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A COMPACTNESS RESULT FOR AN EQUATION WITH HOLDERIAN CONDITION.

SAMY SKANDER BAHOURA

ABSTRACT. We give a blow-up analysis for Brezis-Merle problem with Dirichlet condition. As an application,

we have a proof for Brezis-Merle Problem with Hölderian condition.
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1. INTRODUCTION AND MAIN RESULTS

We set ∆ = −(∂11 + ∂22) on open set Ω of R2 with a smooth boundary.

We consider the following equation:

(P )

{

∆u = V (1 + |x|2β)eu in Ω ⊂ R
2,

u = 0 in ∂Ω.

Here, we assume that:

0 ≤ V ≤ b < +∞, eu ∈ L1(Ω) and u ∈ W 1,1
0 (Ω),

and,

0 ∈ ∂Ω, β ∈ [0, 1/2).

We can see in [6] a nice formulation to this problem (P ) in the sens of the distributions. This Problem

arises in geometrical and physical problems, see for example [1, 2, 16, 17]. The above equation was studied

by many authors, with or without the boundary condition, also for Riemannian surfaces, see [1-18], where

one can find some existence and compactness results. In [5] we have the following important Theorem,

Theorem A(Brezis-Merle [5]).For (ui)i and (Vi)i two sequences of functions relative to (P ) with,

0 < a ≤ Vi ≤ b < +∞

then it holds,
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sup
K

ui ≤ c,

with c depending on a, b,K and Ω.

One can find in [5] an interior estimate if we assume a = 0, but we need an assumption on the integral of

eui , namely, we have:

Theorem B(Brezis-Merle [5]).For (ui)i and (Vi)i two sequences of functions relative to the problem (P )
with,

0 ≤ Vi ≤ b < +∞ and

∫

Ω
euidy ≤ C,

then it holds;

sup
K

ui ≤ c,

with c depending on b, C,K and Ω.

When a = 0, the boundedness of
∫

Ω eui is a necessary condition to work on the problem (P ) as showed

in [5] by the following counterexample.

Theorem C(Brezis-Merle [5]).There are two sequences (ui)i and (Vi)i of the problem (P ) with,

0 ≤ Vi ≤ b < +∞ and

∫

Ω
euidy ≤ C,

such that,

sup
Ω

ui → +∞.

When β = 0, the above equation have many properties in the constant and the Lipschitzian cases:

Note that for the problem (P ) (β = 0), by using the Pohozaev identity, we can prove that
∫

Ω eui is

uniformly bounded when 0 < a ≤ Vi ≤ b < +∞ and ||∇Vi||L∞ ≤ A and Ω starshaped, when a = 0 and

∇ log Vi is uniformly bounded, we can bound uniformly
∫

Ω Vie
ui . In [14], Ma-Wei have proved that those

results stay true for all open sets not necessarily starshaped.

In [8] (β = 0), Chen-Li have proved that if a = 0 and ∇ log Vi is uniformly bounded, then the functions

are uniformly bounded near the boundary.

In [8] (β = 0), Chen-Li have proved that if a = 0 and
∫

Ω eui is uniformly bounded and ∇ log Vi is

uniformly bounded, then we have the compactness result directly. Ma-Wei in [14], extend this result in the

case where a > 0.
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If we assume V more regular, we can have another type of estimates, a sup+ inf type inequalities. It

was proved by Shafrir see [15], that, if (ui)i, (Vi)i are two sequences of functions solutions of the previous

equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then we have the following

interior estimate:

C
(a

b

)

sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

One can see in [9] an explicit value of C
(a

b

)

=

√

a

b
. In his proof, Shafrir has used a blow-up function,

the Stokes formula and an isoperimetric inequality, see [2]. For Chen-Lin, they have used the blow-up

analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (Vi)i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and

c = c(a, b,A,K,Ω), see Brezis-Li-Shafrir [4]. This result was extended for Hölderian sequences (Vi)i
by Chen-Lin, see [9]. Also, one can see in [12], an extension of the Brezis-Li-Shafrir result to compact

Riemannian surfaces without boundary. One can see in [13] explicit form, (8πm,m ∈ N
∗ exactly), for the

numbers in front of the Dirac masses when the solutions blow-up. Here, the notion of isolated blow-up point

is used. Also, in [18], we have refined estimates near the isolated blow-up points and the bubbling behavior

of the blow-up sequences.

In [7], we have some a priori estimates on the 2 and 3-spheres S2, S3.

Here we give the behavior of the blow-up points on the boundary and a proof of Brezis-Merle Problem

when β ≥ 0.

The Brezis-Merle Problem (see [5]) is:

Problem. Suppose that Vi → V in C0(Ω̄) with 0 ≤ Vi ≤ b for some positive constant b. Also, we

consider a sequence of solutions (ui) of (P ) relative to (Vi) such that,

∫

Ω
euidx ≤ C,

is it possible to have:

||ui||L∞ ≤ C = C(b, β, C, V,Ω)?

Here, we give a caracterization of the behavior of the blow-up points on the boundary and we give a proof

of the Brezis-Merle Problem when β ≥ 0. We extend the result of Chen-Li [8].

0 ≤ Vi ≤ b,

The condition Vi → V in C0(Ω̄) is not necessary, but for the proof of the compactness for the Brezis-

Merle problem we assume that:
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||∇Vi||L∞ ≤ A.

We have the following caracterization of the behavior of the blow-up points on the boundary.

Theorem 1.1. Assume that maxΩ ui → +∞, where (ui) are solutions of the problem (P ) with:

0 ≤ Vi ≤ b and

∫

Ω
euidx ≤ C, ∀ i,

then, after passing to a subsequence, there is a finction u, there is a number N ∈ N and N points

x1, . . . , xN ∈ ∂Ω, such that,

∂νui → ∂νu+

N
∑

j=1

αjδxj
, αj ≥ 4π, weakly in the sens of measure L1(∂Ω).

ui → u in C1
loc(Ω̄− {x1, . . . , xN}).

In the following theorem, we have a proof of the global a priori estimate which concern the problem (P ).
Here, we extend the result of Chen-Li and Ma-Wei (β = 0). The proof of Chen-Li and Ma-Wei [8,14], use

the moving-plane method (β = 0).

Theorem 1.2. Assume that (ui) are solutions of (P ) relative to (Vi) with the following conditions:

||∇Vi||L∞ ≤ A and

∫

Ω
eui ≤ C,

we have,

||ui||L∞ ≤ c(b, β,A,C,Ω),

2. PROOF OF THE THEOREMS

Proof of theorem 1.1:

We have,

∫

∂Ω
∂νuidσ ≤ C,

Without loss of generality, we can assume that ∂νui > 0. Thus, (using the weak convergence in the space

of Radon measures), we have the existence of a positive Radon measure µ such that,
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∫

∂Ω
∂νuiϕdσ → µ(ϕ), ∀ ϕ ∈ C0(∂Ω).

We take an x0 ∈ ∂Ω such that, µ(x0) < 4π. Without loss of generality, we can assume that the following

curve, B(x0, ǫ) ∩ ∂Ω := Iǫ is an interval.(In this case, it is more simple to construct the following test

function ηǫ). We choose a function ηǫ such that,























ηǫ ≡ 1, on Iǫ, 0 < ǫ < δ/2,

ηǫ ≡ 0, outside I2ǫ,

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I2ǫ) ≤
C0(Ω, x0)

ǫ
.

We take a η̃ǫ such that,

{

∆η̃ǫ = 0 in Ω ⊂ R
2,

η̃ǫ = ηǫ in ∂Ω.

We use the following estimate, see [3, 6, 17],

||∇ui||Lq ≤ Cq, ∀ i and 1 < q < 2.

We deduce from the last estimate that, (ui) converge weakly in W 1,q
0 (Ω), almost everywhere to a function

u ≥ 0 and
∫

Ω eu < +∞ (by Fatou lemma). Also, Vi weakly converge to a nonnegative function V in L∞.

The function u is in W 1,q
0 (Ω) solution of :

{

∆u = V eu ∈ L1(Ω) in Ω ⊂ R
2,

u = 0 in ∂Ω.

According to the corollary 1 of Brezis-Merle result, see [5], we have eku ∈ L1(Ω), k > 1. By the elliptic

estimates, we have u ∈ C1(Ω̄).

We can write,

∆((ui − u)η̃ǫ) = (Vie
ui − V eu)η̃ǫ − 2 < ∇(ui − u)|∇η̃ǫ > . (1)

We use the interior esimate of Brezis-Merle, see [5],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between η̃ǫ and u, we obtain,
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∫

Ω
V euη̃ǫdx =

∫

∂Ω
∂νuηǫ ≤ 4ǫ||∂νu||L∞ = Cǫ (2)

We have,

{

∆ui = Vie
ui in Ω ⊂ R

2,

ui = 0 in ∂Ω.

We use the Green formula between ui and η̃ǫ to have:

∫

Ω
Vie

ui η̃ǫdx =

∫

∂Ω
∂νuiηǫdσ → µ(ηǫ) ≤ µ(I2ǫ) ≤ 4π − ǫ0, ǫ0 > 0 (3)

From (2) and (3) we have for all ǫ > 0 there is i0 = i0(ǫ) such that, for i ≥ i0,

∫

Ω
|(Vie

ui − V eu)η̃ǫ|dx ≤ 4π − ǫ0 + Cǫ (4)

Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ3} and Ωǫ3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ3}, ǫ > 0. Then, for ǫ small enough,

Σǫ is hypersurface.

The measure of Ω− Ωǫ3 is k2ǫ
3 ≤ µL(Ω− Ωǫ3) ≤ k1ǫ

3.

Remark: for the unit ball B̄(0, 1), our new manifold is B̄(0, 1 − ǫ3).

We write,

∫

Ω
| < ∇(ui − u)|∇η̃ǫ > |dx =

∫

Ω
ǫ3

| < ∇(ui − u)|∇η̃ǫ > |dx+

∫

Ω−Ω
ǫ3

< ∇(ui − u)|∇η̃ǫ > |dx. (5)

Step 2.1: Estimate of
∫

Ω−Ω
ǫ3
| < ∇(ui − u)|∇η̃ǫ > |dx.

First, we know from the elliptic estimates that ||∇η̃ǫ||L∞ ≤ C1/ǫ
2, C1 depends on Ω

We know that (|∇ui|)i is bounded in Lq, 1 < q < 2, we can extract from this sequence a subsequence

which converge weakly to h ∈ Lq. But, we know that we have locally the uniform convergence to |∇u| (by

Brezis-Merle theorem), then, h = |∇u| a.e. Let q′ be the conjugate of q.

We have, ∀f ∈ Lq′(Ω)

∫

Ω
|∇ui|fdx →

∫

Ω
|∇u|fdx
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If we take f = 1Ω−Ω
ǫ3

, we have:

for ǫ > 0 ∃ i1 = i1(ǫ) ∈ N, i ≥ i1,

∫

Ω−Ω
ǫ3

|∇ui| ≤

∫

Ω−Ω
ǫ3

|∇u|+ ǫ3.

Then, for i ≥ i1(ǫ),

∫

Ω−Ω
ǫ3

|∇ui| ≤ mes(Ω− Ωǫ3)||∇u||L∞ + ǫ3 = ǫ3(k1||∇u||L∞ + 1).

Thus, we obtain,

∫

Ω−Ω
ǫ3

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 1) (6)

The constant C1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of
∫

Ω
ǫ3
| < ∇(ui − u)|∇η̃ǫ > |dx.

We know that, Ωǫ ⊂⊂ Ω, and ( because of Brezis-Merle’s interior estimates) ui → u in C1(Ωǫ3). We

have,

||∇(ui − u)||L∞(Ω
ǫ3
) ≤ ǫ3, for i ≥ i3 = i3(ǫ).

We write,

∫

Ωǫ3

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ||∇(ui − u)||L∞(Ω
ǫ3
)||∇η̃ǫ||L∞ ≤ C1ǫ for i ≥ i3,

For ǫ > 0, we have for i ∈ N, i ≥ max{i1, i2, i3},

∫

Ω
| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 2) (7)

From (4) and (7), we have, for ǫ > 0, there is i3 = i3(ǫ) ∈ N, i3 = max{i0, i1, i2} such that,

∫

Ω
|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇u||L∞ + 2 + C) (8)

We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:
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{

∆[(ui − u)η̃ǫ] = gi,ǫ in Ω ⊂ R
2,

(ui − u)η̃ǫ = 0 in ∂Ω.

with ||gi,ǫ||L1(Ω) ≤ 4π − ǫ0.

We can use Theorem 1 of [5] to conclude that there is q > 1 such that:

∫

Vǫ(x0)
eq(ui−u)dx ≤

∫

Ω
eq(ui−u)η̃ǫdx ≤ C(ǫ,Ω).

where, Vǫ(x0) is a neighberhooh of x0 in Ω̄.

Thus, for each x0 ∈ ∂Ω− {x̄1, . . . , x̄m} there is ǫx0
> 0, qx0

> 1 such that:

∫

B(x0,ǫx0)
eqx0uidx ≤ C, ∀ i. (9)

By the elliptic estimates, (uiη)i is uniformly bounded in W 2,q1(Ω) and also, in C1(Ω̄). (Here, η is a cutuf

function.)

Finaly, we have, for some ǫ > 0 small enough,

||ui||C1,θ [B(x0,ǫ)] ≤ c3 ∀ i.

We have proved that, there is a finite number of points x̄1, . . . , x̄m such that the squence (ui)i is locally

uniformly bounded in Ω̄− {x̄1, . . . , x̄m}.

Proof of theorem 1.2:

Without loss of generality, we can assume that 0 is a blow-up point. Also, by a conformal transformation,

we can assume that Ω = B+
1 , the half ball, and ∂+B+

1 is the exterior part, a part which not contain 0 and on

which ui converge in the C1 norm to u. Let us consider B+
ǫ , the half ball with radius ǫ > 0.

The second Pohozaev identity applied around each blow-up point, see for example [14], gives :

∫

B+
ǫ

∆ui < x|∇ui > dx = −

∫

∂+B+
ǫ

g(∂νui)dσ, (10)

Thus,

∫

B+
ǫ

Vi(1 + |x|2β)eui < x|∇ui > dx = −

∫

∂+B+
ǫ

g(∂νui)dσ, (11)
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After integration by parts, we obtain:

∫

B+
ǫ

2Vi(1 + (1 + β)|x|2β)euidx+

∫

B+
ǫ

< x|∇Vi > euidx+

∫

∂B+
ǫ

< ν|x > Vie
uidσ =

=

∫

∂+B+
ǫ

g(∂νui)dσ,

Also, for u we have:

∫

B+
ǫ

2V (1 + (1 + β)|x|2β)eudx+

∫

B+
ǫ

< x|∇V > eudx+

∫

∂B+
ǫ

< ν|x > V eudσ =

=

∫

∂+B+
ǫ

g(∂νu)dσ,

We use the fact that ui = u = 0 on {x1 = 0} and ui, u are bounded in the C1 norm outside a neighborhood

of 0 to obtain:

(1 + o(ǫ))(

∫

B+
ǫ

Vie
uidx−

∫

B+
ǫ

V eudx) =

= α1 + o(ǫ) + o(1) = o(1),

a contradiction.
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