0.

• ρ is a rotating K-representation if it is sweeping and, for every letter a,
←
µ(a) = Id.

• If n = 0, ρ is one-way. In this case, ♦ = Id can be ignored and the representation is a linear

K-representation, as defined in [9]. By the Kleene-Schützenberger Theorem [15], a series

over A∗ can be realized by a one-way K-representation if and only if it is in KRatA∗.

3.3 Closure properties

Like in the case of linear (one-way) representations, the set of series realized by two-way repre-

sentations is closed by a number of operations.

Proposition 9. The set of series realized by two-way (resp. sweeping, resp. rotating) K-

representations is closed under the entrywise operations.

Proof. Let ρi = (Ii, µi,♦i, Ti) be a representation of size mi + ni, for i in {1, 2}.

• SUM. Let ρ3 = (I3, µ3,♦3, T3) be the representation of size (m1+m2)+(n1+n2) defined

by

I3 =
[

I J
]

, T3 =











T1

T2











, ∀a ∈ A,

µ3(a) =

































→
µ1(a) 0

0
→
µ2(a)

←֓
µ1(a) 0

0
←֓
µ2(a)

→֒
µ1(a) 0

0
→֒
µ2(a)

←
µ1(a) 0

0
←
µ2(a)

































, ♦3 =

































Id

←֓

♦1 0

0
←֓

♦2

→֒

♦1 0

0
→֒

♦2

0

































.

By induction on the length of words, it immediatly comes that, for every non empty word

w,

µ3(w) =

































→
µ1(w) 0

0
→
µ2(w)

←֓
µ1(w) 0

0
←֓
µ2(w)

→֒
µ1(w) 0

0
→֒
µ2(w)

←
µ1(w) 0

0
←
µ2(w)

































.
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Hence, for every word w,

I3.
−−−−−−−→

♦3 sµ3(w) =I3.(
←֓
µ3(w).

→֒

♦3)
∗.
→
µ3(w))

=
[

I1.(
←֓
µ1(w).

→֒

♦1)
∗.
→
µ1(w)) I2.(

←֓
µ2(w).

→֒

♦2)
∗.
→
µ2(w))

]

=
[

I1.
−−−−−−−→

♦1 sµ1(w) I2.
−−−−−−−→

♦2 sµ2(w)
]

,

−֒−−−−−→

♦3 sµ3(w) =
→֒
µ3(w) +

←
µ3(w).

→֒

♦3.(
←֓
µ3(w).

→֒

♦3)
∗.
→
µ3(w) =











−֒−−−−−→

♦1 sµ1(w) 0

0
−֒−−−−−→

♦2 sµ2(w)











,

and finally

〈|ρ3|, w〉 =











I1.
−−−−−−−→

♦1 sµ1(w)

I2.
−−−−−−−→

♦2 sµ2(w)











.





















←֓

♦1 0

0
←֓

♦2











.











−֒−−−−−→

♦1 sµ1(w) 0

0
−֒−−−−−→

♦2 sµ2(w)





















∗

.











T1

T2











= I1.
−−−−−−−−−−→

♦1 sµ1(w) s♦1.T1 + I2.
−−−−−−−−−−→

♦2 sµ2(w) s♦2.T2

= 〈|ρ1|, w〉+ 〈|ρ2|, w〉 = 〈|ρ1|+ |ρ2|, w〉.

• HADAMARD PRODUCT. Let ρ4 = (I4, µ4,♦4, T4) be the representation of size (m1 +
m2) + (n1 + 1 + n2) defined by:

I4 =
[

I1 0
]

, T4 =











0

T2











, ∀a ∈ A,

µ4(a) =





































→
µ1(a) 0

0
→
µ2(a)

←֓
µ1(a) 0 0

0 0
←֓
µ2(a)

→֒
µ1(a) 0

0 0

0
→֒
µ2(a)

←
µ1(a) 0 0

0 1 0

0 0
←
µ2(a)





































, ♦4 =





































Id

←֓

♦1 T1 0

0 0
←֓

♦2

→֒

♦1 0

0 I2

0
→֒

♦2

0





































.
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We prove by induction that, for every word w,

I4.
−−−−−−−→

♦4 sµ4(w) =
[

I1.
−−−−−−−→

♦1 sµ1(w) 0
]

,

−֒−−−−−→

♦4 sµ4(w) =



















−֒−−−−−→

♦1 sµ1(w) 0

0 I2.
−−−−−−−→

♦2 sµ2(w)

0
−֒−−−−−→

♦2 sµ2(w)



















.

It is true if w if the empty word, and, if it is true for w, for every letter a:

(
←֓
µ4(a).

−֒−−−−−→

♦4 sµ4(w))
∗.
→
µ4(a)

=





























←֓
µ1(a) 0 0

0 0
←֓
µ2(a)











.



















−֒−−−−−→

♦1 sµ1(w) 0

0 I2.
−−−−−−−→

♦2 sµ2(w)

0
−֒−−−−−→

♦2 sµ2(w)





































∗

.











→
µ1(a) 0

0
→
µ2(a)











=











←֓
µ1(a).

−֒−−−−−→

♦1 sµ1(w) 0

0
←֓
µ1(a).

−֒−−−−−→

♦2 sµ2(w)











∗

.











→
µ1(a) 0

0
→
µ2(a)











=











(
←֓
µ1(a).

−֒−−−−−→

♦1 sµ1(w))
∗.
→
µ1(a) 0

0 (
←֓
µ1(a).

−֒−−−−−→

♦2 sµ2(w))
∗.
→
µ2(a).











I4.
−−−−−−−→

♦4 sµ4(wa)

=
[

I1.
−−−−−−−→

♦4 sµ4(w) 0
]

.











(
←֓
µ1(a).

−֒−−−−−→

♦1 sµ1(w))
∗.
→
µ1(a) 0

0 (
←֓
µ1(a).

−֒−−−−−→

♦2 sµ2(w))
∗.
→
µ2(a)











=
[

I1.
−−−−−−−→

♦4 sµ4(w).(
←֓
µ1(a).

−֒−−−−−→

♦1 sµ1(w))
∗.
→
µ1(a) 0

]

=
[

I1.
−−−−−−−→

♦1 sµ1(wa) 0
]

.
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−֒−−−−−→

♦4 sµ4(wa)

=

















→֒
µ1(a) 0

0 0

0
→֒
µ2(a)

















+



















←
µ1(a).

−֒−−−−−→

♦1 sµ1(w) 0

0 I2.
−−−−−−−→

♦2 sµ2(w)

0
←
µ2(a).

−֒−−−−−→

♦2 sµ2(w)



















.











(
←֓
µ1(a).

−֒−−−−−→

♦1 sµ1(w))
∗.
→
µ1(a) 0

0 (
←֓
µ2(a).

−֒−−−−−→

♦2 sµ2(w))
∗.
→
µ2(a)











=



















−֒−−−−−→

♦1 sµ1(wa) 0

0 I2.
−−−−−−−→

♦2 sµ2(wa)

0
−֒−−−−−→

♦2 sµ2(wa)



















.

We then compute (
←֓

♦4.
−֒−−−−−→

♦4 sµ4(w))
∗:





























←֓

♦1 T1 0

0 0
←֓

♦2











.



















−֒−−−−−→

♦1 sµ1(w) 0

0 I2.
−−−−−−−→

♦2 sµ2(w)

0
−֒−−−−−→

♦2 sµ2(w)





































∗

=











←֓

♦1.
−֒−−−−−→

♦1 sµ1(w) T1.I2.
−−−−−−−→

♦2 sµ2(w)

0
←֓

♦2.
−֒−−−−−→

♦2 sµ2(w)











∗

=











(
←֓

♦1.
−֒−−−−−→

♦1 sµ1(w))
∗ (

←֓

♦1.
−֒−−−−−→

♦1 sµ1(w))
∗.T1.I2.

−−−−−−−→

♦2 sµ2(w).(
←֓

♦2.
−֒−−−−−→

♦2 sµ2(w))
∗

0 (
←֓

♦2.
−֒−−−−−→

♦2 sµ2(w))
∗











=











(
←֓

♦1.
−֒−−−−−→

♦1 sµ1(w))
∗ (

←֓

♦1.
−֒−−−−−→

♦1 sµ1(w))
∗.T1.I2.

−−−−−−−−−−→

♦2 sµ2(w) s♦2

0 (
←֓

♦2.
−֒−−−−−→

♦2 sµ2(w))
∗










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Finally, the coefficient of w in |ρ4| is

(I4.
−−−−−−−→

♦4 sµ4(w)).(
←֓

♦4.
−֒−−−−−→

♦4 sµ4(wa))
∗.T4

=I1.
−−−−−−−→

♦1 sµ1(w).(
←֓

♦1.
−֒−−−−−→

♦1 sµ1(w))
∗.T1.I2.

−−−−−−−−−−→

♦2 sµ2(w) s♦2.T2

=I1
−−−−−−−−−−→

♦1 sµ1(w) s♦1.T1.I2.
−−−−−−−−−−→

♦2 sµ2(w) s♦2.T2 = 〈|ρ1|, w〉.〈|ρ2|, w〉 = 〈|ρ1| ⊙ |ρ2|, w〉.

• HADAMARD ITERATION. Let ρ = (I, µ,♦, T ) be a two-way representation and let ρ5 be

the two-way representation defined by

I5 =
[

1 I
]

, T5 =







1

T





 ,

∀a ∈ A, µ5(a) =























1 0

0
→
µ(a)

0 0
←֓
µ(a) 0

0
→֒
µ(a)

0 0

←
µ(a) 0

0 1























, ♦5 =























Id

0 0
←֓

♦ T

0
→֒

♦

0 I
0























.

We prove by induction that, for every word w,

I5.
−−−−−−−→

♦5 sµ5(w) =
[

1 I.
−−−−−−−→

♦ sµ(w)
]

,

−֒−−−−−→

♦5 sµ5(w) =









0
−֒−−−−−→

♦ sµ(w)

0 I.
−−−−−−−→

♦ sµ(w)









.

It is true if w if the empty word, and, if it is true for w, for every letter a:

(
←֓
µ5(a).

−֒−−−−−→

♦4 sµ5(w))
∗.
→
µ5(a) =















0 0
←֓
µ(a) 0





 .









0
−֒−−−−−→

♦ sµ(w)

0 I.
−−−−−−−→

♦ sµ(w)

















∗

.







1 0

0
→
µ(a)







=







0 0

0
←֓
µ(a).

−֒−−−−−→

♦ sµ(w)







∗

.







1 0

0
→
µ(a)







=







1 0

0 (
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a)





 .
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I5.
−−−−−−−→

♦5 sµ5(wa)

=
[

1 I.
−−−−−−−→

♦ sµ(w)
]

.







1 0

0 (
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a)







=
[

1 I.
−−−−−−−→

♦ sµ(w).(
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a)

]

=
[

1 I.
−−−−−−−→

♦ sµ(wa)
]

.

−֒−−−−−→

♦5 sµ5(wa) =







0
→֒
µ(a)

0 0





+









0
←
µ(a).

−֒−−−−−→

♦ sµ(w)

0 I.
−−−−−−−→

♦ sµ(w)









.







1 0

0 (
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a)







=









0
→֒
µ(a) +

←
µ(a).

−֒−−−−−→

♦ sµ(w).(
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a)

0 I.
−−−−−−−→

♦ sµ(w).(
←֓
µ(a).

−֒−−−−−→

♦ sµ(w))∗.
→
µ(a)









=









0
−֒−−−−−→

♦ sµ(wa)

0 I.
−−−−−−−→

♦ sµ(wa)









.

We then compute (
←֓

♦5.
−֒−−−−−→

♦5 sµ5(w))
∗:















0 0
←֓

♦ T





 .









0
−֒−−−−−→

♦ sµ(w)

0 I.
−−−−−−−→

♦ sµ(w)

















∗

=







1 0

0 (
←֓

♦.
−֒−−−−−→

♦ sµ(w) + T.I.
−−−−−−−→

♦ sµ(w))∗







=







1 0

0 (
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗.(T.I.
−−−−−−−→

♦ sµ(w).(
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗)∗





 .

Finally, the coefficient of w in |ρ5| is

(I5.
−−−−−−−→

♦5 sµ5(w)).(
←֓

♦5.
−֒−−−−−→

♦5 sµ5(wa))
∗.T5

=
[

1 I.
−−−−−−−→

♦ sµ(w)
]

.















0 0
←֓

♦ T





 .









0
−֒−−−−−→

♦ sµ(w)

0 I.
−−−−−−−→

♦ sµ(w)

















∗

.







1

T







=1 + I.
−−−−−−−→

♦ sµ(w).(
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗.(T.I.
−−−−−−−→

♦ sµ(w).(
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗)∗.T

=1 + I.
−−−−−−−→

♦ sµ(w).(
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗.T.(I.
−−−−−−−→

♦ sµ(w).(
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗.T )∗

=1 + 〈|ρ|, w〉.〈|ρ|, w〉∗ = 〈|ρ|, w〉∗.

Notice that these constructions preserve the sweeping and the rotating properties.
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Proposition 10. The set of series realized by two-way (resp. sweeping,) K-representations is

closed under mirror.

Proof. Let ρ = (I, µ,♦, T ) be a two-way representation of size m+n and let ρ6 be the two-way

representation of size (m+ 2) + n defined by

I6 =
[

1 0 0
]

, T6 =











0

0

1











,

∀a ∈ A, µ6(a) =



























1 0 0

0
←
µ(a)

0 0 1

0
→֒
µ(a)

0

0
←֓
µ(a) 0

→
µ(a)



























, ♦6 =



























Id

I
→֒

♦

0

0
←֓

♦ T 0



























.

We prove by induction that, for every word w,

I6.
−−−−−−−→

♦6 sµ6(w) = I6
−֒−−−−−→

♦6 sµ6(w) =

[

0
←−−−−−−֓

µ(w) s♦
−−−−−−−→

µ(w) s♦.T

]

.

It is true if w if the empty word, and, if it is true for w, for every letter a:

(
←֓
µ6(a).

−֒−−−−−→

♦6 sµ6(w))
∗.
→
µ6(a)

=





















0
→֒
µ(a)

0











.

[

0
←−−−−−−֓

µ(w) s♦
−−−−−−−→

µ(w) s♦ .T

]











∗

.











1 0 0

0
←
µ(a) 0

0 0 1











=











0 0 0

0
→֒
µ(a).

←−−−−−−֓

µ(w) s♦
→֒
µ(a).

−−−−−−−→

µ(w) s♦.T

0 0 0











∗

.











1 0 0

0
←
µ(a) 0

0 0 1











=











1 0 0

0 (
→֒
µ(a).

←−−−−−−֓

µ(w) s♦)∗.
←
µ(a) (

→֒
µ(a).

←−−−−−−֓

µ(w) s♦)∗.
→֒
µ(a).

−−−−−−−→

µ(w) s♦.T

0 0 1











.

I6.
−−−−−−−→

♦6 sµ6(wa) = I6.(
←֓
µ6(a).

−֒−−−−−→

♦6 sµ6(w))
∗.
→
µ6(a) =

[

1 0 0
]

.
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−֒−−−−−→

♦6 sµ6(wa)

=

[

0
←֓
µ(a) 0

]

+

[

→
µ(a)

]

.

[

0
←−−−−−−֓

µ(w) s♦
−−−−−−−→

µ(w) s♦ .T

]

.











1 0 0

0 (
→֒
µ(a).

←−−−−−−֓

µ(w) s♦)∗.
←
µ(a) (

→֒
µ(a).

←−−−−−−֓

µ(w) s♦)∗.
→֒
µ(a).

−−−−−−−→

µ(w) s♦ .T

0 0 1











=

[

0
←֓
µ(a) 0

]

+

[

0
→
µ(a).

←−−−−−−֓

µ(w) s♦
→
µ(a).

−−−−−−−→

µ(w) s♦.T

]

.











1 0 0

0 (
→֒
µ(a).

←−−−−−−֓

µ(w) s♦)∗.
←
µ(a) (

→֒
µ(a).

←−−−−−−֓

µ(w) s♦)∗.
→֒
µ(a).

−−−−−−−→

µ(w) s♦ .T

0 0 1











=









0 →
µ (a).

←−−−−−−֓

µ(w) s♦ .(
→֒
µ (a).

←−−−−−−֓

µ(w) s♦ )∗.
←
µ (a)

→
µ (a).

←−−−−−−֓

µ(w) s♦ .(
→֒
µ (a).

←−−−−−−֓

µ(w) s♦ )∗.
→֒
µ (a).

−−−−−−−→

µ(w) s♦ .T

+
←֓
µ(a) +

→
µ(a).

−−−−−−−→

µ(w) s♦.T









=

[

0
←−−−−−−֓

µ(aw) s♦
−−−−−−−→

µ(aw) s♦.T

]

=

[

0
←−−−−−−֓

µ(wa) s♦
−−−−−−−→

µ(wa) s♦.T

]

Finally, the coefficient of w in |ρ6| is

(I6.
−−−−−−−→

♦6 sµ5(w)).(
←֓

♦6.
−֒−−−−−→

♦6 sµ6(wa))
∗.T6

=
[

1 0 0
]

.





















I
→֒

♦

0











.

[

0
←−−−−−−֓

µ(w) s♦
−−−−−−−→

µ(w) s♦.T

]











∗

.











0

0

1











=
[

1 0 0
]

.













0 I.
←−−−−−−֓

µ(w) s♦ I.
−−−−−−−→

µ(w) s♦.T

0
→֒

♦.
←−−−−−−֓

µ(w) s♦
→֒

♦.
−−−−−−−→

µ(w) s♦ .T

0 0 0













∗










0

0

1











=I.
−−−−−−−→

µ(w) s♦.T + I.
←−−−−−−֓

µ(w) s♦.(
→֒

♦.
←−−−−−−֓

µ(w) s♦)∗.
→֒

♦.
−−−−−−−→

µ(w) s♦.T

=I.
−−−−−−−−−−→

♦ sµ(w) s♦.T.

This construction preserves the sweeping property.

Proposition 11. Let K be a Conway semiring and A an alphabet.

Every series in KHadA∗ can be realized by a rotating K-representation.

Every series in KMirHadA∗ can be realized by a sweeping K-representation.
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Proof. Every series in KRatA∗ can be realized by a one-way K-representation, and the set of

series realizable by rotating K-representations is closed by the entrywise operations. Likewise,

the set of series realizable by sweeping K-representations is closed by mirror.

Proposition 12. Let K be a Conway semiring, let A be an alphabet, and let ρ = (I, µ,♦, T ) be

a two-way K-representation over A∗. For every word u, the left quotient of ρ by u,

u−1|ρ| =
∑

v∈A∗
〈|ρ|, uv〉v,

is realized by the two-way representation (I ′, µ,♦′, T ), with

I ′ = I.
−−−−−−−→

♦ sµ(u) , ♦′ =











Id

−֒−−−−−→

♦ sµ(u)

←֓

♦ 0











.

Proof. First, notice that ♦′ acts as ♦ when applied to the right:

∀v ∈ A∗,
−−−−−−−→

µ(v) s♦′ =
→
µ(v).(

←֓

♦′.
→֒
µ(v))∗.

→

♦′ =
→
µ(v).(

←֓

♦.
→֒
µ(v))∗.

→

♦ =
−−−−−−−→

µ(v) s♦ ,
←−−−−−−֓

µ(v) s♦′ =
←֓
µ(v) +

→
µ(v).(

←֓

♦′.
→֒
µ(v))∗.

←֓

♦′.
←
µ(v)

=
←֓
µ(v) +

→
µ(v).(

←֓

♦.
→֒
µ(v))∗.

←֓

♦.
←
µ(v) =

←−−−−−−֓

µ(v) s♦.

Then,

∀v ∈ A∗, I ′.
−−−−−−−−−−→

♦′ sµ(v) s♦′.T = I.
−−−−−−−→

♦ sµ(u) .
→

♦′.(
←−−−−−−֓

µ(v) s♦′.
→֒

♦′)∗.
−−−−−−−→

µ(v) s♦′ .T

= I.
−−−−−−−→

♦ sµ(u) .(
←−−−−−−֓

µ(v) s♦.
−֒−−−−−→

♦ sµ(u))∗.
−−−−−−−→

µ(v) s♦ .T

= I.
−−−−−−−−−−→

♦ sµ(u) sµ(v) s♦.T = I.
−−−−−−−−−−→

♦ sµ(uv) s♦.T.

We shall see further that two-way recognizable series are not closed under Cauchy product

and Kleene star.

4 Two-way-recognizable series as fixed points

In the case of one-way K-automata, if M is the transition matrix of an automaton with final

vector T , and X is the vector with entry in K〈〈A∗〉〉 such that Xp is the series realized if p is the

initial state (with weight 1), X fulfills the following fixed-point equation:

X = T +M ·X.
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If each entry of M is a linear combination of letters, S = M∗.T is the unique solution of the

equation, and thus the series realized by the automaton is I.M∗.T , where I is the initial vector.

This is the foundation of algorithms that convert one-way automata to rational expressions.

We set a similar equation for two-way representations. We consider the matrix algebras

respectively induced by the Cauchy and the Hadamard products. For every m,h, n in N, for

every M in K〈〈A∗〉〉m×h and every N in K〈〈A∗〉〉h×n, for every (i, j) in [1;m]× [1;n],

(M ·N)i,j =
∑

k∈[1;h]

Mi,k ·Mk,j, (M ⊙N)i,j =
∑

k∈[1;h]

Mi,k ⊙Mk,j.

Notice that M ⊙N is not the Hadamard (entrywise) product of matrices.

These matrix products admit unit elements : Idn is the diagonal matrix of size n with entries

1 and A
∗
n is the diagonal matrix with entries 1⊙ (the dimension may be omitted).

If K is a Conway semiring, so is the semiring (K〈〈A∗〉〉,+, ·) (cf. [4]); thus, the star M∗ of a

matrix M over this semiring is well-founded. Likewise, (K〈〈A∗〉〉,+,⊙) is also Conway (since

every operation is entrywise), and for every matrix M in K〈〈A∗〉〉n×n, M⊛ is the star of M in

this semiring.

We prove now that the series realized by a two-way K-representation can be characterized as

the unique fixed-point of a system.

Theorem 13. Let K be a Conway semiring. Let ρ = (I, µ,♦, T ) be a two-way K-representation

and let M =
∑

a∈A µ(a). Then the unique solution of the system










X =
←֓

♦ +
←֓

M · A∗ + (
→

M ·X)⊙ (
→֒

M ·X)⊛ ⊙ (
←

M · A∗),

Y = T +
→

M · Y + (
→

M ·X)⊙ (
→֒

M ·X)⊛ ⊙ (
→֒

M · Y )
(1)

is (X, Y ) = (
←֓

S,
→

S.T ), with

S =
∑

w∈A∗
(µ(w) s♦)w.

The series realized by the representation is I.(
←֓

S.
→֒

♦)⊛ ⊙ (
→

S.T ).

Proof. Assume first that there exists a solution (X0, Y0). We first prove by induction that X0 =
←֓

S . The matrix M is proper, hence 〈X0, ε〉 =
←֓

♦ = 〈
←֓

S, ε〉, and for every letter a, 〈X0, a〉 =

〈
←֓

M,a〉 =
←֓
µ(a) = 〈

←֓

S, a〉. Let w be a word such that 〈X0, w〉 = 〈
←֓

S,w〉. Then, for every letter a,

〈X0, aw〉 = 〈
←֓

M · A∗, aw〉+ 〈
→

M ·X0, aw〉.〈
→֒

M ·X0, aw〉
∗.〈
←

M · A∗, aw〉

= 〈
←֓

M,a〉+ 〈
→

M,a〉.〈X0, w〉.(〈
→֒

M,a〉.〈X0, w〉)
∗.〈
←

M,a〉

= 〈
←֓

M,a〉+ 〈
→

M,a〉.〈X0, w〉.(〈
→֒

M,a〉.〈X0, w〉)
∗.〈
←

M,a〉

= 〈
←֓

M,a〉+ 〈
→

M,a〉.〈
←֓

S,w〉.(〈
→֒

M,a〉.〈
←֓

S,w〉)∗.〈
←

M,a〉

=
←֓
µ(a) +

→
µ(a).

←−−−−−−−−−֓

µ(w) s♦ .(
→֒
µ(a).

←−−−−−−−−−֓

µ(w) s♦ )∗.
←
µ(a)

=
←−−−−−−−−−֓

µ(a) sµ(w) s♦ =
←−−−−−−−−−֓

µ(aw) s♦ = 〈
←֓

S, aw〉.
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We then prove by induction that Y0 =
→

S.T . 〈Y0, ε〉 = T =
−−−−−−−−−−→

µ(ε) s♦ .T = 〈
→

S.T, ε〉. Let w be

a word such that 〈Y0, w〉 = 〈
→

S.T, w〉. Then, for every letter a,

〈Y0, aw〉 = 〈
→

M · Y0, aw〉+ 〈
→

M ·X0, aw〉.〈
→֒

M ·X0, aw〉
∗.〈
←

M · Y0, aw〉

= 〈
→

M,a〉.〈Y0, w〉+ 〈
→

M,a〉.〈X0, w〉.(〈
→֒

M,a〉.〈X0, w〉)
∗.〈
←

M,a〉.〈Y0, w〉

= 〈
→

M,a〉.〈
→

S.T, w〉+ 〈
→

M,a〉.〈
←֓

S,w〉.(〈
→֒

M,a〉.〈
←֓

S,w〉)∗.〈
←

M,a〉.〈
→

S.T, w〉

=
→
µ(a).

−−−−−−−−−−→

µ(w) s♦ .T

+
→
µ(a).

←−−−−−−−−−֓

µ(w) s♦ .(
→֒
µ(a).

←−−−−−−−−−֓

µ(w) s♦ )∗.
←
µ(a).

−−−−−−−−−−→

µ(w) s♦ .T

=
→
µ(a).(

←−−−−−−−−−֓

µ(w) s♦ .
→֒
µ(a))∗.

−−−−−−−−−−→

µ(w) s♦ .T

=
−−−−−−−−−−→

µ(a) sµ(w) s♦ =
−−−−−−−−−−→

µ(aw) s♦ .T = 〈
→

S.T, aw〉.

It is easy to check that (
←֓

S,
→

S.T ) is actually a solution to the system.

Finally, for every word w,

〈I.(
←֓

S ·
→֒

♦)⊛ ⊙ (
→

S.T ), w〉 = I.(
←−−−−−−−−−֓

µ(w) s♦ ·
→֒

♦)⊛ ⊙
−−−−−−−−−−→

µ(w) s♦ .T

= I.
→

♦.(
←−−−−−−−−−֓

µ(w) s♦ ·
→֒

♦)⊛ ⊙
−−−−−−−−−−→

µ(w) s♦ .T

= I.
−−−−−−−−−−→

♦ sµ(w) s♦.T.

EXAMPLE. Let ρ = (I, µ,♦, T ) be the two-way (N ∪ {∞}) representation defined by:

I =
[

1 0
]

, T =

[

1
0

]

.

µ(a) =







0 1 0
1 0 0
0 0 2





 , µ(b) =







1 0 0
0 0 1
0 1 0





 ,♦ =







1 0 0
0 1 1
0 1 0





 .

The system corresponding to this representation is:































X1 =





0

1



+





0

bA∗



+









b a

a 0



 ·X1



⊙
([

0 b
]

·X1

)⊛

⊙
[

2aA∗
]

,

Y1 =





1

0



+





b a

a 0



 · Y1 +









b a

a 0



 ·X1



⊙
([

0 b
]

·X1

)⊛

⊙
([

0 b
]

· Y1

)

.
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The last factor of the third term of X1 forces words to begin with letter a, hence, the product with
([

0 b
]

·X1

)⊛

is always null except with the identity; finally, it comes

X1 =

[

0
1 + bA∗

]

+

[

0 2a
2a 0

]

·X1.

Hence, by Arden lemma,

X1 =

[

0 2a
2a 0

]∗

·

[

0
1 + b(a+ b)∗

]

= (4aa)∗
[

2a
1

]

(1 + bA∗).

Likewise, in the third term of Y1, the first letter of words must be a b, hence,

Y1 =

[

1
0

]

+

[

b a
a 0

]

·Y1+

[

b2a(4aa)∗(1 + bA∗)
0

]

⊙
([

b(4aa)∗(1 + bA∗)
])⊛

⊙
([

0 b
]

· Y1

)

Considering the parity of the first block of a, it comes

Y1 =

[

1
0

]

+

[

b a
a 0

]

· Y1 +

[

b2a(4aa)∗(1 + bA∗)
0

]

⊙
([

0 b
]

· Y1

)

We set Ya = Y1 ⊙ aA∗ and Yb = Y1 ⊙ (1 + bA∗); Y1 = Ya + Yb and it holds






























Ya =





0 a

a 0



 · (Ya + Yb)

Yb =





1

0



+





b 0

0 0



 · (Ya + Yb) + b





2a(4aa)∗(1 + bA∗)

0



⊙
([

0 1
]

· Ya

)























































Ya=





aa(aa)∗ a(aa)∗

a(aa)∗ aa(aa)∗



 · Yb

Yb=





1

0



+





b(aa)∗ ba(aa)∗

0 0



 · Yb + b





2a(4aa)∗(1 + bA∗)

0



⊙
(

a(aa)∗
[

1 a
]

· Yb

)

=





1

0



+





b(aa)∗ ba(aa)∗

0 0



 · Yb + b2a(4aa)∗





1 0

0 0



 · Yb.

therefore,

Yb =

[

(b(aa)∗ + b2a(4aa)∗)∗

0

]

The solution of this system is






























X1 =





2a(4aa)∗(1 + bA∗)

(4aa)∗(1 + bA∗)



 ,

Y1 =





(aa)∗(b(aa)∗ + b2a(4aa)∗)∗

a(aa)∗(b(aa)∗ + b2a(4aa)∗)∗



 .
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Hence, the series realized by the representation is

S1 =

[

1
0

]

.

[

0 2a(4aa)∗(1 + bA∗)
0 (4aa)∗(1 + bA∗)

]⊛

⊙

[

(aa)∗(b(aa)∗ + b2a(4aa)∗)∗

a(aa)∗(b(aa)∗ + b2a(4aa)∗)∗

]

= (aa)∗(b(aa)∗ + b2a(4aa)∗)∗ +
(

2a(4aa)∗(1 + bA∗)
)

⊙
(

a(aa)∗(b(aa)∗ + b2a(4aa)∗)∗
)

= ((aa)∗ + 2a(4aa)∗)(b(aa)∗ + b2a(4aa)∗)∗.

Theorem 13 is an implicit characterization of the series realized by a two-way representa-

tion. Unfortunately, Equation (1) is not easy to solve (and does not always accept solutions in

KRHA∗). In the next section, we solve it in the particular case of sweeping representations.

5 Rotating and sweeping representations

In this section, we characterize series realized by rotating and sweeping representations and we

show that they can be denoted by explicit expressions involving rational, entrywise and mirror

operators.

Theorem 14. Let K be a Conway semiring. Then, a series can be realized by a rotating K-

representation if and only if it is in KHadA∗. Moreover, let ρ = (I, µ,♦, T ) be a rotating

K-representation and let M =
∑

a∈A µ(a)a, then

|ρ| = I.
(→

M
∗

.
←֓

♦.
→֒

♦
)⊛

⊙
→

M
∗

.T.

Proof. Proposition 11 states that every series in KHadA∗ can be realized by a rotating K-

representation. Conversely, since ρ is rotating, Equation (1) reduces to







X =
←֓

♦ +
→

M ·X,

Y = Id+
→

M · Y.

The solution of this system is (X0, Y0) = (
→

M
∗

.
←֓

♦,
→

M
∗

.T ).

Theorem 15. Let K be a Conway semiring. Then, a series can be realized by a sweeping K-

representation if and only if it is in KMirHadA∗. Moreover, let ρ = (I, µ,♦, T ) be a sweeping

K-representation and let M =
∑

a∈A µ(a)a, then

|ρ| = I.
(

(
→

M
∗

.
←֓

♦)⊙ (
←

M
∗

.
→֒

♦)
)⊛

⊙
→

M
∗

.T.

Proof. Proposition 11 states that every series in KMirHadA∗ can be realized by a sweeping K-

representation. Conversely, since ρ is sweeping, Equation (1) reduces to







X =
←֓

♦ + (
→

M ·X)⊙ (
←

M · A∗),

Y = Id+
→

M · Y.
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It immediatly comes Y =
→

M
∗

.T , and we prove by induction on the length of words that, for

every word w,

〈X,w〉 = 〈(
→

M
∗

.
←֓

♦)⊙
←

M
∗

, w〉.

It is true when w = ε (
→

M and
←

M are proper), and if it is true for a word w, then, for every letter a,

〈X, aw〉 =〈(
→

M · [(
→

M
∗

.
←֓

♦)⊙
←

M
∗

])⊙ (
←

M · A∗), aw〉,

=〈
→

M · [(
→

M
∗

.
←֓

♦)⊙
←

M
∗

], aw〉 · 〈
←

M · A∗, aw〉,

=〈
→

M,a〉.〈(
→

M
∗

.
←֓

♦)⊙
←

M
∗

, w〉.〈
←

M,a〉,

=〈
→

M,a〉.〈
→

M
∗

.
←֓

♦, w〉.〈
←

M
∗

, w〉.〈
←

M,a〉,

=〈(Id+
→

M.
→

M
∗

).
←֓

♦, aw〉.〈(Id+
←

M
∗

.
←

M), aw〉,

=〈
→

M
∗

.
←֓

♦, aw〉.〈
←

M
∗

, aw〉,

=〈(
→

M
∗

.
←֓

♦)⊙
←

M
∗

, aw〉.

Finally, X = (
→

M
∗

.
←֓

♦)⊙
←

M
∗

. Hence, by Theorem 13, A realizes the series

S = I.((
→

M
∗

.
←֓

♦)⊙
←

M
∗

·
→֒

♦)⊛ ⊙
→

M
∗

.T.

Since the star of matrices can be effectively computed by the usual formulae, these theorems

state that, for rotating and sweeping representations, an explicit expression (involving rational,

entrywise and mirror operators) representing the realized series can be computed.

EXAMPLE. Let ρ be the following sweeping representation:

I =
[

1 0
]

, T =

[

0
1/2

]

,
←֓

♦ =

[

0 0
1/2 0

]

,
→֒

♦ =

[

0 0
1 0

]

,

→

M =

[

a+ 1
2
b 1

2
b

0 a+ b

]

←

M =

[

1
2
a+ b 1

2
a

0 a+ b

]

.

It holds:

→

M
∗

=

[

(a+ 1
2
b)∗ (a+ 1

2
b)∗ 1

2
b(a+ b)∗

0 (a+ b)∗

]

,
←

M
∗

=

[

(1
2
a+ b)∗ (a+ b)∗ 1

2
a(1

2
a+ b)∗

0 (a+ b)∗

]

.

24



Therefore, the series realized by ρ is:

S2 =
[

1 0
]

.

([

1
2
(a+ 1

2
b)∗ 1

2
b(a+ b)∗ 0

1
2
(a+ b)∗ 0

]

⊙

[

(a+ b)∗ 1
2
a(1

2
a+ b)∗ 0

(a+ b)∗ 0

])⊛

⊙

[

(a+ 1
2
b)∗ 1

2
b(a+ b)∗

(a+ b)∗

]

=
(

(
1

4
(a+

1

2
b)∗b(a+ b)∗)⊙ (

1

2
(a+ b)∗a(

1

2
a+ b)∗)

)⊛

⊙ ((a+
1

2
b)∗

1

2
b(a+ b)∗)

=
(

1

8
(a+

1

2
b)∗
(

b(a+ b)∗a+ a(
1

2
a+

1

2
b)∗b

)

(
1

2
a+ b)∗

)⊛

⊙ ((a+
1

2
b)∗

1

2
b(a+ b)∗).

6 Two-Way Automata

6.1 Definition of Two-Way Automata

We define weighted two-way automata that are extensions of classical two-way automata. We

consider, like for instance in [3], that, during the computation of two-way automata, the move

on the input only depends on the state and not on the transition. These two-way automata are as

powerful as the usual ones; they correspond to the family of δ-local automata defined in [5].

Definition 3. Let K be a semiring, A an alphabet and � a special symbol, called endmarker,

which does not belong to A. A two-way K-automaton over A is a tuple (Q+, Q−, A,K, E, I, T ),
where

– Q = Q+ ∪Q− is a finite set of states;

– δ : Q −→ {−1,+1} is the direction of every state;

– E : Q× A×Q ∪Q+ ×�×Q− ∪Q− ×�×Q+ −→ K is the transition function;

– I : Q+ −→ K is the initial function;

– T : Q+ −→ K is the final function.

The set of transitions is the support of E, the set of initial states is the support of I and the

set of final states is the support of T . For every transition e = (p, a, q), λ(e) = a is the label of e,

σ(e) = p is the source, and τ(e) = q is the target of e.

Let δ : Q −→ {−1,+1} defined by δ(p) = +1 for every p in Q+ and δ(p) = −1 for every

p in Q−. A path in such an automaton is a sequence (ei, pi)i∈[0;k], where every ei is a transition

and every pi is a non negative integer such that:

– for every i in [1; k], σ(ei) = τ(ei−1),
– for every i in [1; k], pi = pi−1 + δ(σ(ei)).
A word w = w0 . . . wn is admissible for such a path if, for every i in [0; k], pi is in [0;n] and

λ(ei) = wpi .

It is strongly admissible for the path if it is admissible and:

– p0 = 0 if σ(e0) is in Q+ and p0 = n if σ(e0) is in Q−;

– pk = n if τ(ek) is in Q+ and pk = 0 if τ(ek) is in Q−.
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→ → ←

b
a

a

b,�

b,�

2a

Figure 1: The two-way N-automaton A1

A path π = (ei, pi)i∈[0;k] is a computation on the word w = w1 . . . wn of A∗, if

– �w� is admissible for π,

– p0 = 1 and σ(e0) is an initial state,

– pk = n and τ(ek) is a final state.

The weight of a computation π = (ei, pi)i∈[0;k] is the product

w(π) = I(σ(e0)).

(

k
∏

i=0

E(ei)

)

.T (τ(ek)).

Notice that the weight of a computation is computed ”one-way”, like the trace of a two-way

computation defined in [11].

EXAMPLE. The two-way N-automaton of Figure 1 accepts every word. It is a deterministic

automaton: there is only one initial state, for every letter in input and every state, there is at most

one transition, and there is no transition with label � that leaves a final state. Every word with k
letters a in blocks of odd lengths is accepted with a weight equal to 2k.

Behaviour of a two-way K-automaton. A two-way K-automaton A is valid, if, for every

word w, the sum of the weights of the computations on w is defined. In this case, we denote

〈|A|, w〉 this sum and, the behaviour of A is the formal power series

|A| =
∑

w∈A∗
〈|A|, w〉w.

We also say that the series |A| is realized by A.

Classes of two-way K-automata. We define here subclasses of two-way automata that corre-

spond to subclasses of two-way representations described above.

Let A = (Q+, Q−, A,K, E, I, T ) be a two-way K-automaton.

• A is one-way if Q− = ∅.

• A is sweeping if every half-turn is labeled by the endmarker: for every transition e,

δ(σ(e)) 6= δ(τ(e)) implies λ(e) = �.

• A is rotating if it is sweeping and, for every p in Q−, for every letter a, there is a unique

transition with source p and label a; this transition is a loop on p with weight 1.

Thus, depending on the state reached after reading the input, the automaton can rewind to

the beginning of the input.

26



6.2 Representation of a two-way automaton.

Let K be a Conway semiring and let A = (Q+, Q−, A,K, E, I, T ) be a two-way K-automaton.

The representation of A is the two-way representation (I, µ,♦, T ) of size Q+ +Q−, where

∀a ∈ A, ∀(p, q) ∈ Q×Q, µ(a)p,q = E(p, a, q)

∀(p, q) ∈ Q×Q, ♦p,q =















E(p,�, q) if δ(p) 6= δ(q),

1 if p ∈ Q+ and p = q,

0 otherwise.

In the case where K is the Boolean semiring, the monoidM generated by {µ(a) | a ∈ A∗}
(with sas product) is the finite monoid of the two-way automaton, defined in [2]; µ is a morphism

from A∗ intoM, and the language accepted by the automaton is µ−1(P ), where P = {M ∈M |

I.
−−−−−−−−−−→

♦ sM s♦ .T = 1}.
In general, the Conway properties does not tell how the sum of the weights of all computa-

tions labeled by a given word can be computed in the two-way automaton. To state the equiva-

lence between the automaton and its representation, we must restrain to a framework where the

star and the infinite sums are related.

EXAMPLE. We consider the series

∑

k>0

ak

k + 1
=
(

a∗ −
(

a

2

)∗

.
(

a

2

)∗)⊛

⊙
(

a

2

)∗

.

We can apply the construction of Proposition 9 to build a two-way Q-automaton from this ex-

pression. The result is the automatonA2 of Figure 2 (left). This automaton is not valid: for every

word w, there are an infinite number of computations with label w and weight 1
2|w|

. Nevertheless,

there exists a two-way Q-automaton corresponding to the representation that realizes this series;

it is drawn on Figure 2 (right), and this one is valid. Since the weight of every computation is

positive, one can perform block sums and therefore the sum of the weights of the computations

labeled by a given word exists and is the value given by the representation.

6.3 Simple Two-Way Automata

We say that a two-way automaton is simple if for every input, the number of computations is

finite. Obviously, a simple two-way weighted automaton is always valid and we need no as-

sumption on the semiring of weights to handle simple automata.

Definition 4. LetA = (Q+, Q−, A,K, E, I, T ) be a two-way automaton. A path π = (ei, pi)i∈[0;k]
is an unmoving circuit inA if σ(e0) = τ(ek), p0 = pk + δ(σ(e0)), and there exists an admissible

word for π.

Lemma 16. [1] A two-way automaton is simple if and only if there is no computation containing

an unmoving circuit.
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Figure 2: The sweeping Q-automaton A2 and the two-way Q-automaton A3.

Proposition 17. [1] It is decidable whether a two-way automaton is simple.

These results are obtained through the study of the crossing sequences, that are the sequences

of states of a computations meet at the same position. A one-way automaton can emulate the se-

quence of crossing sequences on an input. This is the idea of the original proof of the equivalence

between 1NFA and 2NFA [16]. If K is commutative, the computation of the value can also be

emulated; finally:

Proposition 18. [1] If K is a commutative semiring, every simple two-way automaton realizes a

rational series.

Like for unweighted automata, simple two-way weighted automata can nevertheless be more

succint that one-way weighted automata.

Particular simple two-way automata are deterministic automata.

Definition 5. A two-way automaton is deterministic if

– it contains at most one initial state,

– for every letter (or endmarker) a and every state p, there is at most one transition e with

σ(e) = p and λ(e) = a,

– for every final state p, there is no transition e with σ(e) = p and λ(e) = �.

In [5], it is proven that a deterministic two-way weighted automaton can emulate any un-

ambiguous one-way weighted automaton i.e. a one-way weighted automaton with only one

computation for each accepted word.

Simple two-way weighted automata are always valid, but the use of their representation is

not always accurate.
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EXAMPLE. The representation of the automaton A1 of Figure 1 is:

I =
[

1 0
]

, T =

[

1
0

]

,

♦ =







1 0 0
0 1 1
0 1 0





 , µ(a) =







0 1 0
1 0 0
0 0 2





 , µ(b) =







1 0 0
0 0 1
0 1 0





 .

For instance, to compute the weight of ab, on can compute

µ(ab) =







0 0 2
1 0 0
0 1 0





 , ♦ sµ(ab) =







2 0 0
1 0 1
0 1 0





 ,

−−−−−−−−−−→

♦ sµ(ab) s♦ =

[

1/2 0
1 0

]

.

[

0 0
0 1

]∗

=

[

2 0
1 0

]

.

[

1 0
0 ∞

]

=

[

2 0
1 0

]

.

Hence, the weight of ab is 2. This value can be computed direcly with the automaton, since it

is deterministic. Notice that in the computations with the representation, non trivial star opera-

tions may appear. Actually, starting from the state in the center of the figure, one can follow a

unmoving circuit with admissible word bb (or b�).

This automaton is valid in N, but to perform the evalutation through its representation, we

must embed N into the Conway semiring N ∪ {∞}.
The same automaton with weight in Z (replace 2 by −2) is always valid, but there is no

embedding of Z into a Conway semiring and there is no more correct representation for this

automaton.

6.4 Two-Way Automata over Rationally Additive Semirings

We consider now rationally additive semirings introduced in [8], and we prove in this framework

the equivalence between two-way weighted automata and two-way representations.

Definition 6. [8] A semiring K is a rationally additive semiring if it is equipped with an operator
∑

defined on some countable families such that, for every countable set I and every family s in

KI ,

1. if I is finite,
∑

i∈I si exists and is the sum of elements of s;

2. for every element x of K,
∑

i∈N x
i exists and x∗ is defined as x∗ =

∑

i∈N x
i.

3. for every element x of K, if
∑

s exists, so do
∑

i∈I x.si and
∑

i∈I si.x, and

∑

i∈I

x.si = x.(
∑

s) and
∑

i∈I

si.x = (
∑

s).x;
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4. assume that I is the disjoint union of sets (Ij)j∈J ; if for every j in J , rj =
∑

i∈Ij si exists,

and
∑

j∈J rj exists, then
∑

s exists and
∑

s =
∑

j∈J rj;

5. assume that I is the disjoint union of sets (Ij)j∈J ; if for every j in J , rj =
∑

i∈Ij si exists,

and
∑

s exists, then for every j in J ,
∑

j∈J rj exists and
∑

j∈J rj =
∑

s.

EXAMPLE. Many positive semirings are rationally additive or can be completed to be rationally

additive, for instance N ∪ {∞}, Q+ ∪ {∞}, (N ∪ {∞},min,+), the regular languages, every

complete lattice, or every positive finite semiring. Nevertheless, many current semirings are

not rationally additive. For instance, no ring is a rationally additive semiring; otherwise s =
∑∞

n=0(−1)
n exists, then s = 0 by block sum, and s = 1 + (−1).s, which is a contradiction. The

study of two-way automata and representions in semirings that are not rationally additive requires

further investigation. Specific cases have already been studied: Z in [1], or (Z ∪ {∞},min,+)
in [6].

Proposition 19. [8, Prop. 4] A rationally additive semiring is a Conway semiring.

This means that, in rationally additive semirings, the combinatorial approach of star (as sum

of powers) and the axiomatic approach meet. As a consequence, we show that, in this frame-

work, the combinatorial description of series by two-way automata is equivalent to the algebraic

description by two-way representations.

Proposition 20. Let K be a rationally additive semiring, and let ρ = (I, µ,♦, T ) be the rep-

resentation of a two-way K-automaton A. For every non empty word w = w0 . . . wn−1 of A∗,
and every pair of states p, q, let P (w)p,q be the set of paths from p to q for which w is strongly

admissible. Then, the sum of the weights of P (w)p,q exists and

∑

π∈P (w)p,q

w(π) = µ(w)p,q.

Proof. The proof is by induction on the length of w. If n = 1, P (w)p,q is either empty and there

is no transition from p to q with label a inA; in this case, µ(w)p,q = 0; or P (w)p,q is the singleton

that contains the transition from p to q with label a inA; in this case, the weight of this transition

is by definition µ(w)p,q.
Assume that n > 1, then w = ua where u is a word with length n − 1 and a is a letter.

For every path π = (ei, pi)i∈[0;k] in P (w)p,q, we set Rπ = {i ∈ [0; k] | pi = n}. We set

P (w)(t)p,q = {π ∈ P (w)p,q | |Rπ| = t}; obviously P (w)p,q =
⋃

t∈N P (w)(t)p,q. We consider now the

(partial) operation of concatenation of paths: let π = (ei, pi)i∈[0;k] and ζ = (fi, qi)i∈[0;ℓ] be two

paths such that τ(ek) = σ(f0), then π.ζ = (gi, ri)i∈[0;k+ℓ+1], with

(gi, ri) =







(ei, pi) if i 6 k,

(fi−k−1, qi−k−1 − q0 + pk + δ(σ(f0))) if i > k.
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This operation extends to sets of paths.

Assume first that p and q are in Q+, P (w)(0)p,q is empty and P (w)(1)p,q = ∪r∈Q+P (u)p,r.P (a)r,q;
more generally, for every t > 0,

P (w)(t)p,q =
⋃

r1,...rt∈Q+,
s1,...st−1∈Q−

P (u)p,r1 .P (a)r1,s1P (u)s1,r2 ...P (u)st−1,rtP (a)rt,q.

By induction hypothesis, for every pair of states r, s, the sum of the weights of paths in P (u)r,s
(resp. P (a)r,s) is defined, hence, by [8, Prop. 3], the sum of the weights of paths in P (w)(t)p,q is

defined and

∑

π∈P (w)
(t)
p,q

w(π) =
∑

r1,...rt∈Q+,
s1,...st−1∈Q−

→
µ(u)p,r1 .

←֓
µ(a)r1,s1 ...

→֒
µ(u)st−1,rt .

→
µ(a)rt,q

=
(

→
µ(u).

(

←֓
µ(a).

→֒
µ(u)

)t−1
.
→
µ(a)

)

p,q

.

(2)

By [8, Th. 9], if K is a rationally additive semiring, so is the semiring of matrices Km×m for

every m. Therefore, the sum over t of
(

←֓
µ(a).

→֒
µ(u)

)t
is defined. Hence, by the fourth axiom of

rationally additive semirings, the sum of the weights of paths in P (w) exists and

∑

π∈P (w)p,q

w(π) =
(

→
µ(u).

(

←֓
µ(a).

→֒
µ(u)

)∗→
µ(a)

)

p,q
=
→
µ(ua)p,q.

Assume now that p is in Q+ and q is in Q−, then P (w)(0)p,q = P (u)p,q and for every positive t,

P (w)(t)p,q =
⋃

r1,...rt∈Q+,
s1,...st∈Q−

P (u)p,r1 .P (a)r1,s1P (u)s1,r2 ...P (a)rt,stP (u)st,q.

By the same arguments, the sum of the weights of paths in P (w)(t)p,q exists and

∑

π∈P (w)
(t)
p,q

w(π) =
(

→
µ(u).

(

←֓
µ(a).

→֒
µ(u)

)t−1
.
←֓
µ(a).

←
µ(u)

)

p,q

.

Finally, we get

∑

π∈P (w)p,q

w(π) =
←֓
µ(u)p,q +

(

→
µ(u).

(

←֓
µ(a).

→֒
µ(u)

)∗
.
←֓
µ(a).

←
µ(u)

)

p,q
=
→֒
µ(ua)p,q.

The proof is similar in the cases where p is in Q−.

Theorem 21. Let K be a rationally additive semiring and let A be a two-way K-automaton.

Then, the automaton A is valid and the series realized by A is the same as the series realized by

the representation of A.

31



Proof. The proof is similar to the proof of Proposition 20. Let w = w1 . . . wn be a word in A∗;
for every pair of states p, q in Q+, let S(w)p,q be the set of paths π = (ei, pi)i∈[0;k] from p to q
such that �w is admissible for π, p0 = 1 and pk = n; like in the proof of Proposition 20, we

show that the sum of the weights of S(w)p,q exists and is equal to (♦ sµ(w))p,q.
Likewise, if p is in Q− and q in Q+, we set S(w)p,q as the set of paths π = (ei, pi)i∈[0;k] from p
to q such that �w is admissible for π, p0 = k and pk = n; the sum of the weights of these paths

is equal to (♦ sµ(w))p,q.
Finally, for every pair of states p, q in Q+, C(w)p,q be the set of paths π = (ei, pi)i∈[0;k] from p to

q such that �w� is admissible for π, p0 = 1 and pk = n; let Rπ = {i ∈ [0; k] | pi = n+ 1} and,

for every t, let C(w)(t)p,q = {π ∈ C(w)p,q | |Rπ| = t}. Then, for every t,

C(w)(t)p,q =
⋃

r1,...rt∈Q+,
s1,...st∈Q−

S(w)p,r1 .fr1,s1S(w)s1,r2 ...frt,stS(w)st,q,

where every fri,si is a transition with label �. Hence, by the same arguments as in the proof of

Proposition 20, the sum of the weights of the paths in C(w)p,q exists and

∑

π∈C(w)p,q

w(π) = (
−−−−−−−→

♦ sµ(w).(
←֓

♦.
−֒−−−−−→

♦ sµ(w))∗)p,q = (
−−−−−−−−−−→

♦ sµ(w) s♦)p,q.

The sum of the weights of the computations with label w that start in an initial state p and end in

a final state q is therefore Ip.
−−−−−−−−−−→

♦ sµ(w) s♦.Tq.

Finally, the sum of the weights of the computations of A with label w exists and is equal to

I.
−−−−−−−−−−→

♦ sµ(w) s♦.T.

EXAMPLE. Let K = P({x, y}∗) and let r be the following series over a∗:

r =
∞
∑

k=0

(xkyk)ak.

This series can be realized by a rotating two-way automaton with the following representation:







[

1 0
]

, µ(a) =







x 0 0
0 y 0
0 0 1





 ,







0 0 1
0 0 0
0 1 0





 ,

[

0
1

]





 .

We consider now

r · r =
∞
∑

k=0

k
∑

i=0

(xiyixk−iyk−i)ak.

Assume that r · r is realized by a two-way automaton A. We consider a computation π with

label ak such that v = xiyixk−iyk−i belongs to the weight of π. After producing xi, since the
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automaton is memoryless, it can not store the value of i (if k is larger than the number of states,

there are two many possible values for i); to produce the same number of y, the only information

that can be used by the automaton is the position in the input, but to take advantage of this

information, the automaton must go back to the beginning of the input; it can produces yi but it

has lost all the information on i and can therefore not produce xk−iyk−i. Likewise r∗ can not be

realized by a two-way automaton A.

This example proves the following proposition:

Proposition 22. The set of two-way recognizable series is not closed under Cauchy product or

Kleene star.

Proposition 23. Let A and B be two alphabets, let ϕ be a length-preserving morphism from A∗

into B∗, and let ρ be a two-way representation over A∗. Then

ϕ(|ρ|) =
∑

w∈A∗
〈|ρ|, w〉ϕ(w)

is not necessarily two-way recognizable.

Proof. We use the same example; let r′ be the following series over B∗ = {a, b}∗ with coeffi-

cients in P({x, y}∗):

r′ = 1 +
∞
∑

k=0

∞
∑

h=0

(xk+1yk+1xhyh)akbah.

This series is two-way recognizable, but the morphism that maps both a and b onto a sends r′ to
r · r which is not recognizable.
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[4] Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The equational logic of iterative

processes. Monogr. Theoret. Comput. Sci. EATCS Ser. Springer-Verlag, 1993.

[5] Vincent Carnino and Sylvain Lombardy. On Determinism and Unambiguity of Weighted

Two-way Automata. In AFL’14, volume 151 of EPTCS, pages 188–200, 2014.

[6] Vincent Carnino and Sylvain Lombardy. Tropical Two-Way Automata. In TCS’14, volume

8705 of Lect. Notes in Comput. Sci., pages 195–206, 2014.

33



[7] John H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971.

[8] Zoltán Ésik and Werner Kuich. Rationally additive semirings. J. UCS, 8(2):173–183, 2002.

[9] Michel Fliess. Matrices de hankel. J. Math Pures et Appl., 53:197–222, 1974.

[10] Robert McNaughton and Hisao Yamada. Regular expressions and state graphs for automata.

IRE Trans. Electronic Computers, 9:39–47, 1960.

[11] Jean-Pierre Pécuchet. Automates boustrophedon, semi-groupe de birget et monoide inversif
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