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THE CUBIC SZEG Ő EQUATION AND HANKEL OPERATORS Patrick Gérard, Sandrine Grellier

Abstract. -This monograph is an expanded version of the preprint [START_REF] Gérard | Multiple singular values of Hankel operators[END_REF] It is devoted to the dynamics on Sobolev spaces of the cubic Szegő equation on the circle S 1 , i∂ t u = Π(|u| 2 u) . Here Π denotes the orthogonal projector from L 2 (S 1 ) onto the subspace L 2 + (S 1 ) of functions with nonnegative Fourier modes. We construct a nonlinear Fourier transformation on H 1/2 (S 1 ) ∩ L 2 + (S 1 ) allowing to describe explicitly the solutions of this equation with data in H 1/2 (S 1 ) ∩ L 2 + (S 1 ). This explicit description implies almost-periodicity of every solution in H + . Furthermore, it allows to display the following turbulence phenomenon. For a dense G δ subset of initial data in C ∞ (S 1 ) ∩ L 2 + (S 1 ), the solutions tend to infinity in H s for every s > 1 2 with super-polynomial growth on some sequence of times, while they go back to their initial data on another sequence of times tending to infinity. This transformation is defined by solving a general inverse spectral problem involving singular values of a Hilbert-Schmidt Hankel operator and of its shifted Hankel operator.

Résumé. -Cette monographie est une version étendue de la prépublication [START_REF] Gérard | Multiple singular values of Hankel operators[END_REF]. Elle est consacrée à l'étude de la dynamique, dans les espaces de Sobolev, de l'équation de Szegő cubique sur le cercle S 1 , i∂ t u = Π(|u| 2 u) , où Π désigne le projecteur orthogonal de L 2 (S 1 ) sur le sous-espace L 2 + (S 1 ) des fonctions à modes de Fourier positifs ou nuls. On construit une transformée de Fourier non linéaire sur H 1/2 (S 1 ) ∩ L 2 + (S 1 ) permettant de résoudre explicitement cette équation avec données initiales dans H 1/2 (S 1 ) ∩ L 2 + (S 1 ). Ces formules explicites entraînent la presque périodicité des solutions dans H + . Par ailleurs, elles permettent de mettre en évidence le phénomène de turbulence suivant. Pour un G δ dense de données initiales de C ∞ (S 1 ) ∩ L 2 + (S 1 ), les solutions tendent vers l'infini à vitesse sur-polynomiale en norme H s (S 1 ) pour tout s > 1 2 sur une suite de temps, alors qu'elles retournent vers leur donnée initiale sur une autre suite de temps tendant vers l'infini. Cette transformation est définie via la résolution d'un problème spectral inverse lié aux valeurs singulières d'un opérateur de Hankel Hilbert-Schmidt et de son opérateur décalé.

CHAPTER 1 INTRODUCTION

The large time behavior of solutions to Hamiltonian partial differential equations is an important problem in mathematical physics. In the case of finite dimensional Hamiltonian systems, many features of the large time behavior of trajectories are described using the topology of the phase space. For a given infinite dimensional system, several natural phase spaces, with different topologies, can be chosen, and the large time properties may strongly depend on the choice of such topologies. For instance, it is known that the cubic defocusing nonlinear Schrödinger equation i∂ t u + ∆u = |u| 2 u posed on a Riemannian manifold M of dimension d = 1, 2, 3 with sufficiently uniform properties at infinity, defines a global flow on the Sobolev spaces H s (M) for every s ≥ 1. In this case, a typical large time behavior of interest is the boundedness of trajectories. On the energy space H 1 (M), the conservation of energy trivially implies that all the trajectories are bounded. On the other hand, the existence of unbounded trajectories in H s (M) for s > 1 as well as bounds of the growth in time of the H s (M) norms is a long standing problem [START_REF] Bourgain | Problems in Hamiltonian PDE's[END_REF]. As a way to detect and to measure the transfer of energy to small scales, this problem is naturally connected to wave turbulence. In [START_REF] Bourgain | On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE[END_REF] and [START_REF] Staffilani | On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations[END_REF], it has been established that big H s norms grow at most polynomially in time. Existence of unbounded trajectories only recently [START_REF] Hani | Modified scattering for the cubic Schrödinger equations on product spaces and applications[END_REF] received a positive answer in some very special cases, while several instability results were already obtained [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF], [START_REF] Guardia | Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation[END_REF], [START_REF] Hani | Long-time strong instability and unbounded orbits for some periodic nonlinear Schrödinger equations[END_REF], [START_REF] Haus | Growth of Sobolev norms for the quintic NLS on T 2[END_REF], [START_REF] Guardia | Growth of Sobolev norms for the defocusing analytic NLS on T 2[END_REF]. Natural model problems for studying these phenomena seem to be those for which the calculation of solutions is the most explicit, namely integrable systems. Continuing with the example of nonlinear Schrödinger equations, a typical example is the one dimensional cubic nonlinear Schrödinger defocusing equation ( [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[END_REF]). However, in this case, the set of conservation laws is known to control the whole regularity of the solution, so that all the trajectories of H s (M) are bounded in H s (M) for every nonnegative integer s. In fact, when the equation is posed on the circle, the recent results of [START_REF] Grébert | The defocusing NLS equation and Its Normal Form[END_REF] show that, for every such s, the trajectories in H s (M) are almost periodic in H s (M).

The goal of this monograph is to study an integrable infinite dimensional system, connected to a nonlinear wave equation, with a dramatically different large time behavior of its trajectories according to the regularity of the phase space.

Following [START_REF] Majda | A one dimensional model for dispersive wave turbulence[END_REF] and [START_REF] Zakharov | Wave turbulence in one-dimensional models[END_REF], it is natural to change the dispersion relation by considering the family of equations, α < 2,

i∂ t u -|D| α u = |u| 2 u
posed on the circle S 1 , where the operator |D| α is defined by

|D| α u(k) = |k| α û(k)
for every distribution u ∈ D ′ (S 1 ). Numerical simulations in [START_REF] Majda | A one dimensional model for dispersive wave turbulence[END_REF] and [START_REF] Zakharov | Wave turbulence in one-dimensional models[END_REF] suggest weak turbulence. For 1 < α < 2, it is possible to recover at most polynomial growth of the Sobolev norms ( [START_REF] Thirouin | On the growth of high Sobolev norms for certain one-dimensional Hamiltonian PDEs[END_REF]). In the case α = 1, the so-called half-wave equation (1.0.1)

i∂ t u -|D|u = |u| 2 u
defines a global flow on H s (S 1 ) for every s ≥ 1 2 ( [START_REF] Gérard | Effective integrable dynamics for a certain nonlinear wave equation[END_REF] -see also [START_REF] Pocovnicu | First and second order approximations of a nonlinear wave equation[END_REF]). In that case, the only available bound of the H s -norms is e ct 2 ( [START_REF] Thirouin | On the growth of high Sobolev norms for certain one-dimensional Hamiltonian PDEs[END_REF]), due to the lack of dispersion. Therefore, the special case α = 1 seems to be a more favorable framework for displaying wave turbulence effects. Notice that this equation can be reformulated as a system, using the Szegő projector Π defined on D ′ (S 1 ) as Πu(k) = 1 k≥0 û(k) .

Indeed, setting u + := Πu , u -:= (I -Π)u , equation (1.0.1) is equivalent to the system i(∂ t + ∂ x )u + = Π(|u| 2 u) i(∂ t -∂ x )u -= (I -Π)(|u| 2 u) Furthermore, if the initial datum u 0 satisfies u 0 = Πu 0 and belongs to H s (S 1 ), s > 1, with a small norm ε, then the corresponding solution u is approximated by the solution v of (1.0.2) [START_REF] Pocovnicu | First and second order approximations of a nonlinear wave equation[END_REF]. In other words, the first nonlinear effects in the above system arise through a decoupling of the two equations. Notice that an elementary change of variable in equation (1.0.2) reduces it to (1.0.3) i∂ t u = Π(|u| 2 u) .

i(∂ t + ∂ x )v = Π(|v| 2 v) , for |t| ≤ 1 ε 2 log 1 ε [15]
Equation (1.0.3) therefore appears as a model evolution for describing the dynamics of the half-wave equation (1.0.1). We introduced it in [START_REF] Gérard | The cubic Szegő equation[END_REF] under the name cubic Szegő equation. In this reference, global wellposedness of the initial value problem was established on

H s + (S 1 ) := H s (S 1 ) ∩ L 2 + (S 1 ) , s ≥ 1 2 ,
where L 2 + (S 1 ) denotes the range of Π on L 2 (S 1 ), namely the L 2 functions on the circle with only nonnegative Fourier modes. Notice that L 2 + (S 1 ) can be identified to the Hardy space of holomorphic functions on the unit disc D with L 2 traces on the boundary. Similarly, the phase space H + (S 1 ) can be identified to the Dirichlet space of holomorphic functions on D with derivative in L 2 (D) for the Lebesgue measure. In the sequel, we will freely adopt either the representation on S 1 or the one on D.

The new feature discovered in [START_REF] Gérard | The cubic Szegő equation[END_REF] is that equation (1.0.3) enjoys a Lax pair structure, in connection with Hankel operators -see the end of the introduction for a definition of these operators. As a first consequence, we proved that the H s norms, for s > 1, evolve at most with exponential growth.

Using this Lax pair structure, we also proved that (1.0.3) admits finite dimensional invariant symplectic manifolds of arbitrary dimension, made of rational functions of the variable z in D. Furthermore, the dynamics on these manifolds is integrable in the sense of Liouville. In [START_REF] Gérard | Invariant Tori for the cubic Szegő equation[END_REF], we introduced action angle variables on open dense subsets of these invariant manifolds and on a dense G δ subset of H 1/2 + (S 1 ). Finally, in [START_REF] Gérard | Inverse spectral problems for compact Hankel operators[END_REF], we established an explicit formula for all solutions of (1.0.3) which allowed us to prove quasiperiodicity of all trajectories made of rational functions. In particular, this implies that every such trajectory is bounded in all the H s spaces. However, the explicit formula in [START_REF] Gérard | Inverse spectral problems for compact Hankel operators[END_REF] was not adapted to study almost periodicity of non rational solutions nor boundedness of non-rational H s -trajectories for s > 1 2 . The main purpose of this monograph is to construct a global nonlinear Fourier transform on the space H 1/2 + (S 1 ) allowing to describe more precisely the cubic Szegő dynamics. As a consequence, we obtain the following results. First we introduce a convenient notation. We denote by Z the nonlinear evolution group defined by (1.0.3) on H 1/2 + (S 1 ). In other words, for every u 0 ∈ H 1/2 + (S 1 ), t → Z(t)u 0 is the solution u ∈ C(R, H 1/2 + ) of equation (1.0.3) such that u(0) = u 0 . We also set C ∞ + (S 1 ) := C ∞ (S 1 ) ∩ L 2 + (S 1 ).

Theorem 1. -1. For every u 0 ∈ H 1/2 + (S 1 ), the mapping

t ∈ R → Z(t)u 0 ∈ H 1/2 + (S 1
) is almost periodic. 2. There exists initial data u 0 ∈ C ∞ + (S 1 ) and sequences (t n ), (t n ) tending to infinity such that ∀s > 1 2 , ∀M ∈ Z + ,

Z(t n )u 0 H s |t n | M -→ n→∞ ∞ ,
and

Z(t n )u 0 -→ n→∞ u 0 in C ∞ + .
Furthermore, the set of such initial data is a dense G δ subset of C ∞ + (S 1 ).

Remark 1. --One could wonder about the influence of the Szegő projector in the equation (1.0.3) and consider the equation without the projector Π i∂ t u = |u| 2 u.

In that case, u(t) = e -it|u 0 | 2 u 0 and

u(t) H s ≃ C|t| s .
Hence the action of the Szegő projector both accelerates the energy transfer to high frequencies, and facilitates the transition to low frequencies.

-The above theorem is an expression of some intermittency phenomenon. Notice that, on the real line, explicit examples with infinite limit at infinity are given in [START_REF] Pocovnicu | Explicit formula for the solution of the Szegő equation on the real line and applications[END_REF] with Z(t)u 0 H s ≃ |t| 2s-1 . -The exponential rate is expected to be optimal but the question remains open for the cubic Szegő equation. However, for the perturbation i∂ t u = Π(|u| 2 u) + û(0), explicit examples such that the Sobolev norms tends exponentially to infinity are given in [START_REF] Xu | Large time blow up for a perturbation of the cubic Szegő equation[END_REF].

-Existence of unbounded trajectories for the half-wave equation (1.0.1) is an open problem. However, unbounded trajectories have been recently exhibited in [START_REF] Xu | Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation[END_REF] for i∂ t u + ∂ 2 ∂x 2 u -|D y |u = |u| 2 u, (x, y) ∈ R 2 by adapting the method developed in [START_REF] Hani | Modified scattering for the cubic Schrödinger equations on product spaces and applications[END_REF].

We now give an overview of the nonlinear Fourier transform. First we introduce some additional notation. Given a positive integer n, we set

Ω n := {s 1 > s 2 > • • • > s n > 0} ⊂ R n .
Given a nonnegative integer d ≥ 0, we recall that a Blaschke product of degree d is a rational function on C of the form

Ψ(z) = e -iψ d j=1 z -p j 1 -p j z , ψ ∈ T , p j ∈ D .
Alternatively, Ψ can be written as Ψ(z) = e -iψ P (z)

z d P 1 z ,
where ψ ∈ T is called the angle of Ψ and P is a monic polynomial of degree d with all its roots in D. Such polynomials are called Schur polynomials. We denote by B d the set of Blaschke products of degree d. It is a classical result -see e.g. [START_REF] Hernández | On differential structures of polynomial spaces in control theory[END_REF] or section 3.5 -that B d is diffeomorphic to T × R 2d .

Given a n-tuple (d 1 , . . . , d n ) of nonnegative integers, we set

S d 1 ,...,dn := Ω n × n r=1
B dr , endowed with the natural product topology. Given a sequence (d r ) r≥1 of nonnegative integers, we denote by S

(2) (dr ) the set of pairs ((s r ) r≥1 , (Ψ r ) r≥1 ) ∈ R ∞ × ∞ r=1 B dr such that

s 1 > • • • > s n > • • • > 0 , ∞ r=1 (d r + 1)s 2 r < ∞ .
We also endow S

(dr ) with the natural topology. Finally, we denote by S n the union of all S d 1 ,...,dn over all the n-tuples (d 1 , . . . , d n ), and by S , j, k = 1, . . . , q .

If n = 2q -1, we use the same formula as above, with s 2q = 0.

Theorem 2. -For every n ≥ 1, for every (s, Ψ) ∈ S n , for every z ∈ D, the matrix C (s, Ψ)(z) is invertible. We set

(1.0.5) u(s, Ψ)(z) = C (z) -1 (Ψ 2j-1 (z)) 1≤j≤q , 1 ,
where

1 :=       1 . . . 1       , and 
X, Y := q k=1 X k Y k .
For every (s, Ψ) ∈ S

∞ , the sequence (u q ) q≥1 with u q := u((s 1 , . . . , s 2q ), (Ψ 1 , . . . , Ψ 2q )), is strongly convergent in H 1/2 + (S 1 ). We denote its limit by u(s, Ψ). The mapping

(s, Ψ) ∈ ∞ n=1
S n ∪ S (2) ∞ -→ u(s, Ψ) ∈ H

1/2 + \ {0}
is bijective. Furthermore, its restriction to every S (d 1 ,...,dn) and to S

(dr) is a homeomorphism onto its range.

Finally, the solution at time t of equation (1.0.3) with initial data

u 0 = u(s, Ψ) is u(s, Ψ(t)), where Ψ r (t) = e i(-1) r s 2 r t Ψ r .
Using Theorem 2, it is easy to prove the first assertion of Theorem 1. As for the second assertion of Theorem 1, it heavily relies on a new phenomenon, which is the loss of continuity of the map (s, Ψ) → u(s, Ψ) as several consecutive s r 's are collapsing.

Let us explain briefly how the nonlinear Fourier transform is related to spectral analysis. If u ∈ H 1/2 + (S 1 ), recall that the Hankel operator of symbol u is the operator

H u : L 2 + (S 1 ) → L 2 + (S 1 ) defined by H u (h) = Π(uh) .
It can be shown that H 2 u is a positive selfadjoint trace class operator. If S is the shift operator defined by

Sh(z) = zh(z) , H u satisfies S * H u = H u S = H S * u .
We denote by K u this new Hankel operator. Let us say that a positive real number s is a singular value associated to u if s 2 is an eigenvalue of H 2 u or K 2 u . The main point in Theorem 2 is that the list s 1 > • • • > s r > . . . is the list of singular values associated to u = u(s, Ψ), and that the corresponding list Ψ 1 , . . . , Ψ r , . . . describes the action of H u and of K u on the possibly multidimensional eigenspaces of H 2 u , K 2 u respectively. This makes more precise a theorem of Adamyan-Arov-Krein about the structure of Schmidt pairs of Hankel operators [START_REF] Adamyan | Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem[END_REF]. We refer to section 3.5 for more details. As a consequence of Theorem 2, we get inverse spectral theorems on Hankel operators, which generalize to singular values with arbitrary multiplicity the ones we had proved in [START_REF] Gérard | Invariant Tori for the cubic Szegő equation[END_REF] and [START_REF] Gérard | Inverse spectral problems for compact Hankel operators[END_REF] for simple singular values. Therefore the nonlinear Fourier transform can be seen as an inverse spectral transform.

We close this introduction by describing the organization of this monograph. In chapter 2 we recall the Lax pair structure discovered in [START_REF] Gérard | The cubic Szegő equation[END_REF] and its application to large time bounds for high Sobolev norms of solutions to the cubic Szegő equation. Chapter 3 is devoted to the study of singular values of Hankel operators H u and K u . In particular we introduce the Blaschke products Ψ, which provide the key of the understanding of multiplicity phenomena. Chapter 4 contains the proof of the first part of Theorem 2, establishing the one to one character and the continuity of the nonlinear Fourier transform. Chapter 5 completes the proof of Theorem 2 by describing the Szegő dynamics through the nonlinear Fourier transform, and infers the almost periodicity property of solutions as claimed in the first part of Theorem 1. In Chapter 6, we establish the Baire genericity of unbounded trajectories in H s for every s > 1 2 as stated in the second part of Theorem 1. The main ingredient is an instability phenomenon induced by the collapse of consecutive singular values. Finally, Chapter 7 addresses various geometric aspects of our nonlinear Fourier transform in connection to the Szegő hierarchy defined in [START_REF] Gérard | The cubic Szegő equation[END_REF]. Specifically, we show how the nonlinear Fourier transform allows to define action angle variables on special invariant symplectic submanifolds of the phase space, and we discuss the structure of the corresponding Lagrangian tori obtained by freezing the action variables.

Let us mention that part of these results was the content of the preliminary preprint [START_REF] Gérard | Multiple singular values of Hankel operators[END_REF], and that another part was announced in the proceedings paper [START_REF] Gérard | On the growth of Sobolev norms for the cubic Szegő equation[END_REF].

CHAPTER 2 HANKEL OPERATORS AND THE LAX PAIR STRUCTURE

As we pointed out in the introduction, Hankel operators arise naturally to understand the cubic Szegő equation. In this chapter, we first give some basic definition and properties of Hankel operators and we recall the Lax pair structure of the cubic Szegő equation. Finally, we show how to use this structure to get large time bounds for high Sobolev norms of solutions to the cubic Szegő equation.

Hankel operators

H u and K u Let u ∈ H 1 2
+ (S 1 ). We denote by H u the C-antilinear operator defined on L 2 + (S 1 ) as

H u (h) = Π(uh) , h ∈ L 2 + (S 1
) . In terms of Fourier coefficients, this operator reads

H u (h)(n) = ∞ p=0 û(n + p) ĥ(p) .
In particular, its Hilbert-Schmidt norm

H u HS = ( n,p≥0 |û(n + p)| 2 ) 1/2 = ( ℓ≥0 (1 + ℓ)|û(ℓ)| 2 ) 1/2 ≃ u H 1/2 is finite for u ∈ H 1 2 + (S 1 ) and (2.1.1) H u L(L 2 + ) ≤ H u HS .
We call H u the Hankel operator of symbol u. It is well known from Kronecker's theorem, [START_REF] Kronecker | Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen Monatsber[END_REF], [START_REF] Nikolskii | Operators, functions, and systems: an easy reading[END_REF], [START_REF] Peller | Hankel Operators and their applications Springer Monographs in Mathematics[END_REF], that H u is of finite rank if and only if u is a rational function without poles in the closure of the unit disc.

In fact, the definition of Hankel operators may be extended to a larger class of symbol. By the Nehari theorem ( [START_REF] Nehari | On bounded bilinear forms[END_REF]), H u is well defined and bounded on L 2 + (S 1 ) if and only if u belongs to Π(L ∞ (S 1 )) or equivalently to BMO + (S 1 ). Moreover, by the Hartman theorem ( [START_REF] Hartman | On completely continuous Hankel matrices[END_REF]), it is a compact operator if and only if u is the projection of a continuous function on the torus, or equivalently if and only if it belongs to V MO + (S 1 ) with equivalent norms. In the following, we will mainly consider the class of Hilbert-Schmidt Hankel operators. We will generalize part of our result to compact Hankel operators in section 4.3.

Notice that this definition of Hankel operators is different from the standard ones used in references [START_REF] Nikolskii | Operators, functions, and systems: an easy reading[END_REF], [START_REF] Peller | Hankel Operators and their applications Springer Monographs in Mathematics[END_REF], where Hankel operators are rather defined as linear operators from L 2 + into its orthogonal complement. The link between these two definitions can be easily established by means of the involution

f ♯ (e ix ) = e -ix f (e ix ) .
Notice also that H u satisfies the following self adjointness identity,

(2.1.2) (H u (h 1 )|h 2 ) = (H u (h 2 )|h 1 ) , h 1 , h 2 ∈ L 2 + (S 1
) . In particular, H u is a R-linear symmetric operator for the real inner product h 1 , h 2 := Re(h 1 |h 2 ) .

A fundamental property of Hankel operators is their connection with the shift operator S, defined on L 2 + (S 1 ) as Su(e ix ) = e ix u(e ix ) .

This property reads

S * H u = H u S = H S * u ,
where S * denotes the adjoint of S. We denote by K u this operator, and call it the shifted Hankel operator of symbol u. Hence (2.1.3)

K u := S * H u = H u S = H S * u .
Notice that, for u ∈ H The Kronecker theorem can be made more precise by the following statement, see the appendix of [START_REF] Gérard | The cubic Szegő equation[END_REF]. The set V(d) is a complex Kähler d-dimensional submanifold of L 2 + (S 1 ), which consists of functions of the form u(e ix ) =

A(e ix ) B(e ix ) ,

where A, B are polynomials with no common factors, B has no zero in the closed unit disc, B(0) = 1, and

-If d = 2N is even, the degree of A is at most N -1 and the degree of B is exactly N. -If d = 2N -1 is odd, the degree of A is exactly N -1 and the degree of B is at most N -1.

The Lax pair structure

In this section, we recall the Lax pairs associated to the cubic Szegő equation, see [START_REF] Gérard | The cubic Szegő equation[END_REF], [START_REF] Gérard | Invariant Tori for the cubic Szegő equation[END_REF]. First we introduce the notion of a Toeplitz operator. Given b ∈ L ∞ (S 1 ), we define

T b : L 2 + → L 2 + as (2.2.1) T b (h) = Π(bh) , h ∈ L 2 + .
Notice that T b is bounded and T * b = T b . The starting point is the following lemma.

Lemma 1. -Let a, b, c ∈ H s + , s > 1 2 . Then H Π(abc) = T ab H c + H a T bc -H a H b H c . Proof. -Given h ∈ L 2 + , we have H Π(abc) (h) = Π(abch) = Π(abΠ(ch)) + Π(ab(I -Π)(ch)) = T ab H c (h) + H a (g) , g := b(I -Π)(ch) . Since g ∈ L 2 + , g = Π(g) = Π(bch) -Π(bΠ(ch)) = T bc (h) -H b H c (h) .
This completes the proof.

Using Lemma 1 with a

= b = c = u, we get (2.2.2) H Π(|u| 2 u) = T |u| 2 H u + H u T |u| 2 -H 3 u . Theorem 3. -Let u ∈ C ∞ (R, H s + ), s > 1 2 , be a solution of (1.0.3). Then dH u dt = [B u , H u ] , B u := i 2 H 2 u -iT |u| 2 , dK u dt = [C u , K u ] , C u := i 2 K 2 u -iT |u| 2 .
Proof. -Using equation (1.0.3) and identity (2.2.2),

dH u dt = H -iΠ(|u| 2 u) = -iH Π(|u| 2 u) = -i(T |u| 2 H u + H u T |u| 2 -H 3 u ) .
Using the antilinearity of H u , this leads to the first identity. For the second one, we observe that

(2.2.3) K Π(|u| 2 u) = H Π(|u| 2 u) S = T |u| 2 H u S + H u T |u| 2 S -H 3 u S . Moreover, notice that T b (Sh) = ST b (h) + (bSh|1) .
In the case b = |u| 2 , this gives

T |u| 2 Sh = ST |u| 2 h + (|u| 2 Sh|1) . Moreover, (|u| 2 Sh|1) = (u|uSh) = (u|K u (h)) .
Consequently,

H u T |u| 2 Sh = K u T |u| 2 h + (K u (h)|u)u .
Coming back to (2.2.3), we obtain

K Π(|u| 2 u) = T |u| 2 K u + K u T |u| 2 -(H 2 u -(•|u)u)K u . Using identity (2.1.4), this leads to (2.2.4) K Π(|u| 2 u) = T |u| 2 K u + K u T |u| 2 -K 3 u .
The second identity is therefore a consequence of antilinearity and of

dK u dt = -iK Π(|u| 2 u) .
In the sequel, we denote by L(L 2 + ) the Banach space of bounded linear operators on L 2 + . Observing that B u , C u are linear and antiselfadjoint, we obtain, following a classical argument due to Lax [START_REF] Lax | Integrals of Nonlinear equations of Evolution and Solitary Waves[END_REF],

Corollary 1. -Under the conditions of Theorem 3, define U = U(t), V = V (t) the solutions of the following linear ODEs on L(L 2 + ),

dU dt = B u U , dV dt = C u V , U(0) = V (0) = I .
Then U(t), V (t) are unitary operators and

H u(t) = U(t)H u(0) U(t) * , K u(t) = V (t)K u(0) V (t) * .
In other words, the Hankel operators H u and K u remain unitarily equivalent to the Hankel operators associated to their initial data under the cubic Szegő flow for initial datum in H s (S 1 ), s > 1/2. In particular, the cubic Szegő flow preserves the eigenvalues of H 2 u and of K 2 u , hence the singular values of H u and K u . By a standard continuity argument, this result extends to initial data in H 1/2 + (S 1 ). We recover that the Hilbert-Schmidt norm-being the ℓ 2 -norm of the singular values of H u -hence the H 1/2 + norm of the symbol is a conservation law. It is therefore natural to study the spectral properties of these Hankel operators.

As a special case, the ranks of H u and K u are conserved by the cubic Szegő flow, which therefore acts as a Hamiltonian flow on all the symplectic manifolds V(d).

Application: an exponential bound for Sobolev norms

In this short section, we show how the Lax pair structure, combined with harmonic analysis results on Hankel operators, lead to an a priori bound on the possible long time growth of the Sobolev norms of the solution.

From the work of Peller ([39]), a Hankel operator belongs to the Schatten class S p , 1 ≤ p < ∞, if and only if its symbol belongs to the Besov space

B 1/p p,p (S 1 ), with Tr(|H u | p ) ≃ u p B 1/p p,p
.

In particular, since, for every s > 1,

H s + (S 1 ) ⊂ B 1 1,1 (S 1 ) ⊂ L ∞ (S 1 ), we obtain (2.3.1) u L ∞ ≤ ATr(|H u |) ≤ B s u H s , s > 1.
This provides the following result, already observed in [START_REF] Gérard | The cubic Szegő equation[END_REF]. [START_REF] Gérard | The cubic Szegő equation[END_REF]). For every datum u 0 ∈ H s + for some s > 1, the solution is bounded in L ∞ , with

Theorem 4. -([
(2.3.2) sup t∈R Z(t)u 0 L ∞ ≤ C s u 0 H s .
Furthermore,

(2.3.3) Z(t)u 0 H s ≤ C ′ s u 0 H s e C ′ s u 0 2 H s |t| , s > 1.
Proof. -The first statement is an immediate consequence of (2.3.1) and of the conservation law

Tr(|H Z(t)u 0 |) = Tr(|H u 0 |) .
From Duhamel formula, u(t) := Z(t)u 0 is given by

u(t) := u 0 -i t 0 Π(|u| 2 u)(t ′ )dt ′ , so that u(t) H s ≤ u 0 H s + t 0 |u(t ′ )| 2 u(t ′ ) H s dt ′ ≤ u 0 H s + D s t 0 u(t ′ ) 2 L ∞ u(t ′ ) H s dt ≤ u 0 H s + D s C ′ s t 0 u 0 2 H s u(t ′ ) H s dt
and the bound (2.3.3) follows from the Gronwall lemma.

CHAPTER 3 SPECTRAL ANALYSIS

In this chapter, we establish several properties of singular values of Hankel operators H u and K u introduced in Chapter 1. In particular, we prove -see Lemma 2 -that, for a given singular value of either H u or K u , the difference of the multiplicities is 1. In section 3.2 we review trace and determinant formulae relating the singular values to other norming constants. In section 3.4, we revisit two important theorems by Adamyan-Arov-Krein on the structure of Schmidt pairs for Hankel operators, and on approximation of arbitrary symbols by rational symbols. Section 3.5 is the most important one of this chapter. Choosing special Schmidt pairs, we construct Blaschke products which allow to describe the action of H u and K u on the eigenspaces of H 2 u and K 2 u .

Spectral decomposition of the operators H u and K u

This section is devoted to a precise spectral analysis of operators H 2 u and K 2 u on the closed range of H u . This spectral analysis is closely related to the construction of our non linear Fourier transform.

For every s ≥ 0 and

u ∈ V MO + (S 1 ) := V MO(S 1 ) ∩ L 2 + (S 1 ), we set (3.1.1) E u (s) := ker(H 2 u -s 2 I) , F u (s) := ker(K 2 u -s 2 I) .
Notice that E u (0) = ker H u , F u (0) = ker K u . Moreover, from the compactness of H u , if s > 0, E u (s) and F u (s) are finite dimensional. Using (2.1.3) and (2.1.4), one can show the following result.

Lemma 2. -Let u ∈ V MO + (S 1 ) \ {0} and s > 0 such that E u (s) + F u (s) = {0} .
Then one of the following properties holds.

1. dim E u (s) = dim F u (s) + 1, u ⊥ E u (s), and F u (s) = E u (s) ∩ u ⊥ . 2. dim F u (s) = dim E u (s) + 1, u ⊥ F u (s), and E u (s) = F u (s) ∩ u ⊥ .
Proof. -Let s > 0 be such that E u (s) + F u (s) = {0}. We first claim that either u ⊥ E u (s) or u ⊥ F u (s). Assume first u ⊥ E u (s), then there exists h ∈ E u (s) such that (h|u) = 0. From equation (2.1.4),

-(h|u)u = (K 2 u -s 2 I)h ∈ (F u (s)) ⊥ , hence u ⊥ F u (s). Similarly, if u ⊥ F u (s), then u ⊥ E u (s). Assume u ⊥ F u (s). Then, for any h ∈ F u (s), as K 2 u = H 2 u -(•|u)u, H 2 u (h) = K 2 u (h) = s 2 h, hence F u (s) ⊂ E u (s)
. We claim that this inclusion is strict. Indeed, suppose it is an equality. Then H u and K u are both automorphisms of the vector space

N := F u (s) = E u (s) .
Consequently, since K u = S * H u , S * (N) ⊂ N. On the other hand, since every h ∈ N is orthogonal to u, we have 0 = (H u (h)|u) = (1|H 2 u h) = s 2 (1|h) , hence N ⊥ 1. Therefore, for every h ∈ N, for every integer k, (S * ) k (h) ⊥ 1. Since S k (1) = z k , we conclude that all the Fourier coefficients of h are 0, hence N = {0}, a contradiction. Hence, the inclusion of F u (s) in E u (s) is strict and, necessarily u ⊥ E u (s) and

F u (s) = E u (s) ∩ u ⊥ . One also has dim E u (s) = dim F u (s) + 1. One proves as well that if u ⊥ E u (s) then u ⊥ F u (s), E u (s) = F u (s) ∩ u ⊥ and dim F u (s) = dim E u (s) + 1. This gives the result. We define (3.1.2) Σ H (u) := {s ≥ 0; u ⊥ E u (s)} , (3.1.3) Σ K (u) := {s ≥ 0; u ⊥ F u (s)} .
Remark first that 0 / ∈ Σ H (u), since u = H u (1) belongs to the range of H u hence, is orthogonal to its kernel. From Lemma 2, if s ∈ Σ H (u)

then dim E u (s) = dim F u (s) + 1 and if s ∈ Σ K (u) \ {0}, dim F u (s) = dim E u (s) + 1.
Consequently, Σ H (u) and Σ K (u) are disjoint. We will use the following terminology. If s ∈ Σ H (u), we say that s is H-dominant. If s ∈ Σ K (u) \ {0}, we say that s is K-dominant. Elements of the set Σ H (u) ∪ (Σ K (u) \ {0}) are called singular values associated to u. If s is such a singular value, the dominant multiplicity of s is defined to be the maximum of dim E u (s) and of dim F u (s). Lemma 3. -1. Σ H (u) and Σ K (u) have the same cardinality.

2. If (ρ j ) denotes the decreasing sequence of elements of Σ H (u), and (σ k ) the decreasing sequence of elements of Σ K (u), then 

ρ 1 > σ 1 > ρ 2 > . . . Proof. -Since K 2 u = H 2 u -( . |u)u,
u ρ = σ∈Σ K (u) u ′ σ .
Consequently, the cyclic spaces are given by

u H 2 u = ⊕ ρ∈Σ H (u) Cu ρ , u K 2 u = ⊕ σ∈Σ K (u) Cu ′ σ .
This proves that Σ H (u) and Σ K (u) have the same -possibly infinitenumber of elements. Now, we show that the singular values are alternatively H-dominant and K-dominant. Recall that the singular values of a bounded operator T on a Hilbert space H, are given by the following min-max formula. For every m ≥ 1, denote by F m the set of linear subspaces of H of dimension at most m. The m-th singular value of T is given by (3.1.4) λ m (T ) = min

F ∈F m-1 max f ∈F ⊥ , f =1 T (f ) .
Using equation (2.1.4) and this formula, we get

λ 1 (H 2 u ) ≥ λ 1 (K 2 u ) ≥ λ 2 (H 2 u ) ≥ λ 2 (K 2 u ) ≥ . . . Let s 2 1 = λ 1 (H 2 u
). We claim that s 1 is H-dominant. Indeed, denote by m 1 the dimension of E u (s 1 ). Hence,

s 2 1 = λ 1 (H 2 u ) = • • • = λ m 1 (H 2 u ) > λ m 1 +1 (H 2 u ). Since λ m 1 +1 (K 2 u ) ≤ λ m 1 +1 (H 2 u ) < s 2 1 , the dimension of F u (s 1 ) is at most m 1 . Hence by Lemma 2, it is exactly m 1 -1. Let s 2 2 = λ m 1 (K 2 u ). Denote by m 2 the dimension of F u (s 2 ) so that s 2 2 = λ m 1 (K 2 u ) = • • • = λ m 1 +m 2 -1 (K 2 u ) > λ m 1 +m 2 (K 2 u ) ≥ λ m 1 +m 2 +1 (H 2 u )
. As before, it implies that the dimension of E u (s 2 ) is at most m 2 . By Lemma 2, the dimension of E u (s 2 ) is m 2 -1 and s 2 is K-dominant. An easy induction argument allows to conclude.

At this stage, we introduce special classes of functions on the circle, connected to the properties of the associated singular values. Given a finite sequence (d 1 , . . . , d n ) of nonnegative integers, we denote by V (d 1 ,...,dn) the class of functions u having n associated singular values s 1 > • • • > s n , of dominant multiplicities d 1 + 1, . . . , d n + 1 respectively. In view of definition 1, we observe that (3.1.5)

V (d 1 ,...,dn) ⊂ V(d) , d = n + 2 n r=1 d r .
Similarly, given a sequence (d r ) r≥1 of nonnegative integers, V

(dr ) r≥1 the class of functions u ∈ H 1 2 (S 1 ) having a decreasing sequence of associated singular values with dominant multiplicities (d r + 1) r≥1 . Lemma 4. -Let ρ ∈ Σ H (u) and σ ∈ Σ K (u); let u ρ and u ′ σ denote respectively the orthogonal projections of u onto E u (ρ), and onto F u (σ), then

1. If ρ ∈ Σ H (u), (3.1.6) u ρ = u ρ 2 σ∈Σ K (u) u ′ σ ρ 2 -σ 2 , 2. If σ ∈ Σ K (u), (3.1.7) u ′ σ = u ′ σ 2 ρ∈Σ H (u) u ρ ρ 2 -σ 2 .

3.

A nonnegative number σ belongs to Σ K (u) if and only if it does not belong to Σ H (u) and

(3.1.8) ρ∈Σ H (u) u ρ 2 ρ 2 -σ 2 = 1 .
Proof. -Let us prove (3.1.6) and (3.1.7). Observe that, by the Fredholm alternative, for σ > 0,

H 2 u -σ 2 I is an automorphism of E u (σ) ⊥ . Conse- quently, if moreover σ ∈ Σ K (u), u ∈ E u (σ) ⊥ and there exists v ∈ E u (σ) ⊥ unique such that (H 2 u -σ 2 I)v = u . We set v := (H 2 u -σ 2 I) -1 (u). If σ = 0 ∈ σ K (u), of course H 2
u is no more a Fredholm operator. However let us prove that there still exists

w ∈ E u (0) ⊥ such that H 2 u (w) = u . Indeed, E u (0) = ker H 2 u = ker H u , F u (0) = ker K 2 u = ker K u , and since K u = S * H u , therefore E u (0) ⊂ F u (0). As u = H u (1) ∈ Ran(H u ) ⊂ E u (0) ⊥ , the hypothesis u ⊥ F u (0) implies that the inclusion E u (0) ⊂ F u (0) is strict. This means that there exists w ∈ F u (0) ∩ E u (0) ⊥ , w = 0. It means S * H u (w) = 0 hence H u w is a constant function which is not zero since w ∈ E u (0) ⊥ .
Multiplying w by a convenient complex number we may assume that H u (w) = 1, whence H 2 u (w) = u, and this characterizes w ∈ E u (0) ⊥ . Again we set w := (H 2 u ) -1 (u) . For every σ ∈ Σ K (u), the equation

K 2 u h = σ 2 h is equivalent to (H 2 u -σ 2 I)h = (h|u)u , or h ∈ C(H 2 u -σ 2 I) -1 (u) ⊕ E u (σ) , with (3.1.9) ((H 2 u -σ 2 I) -1 (u)|u) = 1 .

We apply this property to

h = u ′ σ . Since u ′ σ ∈ E u (σ) ⊥ , there exists λ ∈ C with u ′ σ = λ(H 2 u -σ 2 I) -1 (u). Applying equation (3.1.9), this leads to u ′ σ u ′ σ 2 = (H 2 u -σ 2 I) -1 (u) . In particular, if ρ ∈ Σ H (u), σ ∈ Σ K (u), u ′ σ u ′ σ 2 u ρ u ρ 2 = 1 ρ 2 -σ 2 .
This leads to equations (3.1.6) and (3.1.7). Finally, equation (3.1.8) is nothing but the expression of (3.1.9) in view of equation (3.1.6).

This completes the proof of Lemma 4.

Some Bateman-type formulae

In this section, we establish some formulae linking the singular values of a Hankel operator and its shifted operator. Let u ∈ V MO + (S 1 ). For ρ ∈ Σ H (u), we denote by σ(ρ) the biggest element of Σ K (u) which is smaller than ρ. When ρ∈Σ H (u) σ(ρ) 2 ρ 2 = 0, we define ρ(σ) to be the biggest element of Σ H (u) which is smaller than σ. This is always well defined for infinite sequences tending to zero. In the case of finite sequence, the hypothesis implies that 0 ∈ Σ K (u) and lemma 2 and lemma 3 allows to define ρ(σ) in that case for any σ ∈ Σ k (u) \ {0}.

In this section, we state and prove several formulae connecting these sequences. These formulae are based on the special case of a general formula for the resolvent of a finite rank perturbation of an operator, which seems to be due to Bateman [START_REF] Bateman | A formula for solving function of a certain integral equation of the second kind[END_REF] in the framework of Fredholm integral equations. Further references can be found in Chap. II, sect. 4.6 of [START_REF] Kantorovitch | Approximate Methods of Higher Analysis[END_REF], section 106 of [START_REF] Akhiezer | Theory of Linear Operators in Hilbert Space[END_REF] and [START_REF] Nazarov | On a set of Gaussian random functions, translated from Russian[END_REF], from which we borrowed this information.

Proposition 1. -The following functions coincide respectively for x outside the set { 1 ρ 2 } ρ∈Σ H (u) and outside the set { 1 σ 2 } σ∈Σ K (u)\{0} .

(3.2.1)

ρ∈Σ H (u) 1 -xσ(ρ) 2 1 -xρ 2 = 1 + x ρ∈Σ H (u) u ρ 2 1 -xρ 2 (3.2.2) ρ∈Σ H (u) 1 -xρ 2 1 -xσ(ρ) 2 = 1 -x   σ∈Σ K (u) u ′ σ 2 1 -xσ 2   .
Furthermore,

(3.2.3) 1 - ρ∈Σ H (u) u ρ 2 ρ 2 = ρ∈Σ H (u) σ(ρ) 2 ρ 2 ,
and, if

ρ∈Σ H (u) σ(ρ) 2 ρ 2 = 0, (3.2.4 
)

ρ∈Σ H (u) u ρ 2 ρ 4 = 1 ρ 2 max σ∈Σ K (u)\{0} σ 2 ρ(σ) 2 .
Here ρ max denotes the biggest element of Σ H (u). For ρ ∈ Σ H (u), the u ρ 2 's are given by

(3.2.5) u ρ 2 = ρ 2 -σ(ρ) 2 ρ ′ =ρ ρ 2 -σ(ρ ′ ) 2 ρ 2 -ρ ′ 2 .
and the u ′ σ(ρ)

2 's are given by

(3.2.6) u ′ σ(ρ) 2 = (ρ 2 -σ(ρ) 2 ) ρ ′ =ρ σ(ρ) 2 -ρ ′ 2 σ(ρ) 2 -σ(ρ ′ ) 2 .
The kernel of K u is non trivial if and only if

ρ∈Σ H (u) σ(ρ) 2
ρ 2 = 0, and in that case

u ′ 0 2 = ρ 2 max σ∈Σ K (u)\{0} ρ(σ) 2 σ 2 Proof. -For x / ∈ { 1 ρ 2 } ρ∈Σ H (u) , we set J(x) := ((I -xH 2 u ) -1 (1)|1).
We claim that (3.2.7)

J(x) = ρ∈Σ H (u) 1 -xσ(ρ) 2 1 -xρ 2 .
Indeed, let us first assume that H 2 u and K 2 u are of trace class and compute the trace of (I -

xH 2 u ) -1 -(I -xK 2 u ) -1 . We write [(I -xH 2 u ) -1 -(I -xK 2 u ) -1 ](f ) = x J(x) (f |(I -xH 2 u ) -1 u) • (I -xH 2 u ) -1 u.
Consequently, taking the trace, we get

Tr[(I -xH 2 u ) -1 -(I -xK 2 u ) -1 ] = x J(x) (I -xH 2 u ) -1 u 2 .
Since, on the one hand

(I -xH 2 u ) -1 u 2 = ((I -xH 2 u ) -1 H 2 u (1)|1) = J ′ (x) and on the other hand Tr[(I -xH 2 u ) -1 -(I -xK 2 u ) -1 ] = xTr[H 2 u (I -xH 2 u ) -1 -K 2 u (I -xK 2 u ) -1 ] = x ρ∈Σ H (u) ρ 2 1 -ρ 2 x - σ(ρ) 2 1 -σ(ρ) 2 x ,
where we used lemmas 3 and 4. On the other hand, (3.2.8)

ρ∈Σ H (u) ρ 2 1 -ρ 2 x - σ(ρ) 2 1 -σ(ρ) 2 x = J ′ (x) J(x) , x / ∈ 1 ρ 2 , 1 σ(ρ) 2 ρ∈Σ H (u)
. This gives equality (3.2.7) for H 2 u and K 2 u of trace class. To extend this formula to compact operators, we remark that ρ∈Σ H (u) (ρ 2 -σ(ρ) 2 ) is summable since, in case of infinite sequences, we have 0 ≤ ρ 2 -σ(ρ) 2 ≤ ρ 2 -ρ(σ(ρ)) 2 so that it leads to a telescopic serie which converges since (ρ 2 ) tends to zero from the compactness of H 2 u . Hence the infinite product in formula (3.2.7) and the above computation makes sense for compact operators.

On the other hand, for

x / ∈ { 1 ρ 2 }, J(x) = ((I -xH 2 u ) -1 (1)|1) = 1 + x((I -xH 2 u ) -1 (u)|u) = 1 + x( ρ (I -xH 2 u ) -1 (u ρ )|u)) = 1 + x ρ∈Σ H (u) u ρ 2 1 -xρ 2 hence (3.2.9) ρ∈Σ H (u) 1 -xσ(ρ) 2 1 -xρ 2 = 1 + x ρ∈Σ H (u) u ρ 2 1 -xρ 2 .
Passing to the limit as x goes to -∞ in (3.2.1), we obtain (3.2.3). If we assume that the left hand side of (3.2.3) cancels, then (3.2.1) can be rewritten as

ρ∈Σ H (u) 1 -xσ(ρ) 2 1 -xρ 2 = ρ∈Σ H (u) u ρ 2 ρ 2 (1 -xρ 2 ) .
Multiplying by x and passing to the limit as x goes to -∞ in this new identity, we obtain (3.2.4). Multiplying both terms of (3.2.1) by (1-xρ 2 ) and letting x go to 1/ρ 2 . We get

u ρ 2 = ρ 2 -σ(ρ) 2 ρ ′ =ρ ρ 2 -σ(ρ ′ ) 2 ρ 2 -ρ ′ 2 .
For Equality (4.1.13), we do almost the same analysis. First, we establish as above that 1

J(x) = 1 -x((I -xK 2 u ) -1 (u)|u) = 1 -x σ∈Σ K (u) u ′ σ 2 1 -xσ 2 .
Identifying this expression with

1 J(x) = ρ 1 -xρ 2 1 -xσ(ρ) 2 we get, for ρ ∈ Σ H (u) u ′ σ(ρ) (ρ) 2 = (ρ 2 -σ(ρ) 2 ) ρ ′ =ρ σ(ρ) 2 -ρ ′ 2 σ(ρ) 2 -σ(ρ ′ ) 2 .
If σ = 0 ∈ Σ K (u), identifying the term in x in both terms, one obtains

u ′ 0 = 0 if and only if ρ∈Σ H (u)
σ(ρ) 2 ρ 2 = 0, and in that case, identifying the corresponding factor of x gives

u ′ 0 2 = ρ 2 max σ∈Σ K (u)\{0} ρ(σ) 2 σ 2 .
As a consequence of the previous lemma, we get the following couple of corollaries.

Corollary 2. -For any ρ, ρ ′ ∈ Σ H (u), σ, σ ′ ∈ Σ K (u) \ {0}, we have (3.2.10) ρ∈Σ H (u) u ρ 2 ρ 2 -σ 2 = 1 (3.2.11) σ∈σ K (u) u ′ σ 2 ρ 2 -σ 2 = 1 (3.2.12) ρ∈Σ H (u) u ρ 2 (ρ 2 -σ 2 )(ρ 2 -σ ′ 2 ) = 1 u ′ σ 2 δ σσ ′ (3.2.13) σ∈Σ K (u) u ′ σ 2 (σ 2 -ρ 2 )(σ 2 -ρ ′ 2 ) = 1 u ρ 2 δ ρρ ′ Proof.
-The first two equalities (3.2.10) and (3.2.11) are obtained by making x = 1 σ 2 and x = 1 ρ 2 respectively in formula (3.2.1) and formula (3.2.2). For equality (3.2.12) in the case σ = σ ′ , we first make the change of variable y = 1/x in formula (3.2.1) then differentiate both sides with respect to y and make y = σ 2 . Equality (3.2.13) in the case ρ = ρ ′ follows by differentiating equation (3.2.2) and making x = 1 ρ 2 . Both equalities in the other cases follow directly respectively from equality (3.2.10) and equality (3.2.11).

Corollary 3. -The kernel of H u is {0} if and only if ρ∈Σ H (u) σ(ρ) 2 ρ 2 = 0 , σ∈Σ K (u) σ 2 ρ(σ) 2 = ∞ .
Proof. -By the first part of theorem 4 in [START_REF] Gérard | Inverse spectral problems for compact Hankel operators[END_REF] -which is independent of multiplicity assumptions-, the kernel of H u is {0} if and only if 1 ∈ Ran(H u ) \ Ran(H u ), where Ran(H u ) denotes the range of H u . On the other hand,

u = ρ∈Σ H (u) u ρ = ρ∈Σ H (u) H u (H u (u ρ )) ρ 2 ,
hence the orthogonal projection of 1 onto Ran(H u ) is

ρ∈Σ H (u) H u (u ρ ) ρ 2 .
Consequently, 1 ∈ Ran(H u ) if and only if

1 = ρ∈Σ H (u) H u (u ρ ) ρ 2 2 = ρ∈Σ H (u) u ρ 2 ρ 2 .
Moreover, if this is the case,

1 = ρ∈Σ H (u) H u (u ρ ) ρ 2
and 1 ∈ Ran(H u ) if and only if the series

ρ∈Σ H (u) u ρ ρ 2
converges, which is equivalent to

ρ∈Σ H (u) u ρ 2 ρ 4 < ∞ . Hence 1 ∈ Ran(H u ) \ Ran(H u ) if and only if ρ∈Σ H (u) u ρ 2 ρ 2 = 1 , ρ∈Σ H (u) u ρ 2 ρ 4 = ∞ ,
which is the claim, in view of identities (3.2.3) and (3.2.4).

Finite Blaschke products

In this section, we recall the definition and the structure of finite Blaschke products which appear in the spectral analysis of Hankel operators. A finite Blaschke product is an inner function of the form

Ψ(z) = e -iψ k j=1 χ p j (z) , ψ ∈ T , p j ∈ D , χ p (z) := z -p 1 -pz , p ∈ D .
The integer k is called the degree of Ψ. We denote by B k the set of Blaschke products of degree k.

Alternatively, Ψ ∈ B k can be written as

Ψ(z) = e -iψ P (z) z k P 1 z ,
where ψ ∈ T is called the angle of Ψ and P is a monic polynomial of degree k with all its roots in D. Such polynomials are called Schur polynomials. We denote by

O d the open subset of C d made of (a 1 , . . . , a d ) such that P (z) = z d + a 1 z d-1 + • • • + a d is a Schur polynomial. The fol- lowing result implies that B k is diffeomorphic to T × R 2k .
It is connected to the Schur-Cohn criterion [START_REF] Schur | Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind[END_REF], [START_REF] Cohn | Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise[END_REF], and is classical in control theory, see e.g. [START_REF] Hernández | On differential structures of polynomial spaces in control theory[END_REF] and references therein. For the sake of completeness, we give a self contained proof.

Proposition 2. -For every d ≥ 1 and (a 1 , . . . , a d ) ∈ C d , the following two assertions are equivalent.

1. (a 1 , . . . , a d ) ∈ O d . 2. |a d | < 1 and a k -a d a d-k 1 -|a d | 2 1≤k≤d-1 ∈ O d-1 .
In particular, for every

d ≥ 0, O d is diffeomorphic to R 2d .
Proof. -Consider the rational functions

χ(z) = z d + a 1 z d-1 + • • • + a d 1 + a 1 z + • • • + a d z d , and 
χ(z) = χ(z) -χ(0) 1 -χ(0)χ(z) = z z d-1 + b 1 z d-2 + • • • + b d-1 1 + b 1 z + • • • + b d-1 z d-1 , b k := a k -a d a d-k 1 -|a d | 2 .
If (1) holds true, then χ ∈ B d , which implies

(3.3.1) ∀z ∈ D, |χ(z)| < 1 , |χ(e ix )| = 1 .
In particular, χ(0) = a d ∈ D, and therefore the numerator and the denominator of χ have no common root. Moreover,

(3.3.2) ∀z ∈ D, | χ(z)| < 1 , | χ(e ix )| = 1 .
This implies χ ∈ B d , hence [START_REF] Akhiezer | Theory of Linear Operators in Hilbert Space[END_REF]. Conversely, if (2) holds, then χ satisfies (3.3.2) and has degree d, hence

χ(z) = χ(z) + a d 1 + a d χ(z)
satisfies (3.3.1) and has degree d, whence (1).

The second statement follows from an easy induction argument on d,

since O 1 = D is diffeomorphic to R 2 .

Two results by Adamyan-Arov-Krein

We recall the proof of two important results by Adamyan-Arov-Krein. The proof is translated from [START_REF] Adamyan | Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem[END_REF] into our representation of Hankel operators, and is given for the convenience of the reader. 

λ k-1 (u) > λ k (u) = • • • = λ k+m-1 (u) = s > λ k+m (u) , with the convention λ -1 (u) := +∞. 1. For every h ∈ E u (s) \ {0}, there exists a polynomial P ∈ C m-1 [z] such that ∀z ∈ D , sh(z) H u (h)(z) = P (z) z m-1 P 1 z .
2. There exists a rational function r with no pole on D such that rk(H r ) = k and

H u -H r = s .
Proof. -We start with the case k = 0. In this case the statement ( 2) is trivial, so we just have to prove [START_REF] Adamyan | Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem[END_REF]. This is a consequence of the following lemma.

Lemma 5.

-Assume s = H u . For every h ∈ E u (s) \ {0}, consider the following inner outer decompositions,

h = ah 0 , s -1 H u (h) = bf 0 .
If c is an arbitrary inner divisor of ab, ab = cc ′ , then ch 0 ∈ E u (s), with

(3.4.1) H u (ch 0 ) = sc ′ f 0 , H u (c ′ f 0 ) = sch 0 .
In particular, a, b are finite Blaschke products and

(3.4.2) deg(a) + deg(b) + 1 ≤ dim E u (s) .
Furthermore, there exists an outer function

h 0 such that, if m := dim E u (s), (3.4.3) E u (s) = C m-1 [z]h 0 ,
and there exists ϕ ∈ T such that, for every

P ∈ C m-1 [z], (3.4.4) 
H u (P h 0 )(z) = se iϕ z m-1 P 1 z h 0 (z) .
Let us prove this lemma. We need a number of elementary properties of Toeplitz operators T b defined by equation (2.2.1), where b is a function in 1) is just equivalent to the elementary identities

L ∞ + := L 2 + ∩ L ∞ , which we recall below. In what follows, u ∈ BMO + . 1. H u T b = T b H u = H T b u . 2. If |b| ≤ 1 on S 1 , H 2 u ≥ T b H 2 u T b . 3. If |b| = 1 on S 1 , namely b is an inner function, ∀f ∈ L 2 + , f = T b T b f ⇐⇒ f = T b f . Indeed, (
Π(ubh) = Π(bΠ(uh)) = Π(Π(bu)h) .
As for (2), we observe that

T * b = T b and T b h ≤ bh ≤ h . Hence, using (1), (H 2 u h|h) -(T b H 2 u T b h|h) = H u (h) 2 -T b H u (h) 2 ≥ 0 . Finally, for (3) we remark that, if b is inner, T b T b = I and T b T b is the orthogonal projector onto the range of T b , namely bL 2 + . Since T b f = T b T b f , (3) follows.
Let us come back to the proof of Lemma 5. Starting from

H u (h) = sf , H u (f ) = sh , h = ah 0 , f = bf 0 , ab = cc ′ ,
we obtain, using property (1),

T c ′ H u (ch 0 ) = H u (cc ′ h 0 ) = T b H u (h) = sf 0 .
In particular,

H u (ch 0 ) ≥ T c ′ H u (ch 0 ) = s f 0 = s f = s h = s ch 0 .
Since s = H u , all the above inequalities are equalities, hence ch 0 ∈ E u (s), and, using (3),

H u (ch 0 ) = T c ′ T c ′ H u (ch 0 ) = sc ′ f 0 .
The second identity in (3.4.1) immediately follows. Remark that, if Ψ is an inner function of degree at least d, there exist d+1 linearly independent inner divisors of Ψ in L ∞ + . Then inequality (3.4.2) follows. Let us come to the last part. Since dim E u (s) = m, there exists h ∈ E u (s) \ {0} such that the first m -1 Fourier coefficients of h cancel, namely

h = z m-1 h .

Considering the inner outer decompositions

h = ah 0 , H u (h) = sbf 0 ,
and applying the first part of the lemma, we conclude that deg(a) + deg(b) = 0, hence, up to a slight change of notation, a = b = 1, and, for ℓ = 0, 1, . . . , m -1,

H u (z ℓ h 0 ) = sz m-1-ℓ f 0 , H u (z m-ℓ-1 f 0 ) = sz ℓ h 0 .
This implies Let us complete the proof of the theorem by proving the case s < H u . The crucial observation is the following. Lemma 6. -There exists a function φ ∈ L ∞ such that |φ| = 1 on S 1 , and such that the operators H u and H sΠ(φ) coincide on E u (s).

E u (s) = C m-1 [z]h 0 = C m-1 [z]f 0 . Since h 0 = h = f = f 0 , it follows that f 0 = e iϕ
Let us prove this lemma. For every pair (h, f ) of elements of E u (s) such that H u (h) = sf, H u (f ) = sh, we claim that the function

φ := f h ,
does not depend on the choice of the pair (h, f ). Indeed, it is enough to check that, if (h ′ , f ′ ) is another such pair,

(3.4.5) f h ′ = f ′ h .
In fact, for every n ≥ 0,

s(f h ′ |z n ) = (H u (h)|S n h ′ ) = ((S * ) n H u (h)|h ′ ) = (H u (S n h)|h ′ ) = (H u (h ′ )|S n h) = s(f ′ h|z n ) .
Changing the role of (h, h ′ ) and (f, f ′ ), we get the claim. Finally the fact |φ| = 1 comes from applying the above identity to the pairs (h, f ) and (f, h). Then we just have to check that, for every such pair,

H sΠ(φ) (h) = sΠ(Π(φ)h) = sΠ(φh) = sf .
This completes the proof of Lemma 6.

Let us first consider part (2) of the Theorem. Introduce

v := sΠ(φ) .
We are going to show that r := u -v is a rational function with no pole on D, rk(H r ) = k and H u -H r = s .

Since, for every

h ∈ L 2 + , H v (h) = sΠ(φh) ,
we infer H v ≤ s, and from E u (s) ⊂ E v (s), we conclude

H v = s .
Because of (2.1.3), H u and H v coincide on the smallest shift invariant closed subspace of L 2 + containing E u (s). By Beurling's theorem [START_REF] Beurling | On two problems concerning linear transformations in Hilbert space[END_REF], this subspace is aL 2 + for some inner function a. Then H r = 0 on aL 2 + , hence the rank of H r is at most the dimension of (aL

2 + ) ⊥ . Since H u -H r = H v = s < λ k-1 (u) ,
the rank of H r cannot be smaller than k, and the result will follow by proving that the dimension of (aL 2 + ) ⊥ is k. We can summarize the above construction as

H T a u = H u T a = H v T a = H T a v .
The above Hankel operator is compact and its norm is at most s.

In fact, if H u (h) = sf , H u (f ) = sh, with f = a f , it is clear from property (1) above that H T a u (h) = s f , H T a u ( f ) = sh .
In particular, H T a u = s .

Applying property (3.4.1) from Lemma 5, we conclude that there exists an outer function h 0 such that

ch 0 ∈ E T a u (s)
for every inner divisor c of a. Moreover, a is a Blaschke product of finite degree d. Since h 0 is outer, it does not vanish at any point of D, therefore, it is easy to find d inner divisors c 1 , . . . , c d of a such that c 1 h 0 , . . . , c d h 0 are linearly independent and generate a vector subspace Ẽ satisfying

Ẽ ∩ aL 2 + = {0} . Consequently, we obtain Ẽ ⊕ E u (s) ⊂ E T a u (s), whence (3.4.6) d ′ := dim E T a u (s) ≥ d + m .
On the other hand, by property (2) above, we have

H 2 T a u = T a H 2 u T a ≤ H 2 u , therefore, from the min-max formula, ∀n, λ n (T a u) ≤ λ n (u) .
In particular, from the definition of d ′ ,

s = λ d ′ -1 (T a u) ≤ λ d ′ -1 (u) , which imposes, in view of the assumption, d ′ -1 ≤ k+m-1, in particular, in view of (3.4.6), d ≤ k .
Finally, notice that, since a has degree d, the dimension of (aL 2 + ) ⊥ is d. Hence, by the min-max formula again,

λ d (u) ≤ sup h∈aL 2 + \{0} H u (h) h ≤ s < λ k-1 (u) .
This imposes d ≥ k, and finally

d = k , d ′ = k + m ,
and part (2) of the theorem is proved.

In order to prove part (1), we apply properties (3.4.3) and (3.4.4) of Lemma 5. We describe elements of E T a u (s) as

h(z) = Q(z)h 0 (z) ,
where h 0 is outer and

Q ∈ C k+m-1 [z]. Moreover, if h ∈ E u (s), then h = a h, H u (h) = sa f , where h, f ∈ E T a u (s). This reads Q(z) = a(z) Q(z) , If we set a(z) = z k D 1 z D(z) ,
where D ∈ C k [z] and D(0) = 1, and D has no zeroes in D, this implies

Q(z) = z k D 1 z P (z) , P ∈ C m-1 [z] .
Moreover,

H T a u (h)(z) = se iϕ z m+k-1 Q 1 z h 0 (z) = se iϕ D(z)z m-1 P 1 z h 0 (z) , and 
H u (h)(z) = a(z)H T a u (h)(z) = se iϕ z k D 1 z z m-1 P 1 z h 0 (z) .
Changing P into P e -iϕ/2 , this proves part (1) of the theorem.

Multiplicity and Blaschke products

In this section, we prove a refinement of part (1) of Theorem 3.4.1 which allows to describe precisely the structure of the eigenspaces of a Hankel operator and its shifted. For a Blaschke product Ψ ∈ B k given by Ψ(z) = e -iψ P (z)

z k P 1 z ,
we shall denote by

D(z) = z k P 1 z the normalized denominator of Ψ. Assume u ∈ V MO + (S 1
) and s ∈ Σ H (u). Then H u acts on the finite dimensional vector space E u (s). It turns out that this action can be completely described by an inner function. A similar fact holds for the action of

K u onto F u (s) when s ∈ Σ K (u), s = 0. Proposition 3. -Let s > 0 and u ∈ V MO + (S 1 ). 1. Assume s ∈ Σ H (u) and m := dim E u (s) = dim F u (s) + 1.
Denote by u s the orthogonal projection of u onto E u (s). There exists an inner function Ψ s ∈ B m-1 such that

(3.5.1) su s = Ψ s H u (u s ) ,
and if D denotes the normalized denominator of Ψ s ,

E u (s) = f D H u (u s ) , f ∈ C m-1 [z] , (3.5.2) F u (s) = g D H u (u s ) , g ∈ C m-2 [z] , (3.5.3) and, for a = 0, . . . , m -1 , b = 0, . . . , m -2, H u z a D H u (u s ) = se -iψs z m-a-1 D H u (u s ) , (3.5.4) K u z b D H u (u s ) = se -iψs z m-b-2 D H u (u s ) , (3.5.5)
where ψ s denotes the angle of Ψ s .

Assume

s ∈ Σ K (u) and ℓ := dim F u (s) = dim E u (s) + 1. Denote by u ′
s the orthogonal projection of u onto F u (s). There exists an inner function Ψ s ∈ B ℓ-1 such that

(3.5.6) K u (u ′ s ) = sΨ s u ′ s ,
and if D denotes the normalized denominator of Ψ s ,

F u (s) = f D u ′ s , f ∈ C ℓ-1 [z] , (3.5.7) E u (s) = zg D u ′ s , g ∈ C ℓ-2 [z] , (3.5.8)
and, for a = 0, . . . , ℓ -1 , b = 0, . . . , ℓ -2,

K u z a D u ′ s = se -iψs z ℓ-a-1 D u ′ s , (3.5.9) H u z b+1 D u ′ s = se -iψs z ℓ-b-1 D u ′ s , (3.5.10)
where ψ s denotes the angle of Ψ s .

3.5.1. Case of ρ ∈ Σ H (u). -Let u ∈ V MO + (S 1 ). Assume that ρ ∈ Σ H (u) and m := dim E u (ρ). Recall that E u (ρ) = ker(H 2 u -ρ 2 I), F u (ρ) = ker(K 2 u -ρ 2 I)
and by Lemma 2, and (H u (u ρ ), u ρ ), we obtain that, at every point of S 1 ,

F u (ρ) = E u (ρ) ∩ u ⊥ . 3.5.
|H u (u ρ )| 2 = ρ 2 |u ρ | 2 .
We thus define

Ψ ρ := ρu ρ H u (u ρ ) .
3.5.1.2. The function Ψ ρ is an inner function.-We know that Ψ ρ is of modulus 1 at every point of S 1 . Let us show that Ψ ρ is in fact an inner function. By part (1) of the Adamyan-Arov-Krein theorem, we already know that Ψ ρ is a rational function with no poles on the unit circle. Therefore, it is enough to prove that Ψ ρ has no pole in the open unit disc. Assume that q ∈ D is a zero of H u (u ρ ), and let us show that q is a zero of u ρ with at least the same multiplicity. Assume H u (u ρ )(q) = 0 for some q, |q| < 1. We prove that u ρ (q) = 0 (in fact h(q) = 0 for any h in E u (ρ)). Let us consider the continuous linear form

E u (ρ) → C h → h(q) .
By the Riesz representation Theorem, there exists f ∈ E u (ρ) such that h(q) = (h|f ). Our aim is to prove that, if H u (u ρ )(q) = 0 then f = 0.

The assumption

H u (u ρ )(q) = 0 reads 0 = (H u (u ρ )|f ) = (H u (f )|u ρ ) = (H u (f )|u) = (1|H 2 u (f )) = ρ 2 (1|f ).
Here we used the fact that, as

H u (f ) ∈ E u (ρ) for any f ∈ E u (ρ), (H u (f )|u ρ ) = (H u (f )|u). It implies that H u (f ) ∈ u ⊥ ∩ E u (ρ) = F u (ρ), that S * f = 1 ρ 2 S * H 2 u f = 1 ρ 2 K u H u (f ) belongs to F u (ρ)
and also f = SS * f . Hence,

f 2 = (f |f ) = f (q) = qS * f (q) = q(S * f |f ) ≤ |q| S * f • f which is impossible except if f = 0. In particular u ρ (q) = 0.
A similar argument allows to show that if q is a zero of order r of

H u (u ρ ), that is, if, for every a ≤ r -1, (H u (u ρ )) (a) (q) = 0 then the same holds for u ρ that is u (a)
ρ (q) = 0 for every a ≤ r -1.

As a consequence of the Adamyan-Arov-Krein theorem 3.4.1, we get that Ψ ρ is a Blaschke product of degree m -1, m = dim E u (ρ).

3.5.1.3. Description of E u (s), F u (s) and of the action of H u and of K u on them. -We start with proving the following lemma.

Lemma 7. -Let f ∈ H ∞ (D) such that Π(Ψ ρ f ) = Ψ ρ f . Then H u (f H u (u ρ )) = ρΨ ρ f H u (u ρ ) .
The proof of the lemma is straightforward,

H u (f H u (u ρ )) = Π(uf H u (u ρ )) = Π(f H 2 u (u ρ )) = ρ 2 Π(f u ρ ) = ρΠ(f Ψ ρ H u (u ρ )) = ρΨ ρ f H u (u ρ ) .
Applying this lemma, we get, for any 0 ≤ a ≤ m -1,

H u z a D H u (u ρ ) = ρe -iψ z m-1-a D H u (u ρ ) . Consequently, E u (ρ) = C m-1 [z] D H u (u ρ )
and that the action of H u on E u (ρ) is as expected in Equation (3.5.4). It remains to prove that

F u (ρ) = C m-2 [z] D H u (u ρ )
and that the action of K u is described as in (3.5.4). We have, for 0 ≤ b ≤ m -2,

K u z b D H u (u ρ ) = H u S z b D H u (u ρ ) = H u z b+1 D H u (u ρ ) = ρe -iψ z m-2-b D H u (u ρ ) In particular, it proves that C m-2 [z] D H u (u ρ ) ⊂ F u (ρ).
As the dimension of F u (ρ) is m -1 by assumption, we get the equality.

3.5.2. Case of σ ∈ Σ K (u).
-The second part of the proposition, concerning the case of σ ∈ Σ K (u), can be proved similarly. The first step is to prove that

Ψ σ := K u (u ′ σ ) σu ′ σ
is an inner function. The same argument as the one used above for the

K u Schmidt pairs (K u (u ′ σ ), σu ′ σ ) and (σu ′ σ , K u (u ′ σ ))
gives that Ψ σ has modulus one. To prove that it is an inner function, we argue as before. Namely, using again part (1) of the Adamyan-Arov-Krein theorem 3.4.1, for S * u in place of u, we prove that if u ′ σ vanishes at some q ∈ D, K u (u ′ σ ) also vanishes at q at the same order.

Assume u ′ σ (q) = 0. As before, there exists f ∈ F u (σ) satisfying h(q) = (h|f ) for any h ∈ F u (σ). The assumption on u ′ σ reads 0 = (u

′ σ |f ) = (u|f ) hence f belongs to E u (σ) = u ⊥ ∩F u (σ). The same holds for H u (f ) and, in particular, 0 = (H u (f )|u) = (1|H 2 u (f )) = σ 2 (1|f ). Therefore, f = SS * f and S * f = K u H u (f ) ∈ F u (σ).
One concludes as before since

f 2 = f (q) = qS * f (q) = q(S * f |f ) which implies f = 0.
One proves as well that if q is a zero of order r of (u ′ σ ), K u (u ′ σ ) vanishes at q with the same order. Eventually, by theorem 3.4.1, Ψ σ ∈ B ℓ-1 . It remains to describe E u (σ) and F u (σ) and the action of H u and K u on them. We start with a lemma analogous to Lemma 7.

Lemma 8. -Let f ∈ H ∞ (D) such that Π(Ψ σ f ) = Ψ σ f .Then K u (f u ′ σ ) = σΨ σ f u ′ σ .
The proof of the lemma is similar to the one of Lemma 7. Write

Ψ σ (z) = e -iψ z ℓ-1 D 1 z D(z) ,
where D is some normalized polynomial of degree k. From the above lemma, for 0 ≤ a ≤ ℓ -1,

K u z a D u ′ σ = σe -iψ z ℓ-1-a D u ′ σ .
In order to complete the proof, we just need to describe E u (σ) as the subspace of F u (σ) made with functions which vanish at z = 0, or equivalently are orthogonal to 1. We already know that vectors of E u (σ) are orthogonal to u, and that H u is a bijection from E u (σ) onto E u (σ). We infer that vectors of E u (σ) are orthogonal to 1. A dimension argument allows to conclude.

CHAPTER 4 THE INVERSE SPECTRAL THEOREM

We now come to the analysis of the non-linear Fourier transform introduced in Theorem 2. Given u ∈ H 1/2 + (S 1 ) \ {0}, one can define, according to Lemma 3, a finite or infinite sequence s = (s 1 > s 2 > . . . ) such that 1. The s 2j-1 's are the H-dominant singular values associated to u. 2. The s 2k 's are the K-dominant singular values associated to u. For every r ≥ 1, associate to each s r a Blaschke product Ψ r by means of Proposition 3. This defines a mapping Φ :

H 1/2 + (S 1 ) \ {0} -→ S (2) ∞ ∪ ∞ n=1 S n .
We are going to prove that Φ is bijective and coincides with the inverse mapping of the non linear Fourier transform introduced in Theorem 2.

In other words, with the notation of Theorem 2, Φ(u) = (s, Ψ) ∈ S n if and only if

(4.0.1) u = u(s, Ψ) Furthermore, if (s r , Ψ r ) r≥1 ∈ S (2) 
∞ , then its preimage u by Φ is given by (4.0.2) u = lim q→∞ u q

where the limit takes place in H

1 2
+ (S 1 ) and u q := u((s 1 , . . . , s 2q ), (Ψ 1 , . . . , Ψ 2q )).

Let us briefly describe the structure of this chapter. Firstly, we concentrate on the case of finite rank operators. This part itself includes two important steps. The first step is to prove injectivity of Φ by producing an explicit formula for u, which coincides with the one for u(s, Ψ) in Theorem 2 of the Introduction. The second step establishes surjectivity by combining algebraic calculations and compactness arguments. This step includes in particular the construction of Hankel operators with arbitrary multiplicities thanks to a process based on collapsing three consecutive singular values. Section 4.2 extends these results to Hilbert-Schmidt operators, and section 4.3 to compact Hankel operators.

The inverse spectral theorem in the finite rank case

In this section, we consider the case of finite rank Hankel operators. Consider a symbol u with H u of finite rank. Then the sets Σ H (u) and Σ K (u) are finite. We set

q := |Σ H (u)| = |Σ K (u)| . If Σ H (u) := {ρ j , j = 1, . . . , q}, ρ 1 > • • • > ρ q > 0 , Σ K (u) := {σ j , j = 1, . . . , q}, σ 1 > • • • > σ q ≥ 0 , we know from Lemma (3) that (4.1.1) ρ 1 > σ 1 > ρ 2 > σ 2 > • • • > ρ q > σ q ≥ 0 .
We set n := 2q if σ q > 0 and n := 2q -1 if σ q = 0. For 2j ≤ n, we set s 2j-1 := ρ j , s 2j := σ j , so that the positive elements in the list (4.1.1) read (4.1.2)

s 1 > s 2 > • • • > s n > 0 .
Using Proposition 3, we define n finite Blaschke products Ψ 1 , . . . , Ψ n by

ρ j u j = Ψ 2j-1 H u (u j ) , K u (u ′ j ) = σ j Ψ 2j u ′ j , 2j
≤ n , where u j denotes the orthogonal projection of u onto E u (ρ j ), and u ′ j denotes the orthogonal projection of u onto F u (σ j ). Given a finite sequence (d 1 , . . . , d n ) of nonnegative integers, recall that V (d 1 ,...,dn) is the set of symbols u such that 1. The singular values s 2j-1 , j ≥ 1, of H u in Σ H (u), ordered decreasingly, have respective multiplicities

d 1 + 1, d 3 + 1, . . . .

The singular values

s 2j , j ≥ 1, of K u in Σ K (u)
, ordered decreasingly, have respective multiplicities

d 2 + 1, d 4 + 1, . . . .
Our goal is to prove the following statement.

Theorem 5. -The mapping

Φ d 1 ,...,dn : V d 1 ,...,dn -→ S d 1 ,...,dn u -→ ((s r ) 1≤r≤n , (Ψ r ) 1≤r≤n ) is a homeomorphism and Φ d 1 ,...,dn (u) = (s, Ψ) is equivalent to u = u(s, Ψ)
with the formula given by 1.0.5. Moreover, the mapping Φ -1 d 1 ,...,dn : S d 1 ,...,dn → V(d), where d is given by (3.1.5), is a smooth immersion. As a consequence, the set

V (d 1 ,...,dn) is a submanifold of V(d) of dimension dim V (d 1 ,...,dn) = 2n + 2 n r=1 d r .
Proof. -The proof of Theorem 5 involves several steps. Firstly, we prove the continuity of Φ d 1 ,...,dn , and more precisely that every point of V (d 1 ,...,dn) has an open neihgborhood in V(d), where d is given by (3.1.5), on which Φ d 1 ,...,dn can be extended as a smooth mapping Φn into some finite dimensional manifold including S d 1 ,...,dn . Then we prove that Φ d 1 ,...,dn is a homeomorphism in the case n even, along the following lines :

-Φ d 1 ,...,dn is injective, with the formula Φ d 1 ,...,dn (u) = (s, Ψ) ⇒ u = u(s, Ψ). -Φ d 1 ,...,dn is an open mapping. -Φ d 1 ,...,dn is a proper mapping. -V (d 1 ,...,dn) is not empty.
Since the target space S (d 1 ,...,dn) is connected, these four items trivially lead to the homeomorphism result. The case n odd is derived from a simple limiting argument. Then the right inverse formula proved in the first item implies that, for every (s, Ψ) ∈ S d 1 ,...,dn , u(s, Ψ) ∈ V (d 1 ,...,dn) and

Φ d 1 ,...,dn (u(s, Ψ)) = (s, Ψ).
The use of the smooth mapping Φn combined to the smoothness of the mapping (s, Ψ) → u(s, Ψ) will then complete the proof. 

P ρ = Cρ (zI -H 2 u 0 ) -1 dz 2iπ
where C ρ is a circle, centered at ρ 2 whose radius is small enough so that the closed disc D ρ delimited by C ρ is at positive distance to the rest of the spectrum of H 2 u 0 . For u in a neighborhood V 0 of u 0 in H 1/2 + , C ρ does not meet the spectrum of H 2 u , and one may consider

P (u) ρ := Cρ (zI -H 2 u ) -1 dz 2iπ
which is a finite rank orthogonal projector smoothly dependent on u. Hence, P

ρ (u) is well defined and smooth. Since this vector is not zero for u = u 0 , it is still not zero for every u in V 0 .

We can do the same construction with any σ ∈ Σ K (u 0 ) \ {0}. We have therefore constructed n smooth functions u ∈ V 0 → P (u) r , r = 1, . . . , n, valued in the finite orthogonal projectors, and satisfying

P (u) r (u) = 0 , r = 1, . . . , n .
Moreover, by continuity,

rkP (u) r = rkP (u 0 ) r := d r + 1 .
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In the special case u ∈ V (d 1 ,...,dn) , P (u) r is precisely the orthogonal projector onto E u (s r ) + F u (s r ). We then define a map Φn on V 0 ∩ V(d) by setting

Φn (u) = ((s r (u)) 1≤r≤n ; (Ψ r (u)) 1≤r≤n ) , with s 2j-1 (u) := H u (P (u) 2j-1 (u)) P (u) 2j-1 (u) , s 2k (u) := K u (P (u) 2k (u)) P (u) 2k (u) , Ψ 2j-1 (u) := s 2j-1 (u)P (u) 2j-1 (u) H u (P (u) 2j-1 (u)) , Ψ 2k (u) = K u (P (u)) 2k (u) s 2k (u)P (u) 2k (u) . The mapping Φn is smooth from V 0 ∩V(d) into Ω n ×R n d
, where R d denotes the manifold of rational functions with numerators and denominators of degree at most d+1 2 . Moreover, from Proposition 3, the restriction of Φn to V 0 ∩ V (d 1 ,...,dn) coincides with Φ d 1 ,...,dn . This proves in particular that Φ d 1 ,...,dn is continuous. For future reference, let us state more precisely what we have proved.

Lemma 9. -For every u 0 ∈ V (d 1 ,...,dn) , there exists a neighborhood V of u 0 in V(d), d = n + 2 n r=1 d r , and a smooth mapping Φn from this neighborhood into some manifold, such that the restriction of Φn to V ∩ V (d 1 ,...,dn) coincides with Φ d 1 ,...,dn .

4.1.2. The explicit formula, case n even.-Assume that n = 2q is an even integer. The fact that the mapping Φ d 1 ,...,dn is one-to-one follows from an explicit formula giving u in terms of Φ d 1 ,...,dn (u), which we establish in this subsection.

We use the expected description of elements of Φ -1 (S n ) suggested by the action of H u , K u onto the orthogonal projections u j , u ′ k of u onto the corresponding eigenspaces of H 2 u , K 2 u respectively, namely (4.1.3) ,q , where the Ψ r 's are Blaschke products.

ρ j u j = Ψ 2j-1 H u (u j ) , K u (u ′ k ) = σ k Ψ 2k u ′ k , j, k = 1, . . .
Using the identity I = SS * + ( . |1) , we obtain

H u (u j ) = SK u (u j ) + u j 2 .
We then use the formula (3.1.6), in this setting (4.1.4)

u j = τ 2 j q k=1 1 ρ 2 j -σ 2 k u ′ k , τ 2 j = u j 2 ,
to get

Ψ 2j-1 (z)H u (u j )(z) = τ 2 j Ψ 2j-1 (z) z q k=1 K u (u ′ k )(z) ρ 2 j -σ 2 k + 1 = τ 2 j q k=1 σ k zΨ 2j-1 (z)Ψ 2k (z)u ′ k (z) ρ 2 j -σ 2 k + Ψ 2j-1 (z) ,
after using the second identity of (4.1.3). On the other hand, using again (4.1.4),

ρ j u j (z) = τ 2 j k j=1 ρ j u ′ k (z) ρ 2 j -σ 2 k .
Applying the first identity in (4.1.3), we conclude

q k=1 ρ j -zσ k zΨ 2j-1 (z)Ψ 2k (z) ρ 2 j -σ 2 k u ′ k (z) = Ψ 2j-1 (z) , which is precisely (4.1.5) C (z)U ′ (z) = (Ψ 2j-1 (z)) 1≤j≤q , where (4.1.6) c kℓ (z) := ρ k -σ ℓ zΨ 2k-1 (z)Ψ 2ℓ (z) ρ 2 k -σ 2 ℓ , and 
U ′ (z) := (u ′ k (z)) 1≤k≤q . Since u = q k=1 u ′ k ,
we conclude, for every z such that C (z) is invertible,

u(z) = C (z) -1 (Ψ 2j-1 (z)) 1≤j≤q , 1 ,
as claimed by formula (1.0.5).

Similarly, writing

H u (u ′ k ) = SK u (u ′ k ) + u ′ k 2
, and using (3.1.7) in this setting which in this setting reads (4.1.7)

u ′ k = κ 2 k q j=1 1 ρ 2 j -σ 2 k u j , κ 2 k = u ′ k 2 ,
we obtain that

u j = Ψ 2j-1 h j , or h j := 1 ρ j H u (u j ) ,
where

H(z) := (h j (z)) 1≤j≤q , is the solution of (4.1.8) t C (z)H(z) = 1 .
Let us come to the invertibility of matrices C (z). Since C (0) is invertible, C (z) is invertible for z in a small disc centered at 0. This is enough for proving the injectivity of Φ d 1 ,...,dn . However, let us prove that this property holds for every z in the closed unit disc. Recall that 

(z) = ρ k D 2ℓ (z)D 2k-1 (z) -σ ℓ ze -i(ψ 2ℓ +ψ 2k-1 ) P 2ℓ (z)P 2k-1 (z) ρ 2 k -σ 2 ℓ . Introducing the notation diag(λ j ) 1≤j≤q :=       λ 1 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 λ q      
we have

C (z) = diag 1 D 2k-1 (z) C # (z)diag 1 D 2ℓ (z)
, so that u(z) can be written equivalently as

u(z) = C # (z) -1 (e -iψ 2j-1 P 2j-1 (z)) 1≤j≤q , (D 2k (z)) 1≤k≤q ,
for every z such that det C # (z) = 0. Using Cramer's formulae for the inverse of a matrix, it is easy to see that the degree of the denominator of the above rational function is at most N = N := q + n r=1 d r , and that the degree of the numerator is at most N -1. If det C # (z) = 0 for some z in the closed unit disc, then, in order to preserve the analyticity of u, u should be written as a quotient of polynomials of degrees smaller than N -1 and N respectively, so that the rank of H u would be smaller than it is. Consequently, det C # (z) = 0 for every z in the close unit disc, so that formula (1.0.5) holds for every such z.

4.1.3. Surjectivity in the case n even.-Our purpose is now to prove that the mapping Φ d 1 ,...,dn is onto. Since we got a candidate from the formula giving u in the latter section, it may seem natural to try to check that this formula indeed provides an element u of V (d 1 ,...,dn) with the required Φ d 1 ,...,dn (u). However, in view of the complexity of formula (1.0.5) , it seems difficult to infer from them the spectral properties of H u and K u . We shall therefore use an indirect method, by proving that the mapping Φ d 1 ,...,dn on V (d 1 ,...,dn) is open, closed, and that the source space V (d 1 ,...,dn) is not empty. Since the target space S (d 1 ,...,dn) is clearly connected, this will imply the surjectivity. A first step in proving that Φ d 1 ,...,dn is an open mapping, consists in the construction of antilinears operators H and K satisfying the required spectral properties, and which will be finally identified as H u and K u . We look for u ∈ V (d 1 ,...,dn) , Φ d 1 ,...,dn (u) = P. We set

ρ j := s 2j-1 , σ k := s 2k , 1 ≤ j, k ≤ q .
Firstly, we define matrices C (z) and C # (z) using formulae (4.1.6), (4.1.9), (4.1.10). We assume moreover the following open properties,

(4.1.11) Q(z) := det C # (z) = 0 , z ∈ D , deg(Q) = N := q + n r=1 d r .
We then define H(z) = (h j (z)) 1≤j≤q and U ′ (z) = (u ′ k (z)) 1≤k≤q to be the solutions of (4.1.8) and (4.1.5) respectively. We then define τ j , κ k > 0 by (4.1.12)

q j=1 1 -xσ 2 j 1 -xρ 2 j = 1 + x q j=1 τ 2 j 1 -xρ 2 j (4.1.13) q j=1 1 -xρ 2 j 1 -xσ 2 j = 1 -x q k=1 κ 2 k 1 -xσ 2 k
As a consequence, we recall from section 3.2 that the matrix

A := 1 ρ 2 j -σ 2 k 1≤j,k≤q is invertible, with A -1 = diag(κ 2 k ) t Adiag(τ 2 j ) . Similarly, the matrix B := Adiag(κ 2 k ) satisfies B -1 = t Adiag(τ 2 j )
. From these identities and

C (z) = diag(ρ j )A -zdiag(Ψ 2j-1 (z))Adiag(σ k Ψ 2k (z)),
we easily prove the following lemma.

Lemma 10. -For every z ∈ D, C (z) t B diag(Ψ 2ℓ-1 (z)) 1≤ℓ≤q = diag(Ψ 2j-1 (z)) 1≤j≤q B t C (z) .
In view of Lemma 10 and of the definition of H(z), we infer

C (z) t Bdiag(Ψ 2j-1 (z))H(z) = diag(Ψ 2j-1 (z)) 1≤j≤q B(1) = diag(Ψ 2j-1 (z)) 1≤j≤q
where we have used B(1) = 1, which is a consequence of identity (4.1.13). We conclude, in view of the definition of U ′ (z),

(4.1.14) U ′ (z) = t Bdiag(Ψ 2j-1 (z))H(z), or (4.1.15) u ′ k = κ 2 k q j=1 Ψ 2j-1 h j ρ 2 j -σ 2 k , Ψ 2j-1 h j = τ 2 j q k=1 u ′ k ρ 2 j -σ 2 k .
We are going to define antilinear operators H eand K on the space

W = C N -1 [z] Q(z) .
Cramers' formulae show that (4.1.16)

h j (z) = D 2j-1 (z)R 2j-1 (z) ,
where the numerator of R 2j-1 is a polynomial of degree at most N -1d 2j-1 , the denominator being Q. Similarly,

u ′ k (z) = D 2k (z)R 2k (z)
, where the numerator of R 2k is a polynomial of degree at most N -1-d 2k , the denominator being Q.

We can therefore define the following elements of W , We need a second open assumption.

e 2j-1,a (z) := z a D 2j-1 (z) h j (z), 0 ≤ a ≤ d 2j-1 , e 2k,b (z) := z b D 2k (z) u ′ k (z) , 1 ≤ b ≤ d 2k , for 1 ≤ j, k ≤ q. Let E := (e 2j
(4.1.17) E and E ′ are bases of W.

We then define antilinear operators H and K on W by

H(e 2j-1,a ) := ρ j e -iψ 2j-1 e 2j-1,d 2j-1 -a , 0 ≤ a ≤ d 2j-1 , H(e 2k,b ) := σ k e -iψ 2k e 2k,d 2k +1-b , 1 ≤ b ≤ d 2k , K(e 2j-1,a ) := ρ j e -iψ 2j-1 e 2j-1,d 2j-1 -a-1 0 ≤ a ≤ d 2j-1 -1 , K(e 2k,b ) := σ k e -iψ 2k e 2k,d 2k -b , 0 ≤ b ≤ d 2k .
for 1 ≤ j, k ≤ q.

Notice that S * acts on W . Indeed, if

Q(z) := Q(0)(1 -c 1 z -c 2 z 2 -• • • -c N z N ),
we have

S * 1 Q = N j=1 c j z j-1 Q(z) .
As a first step, we prove that S * H = K. Indeed, we just have to check this identity on each vector of the basis E. In view of the above definition of H and K, the identity is trivial on the vectors

e 2j-1,a , 0 ≤ a ≤ d 2j-1 -1 , e 2k,b , 1 ≤ b ≤ d 2k .
It remains to prove it for e 2j-1,d 2j-1 , or equivalently for Ψ 2j-1 h j . We have

S * H(Ψ 2j-1 h j ) = ρ j S * h j .
This quantity can be calculated by applying S * to the equation satisfied by H(z), namely

t Adiag(ρ j )H(z) -zdiag(σ k Ψ 2k (z)) t AdiagΨ 2j-1 (z)H(z) = 1 .
We obtain

t Adiag(ρ j )S * H(z) = diag(σ k Ψ 2k (z)) t AdiagΨ 2j-1 (z)H(z) = diag σ k Ψ 2k (z) κ 2 k U ′ (z) ,
where we have used (4.1.14). We obtain, by using the formula for A -1 , (4.1.18)

S * H(Ψ 2j-1 h j )(z) = ρ j S * h j (z) = τ 2 j q k=1 σ k Ψ 2k u ′ k ρ 2 j -σ 2 k .
On the other hand, using the second part of (4.1.15),

K(Ψ 2j-1 h j ) = τ 2 j q k=1 Ku ′ k ρ 2 j -σ 2 k = τ 2 j q k=1 σ k Ψ 2k u ′ k ρ 2 j -σ 2 k .
Therefore we have proved S * H(Ψ 2j-1 h j ) = K(Ψ 2j-1 h j ), and finally

S * H = K.
As a next step, we show the following identity

(4.1.19) ∀h ∈ W , S * HS * (h) = H(h) -(1|h)u , u := q k=1 u ′ k .
It is enough to check this identity on any vector of the basis E. In view of the definition of H, it is trivially satisfied on the vectors

e 2j-1,a , 1 ≤ a ≤ d 2j-1 , e 2k,b , 1 ≤ b ≤ d 2k .
Therefore we just have to check it on e 2j-1,0 , or equivalently on h j . On the one hand, we have, from the identity (4.1.18),

S * h j (z) = τ 2 j ρ j q k=1 σ k Ψ 2k u ′ k ρ 2 j -σ 2 k .
Applying S * H = K, we get

S * HS * h j (z) = τ 2 j ρ j q k=1 σ 2 k u ′ k ρ 2 j -σ 2 k = ρ j Ψ 2j-1 (z)h j (z) - τ 2 j ρ j u(z) ,
where we have used (4.1.15 ) again. We conclude by observing that ρ j Ψ 2j-1 h j = H(h j ), and that

(1|h j ) = h j (0) = τ 2 j ρ j ,
in view of the equation on H(z) for z = 0,

Adiag(ρ j )H(0) = 1 ,
and of the expression of A -1 = diag(τ 2 j )B. Finally, we prove that an operator satisfying equality (4.1.19) is actually a Hankel operator.

Lemma 11. -Let N be a positive integer. Let

Q(z) := 1 -c 1 z -c 2 z 2 -• • • -c N z N
be a complex valued polynomial with no roots in the closed unit disc. Set

W := C N -1 [z] Q(z) ⊂ L 2 + (S 1 ) .
Let H be an antilinear operator on W satisfying

S * HS * = H -(1|•)u
on W , for some u ∈ W . Then H coincides with the Hankel operator of symbol u on W .

Proof. -Consider the operator H := H -H u , then S * HS * = H on W and hence, it suffices to show that, if H is an antilinear operator on W such that S * HS * = H, then H = 0.

The family (e j ) 1≤j≤N where

e 0 (z) = 1 Q(z)
, e j (z) = S j e 0 (z), j = 1, . . . , N -1 is a basis of W . Using that

S * HS * = H
we get on the one hand that He k = (S * ) k He 0 . On the other hand, since

S * e 0 = S * 1 Q = N j=1 c j e j-1 ,

this implies

He 0 = S * HS * e 0 = N j=1 c j (S * ) j He 0 , hence Q(S * )H(e 0 ) = 0 . Observe that, by the spectral mapping theorem, the spectrum of Q(S * ) is contained into Q(D), hence Q(S * ) is one-to-one. We conclude that H(e 0 ) = 0, and finally that H = 0.

Applying Lemma 11 to our vector space W , we conclude that H = H u , and consequently K = S * H u = K u . In view of the definition of H and K, we conclude that Φ d 1 ,...,dn (u) = P. -Let (u ε ) be a sequence of V (d 1 ,...,dn) such that Φ d 1 ,...,dn (u ε ) := P ε converges to some P in S (d 1 ,...,dn) as ε goes to 0. In other words,

P ε = ((s ε r ) 1≤r≤2q , (Ψ ε r ) 1≤r≤2q ) -→ P = ((s r ) 1≤r≤2q , (Ψ r ) 1≤r≤2q ) in S (d 1 ,.
..,dn) as ε → 0. We have to find u such that Φ(u) = P. Since

u ε H 1/2 ≃ Tr(H 2 u ε ) = 2q r=1 d r (s ε r ) 2 + q j=1 (s ε 2j-1 ) 2
is bounded, we may assume, up to extracting a subsequence, that u ε is weakly convergent to some u in H

1/2
+ , and strongly convergent in L 2 + by the Rellich theorem. Moreover, the rank of H u is at most

N = q + 2q r=1 d r .
Denote by u ε j the orthogonal projection of u ε onto ker(H 2 u -(s ε 2j-1 ) 2 I), j = 1, . . . , q, and by (u ε k ) ′ the orthogonal projection of u ε onto ker(K 2 u -(s ε 2k ) 2 I), k = 1, . . . , q. Since all these functions are bounded in L 2 + , we may assume that, for the weak convergence in

L 2 + , u ε j ⇀ v j , (u ε k ) ′ ⇀ v ′ k .
Taking advantage of the strong convergence of u ε in L 2 + , we can pass to the limit in

(u ε |u ε j ) = u ε j 2 =: (τ ε j ) 2 , (u ε |(u ε k ) ′ ) = (u ε k ) ′ 2 =: (κ ε k ) 2
, and obtain, thanks to the explicit expressions (3.2.5), (3.2.6) of τ 2 j , κ 2 k in terms of the s r ,

(u|v j ) = τ 2 j > 0 , (u|v ′ k ) = κ 2 k > 0 , in particular v j = 0, v ′
k = 0 for every j, k. On the other hand, passing to the limit in

s ε 2j-1 u ε j = Ψ ε 2j H u ε u ε j , H 2 u ε (u ε j ) = (s ε 2j-1 ) 2 u ε j , K u ε (u ε k ) ′ = s ε 2k Ψ ε 2k (u ε k ) ′ , K 2 u ε (u ε k ) ′ = (s ε 2k ) 2 (u ε k ) ′ , u ε = q j=1 u ε j = q k=1 (u ε k ) ′ ,
we obtain

s 2j-1 v j = Ψ 2j H u v j , H 2 u (v j ) = s 2 2j-1 v j , K u v ′ k = s 2k Ψ 2k v ′ k , K 2 u (v ′ k ) = s 2 2k v ′ k , u = q j=1 v j = q k=1 v ′ k .
This implies that u ∈ V (d 1 ,...,dn) , v j = u j , v ′ k = u ′ k , and Φ(u) = P. The proof of Theorem 5 is thus complete in the case n = 2q, under the assumption that V (d 1 ,...,dn) is non empty. 4.1.4. V (d 1 ,...,dn) is non empty, n even. -Let n be a positive even integer. The aim of this section is to prove that V (d 1 ,...,dn) is not empty for any multi-index (d 1 , . . . , d n ) of non negative integers.

The preceding section implies that, as soon as V (d 1 ,...,dn) is non empty, it is homeomorphic to S (d 1 ,...,dn) , via the explicit formula (1.0.5). We argue by induction on the integer

d 1 + • • • + d n .
In the generic case consisting of simple eigenvalues (see [START_REF] Gérard | The cubic Szegő equation[END_REF]), we proved that for any positive integer q, V (0,...,0) (which was denoted by V gen (2q) in [START_REF] Gérard | The cubic Szegő equation[END_REF]) is non empty. As a consequence, to any given sequence ((s r ), (Ψ r )) ∈ Ω 2q × T 2q corresponds a unique u ∈ V (0,...,0) , the s 2 2j-1 being the simple eigenvalues of H 2 u and the s 2 2j the simple eigenvalues of K 2 u . This gives the theorem in the case (d 1 , . . . , d n ) = (0, . . . , 0) for every n, which is one of the main theorems of [START_REF] Gérard | Invariant Tori for the cubic Szegő equation[END_REF]. Let us turn to the induction argument, which is clearly a consequence of the following lemma. Proof. -The main idea is to collapse three consecutive singular values. More precisely, we will construct elements of V (d 1 ,...,d r-1 ,dr+1,d r+1 ,...,dn) as limits of sequences in V (d 1 ,...,dr,0,0,d r+1 ,...,dn) such that s r , s r+1 , s r+2 converge to the same value. The difficulty is to make the sequence converge to v j , v ′ k . Arguing as in the previous subsection, we have

(u|v 1 ) = lim ε→0 u ε 1 2 = lim ε→0 (ρ + ε) 2 -ρ 2 (ρ + ε) 2 -(ρ -ε) 2 k≥2 ((ρ + ε) -σ 2 k ) k≥3 ((ρ + ε) -ρ 2 k ) = 1 2 k≥2 (ρ 2 -σ 2 k ) k≥3 (ρ 2 -ρ 2 k )
,

(u|v 2 ) = lim ε→0 u ε 2 2 = lim ε→0 (ρ -ε) 2 -ρ 2 (ρ -ε) 2 -(ρ + ε) 2 k≥2 ((ρ -ε) -σ 2 k ) k≥3 ((ρ -ε) -ρ 2 k ) = 1 2 k≥2 (ρ 2 -σ 2 k ) k≥3 (ρ 2 -ρ 2 k )
,

(u|v j ) = lim ε→0 u ε j 2 , j ≥ 3, = lim ε→0 ρ 2 j -ρ 2 (ρ 2 j -(ρ -ε) 2 )(ρ 2 j -(ρ + ε) 2 ) k≥2 (ρ 2 j -σ 2 k ) k≥3,k =j (ρ 2 j -ρ 2 k ) = 1 ρ 2 j -ρ 2 k≥2 (ρ 2 j -σ 2 k ) k≥3,k =j (ρ 2 j -ρ 2 k )
and

(u|v ′ 1 ) = lim ε→0 (u ε 1 ) ′ 2 = lim ε→0 (ρ 2 -(ρ + ε) 2 )(ρ 2 -(ρ -ε) 2 ) k≥3 (ρ 2 -ρ 2 k ) k≥2 (ρ 2 -σ 2 k ) = 0, (u|v ′ k ) = lim ε→0 (u ε k ) ′ 2 , k ≥ 2 = lim ε→0 (σ 2 k -(ρ + ε) 2 )(σ 2 k -(ρ -ε) 2 ) σ 2 k -ρ 2 j≥3 (σ 2 k -ρ 2 j ) j≥2,j =k (σ 2 k -σ 2 j ) = 1 σ 2 k -ρ 2 j≥3 (σ 2 k -ρ 2 j ) j≥2,j =k (σ 2 k -σ 2 j )
In view of these identities, we infer that v j , j ≥ 1 and v ′ k , k ≥ 2 are not 0, while v ′ 1 = 0. Passing to the limit into the identities

s ε 2j-1 u ε j = Ψ 2j H u ε u ε j , H 2 u ε (u ε j ) = (s ε 2j-1 ) 2 u ε j , K u ε (u ε k ) ′ = s ε 2k Ψ 2k (u ε k ) ′ , K 2 u ε (u ε k ) ′ = (s ε 2k ) 2 (u ε k ) ′ , u ε = q j=1 u ε j = q k=1 (u ε k ) ′ ,
we obtain

s 2j-1 v j = Ψ 2j H u v j , H 2 u (v j ) = s 2 2j-1 v j , K u v ′ k = s 2k Ψ 2k v ′ k , K 2 u (v ′ k ) = s 2 2k v ′ k , u = q+1 j=1 v j = q+1 k=2 v ′ k , hence dim E u (ρ j ) ≥ m j = d 2j-1 + 1 , j ≥ 3, dim F u (σ k ) ≥ ℓ k = d 2k + 1 , k ≥ 2 .
On the other hand, we know that rk(H

u ε ) + rk(K u ε ) = (2d 1 + 1) + 1 + 1 + (2d 2 + 1) + • • • + (2d 2q + 1) = [2(d 1 + 1) + 1] + 2q r=2 (2d r + 1),
and, consequently, rk(H u ) + rk(K u ) is not bigger than the right hand side. In order to conclude that u ∈ V (d 1 +1,d 2 ,...,dn) , it therefore remains to prove that

dim E u (ρ) ≥ m 1 + 1 = d 1 + 2 .
We use the explicit formulae obtained in section 4.1.2, which read

u ε j (z) = Ψ 2j-1 (z) det C ε j (z) det C ε (z) ,
where C ε (z) denotes the matrix (c ε kℓ (z)) 1≤k,ℓ≤q+1 , with

c ε jk (z) = ρ j -σ k zΨ 2j-1 (z)Ψ 2k (z) ρ 2 j -σ 2 k , ρ 1 = ρ + ε, σ 1 = ρ, ρ 2 = ρ -ε ,
and C ε j (z) denotes the matrix deduced from C ε (z) by replacing the line j by the line (1, . . . , 1). Notice that elements c ε 11 (z) and c ε 21 (z) in formulae (4.1.6) are of order ε -1 , hence we compute Observe that

lim ε→0 2ε det C ε (z) = 1 -ze -iθ 1 Ψ 1 ρ -zσ 2 Ψ 1 Ψ 4 ρ 2 -σ 2 2 . . . -(1 -ze -i(θ 1 +ϕ 2 ) ) ρ -zσ 2 e -iϕ 2 Ψ 4 ρ 2 -
b k = (1 -ze -iθ 1 Ψ 1 ) ρ -zσ k e -iϕ 2 Ψ 2k ρ 2 -σ 2 k + (1 -ze -i(θ 1 +ϕ 2 ) ) ρ -zσ k Ψ 1 Ψ 2k ρ 2 -σ 2 k = 2(1 -q(z)z) ρ -zσ k Ψ1 Ψ 2k ρ 2 -σ 2 k where q(z) = e -iθ 1 Ψ 1 (z) + e -iϕ 2 2 and Ψ1 (z) = ze -i(π+θ 1 +ϕ 2 ) Ψ 1 (z) + Ψ 1 (z)+e -iϕ 2 2
1 -q(z)z .

We obtain

lim ε→0 2ε det C ε (z) = 2(1 -q(z)z) det((c jk ) 2≤j,k≤q+1 ) where, for k ≥ 2, j ≥ 3, c2k = ρ -zσ k Ψ1 (z)Ψ 2k (z) (ρ 2 -σ 2 k ) cjk = c jk = ρ j -zσ k Ψ 2j-1 (z)Ψ 2k (z) ρ 2 j -σ 2 k .
We know that Ψ 1 is a Blaschke product of degree m 1 -1. Let us verify that it is possible to choose ϕ 2 so that Ψ1 is a Blaschke product of degree m 1 . We first claim that it is possible to choose ϕ 2 so that 1 -q(z)z = 0 for |z| ≤ 1. Assume 1 -q(z)z = 0. Then

(4.1.20) 1 = 1 2 e -iθ 1 Ψ 1 (z)z + e -i(ϕ 2 +θ 1 ) z .
First notice that this clearly imposes |z| = 1. Furthermore, this implies equality in the Minkowski inequality, therefore there exists λ > 0 so that Ψ 1 (z) = λe -iϕ 2 and, eventually, that Ψ 1 (z) = e -iϕ 2 since |Ψ 1 (z)| = 1. Inserting this in equation (4.1.20) gives z = e i(ϕ 2 +θ 1 ) so that Ψ 1 (e i(ϕ 2 +θ 1 ) ) = e -iϕ 2 . If this equality holds true for any choice of ϕ 2 , by analytic continuation inside the unit disc, we would have Ψ 1 (z) = e iθ 1 z which is not possible since Ψ 1 is a holomorphic function in the unit disc. Hence, one can choose ϕ 2 in order to have 1 -q(z)z = 0 for any |z| ≤ 1. It implies that Ψ1 is a holomorphic rational function in the unit disc. Moreover, if |z| = 1,

Ψ1 (z) = e -i(π+θ 1 +ϕ 2 ) Ψ 1 (z) z -q(z) 1 -zq(z) , hence | Ψ1 (z)| = 1.
We conclude that Ψ1 is a Blaschke product. Finally, its degree is deg(Ψ 1 ) + 1 = m 1 .

Next, we perform the same calculation with the numerator of det C ε j (z) for j = 1, 2. We compute

lim ε→0 2ε det C ε 1 (z) = = 0 1 . . . 1 -(1 -ze -i(θ 1 +ϕ 2 ) ) ρ -zσ 2 e -iϕ 2 Ψ 4 ρ 2 -σ 2 2 . . . 0 . . . . . . = (1 -ze -i(θ 1 +ϕ 2 ) ) det 1 . . . 1 c j2 . . . c j q+1 j≥3 and lim ε→0 2ε det C ε 2 (z) = = 1 -ze -iθ 1 Ψ 1 ρ -zσ 2 Ψ 1 Ψ 4 ρ 2 -σ 2 2 . . . 0 1 . . . 1 0 ρ 3 -zσ 2 Ψ 5 Ψ 4 ρ 2 3 -σ 2 2 . . . = (1 -ze -iθ 1 Ψ 1 ) det 1 . . . 1 c j2 . . . c j q+1 j≥3
Hence we have, for the weak convergence in

L 2 + , v 1 (z) := lim ε→0 u ε 1 (z) = Ψ 1 (z) (1 -ze -i(θ 1 +ϕ 2 ) ) 2(1 -q(z)z) • det 1 . . . 1 c j2 . . . c j q+1 j≥3 det ((c jk ) 2≤j,k≤q+1 ) v 2 (z) := lim ε→0 u ε 2 (z) = e -iϕ 2 (1 -ze -iθ 1 Ψ 1 (z)) 2(1 -q(z)z) • det 1 . . . 1 c j2 . . . c j q+1 j≥3 det ((c jk ) 2≤j,k≤q+1 )
.

Furthermore, if D 1 denotes the normalized denominator of Ψ 1 , we have

H 2 u ε z a D 1 (z) u ε 1 Ψ 1 = (ρ + ε) 2 z a D 1 (z) u ε 1 Ψ 1 , 0 ≤ a ≤ m 1 -1, H 2 u ε (u ε 2 ) = (ρ -ε) 2 u ε 2 ,
Passing to the limit in these identities as ε goes to 0, we get

H 2 u z a D 1 (z) v 1 Ψ 1 = ρ 2 z a D 1 (z) v 1 Ψ 1 , 0 ≤ a ≤ m 1 -1, H 2 u (v 2 ) = ρ 2 v 2 .
It remains to prove that the dimension of the vector space generated by

v 2 , z a D 1 (z) v 1 Ψ 1 , 0 ≤ a ≤ m 1 -1, is m 1 + 1.
From the expressions of v 1 and v 2 , it is equivalent to prove that the dimension of the vector space spanned by the functions

(1 -e -iθ 1 zΨ 1 (z)) , z a D 1 (z) (1 -e -i(ϕ 2 +θ 1 ) z), 0 ≤ a ≤ m 1 -1, is m 1 + 1.
We claim that our choice of ϕ 2 implies that this family is free. Indeed, assume that for some coefficients λ a , 0 ≤ a ≤ m 1 -1, we have

m 1 -1 a=0 λ a z a D 1 (z) = 1 -e -iθ 1 zΨ 1 (z)
1 -e -i(ϕ 2 +θ 1 ) z then, as the left hand side is a holomorphic function in D, it would imply Ψ 1 (e i(ϕ 2 +θ 1 ) ) = e -iϕ 2 but ϕ 2 has been chosen so that this does not hold. This completes the proof.

4.1.5. The case n odd.-The proof of the fact that Φ d 1 ,...,dn is oneto-one is the same as in the case n even. One has to prove that Φ d 1 ,...,dn is onto. We shall proceed by approximation from the case n even. We define q = n+1 2 . Let P = ((ρ 1 , σ 1 , . . . , ρ q ), (Ψ r ) 1≤r≤n ) be an arbitrary element of S (d 1 ,...,dn) . We look for u ∈ V (d 1 ,...,dn) such that Φ d 1 ,...,dn (u) = P. Consider, for every ε such that 0 < ε < ρ q , P ε = ((ρ 1 , σ 1 , . . . , ρ q , ε), ((Ψ r ) 1≤r≤n , 1)) ∈ S (d 1 ,...,dn,0)

-we take Ψ 2q = 1 ∈ B 0 . From Theorem 5, we get u ε ∈ V (d 1 ,...,d n+1 ) such that Φ(u ε ) = P ε . As before, we can prove by a compactness argument that a subsequence of u ε has a limit u ∈ V (d 1 ,...,dn) as ε tends to 0 with Φ d 1 ,...,dn (u) = P. We leave the details to the reader.

4.1.6. V (d 1 ,...,dn) is a manifold. -Let d = n + 2 r d r . We consider the map Θ : S (d 1 ,...,dn) -→ V(d) (s, Ψ) -→ u(s, Ψ)
This map is well defined and C ∞ on S (d 1 ,...,dn) . Moreover, from the previous section, it is a homeomorphism onto its range V (d 1 ,...,dn) . In order to prove that V (d 1 ,...,dn) is a submanifold of V(d), it is enough to check that the differential of Θ is injective at every point. From Lemma 9, near every point u 0 ∈ V (d 1 ,...,dn) , there exists a smooth function Φn , defined on a neighborhood V on u 0 in V(d), such that Φn coincides with Φ d 1 ,...,dn on V ∩ V (d 1 ,...,dn) . Consequently, Φn • Θ is the identity on a neighborhood of P 0 := Φ d 1 ,...,dn (u 0 ). In particular, the differential of Θ at P 0 is injective. Finally, the dimension of

V (d 1 ,...,dn) is dim S d 1 ,...,dn = dim Ω n + n r=1 dim B dr = 2n + 2 n r=1 d r , using Proposition 2.

Extension to the Hilbert-Schmidt class

In this section, we consider infinite rank Hankel operators in the Hilbert-Schmidt class. We set

V (2) (dr) r≥1 := Φ -1 (S (2) 
(dr) r≥1 ). Theorem 6. -The mapping

Φ : V (2) (dr) r≥1 -→ S (2) (dr ) r≥1 u -→ ((s r ) r≥1 , (Ψ r ) r≥1 ) is a homeomorphism. Furthermore, if (s r , Ψ r ) r≥1 ∈ S (2)
∞ , then its preimage u by Φ is given by

(4.2.1) u(z) = lim q→∞ u q (z)
where u q := u((s 1 , . . . , s 2q ), (Ψ 1 , . . . , Ψ 2q )).

Proof. -The fact that Φ is one-to-one follows from an explicit formula analogous to the one obtained in the finite rank case, see section 4.1.2. However, in this infinite rank situation, we have to proceed slightly differently, in order to deal with the continuity of infinite rank matrices on appropriate ℓ 2 spaces.

Indeed, we still have

u = ∞ j=1 Ψ 2j-1 h j
where H(z) := (h j (z)) j≥1 satisfies the following infinite dimensional system, for every z ∈ D, (4.2.2)

H(z) = F (z) + zD(z)H(z)
with

F (z) := τ 2 j ρ j j≥1 , D(z) := τ 2 j ρ j ∞ k=1 κ 2 k σ k Ψ 2k (z)Ψ 2ℓ-1 (z) (ρ 2 j -σ 2 k )(ρ 2 ℓ -σ 2 k ) j,ℓ≥1
.

In order to derive this system, just write

h j (z) = 1 ρ j H u (u j )(z) = τ 2 j ρ j + 1 ρ j SK u (u j )(z) = τ 2 j ρ j 1 + z ∞ k=1 K u (u ′ k )(z) ρ 2 j -σ 2 k = τ 2 j ρ j 1 + z ∞ k=1 σ k Ψ 2k (z)u ′ k (z) ρ 2 j -σ 2 k = τ 2 j ρ j 1 + z ∞ k=1 ∞ ℓ=1 κ 2 k σ k Ψ 2k (z)Ψ 2ℓ-1 (z)h ℓ (z) (ρ 2 j -σ 2 k )(ρ 2 ℓ -σ 2 k )
.

Notice that the coefficients of the infinite matrix D(z) depend holomorphically on z ∈ D. We are going to prove that, for every z ∈ D, D(z) defines a contraction on the space ℓ 2 τ of sequences (v j ) j≥1 satisfying

∞ j=1 |v j | 2 τ 2 j < ∞ .
From the maximum principle, we may assume that z belongs to the unit circle. Then z and Ψ r (z) have modulus 1. We then compute D(z)D(z) * , where the adjoint is taken for the inner product associated to ℓ 2 τ . We get, using identities (3.2.12), (3.2.11) and (3.2.13),

[D(z)D(z) * ] jn = τ 2 j ρ j ρ n k,ℓ,m κ 2 k σ k Ψ 2k (z)τ 2 ℓ κ 2 m σ m Ψ 2m (z) (ρ 2 j -σ 2 k )(ρ 2 ℓ -σ 2 k )(ρ 2 n -σ 2 m )(ρ 2 ℓ -σ 2 m ) = τ 2 j ρ j ρ n k κ 2 k σ 2 k (ρ 2 j -σ 2 k )(ρ 2 n -σ 2 k ) = - τ 2 j ρ j ρ n + δ jn .
Since, from the identity (3.2.3),

∞ j=1 τ 2 j ρ 2 j ≤ 1 ,
we conclude that D(z)D(z) * ≤ I on ℓ 2 τ , and consequently that

D(z) ℓ 2 τ →ℓ 2 τ ≤ 1 .
From the Cauchy inequalities, this implies

D (n) (0) ℓ 2 τ →ℓ 2 τ ≤ n! .
Coming back to equation (4.2.2), we observe that H(0) = F (0) ∈ ℓ 2 τ , and that, for every n ≥ 0,

H (n+1) (0) = (n + 1) n p=0 n p D (p) (0)H (n-p) (0) .
By induction on n, this determines H (n) (0) ∈ ℓ 2 τ , whence the injectivity of Φ.

Next, we prove that Φ is onto. We pick an element

P ∈ S (2) (dr )
and we construct u ∈ H

1/2 + so that Φ(u) = P. Set P = ((ρ 1 , σ 1 , ρ 2 , . . . ), (Ψ r ) r≥1 )
and consider, for any integer N,

P N := ((ρ 1 , σ 1 , . . . , ρ N , σ N ), (Ψ r ) 1≤r≤2N ) in S (d 1 ,...,d 2N ) .
From Theorem 5, there exists

u N ∈ V (d 1 ,...,d 2N ) with Φ(u N ) = P N . As Tr(H 2 u N ) = 2N r=1 d 2r s 2 2r + N j=1 (d 2j-1 + 1)s 2 2j-1 ≤ ∞ r=1 d r s 2 r + ∞ j=1 s 2 2j-1 < ∞ , the sequence (u N ) is bounded in H 1/2 + .
Hence, there exists a subsequence converging weakly to some u in H 1/2 + . In particular, one may assume that (u N ) converges strongly to u in L 2 + . Since H u N = ρ 1 is bounded, we infer the strong convergence of operators,

∀h ∈ L 2 + , H u N (h) -→ p→∞ H u (h) .
We now observe that if ρ 2 is an eigenvalue of H 2 u N of multiplicity m then ρ 2 is an eigenvalue of H 2 u of multiplicity at most m. Let (e

(l)
N ) 1≤l≤m be an orthonormal family of eigenvectors of H 2 u N associated to the eigenvector ρ 2 . Let h be in L 2 + and write

h = m l=1 (h|e (l) 
N )e (l)

N + h 0,N
where h 0,N is the orthogonal projection of h on the orthogonal complement of E u N (ρ) so that

(H 2 u N -ρ 2 I)h 2 = (H 2 u N -ρ 2 I)h 0,N 2 ≥ d ρ 2 h 0,N 2 = d ρ 2 ( h 2 - m l=1 |(h|e (l) N )| 2 ) ,
here d ρ 2 denotes the distance to the other eigenvalues of H 2 u N . By taking the limit as N tends to ∞ one gets

(H 2 u -ρ 2 I)h 2 ≥ d ρ 2 ( h 2 - m l=1 |(h|e (l) )| 2 )
where e (l) denotes a weak limit of e (l)

N . Assume now that the dimension of E u (ρ) is larger than m + 1 then we could construct h orthogonal to (e (1) , . . . e (m) ) with H 2 u (h) = ρ 2 h, a contradiction. The same argument allows to obtain that if ρ 2 is not an eigenvalue of H 2 u N , ρ 2 is not an eigenvalue of H 2 u . We now argue as in section 4.1.3.3 above. Let u N,j and u ′ N,k denote the orthogonal projections of u N respectively on E u N (ρ j ) and on F u N (σ k ) so that we have the orthogonal decompositions,

u N = N j=1 u N,j = N k=1 u ′ N,k .
As (u N ) converges strongly in L 2 + , u N,j and u ′ N,k converge in L 2 + respectively to some v (j) and to some v ′ (k) with the identities

ρ j v j = Ψ 2j-1 H u (v j ) , H 2 u (v j ) = ρ 2 j v j , K u (v ′ k ) = σ k Ψ 2k v ′ k , K 2 u (v ′ k ) = σ 2 k v ′ k . and (u|v j ) = τ 2 j , (u|v ′ k ) = κ 2 k .
This already implies that v j , v ′ k are not 0, and hence, in view of Lemmas 7 and 8, that dim

E u (ρ j ) = m j , dim F u (σ k ) = ℓ k .
We infer that u ∈ V

(dr ) r≥1 and that ρ j = s 2j-1 (u) , σ k = s 2k (u) . It remains to identify v j with the orthogonal projection u j of u onto E u (ρ j ), and v ′ k with the orthogonal projection u ′ k of u onto F u (σ k ). The strategy of passing to the limit, as N tends to infinity, in the decompositions

u N = N j=1 u N,j = N k=1 u ′ N,k
is not easy to apply because of infinite sums. Hence we argue as follows.

From the identity u N,j 2 = (u N |u N,j )

we get

v j 2 = (u|v j ) = (u j |v j ) = τ 2 j = u j 2 , hence v j -u j 2 = 0 . Similarly, v ′ k = u ′ k .
This completes the proof of the surjectivity, and of the explicit formula (4.2.1). Notice that the convergence is strong in H 1/2 since the norm of u N tends to the norm of u.

The continuity of Φ follows as in section 4.1.1. As for the continuity of Φ -1 , we argue exactly as for surjectivity above.

Extension to compact Hankel operators

The mapping Φ may be extended to V MO + which corresponds to the set of symbols of compact Hankel operators. Namely, let Ω ∞ be the set of sequences (s r ) r≥1 such that

s 1 > s 2 > • • • > s n → 0 .
Given an arbitrary sequence (d r ) r≥1 of nonnegative integers, we set

V (dr ) r≥1 := Φ -1 (Ω ∞ × ∞ r=1 B dr ) . Theorem 7. -The mapping Φ : V (dr) r≥1 -→ Ω ∞ × ∞ r=1 B dr u -→ ((s r ) r≥1 , (Ψ r ) r≥1 ) is a homeomorphism.
Proof. -The proof is the same as before except for the argument of surjectivity in which the boundedness of the sequence (u N ) in H 1/2 + does not hold anymore. However, the strong convergence in L 2 + may be established. The proof is along the same lines as the one developed for Proposition 2 in [START_REF] Gérard | Inverse spectral problems for compact Hankel operators[END_REF], and is based on the Adamyan-Arov-Krein (AAK)theorem [START_REF] Adamyan | Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem[END_REF], [START_REF] Peller | Hankel Operators and their applications Springer Monographs in Mathematics[END_REF]. Let us recall the argument.

First we recall that the AAK theorem states that the (p + 1)-th singular value of a Hankel operator, as the distance of this operator to operators of rank at most p, is exactly achieved by some Hankel operator of rank at most p, hence, with a rational symbol. We refer to part (2) of the theorem 3.4.1. We set, for every m ≥ 1,

p m = m + r≤2m d r .
With the notation of , one easily checks that, for every m,

λ p m-1 (u) > λ pm (u) = ρ m+1 (u) .
By part (1) of the AAK theorem 3.4.1, for every N and every m = 1, . . . , N, there exists a rational symbol u 

N ∈ V(2p m ) ∪ V(2p m -1), such that H u N -H u (m) N = ρ m+1 (u N ) = ρ m+1 .
In particular, we get

u N -u (m) N L 2 ≤ ρ m+1 .
On the other hand, one has

H u (m) N ≥ 1 √ p m (T r(H 2 u (m) N )) 1/2 ≥ 1 √ p m u (m) N H 1/2 + .
Hence, for fixed m, the sequence (u

(m) N ) N is bounded in H 1/2
+ . Our aim is to prove that the sequence (u N ) is precompact in L 2 + . We show that, for any ε > 0 there exists a finite sequence

v k ∈ L 2 + , 1 ≤ k ≤ M so that {u N } N ⊂ M k=1 B L 2 + (v k , ε).
Let m be fixed such that ρ m+1 ≤ ε/2. Since the sequence (u

(m) N ) N is uniformly bounded in H 1/2 + , it is precompact in L 2 + , hence there exists v k ∈ L 2 + , 1 ≤ k ≤ M, such that {u (m) N } N ⊂ M k=1 B L 2 + (v k , ε/2) .
Then, for every N there exists some k such that

u N -v k L 2 ≤ ρ m+1 + u (m) N -v k L 2 ≤ ε. Therefore {u N } is precompact in L 2
+ and, since u N converges weakly to u, it converges strongly to u in L 2 + . The proof ends as in the Hilbert-Schmidt case.

The continuity of Φ follows as in section 4.1.1. As for the continuity of Φ -1 , we argue exactly as for surjectivity above, except that we have to prove the convergence of u N to u in V MO + . This can be achieved exactly as in the proof of Proposition 2 of [START_REF] Gérard | Inverse spectral problems for compact Hankel operators[END_REF] : the Adamyan-Arov-Krein theorem allows to reduce to the following statement : if w N ∈ V(2p) ∪ V(2p -1) strongly converges to w ∈ V(2p) ∪ V(2p -1), then the convergence takes place in V MO -in fact in C ∞ . See Lemma 3 of [START_REF] Gérard | Inverse spectral problems for compact Hankel operators[END_REF].

CHAPTER 5 THE SZEG Ő DYNAMICS

This chapter is devoted to the connection between the nonlinear Fourier transform and the Szegő dynamics. In section 5.1, we show that the Szegő evolution has a very simple translation in terms of the nonlinear Fourier transform. Geometric aspects of this evolution law will be discussed in more detail in chapter 7. Then we revisit the classification of traveling waves of the cubic Szegő equation. The last section is devoted to the proof of the almost periodicity of H 1/2 solutions. 

The solution of

i∂ t u = Π(|u| 2 u), u(0) = u 0 is characterized by Φ(u(t)) = ((s r ), (e i(-1) r s 2 r t Ψ r )) .
Remark 2. -It is in fact possible to define the flow of the cubic Szegő equation on BMO + = BMO(S 1 ) ∩ L 2 + , see [START_REF] Gérard | The cubic Szegő equation on BMO[END_REF]. The above theorem then extends to the case of an initial datum u 0 in V MO + .

We claim that the left hand side of this equality is zero. Assume this claim proved, we get, as H u (u ρ ) is not identically zero, that Ψ+iρ 2 Ψ = 0, whence Ψ(t) = e -itρ 2 Ψ(0) .

It remains to prove the claim. We first prove that, for any p ∈ D such that χ p is a factor of χ,

[T |u| 2 , χ p ](e) = 0
for any e ∈ E u (ρ) such that χ p e ∈ E u (ρ). Recall that

χ p (z) = z -p 1 -pz .
For any

L 2 function f , Π(χ p f ) -χ p Π(f ) = K χp (g) = (1 -|p| 2 )H 1/(1-pz) (g) ,
where (I -Π)f = Sg . Consequently, the range of [Π, χ p ] is one dimensional, directed by 1 1-pz . In particular, [T |u| 2 , χ p ](e) is proportional to For the general case, we write Ψ = e -iψ χ p 1 . . . χ p m-1 and

[T |u| 2 , Ψ]H u (u ρ ) = e -iψ m-1 j=1 j-1 k=1 χ p k [T |u| 2 , χ p j ] m-1 k=j+1 χ p k H u (u ρ ) = 0 .
It remains to consider the evolution of the Ψ 2k 's. Let σ be a singular value of K u in Σ K (u) such that dim F u (σ) = dim E u (σ) + 1 and denote by u ′ σ the orthogonal projection of u onto F u (σ). Recall [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF] that

dK u dt = [C u , K u ] with C u = i 2 K 2 u -iT |u| 2 .
As before, we compute the derivative in time of u ′ σ = 1l {σ 2 } (K 2 u )(u), and get

(5.1.3) du ′ σ dt = -iT |u| 2 u ′ σ .
On the other hand, differentiating the equation

K u (u ′ σ ) = σΨu ′ σ one obtains -i[T |u| 2 , Ψ]u ′ σ = ( Ψ -iσ 2 Ψ)u ′ σ .
As before, we prove that the left hand side of the latter identity is 0, by checking that, for every factor χ p of Ψ, for any f ∈ F u (σ) such that

χ p f ∈ F u (σ), ([T |u| 2 , χ p ](f )|1) = 0 .
The calculation leads to

([T |u| 2 , χ p ](f )|1) = (H 2 u (χ p f ) -(χ p |1)H 2 u (f )|1) = ((χ p -(χ p |1))f |u)(u|1),
where we have used (2.1.4). Now (χ p -(χ p |1))f ∈ F u (σ) is orthogonal to 1, hence, from Proposition 3, it belongs to E u (σ), hence it is orthogonal to u. This completes the proof.

Application: traveling waves revisited

As an application of Theorems 5 and 6 and of the previous section, we revisit the traveling waves of the cubic Szegő equation. These are the solutions of the form u(t, e ix ) = e -iωt u 0 (e i(x-ct) ) , ω, c ∈ R .

For c = 0, it is easy to see [START_REF] Gérard | The cubic Szegő equation[END_REF] that this condition for u 0 ∈ H 1/2 + corresponds to finite Blaschke product. The problem of characterizing traveling waves with c = 0 is more delicate, and was solved in [START_REF] Gérard | The cubic Szegő equation[END_REF] by the following result.

Theorem 5.2.1. -[11] A function u in H 1/2
+ is a traveling wave with c = 0 and ω ∈ R if and only if there exist non negative integers ℓ and N, 0 ≤ ℓ ≤ N -1, α ∈ R and a complex number p ∈ C with 0 < |p| < 1 so that

u(z) = αz ℓ 1 -pz N
Here we give an elementary proof of this theorem.

Proof. -The idea is to keep track of the Blaschke products associated to u through the following unitary transform on L 2 (S 1 ),

τ α f (e ix ) := f (e i(x-α) ) , α ∈ R.
Since τ α commutes to Π, notice that

τ α (H u (h)) = H τα(u) (τ α (h)) .
Consequently, τ α sends E u (ρ) onto E τα(u) (ρ), and

τ α (u ρ ) = [τ α (u)] ρ .
Applying τ α to the identity

ρu ρ = Ψ ρ H u (u ρ ) , we infer ρ[τ α (u)] ρ = τ α (Ψ ρ )H τα(u) ([τ α (u)] ρ ) ,
and similarly

ρ[e -iβ τ α (u)] ρ = e -iβ τ α (Ψ ρ )H e -iβ τα(u) [e -iβ τ α (u)] ρ .
This leads, for every ρ ∈ Σ H (u), to

Ψ ρ (e -iβ τ α (u)) = e -iβ τ α (Ψ ρ (u)) .
Applying this identity to u = u 0 , α = ct and β = ωt, and comparing with Theorem 8, we conclude e -itρ 2 Ψ ρ (u 0 ) = e -iωt τ ct (Ψ ρ (u 0 )) .

Writing Ψ ρ (u 0 ) = e -iϕ 1≤j≤m-1 χ p j ,
we get, for every t,

e -itρ 2 1≤j≤m-1 χ p j = e -it(ω+c(m-1)) 1≤j≤m-1 χ e ict p j .
This imposes, since c = 0,

ρ 2 = ω + (m -1)c , p j = 0 ,
for every ρ ∈ Σ H (u 0 ). In other words, Ψ ρ (u 0 )(z) = e -iϕ z m-1 .

We repeat the same argument for σ

∈ Σ K (u), with ℓ = dim F u (σ) = dim E u (σ) + 1 and K u (u ′ σ ) = σΨ σ u ′ σ , using this time τ α (K u (h)) = e iα K τα(u) (τ α (h)) .
We get

σ 2 = ω -ℓc , and Ψ σ (u 0 )(z) = e -iθ z ℓ-1 .
If we assume that there exists at least two elements ρ 1 > ρ 2 in Σ H (u 0 ), with m j = dim E u 0 (ρ j ) for j = 1, 2, from Lemma 3, there is at least one element σ 1 in Σ K (u 0 ), satisfying

ρ 1 > σ 1 > ρ 2 .
Set ℓ 1 := dim F u 0 (σ 1 ), we get

(m 1 -1)c > -ℓ 1 c > (m 2 -1)c
which is impossible since m 1 , ℓ 1 , m 2 are positive integers. Therefore, there is only one element ρ in Σ H (u 0 ), with m = dim E u 0 (ρ) and at most one element σ in Σ K (u 0 ), of multiplicity ℓ. Applying the results of section 4.1.2, we obtain

u 0 (z) = (ρ 2 -σ 2 )e -iϕ ρ z m-1 1 -σ ρ e -i(ϕ+θ) z ℓ+m-1
. This completes the proof.

Application to almost periodicity

As a second application of our main result, we prove that the solutions of the Szegő equation are almost periodic. Let us recall some definitions. Let V be a finite dimensional smooth manifold. A function f : R -→ V is quasi-periodic if there exists a positive integer N, a vector ω ∈ R N , and a continuous function

F : T N → V such that ∀t ∈ R , f (t) = F (ωt) .
A similar definition holds for functions valued in a Banach space. Now let us come to the definition of almost periodic functions. Let X be a Banach space. A function f : R -→ X is almost periodic if it is the uniform limit of quasi-periodic functions, namely the uniform limit of finite linear combinations of functions t -→ e iωt x , where x ∈ X and ω ∈ R. Of course, from the explicit formula (1.0.5) and from the evolution under the cubic Szegő flow, for any u 0 ∈ V(d), the solution u(t) is quasi-periodic, valued in V(d), hence valued in every H s + . This is also a consequence of the results of [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF]. It remains to consider data in H 1/2 + corresponding to infinite rank Hankel operators. We are going to use Bochner's criterion, see chapters 1, 2 of [START_REF] Levitan | Almost periodic functions and differential equations[END_REF], namely that f ∈ C(R, X) is almost periodic if and only if it is bounded and the set of functions

f h : t ∈ R -→ f (t + h) ∈ X , h ∈ R , is relatively compact in the space of bounded continuous functions valued in X. Let u 0 ∈ V (2) (dr ) r≥1 . Set Φ(u 0 ) = ((s r ) r≥1 , (Ψ r ) r≥1 ) .
Then, from Theorem 8, Φ(u(t)) = ((s r ) r≥1 , (e i(-1) r s 2 r t Ψ r ) r≥1 ) .

By Theorem 6, it is enough to prove that the set of functions

t ∈ R -→ Φ(u(t + h)) ∈ S (2) (dr ) is relatively compact in C(R, S (2) 
(dr) ). This is equivalent to the relative compactness of the family (e i(-1) r s 2 r h ) r≥1 in (S 1 ) ∞ , h ∈ R, which is trivial.

CHAPTER 6 LONG TIME INSTABILITY AND UNBOUNDED SOBOLEV ORBITS

The purpose of this chapter is to prove part 2 of Theorem 1, namely that generic data in C ∞ + (S 1 ) generate superpolynomially unbounded trajectories of the Szegő evolution in every Sobolev space H s , s > 1 2 . This of course is in strong contrast with the compactness properties established for the same trajectories in H 1 2 in the previous chapter. The proof takes advantage of the nonlinear Fourier transform constructed in the previous chapters, by proving superpolynomial long time instability for quasiperiodic solutions. Again, the key idea is collapsing singular values.

Instability and genericity of unbounded orbits

In this section, we show that part 2 of Theorem 1 is a consequence of the following long time instability result. We denote by d ∞ a distance function on C ∞ + (S 1 ) which defines the C ∞ topology.

Theorem 9. -For any v ∈ C ∞ + , for any M, for any s > 1 2 , there exists a sequence (v (n) ) of elements of C ∞ + tending to v in C ∞ + and sequences of times (t n ) , (t n ), tending to ∞, such that Z(t n )v (n) H s |t n | M -→ n→∞ ∞ , and 
d ∞ (Z(t n )v (n) , v (n) ) -→ n→∞ 0 .
Assuming Theorem 9, a Baire category argument leads to the following proof of part 2 of Theorem 1.

Proof. -For every positive integer M, we denote by O M the set of functions v ∈ C ∞ + such that there exist t, t with |t| > M, |t| > M, and

Z(t)v H 1 2 + 1 M > M|t| M , , d ∞ (Z(t)v, v) < 1 M .
From the global wellposedness theory [START_REF] Gérard | The cubic Szegő equation[END_REF], O M is an open subset of C ∞ + . Furthermore, Theorem 9 implies that O M is dense. From the Baire theorem applied to the Fréchet space C ∞ + , we conclude that the countable intersection

G := ∩ M ≥1 O M is a dense G δ subset.

A family of quasiperiodic solutions

Let us come to the proof of Theorem 9. Our strategy is the following. First of all, rational functions are dense in C ∞ + . Furthermore, from Theorem 7.1 in [START_REF] Gérard | The cubic Szegő equation[END_REF], in the finite dimensional manifold of rational functions with associated Hankel operators of given rank q, those functions u for which the singular values of H u and K u are simple, is an open dense subset. From Theorem 2, every such rational function reads v := u(s, Φ) for some finite sequence s of positive numbers of length 2q or 2q -1, and some sequence Φ, of the same length, of complex numbers of modulus 1. Up to adding a small positive number to the sequence s, we infer that those functions v := u(s, Φ), with s ∈ Ω 2q and Φ ∈ (S 1 ) 2q , are dense in

C ∞ + . Therefore it is enough to prove the statement of Theorem 9 if v is a rational function v := u(s, Φ) with s = (ρ 1 , σ 1 , . . . ρ q , σ q ), Φ = (Φ j ) 1≤j≤2q ∈ (S 1 ) 2q
where

ρ 1 > σ 1 > ρ 2 > σ 2 > • • • > ρ q > σ q > 0.
We are going to construct a sequence (v

(n) ) of elements of C ∞ + tending to v in C ∞
+ and a sequence of times (t n ), such that

Z(t n )v (n) H s |t n | M -→ n→∞ ∞ , with v (n) = u(s (n) , Φ (n) ) ,
where s (n) , Φ (n) are to be chosen. At this stage, we remark that the existence of the second sequence (t n ) comes for free. Indeed, for a given n, we already noticed that the mapping

t → Z(t)v (n) is quasi-periodic valued into some manifold V(d n ), continuously imbedded into C ∞ + . Hence the function t ∈ R → d ∞ (Z(t)v (n) , v (n) )
is quasiperiodic valued in R. We then use a classical property, namely, if f is a quasiperiodic function, for every ε > 0, there exists infinitely many

t ∈ R such that |f (t) -f (0)| < ε .
The existence of t n follows.

Let us come back to the construction of the sequences (v (n) ) and (t n ). For technical reasons, it is more convenient to start from the construction of a singular sequence u (n) , which will play the role of Z(t n )v (n) in Theorem 9, and then to check that Z(-t n )u (n) has the desired limit v in C ∞ + . We introduce the following class of rational functions.

Let N ≥ 2 be an integer. Denote by X N the subset of (ξ, η) ∈ R 2N -1 such that ξ = (ξ 1 , . . . , ξ N ), η = (η 1 , . . . , η N -1 ) and (6.2.1)

ξ 1 > η 1 > ξ 2 > η 2 > . . . η N -1 > ξ N > 0.
Given Ψ = (Ψ r ) 1≤r≤2q ∈ (S 1 ) 2q , we consider the family u δ,ε for δ, ε → 0 with

u δ,ε = u ((s, δ(1 + εξ 1 ), δ(1 + εη 1 ), . . . , δ(1 + εξ N ), 0) , (Ψ, 1, . . . , 1 

)) .

From the explicit formula 1.0.5, we have (6.2.2)

u δ,ε (z) = C δ,ε -1 (z) Ψ q 1 N , 1 q 1 N
where Ψ q = (Ψ 2a-1 ) 1≤a≤q ,

1 N =    1 . . . 1    ∈ R N and C δ,ε (z) =   E (z) A δ,ε (z) B δ,ε (z) 1 δ C ε (z)   with E (z) = ρ a -σ b zΨ 2a-1 Ψ 2b ρ 2 a -σ 2 b 1≤a,b≤q , A δ,ε (z) = ρ a -δz(1 + εη k )Ψ 2a-1 ρ 2 a -δ 2 (1 + εη k ) 2 1≤a≤q 1≤k≤N-1 , 1 ρ a 1≤a≤q B δ,ε (z) = δ(1 + εξ j ) -σ b zΨ 2b δ 2 (1 + εξ j ) 2 -σ 2 b 1≤j≤N 1≤b≤q C ε (z) = (c ε,jk (z)) 1≤j,k≤N , with c ε,jk (z) := 1 + εξ j -z(1 + εη k ) (1 + εξ j ) 2 -(1 + εη k ) 2 , 1 ≤ k ≤ N -1 ; c ε,jN (z) := 1 1 + εξ j , 1 ≤ j ≤ N .
The following proposition is the key of the proof of Theorem 9.

Proposition 4. -There exists a nonempty open subset X ′ N of X N such that, for every (ξ, η) ∈ X ′ N , the following properties hold. 1. The solution of the cubic Szegő equation with initial datum u δ,ε at time

1 2εδ 2 satisfies Z 1 2εδ 2 u δ,ε = u(s, Ψδ,ε ) + o(1) in C ∞
+ as ε and δ tend to 0, where

Ψδ,ε,2a-1 = Ψ 2a-1 e -i ρ 2 a 2εδ 2 , Ψδ,ε,2b = Ψ 2b e i σ 2 b 2εδ 2 .
2. As ε and δ tend to 0 with ε ≪ δ, 1) . Let us show how Theorem 9 is a consequence of Proposition 4. Let M be a positive integer and Φ ∈ (S 1 ) 2q , and s > 1 2 . We may assume that s < 1. Choose an integer N such that (N -1)(2s -1) ≥ 2M + 1, and

∀s ∈ ( 1 2 , 1), ∃C s > 0 : u δ,ε H s ≥ C s δ ε (N -1)(2s-
(ξ, η) ∈ X ′ N . Consider u (n) = u δn,δ 2 n , where δ n is a sequence tending to 0 such that e -i ρ 2 a 2δ 4 n → e -iϕa , e i σ 2 b 2δ 4 n → e iθ b ,
and where Ψ is defined as

Ψ 2a-1 = Φ 2a-1 e iϕa , Ψ 2b = Φ 2b e -iθ b . Then Proposition 4 implies that 1. v (n) := Z 1 2δ 4 n u (n) tends to v = u(s, Φ) in C ∞ + . 2. The following estimates hold, Z - 1 2δ 4 n v (n) H s = u (n) H s ≥ C s 1 δ 2(N -1)(2s-1)-1 n ≫ 1 2δ 4 n M .
This proves Theorem 9 with

t n = -1 2δ 4 n .
The proof of Proposition 4 requires several steps, which will be achieved in the two next sections.

Construction of the smooth family of data

We first address the first part of Proposition 4. From Theorem 2,

Z 1 2εδ 2 u δ,ε (z) = C -1 δ,ε (z) 
Ψ q Ψ εN , 1 q 1 N
where

Ψ q := (Ψ 2a-1 e -i ρ 2 a 2εδ 2 ) 1≤a≤q Ψ εN := (e -i (1+εξ j ) 2 2ε ) 1≤j≤N = e -i 1 2ǫ e -iξ j (1+ε ξ j 2 ) 1≤j≤N and Cδ,ε (z) =   Ẽδ,ε (z) Ãδ,ε (z) Bδ,ε (z) 1 δ Cε (z)   with Ẽδ,ε (z) =   ρ a -σ b zΨ 2a-1 Ψ 2b e -i( ρ 2 a -σ 2 b 2εδ 2 ) ρ 2 a -σ 2 b   1≤a,b≤q , Ãδ,ε (z) =      ρ a -δz(1 + εη k )Ψ 2a-1 e -i( ρ 2 a -δ 2 (1+εη k ) 2 2εδ 2 
)

ρ 2 a -δ 2 (1 + εη k ) 2   1≤a≤q 1≤k≤N-1 , 1 ρ a 1≤a≤q    Bδ,ε (z) =   δ(1 + εξ j ) -σ b zΨ 2b e -i( δ 2 (1+εξ j ) 2 -σ 2 b 2εδ 2 ) δ 2 (1 + εξ j ) 2 -σ 2 b   1≤j≤N 1≤b≤q and Cε (z) =   1 + εξ j -z(1 + εη k )e -i(ξ j -η k )-iε ξ 2 j -η 2 k 2 ε(ξ j -η k )(2 + ε(ξ j + η k )) , 1 1 + εξ j   .
Remark that from Theorem 5, the functions u(s, (Ψ r e -iψr ) 1≤r≤2q ) , (ψ r ) ∈ T 2q , lie in a compact subset -a torus -of the manifold V(2q). This implies that the distance of the zeroes of the denominator det Ẽδ,ε (z) to the closed unit disc is bounded from below by a positive constant. As a consequence, the matrices Ẽδ,ε (z) are invertible with a bounded inverse, for every z in a fixed neighborhood of D. The first part of Proposition 4 is a consequence of the following lemma.

Lemma 13. -There exists a nonempty open subset X ′′ N of X N , such that, for every (ξ, η) ∈ X ′′ N , there exist r ξ,η > 1 and ε ξ,η > 0 such that, for 0 < ε < ε ξ,η , the matrix Cε (z) is invertible with a bounded inverse for every z such that |z| ≤ r ξ,η .

Let us admit this lemma for a while. Using it, we can easily describe the inverse of the matrix Cδ,ε (z). Lemma 14. -For every (ξ, η) ∈ X ′′ N , there exist r ξ,η > 1 and γ ξ,η > 0 , such that, for every z with |z| ≤ r ξ,η , for every δ, ε < γ ξ,η , the matrix

Jδ,ε (z) := Ẽδ,ε (z) -δ Ãδ,ε (z) C -1 ε (z) Bδ,tε (z) 
, is invertible with a bounded inverse . The inverse of the matrix Cδ,ε (z) is given by

( Cδ,ε ) -1 = J -1 δ,ε -δ J -1 δ,ε Ãδ,ε C -1 ε -δ C -1 ε Bδ,ε J -1 δ,ε δ C -1 ε [I + δ Bδ,ε J -1 δ,ε Ãδ,ε C -1 ε ] . Furthermore, Z 1 2εδ 2 u δ,ε = u(s, Ψδ,ε ) + o(1) in C ∞
+ as ε and δ tend to 0, where

Ψδ,ε,2j = Ψ 2j e -i ρ 2 j 2εδ 2 , Ψδ,ε,2k-1 = Ψ 2k-1 e i σ 2 k 2εδ 2 .
Proof. -The invertibility of the matrix Jδ,ε (z) for δ and ε small enough and |z| < r ξ,η comes from the already observed invertibility of Ẽδ,ε (z) in a neighborhood of D, with a bounded inverse, and from Lemma 13. In the next calculations, we drop the variable z for simplicity. Write, for X q , X ′

q ∈ R q , Y N , Y ′ N ∈ R N , Cδ,ε X q Y N = X ′ q Y ′ N so that Ẽδ,ε X q + Ãδ,ε Y N = Y ′ q Bδ,ε X q + 1 δ Cε Y N = Y ′ N
. and solve this system to get

Y N = δ C -1 ε (Y ′ N -Bδ,ε X q ) Jδ,ε X q = Y ′ q -δ Ãδ,ε C -1 ε (Y ′ N ) and eventually X q = J -1 δ,ε (Y ′ q ) -δ J -1 δ,ε Ãδ,ε C -1 ε (Y ′ N ) Y N = δ C -1 ε [Y ′ N + δ Bδ,ε J -1 δ,ε Ãδ,ε C -1 ε (Y ′ N ) -Bδ,ε J -1 δ,ε (Y ′ q )].
It gives the formula for the inverse. Furthermore, as δ, ε tend to 0, we obtain

( Cδ,ε ) -1 = Ẽδ,ε -1 0 0 0 + o(1).
This completes the proof of Lemma 14.

The proof of the first part of Proposition 4 is thus reduced to the proof of Lemma 13, which we now begin.

Proof. -Recall that Cε (z) =   1 + εξ j -z(1 + εη k )e -i(ξ j -η k )-iε ξ 2 j -η 2 k 2 ε(ξ j -η k )(2 + ε(ξ j + η k )) , 1 1 + εξ j   1≤j≤N,1≤k≤N -1 . From Cramer's formulae, Cε (z) -1 = 1 det Cε (z) t Co Cε (z),
where Co denotes the matrix of cofactors. As the coefficients of Cε (z) are polynomials in z of degree at most 1, the coefficients of Co Cε (z) are polynomial in z of degree at most N -1. Moreover, these coefficients grow at most as 1 ε N-1 . Hence, it suffices to prove that, for (ξ, η) in a suitable non empty open subset of X N , the family of polynomials ε N -1 det Cε (z) converges, as ε tends to zero, to a polynomial of degree N -1 having all its roots outside a disc of radius r ξ,η > 1. Let us compute

P (ξ, η)(z) = lim ε→0 (2ε) N -1 det Cε (z) = det 1 -ze -i(ξ j -η k ) ξ j -η k 1≤j≤N ;1≤k≤N -1 , 1 N .
Notice that the determinant in the right hand side is a polynomial in z of degree N -1 whose coefficient of z N -1 equals

(-1) N -1 k e iη k det e -iξ j ξ j -η k 1≤j≤N ;1≤k≤N -1 , 1 N .
With the choice ξ = ξ * = (2π(N -j + 1)) 1≤j≤N , this determinant is

(-1) N -1 k e iη k det 1 ξ j -η k 1≤j≤N ;1≤k≤N -1 , 1 N .
Developing this determinant with respect to the last column, we are led to compute Cauchy determinants. Let us recall that a Cauchy matrix is a matrix of the form 1 a j + b k . Its determinant is given by

(6.3.1) det 1 a j + b k = i<j (a i -a j ) k<l (b k -b l ) j,k (a j + b k )
.

In view of this formula, we get

det 1 ξ j -η k 1≤j≤N ;1≤k≤N -1 , 1 N = N r=1 (-1) r+N i<j,i,j =r (ξ i -ξ j ) k<ℓ (η k -η ℓ ) j =r,k (ξ j -η k ) = N r=1 (-1) r+N 1≤k≤N -1 (ξ r -η k ) i<j,i,j =r (ξ i -ξ j ) k<ℓ (η k -η ℓ ) j,k (ξ j -η k
) and we observe that every term in the sum is different from 0 and has the sign of (-1) N -1 . Therefore this quantity is not zero. On the other hand, Theorem 2 tells us that the roots of det Cε (z) are located outside the unit disc. Hence all the roots of P (ξ, η) belong to {z, |z| ≥ 1}. Furthermore,

P (ξ * , η)(z) = det 1 ξ j -η k 1≤j≤N ;1≤k≤N -1 , 1 N N -1 k=1 (1 -ze iη k ).
The above calculation shows that P (ξ * , η) has N -1 zeroes which belong to the unit circle, namely e -iη k , k = 1, . . . , N -1. Fix η * ∈ R N -1 such that (ξ * , η * ) ∈ X N and η * k = η * l mod 2π for every k = l, so that these N -1 zeroes are simple if η = η * . By the implicit function theorem, there exist α > 0 such that, if |ξ -ξ * | < α and |η -η * | < α, the polynomial P (ξ, η) has N -1 simple zeroes {z k (ξ, η); 1 ≤ k ≤ N -1}. The first part of Proposition 4 is a direct consequence of the following lemma. 

|z k (ξ, η)| 2 ≥ 1 , |z k (ξ * , η)| 2 = 1 .
Denote by Q k (ξ, η) the Hessian quadratic form of the function

ξ → |z k (ξ, η)| 2 .
We know that Q k (ξ * , η) is a nonnegative quadratic form. We claim that, for any k, Q k (ξ * , η) is not 0 for η in a dense open subset of the ball of radius α centered at η * . If this claim is correct, then, for such η, for ξ close enough to ξ * such that ξ -ξ * does not belong to the union of the kernels of Q 1 (ξ * , η), . . . , Q N -1 (ξ * , η), we have |z k (ξ, η)| > 1 for k = 1, . . . , N -1. This provides us with the nonempty open subset X ′′ N in the lemma. Therefore it suffices to prove that the Laplacian of ξ → |z k (ξ, η)| 2 , which coincides with the trace of

Q k (ξ, η), is not 0 identically in η for ξ = ξ * . Let us compute ∆(|z k | 2 )(ξ * , η). N j=1 ∂ 2 ∂ξ 2 j |z k | 2 2 | ξ=ξ * = N j=1 Re z k ∂ 2 z k ∂ξ 2 j | ξ=ξ * + ∂z k ∂ξ j 2 | ξ=ξ * .
Differentiating the equation P (ξ, η)(z k (ξ, η)) = 0, we obtain

∂z k ∂ξ j = - ∂P ∂ξ j ∂P ∂z , ∂ 2 z k ∂ξ 2 j = -∂ 2 P ∂ξ 2 j ∂P ∂z + 2 ∂ 2 P ∂ξ j ∂z ∂P ∂ξ j ∂P ∂z 2 - ∂P ∂ξ j 2 ∂ 2 P ∂z 2
∂P ∂z

3

.

Introduce the following quantities.

D jk := 1 ξ * j -η k det 1 ξ * r -η l r =j,l =k , 1 N -1 , D := det 1 ξ * r -η l 1≤r≤N,1≤l≤N -1 , 1 N = N j=1 (-1) j+k D jk , k = 1, . . . , N -1, ζ k := l =k (1 -e i(η l -η k ) ) , a lk := - e i(η l -η k ) 1 -e i(η l -η k ) = e i (η l -η k ) 2 2i sin (η l -η k ) 2 .
Notice that Re(a lk ) = 1 2 . Differentiating

P (ξ, η)(z) = det 1 -ze -i(ξ j -η k ) ξ j -η k 1≤j≤N ;1≤k≤N -1 , 1 N ,
one gets, after some computations,

∂P ∂ξ j | ξ=ξ * ,z=z k = i(-1) j+k D jk ζ k , ∂P ∂z | ξ=ξ * ,z=z k = -e iη k ζ k D , ∂ 2 P ∂ξ 2 j | ξ=ξ * ,z=z k = (-1) j+k ζ k D jk 1 - 2i ξ * j -η k , ∂ 2 P ∂z 2 | ξ=ξ * ,z=z k = 2 l =k ζ k e i(η l +η k ) 1 -e i(η l -η k ) D = -2ζ k e 2iη k l =k a lk D , and 
∂ 2 P ∂ξ j ∂z | ξ=ξ * ,z=z k = (-1) j+k ζ k D jk e iη k i + 1 ξ * j -η k -i l =k e i(η l -η k ) 1 -e i(η l -η k ) + + ζ k e iη k l =k (-1) j+l D jl 1 ξ * j -η l -i e i(η l -η k ) 1 -e i(η l -η k ) = ζ k e iη k (-1) j+k D jk i + 1 ξ * j -η k + i l =k a lk + l =k (-1) j+l D jl 1 ξ * j -η l + ia lk .
Hence, inserting these formulae to compute the Laplacian, we obtain

Re z k ∂ 2 z k ∂ξ 2 j | ξ=ξ * = Re e iη k ∂ 2 z k ∂ξ 2 j | ξ=ξ * =: I j + II j + III j with I j = Re   e iη k -∂ 2 P ∂ξ 2 j ∂P ∂z   = (-1) j+k D jk D , II j = 2Re e iη k ∂ 2 P ∂ξ j ∂z ∂P ∂ξ j ∂P ∂z 2 = 2Re   i D 2 jk i + 1 ξ * j -η k + i l =k a lk + l =k (-1) k+l D jk D jl 1 ξ * j -η l + ia lk D 2   = -(N -1) D 2 jk D 2 + N -1 l=1 (-1) k+l D jk D jl D 2 ,
and

III j = -Re    e iη k ∂P ∂ξ j 2 ∂ 2 P ∂z 2 ∂P ∂z 3    = Re 2 l =k a lk D 2 jk D 2 = (N -2) D 2 jk D 2 .
Remark that

N -1 l=1 (-1) j+l D jl = D -(-1) j+N det 1 ξ * r -η l r =j .
Putting these identities together, we obtain

N j=1 ∂ 2 ∂ξ 2 j |z k | 2 2 | ξ=ξ * = N j=1 N -1 l=1 (-1) k+l+1 D jk D jl D 2 + (-1) j+k D jk D = (-1) k+N 1 D 2 j D jk det 1 ξ * r -η l r =j
It remains to check that the following analytic expression in η,

(-1) k+N N j=1 D jk det 1 ξ * r -η l r =j
is not identically zero. This follows from the fact that the limit as η k tends to infinity of 

(-1) k+N η 2 k N j=1 D jk det 1 ξ * r -η l r =j equals N j=1 det 1 ξ * r -η l r =j,l
with real numbers ξ 1 > η 1 > • • • > ξ N > η N . Indeed, in that case, the corresponding matrix C ε (z) would be   1 + εξ j -z(1 + εη k )e -i(ξ j -η k )-iε ξ 2 j -η 2 k 2 ε(ξ j -η k )(2 + ε(ξ j + η k ))   ,
and, as ε tends to 0, its determinant would be equivalent to

1 (2ε) N det 1 -ze -i(ξ j -η k ) ξ j -η k
The product of the N zeroes of the polynomial in z in the right hand side is clearly of modulus 1. Since, from Theorem 2, all these zeroes live outside the open unit disc, they have to be located on the unit circle, which is precisely the opposite of what we want.

The singular behavior

Let us come to the proof of the second part of Proposition 4. We are going to focus our analysis near the point z = 1, where the singularity of u δ,ε (z) takes place. To accomplish this, we introduce a localized version of the H s norm. Given s ∈ 1 2 , 1 , it is classical (see e.g. [START_REF] Peller | Hankel Operators and their applications Springer Monographs in Mathematics[END_REF]) that, for every u ∈ H s + (S 1 ), the following equivalence of norms holds,

∞ n=1 n 2s |û(n)| 2 1 2 ≃    |z|<1 |u ′ (z)| 2 (1 -|z| 2 ) 1-2s dL(z)    1 2
, where L denotes the Lebesgue measure on C = R 2 and u ′ denotes the holomorphic derivative of u.

Given a small constant θ > 0 to be fixed later, we introduce the following subset of D,

D θ,ε := {z ∈ C : |z| < 1 , |z -1| < θε 2(N -1) } ,
and the corresponding localized H s norm,

u s,θ,ε :=    D θ,ε |u ′ (z)| 2 (1 -|z| 2 ) 1-2s dL(z)    1 2
, so that we have the following inequality,

∀u ∈ H s + , u H s ≥ C s u s,θ,ε . Notice that an elementary computation yields    D θ,ε (1 -|z| 2 ) 1-2s dL(z)    1 2 ≃ ( √ θε N -1 ) 3-2s .
The second part of Proposition 4 therefore comes from the following Proposition 5. -There exists θ * = θ * (ξ, η) > 0 and a dense open subset X ′′′ N such that, for θ ≤ θ * , for every

(ξ, η) ∈ X ′′′ N , ∀z ∈ D θ,ε , |(u δ,ε ) ′ (z)| ≥ C ξ,η δ ε 2(N -1) , for some C ξ,η > 0, uniformly in δ, ε such that ε ≪ δ ≪ 1.
Indeed, the proof of Proposition 4 is completed by denoting by X ′ N the intersection of X ′′′ N and the nonempty open subset X ′′ N provided by the proof of the first part of the proposition.

Let us prove Proposition 5. Deriving with respect to z the formula (6.2.2) giving u δ,ε , we get (6.4.1)

(u δ,ε ) ′ (z) = Ċ δ,ε C δ,ε (z) -1 Ψ q 1 N , t C δ,ε (z) -1 1 q 1 N where (6.4.2) Ċ δ,ε =   Ė Ȧ δ,ε Ḃδ,ε 1 δ Ċε   with (6.4.3) Ė = σ b Ψ 2a-1 Ψ 2b ρ 2 a -σ 2 b 1≤a,b≤q , (6.4.4) 
Ȧ δ,ε = δ(1 + εη k )Ψ 2a-1 ρ 2 a -δ 2 (1 + εη k ) 2 1≤a≤q 1≤k≤N-1 , 0 1≤a≤q (6.4.5) Ḃδ,ε = σ b Ψ 2b δ 2 (1 + εξ j ) 2 -σ 2 b 1≤j≤N 1≤b≤q (6.4.6) Ċε = ( ċε,jk ) 1≤j,k≤N , ċε,jk := 1 + εη k (1 + εξ j ) 2 -(1 + εη k ) 2 , 1 ≤ k ≤ N -1 , ċε,jN := 0 , 1 ≤ j ≤ N .
Let us introduce the following notation.

C δ,ε (z) -1 Ψ q 1 N =:   X δ,ε q (z) Y δ,ε N (z)   and t C δ,ε (z) -1 1 q 1 N =:   Xδ,ε q (z) Ŷ δ,ε N (z)   .
It gives rise to the following equations

E (z)X δ,ε q (z) + A δ,ε (z)Y δ,ε N (z) = Ψ q B δ,ε (z)X δ,ε q (z) + 1 δ C ε (z)Y δ,ε N (z) = 1 N t E (z) Xδ,ε q (z) + t B δ,ε (z) Ŷ δ,ε N (z) = 1 q t A δ,ε (z) Xδ,ε q (z) + 1 δ t C ε (z) Ŷ δ,ε N (z) = 1 N Hence, setting J δ,ε (z) := E (z) -δA δ,ε (z)C ε (z) -1 B δ,ε (z) , we obtain (6.4.7) J δ,ε (z)X δ,ε q (z) = Ψ q -δA δ,ε (z)C ε (z) -1 1 N (6.4.8) t J δ,ε (z) Xδ,ε q (z) = 1 q -δ t B δ,ε (z) t C ε (z) -1 1 N (6.4.9) Y δ,ε N (z) = δC ε (z) -1 (1 N -B δ,ε (z)X δ,ε q (z)) (6.4.10) Ŷ δ,ε N (z) = δ t C ε (z) -1 (1 N -t A δ,ε (z) Xδ,ε q (z)).
Our main analysis lies in the following approximation result. Proposition 6. -For the norm L ∞ (D θ,ε ), with θ < θ * (ξ, η) small enough, we have, uniformly in δ, ε such that ε ≪ δ ≪ 1,

X δ,ε q (z) = E (1) -1 Ψ q + O(δ) Xδ,ε q (z) = t E (1) -1 1 q + O(δ) Y δ,ε N (z) = αδ C ε (z) -1 (1 N ) + O δ 2 ε N -2 Ŷ δ,ε N (z) = βδ t C ε (z) -1 (1 N ) + O δ 2 ε N -1 where α : = 1 -E (1) -1 (Ψ q ), Ψ 2b σ b 1≤b≤q , β : = 1 -t E (1) -1 (1 q ), 1 ρ a 1≤a≤q .
Proof. -The proof involves several steps. The first one consists in a number of cancellations in the action of the matrix C ε (1) -1 on some special vectors. From the formula giving C ε (z), we have

C ε (1) = 1 2 + ε(ξ j + η k ) 1≤j≤N ;1≤k≤N -1 , 1 1 + εξ j 1≤j≤N
which is a Cauchy matrix. From Cramer's formulae and formula 6.3.1, the inverse of a Cauchy matrix is given by (6.4.11) 1

a j + b k -1 kj = (-1) j+k λ j µ k a j + b k kj with λ j = l (a j + b l ) i<j (a i -a j ) r>j (a j -a r ) and µ k = l (a l + b k ) i<k (b i -b k ) r>k (b k -b r )
.

Applying this formula to C ε (1) with

a j = 1 + εξ j , 1 ≤ j ≤ N, b k = 1 + εη k , 1 ≤ k ≤ N -1, b N = 0, we get C ε (1) -1 kj = (-1) j+k λ j (ε)µ k (ε) 2 + ε(ξ j + η k ) if k ≤ N -1; C ε (1) -1 N j = (-1) j+N λ j (ε)µ N (ε) 1 + εξ j , with λ j (ε) = 2 N -1 ε N -1 (1 + εξ j ) l (1 + ε(ξ j + η l )/2) ξ ′ j , 1 ≤ j ≤ N , and 
µ k (ε) = 2 N ε N -2 l (1 + ε(ξ l + η k )/2) η ′ k (1 + εη k ) , k ≤ N -1, µ N (ε) = i (1 + εξ i ) k (1 + εη k ) where we have set ξ ′ j := i<j (ξ i -ξ j ) r>j (ξ j -ξ r ), η ′ k := i<k (η i -η k ) r>k (η k -η r ).
Finally, introduce the following special vectors V m (ε) and W p (ε) in R N .

V m (ε) j : = (1 + εξ j ) m , m ≥ 0 , j = 1, . . . , N,

W p (ε) k : = (1 + εη k ) p (1 -δ kN ) , p ≥ 1 , W 0 (ε) k := 1, , k = 1, . . . , N,
where δ kN denotes the Kronecker symbol.

Lemma 16. -The following identities hold for every (ξ, η) ∈ X N , uniformly in ε ≪ 1.

(6.4.12)

C ε (1) -1 (1 N ) k = (-1) k+1 µ k (ε) , 1 ≤ k ≤ N . (6.4.13) t C ε (1) -1 (1 N ) j = (-1) j+1 λ j (ε) + O 1 ε N -2 , 1 ≤ j ≤ N .
Furthermore, for every (ξ, η) ∈ X N , there exist a constant C ξ,η and θ * (ξ, η) such that, for the norm L ∞ (D θ,ε ) with θ < θ * (ξ, η), uniformly for 0 < ε ≤ 1, we have the estimates

|C ε (z) -1 (V m (ε))| ≤ C ξ,η (1 + ξ 1 ) m ε N -2 , m ≥ 0 . (6.4.14) | t C ε (z) -1 (W p (ε))| ≤ C ξ,η (1 + η 1 ) p-1 ε N -1 , p ≥ 1 . (6.4.15) | C ε (z) -1 (V m (ε)), W p (ε) | ≤ C ξ,η (1 + ξ 1 ) m (1 + η 1 ) p , m, p ≥ 0 . (6.4.16)
Proof. -The main algebraic cancellation is displayed in the following lemma.

Lemma 17. -Let a, b with 0 ≤ a + b ≤ N -1, N j=1 (-1) j ξ a j ξ ′ j |I|=b,I⊂{1,...,N }\{j} ( i∈I ξ i ) = 0 if 0 ≤ a + b < N -1 -1 if a = N -1, b = 0.
Analogous identities hold for the η's. 

( i∈I ′ ξ i )ξ r + |I|=b,I⊂{1,...,N -1}\{r} ( i∈I ξ i ) i<r (ξ i -ξ r ) N -1≥j>r (ξ r -ξ j ) + (-1) N +1 ξ a r |I|=b,I⊂{1,...,N -1} ( i∈I ξ i ) i<N,i =r (ξ i -ξ r ) = 0 . Hence Q a,b (ξ N ) is in fact a polynomial. If a + b < N -1,
it tends to 0 as ξ N tends to ∞, therefore it is identically 0. If a = N -1 and b = 0 it tends to -1. This completes the proof.

Let us come to the proof of Lemma 16. From the formulae giving

C ε (1) -1 , we get, if k ≤ N -1, C ε (1) -1 (1 N ) k = (-1) k µ k (ε) N j=1 (-1) j λ j (ε) 2 + ε(ξ j + η k ) = (-1) k µ k (ε) 2 N -2 ε N -1 N j=1 (-1) j (1 + εξ j ) ξ ′ j l =k 1 + ε ξ j + η l 2 ;
and

(C ε (1) -1 (1 N ) N = (-1) N µ N (ε) N j=1 (-1) j λ j (ε) 1 + εξ j = (-1) N µ N (ε) 2 N -1 ε N -1 N j=1 (-1) j ξ ′ j N -1 l=1 1 + ε ξ j + η l 2 .
Expanding in powers of ε the above formula giving (C ε (1) -1 (1 N )) k , and using Lemma 17 with b = 0, we infer

C ε (1) -1 (1 N ) k = (-1) k+1 µ k (ε) , k ≤ N ,
which is (6.4.12). We now compute t C -1 ε (1)(1 N ) in a similar way.

t C ε (1) -1 (1 N ) j = (-1) j λ j (ε) N -1 k=1 (-1) k µ k (ε) 2 + ε(ξ j + η k ) + (-1) N µ N (ε) 1 + εξ j =: (-1) j λ j (ε) Sj (ε).
We expand in powers of ε and use again Lemma 17 with b = 0, changing

N into N -1. We get Sj (ε) = 2 N -1 ε N -2 N -1 k=1 (-1) k i =j 1 + ε ξ i +η k 2 η ′ k (1 + εη k ) + (-1) N + O(ε) = (-1) N + O(ε) + 2 N -1 ε N -2 N -1 k=1 (-1) k ε N -2 p+q=N -2 (-1) q C p N -1 η p+q k 2 p η ′ k + O(ε N -1 ) = -1 + O(ε).
As a consequence, we infer

t C ε (1) -1 (1 N ) j = (-1) j+1 λ j (ε)(1 + O(ε)) ,
which is (6.4.13). We next prove (6.4.14) and (6.4.15), in the special case z = 1. Notice that the cases m = 0 and p = 0 were addressed above, so we may assume m, p ≥ 1. We have

(C ε (1) -1 (V m (ε)) k = (-1) k µ k (ε) 2 N -1 ε N -1 h m,k (ε, ξ, η), with h m,k (ε, ξ, η) :=                    1 2 N j=1 (-1) j (1 + εξ j ) m+1 l =k 1 + ε ξ j +η l 2 ξ ′ j if k ≤ N -1 , N j=1 (-1) j (1 + εξ j ) m N -1 l=1 1 + ε ξ j +η l 2 ξ ′ j if k = N .
Notice that h m,k is a holomorphic function of ε. From Lemma 17 with b = 0, the derivatives ∂ r ε h m,k (0, ξ, η) vanish for r < N -1. Therefore, from the maximum principle, (6.4.17)

|h m,k (ε, ξ, η)| ε N -1 ≤ sup |ζ|=1 |h m,k (ζ, ξ, η)| ≤ C ξ,η (1+ξ 1 ) m , 0 < ε ≤ 1 .
This provides estimate (6.4.14) for z = 1. Estimate (6.4.15) for z = 1 is obtained in the same way, by observing that

t C ε (1) -1 (W p (ε)) = (-1) j λ j (ε) 2 N ε N -2 g p,j (ε, ξ, η), p ≥ 1 , where we have set g p,j (ε, ξ, η) := ε N -2 2 N N -1 k=1 (-1) k µ k (ε)(1 + εη k ) p 2 + ε(ξ j + η k ) = 1 2 N -1 k=1 (-1) k l =j (1 + ε(ξ l + η k )/2) η ′ k (1 + εη k ) p-1 ,
and proving in the same way that

|g p,j (ε, ξ, η)| ε N -2 ≤ sup |ζ|=1 |g p,j (ζ, ξ, η)| ≤ C ξ,η (1 + η 1 ) p-1 .
As for (6.4.16) for z = 1, we compute

C ε (1) -1 (V m (ε)), W p (ε) = 2 2N -1 ε 2N -3 f pm (ε, ξ, η) , where f 0m (ε, ξ, η) = = 1 2 1≤j≤N,1≤k≤N -1 (-1) j+k (1 + εξ j ) m+1 l =k (1 + ε ξ j +η l 2 ) i (1 + ε ξ i +η k 2 ) (1 + εη k )ξ ′ j η ′ k + ε N -2 2 N N i=1 (1 + εξ i ) N -1 l=1 (1 + εη l ) N j=1 (-1) j+N (1 + εξ j ) m l (1 + ε ξ j +η l 2 ) ξ ′ j =: f0m (ε, ξ, η) + (-1) N ε N -2 2 N N i=1 (1 + εξ i ) N -1 l=1 (1 + εη l ) h mN (ε, ξ, η) ,
and, for p ≥ 1,

f pm (ε, ξ, η) = = 1 2 1≤j≤N,1≤k≤N -1 (-1) j+k (1 + εξ j ) m+1 (1 + εη k ) p-1 l =k (1 + ε ξ j +η l 2 ) i (1 + ε ξ i +η k 2 ) ξ ′ j η ′ k .
Since we already proved in (6.4.17) that

|h mN (ε, ξ, η)| ≤ C ξη ε N -1 (1 + ξ 1 ) m ,
estimate (6.4.16) will be a consequence of

| f0m (ε, ξη)| ≤ C ξ,η ε 2N -3 (1+ξ 1 ) m , | fpm (ε, ξ, η)| ≤ C ξ,η ε 2N -3 (1+ξ 1 ) m (1+η 1 ) p-1
for m ≥ 0, p ≥ 1. Notice that f0m (ζ, ξη) and f pm (ζ, ξ, η) are holomorphic function of ζ for |ζ| < ε * . Using again the maximum principle, the proof of the lemma will be complete if we prove that for any 0 ≤ r < 2N -3, all the derivatives ∂ r ε f pm (0, ξ, η) and ∂ r ε f0m (0, ξ, η) vanish. Indeed, such a derivative involves a sum of terms

1≤j≤N,1≤k≤N -1 (-1) j+k ξ a j η t k ξ ′ j η ′ k |L|=c,|I|=d k / ∈L l∈L (ξ j + η l ) i∈I (ξ i + η k ) with a + t + c + d = r ≤ 2N -4.
We symmetrize this expression by writing

|I|=d i∈I (ξ i + η k ) = (ξ j + η k ) |I|=d-1 j / ∈I i∈I (ξ i + η k ) + |I|=d j / ∈I i∈I (ξ i + η k )
which gives rise to a sum of terms 1≤j≤N,1≤k≤N -1

(-1) j+k ξ a j η t k ξ ′ j η ′ k |L|=c,|I|=d k / ∈L,j / ∈I l∈L (ξ j + η l ) i∈I (ξ i + η k ) with a + t + c + d = r ≤ 2N -4.
Expanding everything, we have to calculate

1≤j≤N,1≤k≤N -1 (-1) j+k ξ a+s j η t+u k ξ ′ j η ′ k |L|=c-s,|I|=d-u k / ∈L,j / ∈I l∈L η l i∈I ξ i with either a + s + d -u < N -1 or t + u + c -s < N -2 since (a + s + d -u) + (r + u + c -s) = a + t + c + d ≤ 2N -4.
Using Lemma 17, we get that all these terms vanish.

Finally, we show how to pass from estimates (6.4.14), (6.4.15), (6.4.16) for z = 1 to uniform estimates for z ∈ D θ,ε . We write

C ε (z) = C ε (1) + (1 -z) Ċ ε = C ε (1)(I + (1 -z)C ε (1) -1 Ċε ) = (I + (1 -z) Ċ ε C ε (1) -1 )C ε (1) .
In view of the expressions of Ċε and of C ε (1) -1 , we have

|C ε (1) -1 Ċε | + | Ċε C ε (1) -1 | ≤ A(ξ, η) ε 2(N -1) . Consequently, for z ∈ D θ,ε , we have |1 -z|(|C ε (1) -1 Ċε | + | Ċε C ε (1) -1 |) ≤ A(ξ, η)θ ≤ 1 2 if θ ≤ θ * (ξ, η), and the matrices S ε (z) := I + (1 -z)C ε (1) -1 Ċε , Ŝε (z) := I + (1 -z) Ċε C ε (1) -1 are invertible, with |S ε (z) -1 | + | Ŝε (z) -1 | ≤ 2
Estimates (6.4.14), (6.4.15), (6.4.16) on D θ,ε are then consequences of the estimates for z = 1 and of the identities

C ε (z) -1 V m (ε) = S ε (z) -1 C ε (1) -1 V m (ε) , t C ε (z) -1 W p (ε) = Ŝε (z) -1 t C ε (1) -1 W p (ε) , and 
C ε (z) -1 V m (ε), W p (ε) = S ε (z) -1 C ε (1) -1 V m (ε), W p (ε) = C ε (1) -1 V m (ε), W p (ε) -(1 -z) Ċε C ε (1) -1 S ε (z) -1 C ε (1) -1 V m (ε), t C ε (1) -1 W p (ε) .
This completes the proof of Lemma 16.

As a consequence of Lemma 16, we get Lemma 18. -For θ < θ * (ξ, η), the following matrix expansions hold in L ∞ (D θ,ε ) as ε, δ tend to 0.

A δ,ε (z)C ε (z) -1 = 1 ρ a 1≤a≤q ⊗ t C ε (z) -1 (1 N ) + O δ ε N -1 C ε (z) -1 B δ,ε (z) = C ε (z) -1 (1 N ) ⊗ Ψ 2b σ b 1≤b≤q + O δ ε N -2 Furthermore, for z ∈ D θ,ε , the vectors A δ,ε (z)C ε (z) -1 (1 N ), t B δ,ε (z) t C ε (z) -1 (1 N ) and the matrix A δ,ε (z)C ε (z) -1 B δ,ε (z) are uniformly bounded as ε, δ tend to 0. Proof. -Recall that A δ,ε (z) = ρ a -δz(1 + εη k )Ψ 2a-1 ρ 2 a -δ 2 (1 + εη k ) 2 1≤a≤q 1≤k≤N-1 , 1 ρ a 1≤a≤q B δ,ε (z) = δ(1 + εξ j ) -σ b zΨ 2b δ 2 (1 + εξ j ) 2 -σ 2 b 1≤j≤N 1≤b≤q
.

Expanding in powers of δ, we obtain

A δ,ε (z) = ∞ p=0 δ p A p (ε, z) , A p (ε, z) := U p (z) ⊗ W p (ε) , p ≥ 0, B δ,ε (z) = ∞ m=0 δ m B m (ε, z) , B m (ε, z) := V m (ε) ⊗ T m (z) , m ≥ 0,
where we have set

U p (z) :=                  1 ρ p+1 a if p is even, - zΨ 2a-1 ρ p+1 a if p is odd.       1≤a≤q T m (z) :=            zΨ 2b σ m+1 b if m is even, - 1 σ m+1 b if m is odd.     1≤b≤q
Using these formulae, we get

A δ,ε (z)C ε (z) -1 = ∞ p=0 δ p U p (z) ⊗ t C ε (z) -1 W p (ε), C ε (z) -1 B δ,ε (z) = ∞ m=0 δ m C ε (z) -1 V m (ε) ⊗ T m (z) , A δ,ε (z)C ε (z) -1 (1 N ) = ∞ p=0 δ p W p (ε), C ε (z) -1 (1 N ) U p (z) , t B δ,ε (z) t C ε (z) -1 (1 N ) = ∞ m=0 δ m C ε (z) -1 V m (ε), 1 N T m (z) , A δ,ε (z)C ε (z) -1 B δ,ε (z) = p,m≥0 C ε (z) -1 V m (ε), W p (ε) U p (z) ⊗ T m (z) .
The statement is then a direct consequence of Lemma 16.

Let us complete the proof of Proposition 6. In view of Lemma 18, and of formulae (6.4.7), (6.4.8), (6.4.9), (6.4.10), we observe that

J δ,ε (z) = E (z) -δA δ,ε (z)C ε (z) -1 B δ,ε (z) = E (z) + O(δ)
is invertible for z ∈ D θ,ε and δ and ε small enough, and we get the formulae

X δ,ε q (z) = J δ,ε (z) -1 (Ψ q -δA δ,ε (z)C ε (z) -1 1 N ) Xδ,ε q (z) = t J δ,ε (z) -1 (1 q -δ t B δ,ε (z) t C ε (z) -1 1 N ) Y δ,ε N (z) = δC ε (z) -1 (1 N -B δ,ε (z)X δ,ε q (z)) Ŷ δ,ε N (z) = δ t C ε (z) -1 (1 N -t A δ,ε (z) Xδ,ε q (z)). Furthermore, observing that E (z) is invertible for z in a fixed neighbor- hood of D, we have, if z ∈ D θ,ε , E (z) -1 = E (1) -1 + O(ε 2(N -1) ) .
Applying again Lemma Lemma 18, this completes the proof.

Let us complete the proof of Proposition 4. Proposition 6 and the expression of (u δ,ε ) ′ (1) lead to

(u δ,ε ) ′ (z) = Ċ δ,ε X δ,ε q (z) Y δ,ε N (z) , Xδ,ε q (z) Ŷ δ,ε N (z) = Ċ δ,ε E (z) -1 Ψ q + O(δ) αδC ε (z) -1 (1 N ) + O δ 2 ε N-2 , t E (z) -1 1 q + O(δ) βδ t C ε (z) -1 (1 N ) + O δ 2 ε N-1 . Observing that Ċδ,ε = O(1) O(δ) O(1) 1 δ Ċε = O(1) O(δ) O(1) O 1 δε , we infer, if ε ≪ δ, (u δ,ε ) ′ (z) = O(1) + O δ 2 ε N-2 O(1) + α Ċε C ε (z) -1 (1 N ) + O δ ε N-1 , O (1) 
βδ t C ε (z) -1 (1 N ) + O δ 2 ε N-1 = αβδ Ċε C ε (z) -1 (1 N ), t C ε (z) -1 (1 N ) + O δ 2 ε 2(N -1) .
Furthermore, writing again 1) .

C ε (z) -1 = S ε (z) -1 C ε (1) -1 = C ε (1) -1 -(1 -z) Ċ ε C ε (1) -1 S ε (z) -1 C ε (1) -1 , we infer (u δ,ε ) ′ (z) = αβδ Ċε C ε (1) -1 (1 N ), t C ε (1) -1 (1 N ) + O δ 2 + θ ε 2(N -
We claim that the product

αβ = 1 -E -1 Ψ q , Ψ 2b σ b 1 -t E -1 1 q , 1 ρ a is not zero. Indeed, write Z b := E -1 Ψ q so that, for a = 1, . . . , q, q b=1 ρ a -σ b Ψ 2a-1 Ψ 2b ρ 2 a -σ 2 b Z b = Ψ 2a-1 or (6.4.18) q b=1 ρ a Ψ -1 2a-1 -σ b Ψ 2b ρ 2 a -σ 2 b Z b = 1 , a = 1, . . . , q.
Assume α = 0, namely (6.4.19)

q b=1 Z b Ψ 2b σ b = 1 .
Then substracting (6.4.18) from (6.4.19) leads to

ρ a q b=1 ρ a -σ b Ψ -1 2a-1 Ψ -1 2b ρ 2 a -σ 2 b Ψ 2b Z b σ b = 0 , a = 1, . . . , q.
This is a contradiction since, from Theorem 2, the matrix

ρ a -σ b Ψ -1 2a-1 Ψ -1 2b ρ 2 a -σ 2 b 1≤a,b≤q
is known to be invertible since Ψ -1 2a-1 and Ψ -1 2b are complex numbers of modulus 1. We conclude that α = 0. A similar argument leads to β = 0.

Eventually, we calculate

Ċε C -1 ε (1 N ), t C -1 ε (1 N ) = 1≤j≤N 1≤k≤N-1 (-1) j+k λ j (ε)µ k (ε)(1 + εη k ) (1 + εξ j ) 2 -(1 + εη k ) 2 (1 + O(ε)) = 2 2(N -1) ε 2(N -1) 1≤j≤N 1≤k≤N -1 (-1) j+k (ξ j -η k )ξ ′ j η ′ k + O(ε) .
Considering the analytic expression

1≤j≤N 1≤k≤N -1 (-1) j+k (ξ j -η k )ξ ′ j η ′ k
as a function of ξ N , the pole η N -1 appears only once. Therefore this quantity does not vanish if (ξ, η) belongs to an open dense set X ′′′ N of V. In that case, if θ ≤ θ * (ξ, η) small enough, and ε ≪ δ ≪ 1, we conclude 1) . This completes the proof of Proposition 5.

∀z ∈ D θ,ε , |(u δ,ε ) ′ (z)| ≥ Cδ ε 2(N -

CHAPTER 7 GEOMETRY OF THE FOURIER TRANSFORM

This chapter is devoted to the proof of two results. The first one describes the restriction of the symplectic form to the finite dimensional manifolds made of symbols corresponding to pairs of Hankel operators with a given finite list of multiplicities. These manifolds turn out to involutive, and are the disjoint union of symplectic manifolds on which the nonlinear Fourier transform defines action angle variables for the cubic Szegő flow. The proof of this result uses the evolution of the nonlinear Fourier transform through the flows of the Szegő hierarchy introduced in [START_REF] Gérard | The cubic Szegő equation[END_REF] and used in [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF]. The second result characterizes the sets of symbols associated to pairs of Hankel operators with the same singular values and Blaschke products admitting a given set of zeroes, as classes of some unitary equivalence. These sets are precisely tori obtained in the above symplectic manifolds by fixing the action variables and making angles vary.

Evolution under the Szegő hierarchy

The Szegő hierarchy was introduced in [START_REF] Gérard | The cubic Szegő equation[END_REF] and used in [START_REF] Gérard | Invariant Tori for the cubic Szegő equation[END_REF] and [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF]. In [START_REF] Gérard | Invariant Tori for the cubic Szegő equation[END_REF], it was used to identify the symplectic form on the generic part of V(d). Similarly, our purpose in this section is to establish preliminary formulae, towards the identification of the symplectic form on V (d 1 ,...,dn) in section 7.2.

We close this section by stating a corollary which will be useful for describing the symplectic form on V (d 1 ,...,dn) . Corollary 4. -On V (d 1 ,...,dn) , we have

(7.1.7) X J y = n r=1 (-1) r 2yJ y 1 + ys 2 r ∂ ∂ψ r .
The vector fields X J y , y ∈ R + , generate an integrable sub-bundle of rank n of the tangent bundle of V (d 1 ,...,dn) . The leaves of the corresponding foliation are the isotropic tori

T ((s 1 , . . . , s n ), (Ψ 1 , . . . , Ψ n )) := Φ -1 {(s 1 , . . . , s n )} × S 1 Ψ 1 × • • • × S 1 Ψ n , where (s 1 , . . . , s n ) ∈ Ω n and (Ψ 1 , . . . , Ψ n ) ∈ B ♯ d 1 × • • • × B ♯ dn are given.
Proof. -For every y ∈ R + , Theorem 11 can be rephrased as the following identities for Lie derivatives along X J y .

X J y (s r ) = 0 , X J y (χ r ) = 0 , X J y (ψ r ) = (-1) r 2yJ y 1 + ys 2 r , r = 1, . . . , n .
This implies identity (7.1.7) on V (d 1 ,...,dn) . Given n positive numbers y 1 > • • • > y n , the matrix 1 1 + y ℓ s 2 r 1≤ℓ,r≤n is invertible. This implies that, for every u ∈ V (d 1 ,...,dn) , the vector subspace of T u V (d 1 ,...,dn) spanned by the X J y (u), y ∈ R + is exactly span ∂ ∂ψ r , r = 1, . . . , n .

The integrability follows, as well as the identification of the leaves, while the isotropy of the tori comes from the identity {J y , J y ′ } = 0 which was proved in [START_REF] Gérard | The cubic Szegő equation[END_REF] and is also a consequence of identity 3.2.1 and of the conservation of the s r 's along the Hamiltonian curves of J y , as stated in Theorem 11.

7.2. The symplectic form on V (d 1 ,...,dn)

In this section, we prove that the symplectic form ω restricted to V (d 1 ,...,dn) is given by Recall that the variable ψ r is connected to the Blaschke product Ψ r through the identity Ψ r = e -iψr χ r , where χ r is a Blaschke product built with a monic polynomial. Given an integer k, we denote by B ♯ k the submanifold of B k made with Blaschke products built with monic polynomials of degree k.

Let us first point out that we get the following result as a corollary. In order to prove that ω = 0, it is therefore sufficient to prove that ω = 0 on the submanifold .

If we denote by ˙the derivative with respect to one of the parameters ρ j , σ k or one of the coefficients of the χ r , we have u(z) = -C (z) -1 Ċ (z)C (z) -1 (χ 2j-1 (z)) 1≤j≤q , 1 + C (z) -1 ( χ2j-1 (z)) 1≤j≤q , 1 .

In the case of the derivative with respect to ρ j , Ċ (z) ik = -

ρ 2 j + σ 2 k -2σ k ρ j zχ 2j-1 (z)χ 2k (z) (ρ 2 j -σ 2 k ) 2 δ ij ,
and, using C (z) -1 (χ 2j-1 (z)) 1≤j≤q = (u ′ k (z)) 1≤k≤q , t C (z) -1 (1) = (h j (z)) 1≤j≤q , one gets u(z) = h j (z)

q k=1 u ′ k (z) (ρ 2 j + σ 2 k -2σ k ρ j zχ 2j-1 (z)χ 2k (z)) (ρ 2 j -σ 2 k ) 2 = H u (u j )(z) ρ j q k=1 ρ 2 j + σ 2 k (ρ 2 j -σ 2 k ) 2 u ′ k (z) -2ρ j u j (z) q k=1 zK u (u ′ k )(z) (ρ 2 j -σ 2 k ) 2 . Observe that zK u (u ′ k )(z) = [SS * H u (u ′ k )](z) = H u (u ′ k )(z) -κ 2
k , and that u ′ k is a linear combination with real coefficients of u ℓ in view of (3.1.6). We infer that, in this case, u is a linear combination with real coefficients of u j and u m H u (u ℓ ).

In the case of the derivative with respect to σ k , one similarly gets

u(z) = u ′ k (z) q j=1 h j (z) zχ 2j-1 (z)χ 2k (z)(ρ 2 j + σ 2 k ) -2σ k ρ j (ρ 2 j -σ 2 k ) 2 = zK u (u ′ k )(z) σ k q j=1 (ρ 2 j + σ 2 k )u j (z) (ρ 2 j -σ 2 k ) 2 -2σ k u ′ k (z) q j=1 H u (u j )(z) (ρ 2 j -σ 2 k ) 2 ,
which is a linear combination with real coefficients of u j and u j H u (u ℓ ).

In the case of a derivative with respect to one of the zeroes of χ 2j-1 , we obtain u(z) = q k=1 u ′ k (z)h j (z)

σ k z χ2j-1 (z)χ 2k (z) ρ 2 j -σ 2 k + h j (z) χ2j-1 (z) = χ2j-1 (z) χ 2j-1 (z) u j (z) q k=1 u ′ k (z) σ k zχ 2k (z) ρ 2 j -σ 2 k + 1 = χ2j-1 (z) χ 2j-1 (z) u j (z) z K u (u j ) τ 2 j + 1 = χ2j-1 (z) χ 2j-1 (z) u j (z) H u (u j ) τ 2 j .
In the case of a derivative with respect to one of the zeroes of χ 2k , we obtain similarly u(z) = χ2k (z) χ 2k (z)

u ′ k (z)zK u (u ′ k )(z) κ 2 k .
The proof of Lemma 21 is completed by observing that, since χ r is a product of functions χ p for |p| < 1, χr /χ r is a sum of terms of the form In this section, we identify the sets of symbols u ∈ V MO + \ {0} having the same list of singular values (s r ) and the same list (χ r ) of monic Blaschke products, for the pair (H u , K u ). In view of Theorems 5 and 6, these sets are tori. In the finite dimensional case, they are precisely the Lagrangian tori of the symplectic manifolds W (χ 1 , . . . , χ n ) of Corollary 5, obtained by freezing the action variables. Moreover, V MO + \{0} is the disjoint union of these tori, and, from sections 5.1 and 7.1, the Hamilton flows of the Szegő hierarchy act on them. We prove that these tori are and we conclude, on Ran(H u ), This implies, for a = 0, . . . , d -1, that the right hand side belongs to F ũ(ρ j ). On the other hand, if P ∈ C[z] has degree at most d, one easily checks that S * P D H ũ(ũ j ) = P (0)K ũ(ũ j ) + R , R ∈ F ũ(ρ j ) .

Notice that the right hand side belongs to F ũ(ρ j ) if and only if K ũ(ũ j ) ∈ F ũ(ρ j ) or P (0) = 0. Assume for a while that K ũ(ũ j ) does not belong to F ũ(ρ j ). Then, writing Comparing to formula (7.3.1) for U(H u (u j )), we obtain cD(z) = F (ρ 2 j ) D(z) . Since D(0) = 1 = D(0), we conclude c = F (ρ 2 j ), D = D, and finally Ψ 2j-1 (ũ) = F (ρ 2 j ) 2 Ψ 2j-1 (u) . We now turn to study the special case K ũ(ũ j ) ∈ F ũ(ρ j ). This reads 0 = (K 2 ũ -ρ 2 j I)K ũ(ũ j ) = K ũ((H 2 ũ -ρ 2 j I)ũ j -ũj 2 ũ) = -ũj 2 K ũ(ũ) .

In other words, this imposes K ũ(ũ) = 0, or ũ = ρ Ψ, where Ψ is a Blaschke product of degree d. Making V * act on the identity K ũ(ũ) = 0, we similarly conclude u = ρΨ, where Ψ is a Blaschke product of degree d, so what we have to check is that Ψ and Ψ only differ by a phase factor. In this case, S * sends E u (ρ) = Ran(H u ) into F u (ρ), so that (7. We conclude that D = D, whence the claim. which is impossible. We conclude that γ = 0, which means that the degree of Q is at most d -1. Iterating this argument, we infer 

U(u j ) = 1 ρ j U(Ψ 2j-1 (u)H u (u j )) = 1 ρ j F (ρ 2 j )Ψ 2j-1 (u)H ũ(ũ j ) = 1 ρ j F (ρ 2 j )Ψ 2j-1 (ũ)H ũ(ũ j ) = F (ρ 2 j )ũ j .
It remains to prove the equality for u ′ 0 , u ′ k . We write

U * V (u ′ k ) = F (σ 2 k )U * (ũ ′ k ) = F (σ 2 k )U * κ 2 k j ũj ρ 2 j -σ 2 k = F (σ 2 k ) j F (ρ 2 j )κ 2 k u j ρ 2 j -σ 2 k = F (σ 2 k )F (H 2 u )u ′ k = F (H 2 u )F (K 2 u )(u ′ k )
. A similar arguments holds for U * V (u ′ 0 ). It remains to prove Lemma 22. It is sufficient to prove that the only solution of the homogeneous system This completes the proof.

  over all the sequences (d r ) r≥1 . Given (s, Ψ) ∈ S n and z ∈ C, we define the matrix C (z) := C (s, Ψ)(z) as follows. If n = 2q, the coefficients of C (s, Ψ)(z) are given by (1.0.4) c jk (z) := s 2j-1 -s 2k zΨ 2k (z)Ψ 2j-1 (z) s 2 2j-1 -s 2 2k

Theorem 3 . 4 . 1 (

 341 Adamyan, Arov, Krein[START_REF] Adamyan | Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem[END_REF]). -Let u ∈ V MO + (S 1 )\ {0}. Denote by (λ k (u)) k≥0 the sequence of singular values of H u , namely the eigenvalues of |H u | := H 2 u , in decreasing order, and repeated according to their multiplicity. Let k ≥ 0, m ≥ 1, such that

  h 0 , and (3.4.4) follows from the antilinearity of H u . The proof of Lemma 5 is complete.

  4.1.1. Continuity of Φ d 1 ,...,dn and local smooth extension. -Fix u 0 ∈ V (d 1 ,...,dn) . Let ρ ∈ Σ H (u 0 ). The orthogonal projector P ρ on the eigenspace E u 0 (ρ) is given by

( 4 .

 4 1.9) Ψ r (z) = e -iψr P r (z) D r (z) , D r (z) := z dr P r 1 z , where P r is a monic polynomial of degree d r . Introduce the matrix C # (z) = (c # kℓ (z)) 1≤k,ℓ≤q as (4.1.10) c # kℓ

4. 1 . 3 . 1 .

 131 Construction of the operators H and K. -Let P = ((s r ) 1≤r≤n , (Ψ r ) 1≤r≤n ) be an arbitrary element of S (d 1 ,...,dn) for some non negative integers d r .

  -1,a ) 0≤a≤d 2j-1 , (e 2k,b ) 1≤b≤d 2k 1≤j,k≤q , E ′ := (e 2j-1,a ) 1≤a≤d 2j-1 , (e 2k,b ) 0≤b≤d 2k 1≤j,k≤q .

4. 1 . 3 . 2 .

 132 The mapping Φ d 1 ,...,dn is open from V (d 1 ,...,dn) to S (d 1 ,...,dn) .-Notice that we have not yet completed the proof of Theorem 5 since the previous calculations were made under the assumptions (4.1.11) and (4.1.17). In other words, we proved that an element P of the target space satisfying (4.1.11) and (4.1.17) is in the range of Φ d 1 ,...,dn . On the other hand, in section 4.1.2, we proved that these properties are satisfied by the elements of the range of Φ d 1 ,...,dn . Since these hypotheses are clearly open in the target space, we infer that the range of Φ d 1 ,...,dn is open. 4.1.3.3. The mapping Φ d 1 ,...,dn is closed.

Lemma 12 .

 12 -Let n = 2q, (d 1 , . . . , d n ) and 1 ≤ r ≤ n -1. Assume V (d 1 ,...,dr,0,0,d r+1 ,...,dn) is non empty, then V (d 1 ,...,d r-1 ,dr+1,d r+1 ,...,dn) is non empty.

N

  , defining a Hankel operator of rank p m , namely u (m)

5. 1 .

 1 Evolution under the cubic Szegő flow 5.1.1. The theorem. -In this section, we prove the following result. Theorem 8. -Let u 0 ∈ H 1/2 + with Φ(u 0 ) = ((s r ), (Ψ r )).

1 1 -

 1 pz . On the other hand, ([T |u| 2 , χ p ](e)|1) = ((T |u| 2 (χ p e) -χ p T |u| 2 (e))|1) = (χ p (e)|H 2 u (1)) -(χ p |1)(e|H 2 u (1)) = (H 2 u (χ p (e))|1) -(χ p |1)(H 2 u (e)|1) = 0 . This proves that [T |u| 2 , χ p ](e) = 0.

Lemma 15 .

 15 -There exists a nonempty open subset X ′′ N of X N such that, for every (ξ, η) ∈ X ′′ N , for k = 1, . . . , N -1, |z k (ξ, η)| > 1. Proof. -The functions ξ → z k (ξ, η) are analytic and satisfy

  function of ξ N denoted by Q a,b (ξ N ). Its poles are simple and equal to ξ 1 , . . . , ξ N -1 . Identifying the residue at each of these poles, we get Res(Q a,b ; ξ N = ξ r ) = = (-1) r+1 ξ a r |I ′ |=b-1,I ′ ⊂{1,...,N -1}\{r}

2 ∧

 2 dψ r .

Corollary 5 . 2 ∧ 2 ∧ dψ r ′ = -d s 2 r 2 ,

 5222 -The manifold V (d 1 ,...,dn) is an involutive submanifold of V(d), where d = 2 n r=1 d r + n.Moreover, V (d 1 ,...,dn) is the disjoint union of the symplectic manifoldsW(χ 1 , . . . , χ n ) := Φ -1 (Ω n × (S 1 χ 1 × • • • × S 1 χ n )), variables for the cubic Szegő flow.Proof. -From the definition of an involutive submanifold, one has to prove that, at every point u of V (d 1 ,...,dn) , the tangent space T u V (d 1 ,...,dn) contains its orthogonal relatively to ω. We use an argument of dimension. Namely, one hasdim R (T u V (d 1 ,...,dn) ) ⊥ = dim R T u V(d) -dim R T u V (d 1 ,...,dn)One the other hand, from equation (7.2.1), the tangent space to the manifoldF (u) := Φ -1 {(s r (u))} × n r=1 e -iψr(u) B ♯ dris clearly a subset of (T u V (d 1 ,...,dn) ) ⊥ . Since its dimension equals 2 d r , we get the equality and hence the first result. The second result is an immediate consequence of the previous sections.Remark 4. -As this is the case for any involutive submanifold of a symplectic manifold, the subbundle (T V (d 1 ,...,dn) ) ⊥ of T V (d 1 ,...,dn) is integrable. The leaves of the corresponding isotropic foliation are the manifolds F (u) above. Now, we prove equality (7.2.1). We first establish the following lemma, as a consequence of Theorem 11. Lemma 19. -On V (d 1 ,...,dn) , dψ r + ω . where, for any 1 ≤ r ≤ n, i ∂ ∂ψr ω = 0 . Proof. -Taking the interior product of both sides of identity (7.1.7) with the restriction of ω to V (d 1 ,...,dn) , we obtain -d(log J y ) = this completes the proof. Since dω = 0, we have dω = 0. Combining this information with i ∂ ∂ψr ω = 0 , we conclude that ω = π * β , where β is a closed 2-form on Ω n × n r=1 B ♯ dr , and π(u) := ((s r (u)) 1≤r≤n , (χ r (u) 1≤r≤n ) .

V (d 1 2 . 2 j -σ 2 k

 1222 ,...,dn),red := Φ -1 Ω n × n r=1 B ♯ dr given by the equations ψ r = 0 , r = 1, . . . , n. Lemma 20. -The restriction of ω to V (d 1 ,...,dn),red is 0.Proof. -Consider the differential form α of of degree 1 defined α(u), h := Im(u|h) .It is elementary to check that1 2 dα = ω ,hence the statement is consequence of the fact that the restriction of α to V (d 1 ,...,dn),red is 0. Let us prove this stronger fact. By a density argument, we may assume that n = 2q is even, and that the Blaschke products χ r (u) have only simple zeroes. Firstly, we describe the tangent space of V (d 1 ,...,dn),red at a generic point. We use the notation of section 4.1.Lemma 21. -The tangent vectors to V (d 1 ,...,dn),red at a generic point u where every χ r has only simple zeroes are linear combinations with realThis completes the proof up to the proof of lemma 21.Let us prove lemma 21. We are going to use formulae (1.0.5), namelyu(z) = C (z) -1 (χ 2j-1 (z)) 1≤j≤q , 1 ,whereC (z) = ρ j -σ k zχ 2k (z)χ 2j-1 (z) ρ 1≤j,k≤q

  where ζ := ṗ.7.3. Invariant tori of the Szegő hierarchy and unitary equivalence of pairs of Hankel operators

( 7 .

 7 3.2) U * S * U = F (H 2 u )F (K 2 u ) 2 S * F (H 2 u ) . For simplicity, set D := D 2j-1 and d := d 2j-1 . Recall from Proposition 3 that a basis of E u (ρ j ) is z a D H u (u j ) , a = 0, . . . , d ,and a basis ofF u (ρ j ) = E u (ρ j ) ∩ u ⊥ is z b D H u (u j ) , b = 0, . . . , d -1 .For a = 1, . . . , d 2j-1 , we inferU * S * U z a D H u (u j ) = z a-1 D H u (u j ) , or U z a D H u (u j ) = (S * ) d-a U z d D H u (u j) , a = 0, . . . , d .

  u j ) = P D H ũ(ũ j ) , and using that, for a = 0, . . . , d -1,(S * ) d-a P D H ũ(ũ j ) ∈ F ũ(ρ j ) ,we infer P (0) = 0, and, by iterating this argument, that P is divisible by z d , in other words,U z d D H u (u j ) = c z d D H ũ(ũ j ) ,for some c ∈ C, and concludeU z a D H u (u j ) = c z a D H ũ(ũ j) , a = 0, . . . , d .

1 ( 1 -

 11 3.2) becomes, on Ran(H u ), U * S * U = S * .In other words, the actions of S * on W := span z a D , a = 0, . . . , d and on W := span z a D , a = 0, . . . , d are conjugated. WritingD(z) = p∈P (1 -pz) mp ,where P is a finite subset of D \ {0}, and m p are positive integers, and using the elementary identities(S * -pI) 1 (1 -pz) k = S * pz) k-1 ,one easily checks that the eigenvalues of S * on W are precisely the p's, for p ∈ P, and 0, with the corresponding algebraic multiplicities m p andm 0 = 1 + d -p∈P m p .

2 ; F (σ 2 k ) = e i γ 2k 2 , 7

 2227 k , a = 0, . . . d .Comparing to the above formula forV (u ′ k ), we obtain cD = F (σ 2 k ) D , thus, since D(0) = 1 = D(0), we have D = D, c = F (σ 2 k ), and finally Ψ 2k (ũ) = F (σ 2 k ) 2 Ψ 2k (u) . Assume that (2) holds. Define F : Σ H (u) ∪ Σ K (u) → S 1 by F (ρ 2 j ) = e -i γ 2j-1and, if necessary, we define F (0) to be any complex number of modulus 1. Next we define U on the closed range of H u , which is the closed orthogonal sum of E u (s r ). Thus we just have to defineU : E u (s r ) → E ũ(s r ). If r = 2j -1, we set (7.3.4) U z a D 2j-1 H u (u j ) = F (ρ 2 j ) z a D 2j-1 H ũ(ũ j ) , a = 0, . . . , d2j-1 . If r = 2k and d 2k ≥ 1, we set (k , b = 1, . . . , d 2k . Using (7.3.4) we obtain

( 7 .

 7 3.9) ζ d-b + a 1 ζ d-b-1 + • • • + a d ζ -b = 0 , b = 0, . . . , d -1 , ζ 0 + a 1 ζ -1 + • • • + a d ζ -d = 0 , with ζ k = ζ -k , k = 0, . . . , d, is the trivial solution ζ = 0.We proceed by induction on d. For d = 1, the system readsζ 1 + a 1 ζ 0 = 0 , , ζ 0 + a 1 ζ 1 = 0 . Since |a 1 | < 1, this trivially implies ζ 0 = ζ 1 = 0.For a general d, we plug the expressionζ d = -(a 1 ζ d-1 + • • • + a d ζ 0 )into the last equation. We get (7.3.10)ζ 0 + b 1 ζ 1 + • • • + b d-1 ζ d-1 = 0 with b k = a k -a d a d-k 1 -|a d | 2 , k = 1, . . . , d -1 . Notice that from Proposition 2, |a d | < 1 and the polynomial z d-1 + b 1 z d-2 + • • • + b d-1 hasall its roots in D. For b = 1, . . . , d -1, we multiply by a d the conjugate of equationζ b + a 1 ζ b-1 + • • • + a d ζ b-d = 0and substract the result from equationζ d-b + a 1 ζ d-b-1 + • • • + a d ζ -b = 0 .This yields ζ d-b + b 1 ζ d-b-1 + • • • + b d-1 ζ 1-b = 0 . Together with Equation (7.3.10), this is exactly the system at order d -1 with coefficients b 1 , . . . , b d-1 . By induction, we obtain ζ 0 = ζ 1 = • • • = ζ d-1 = 0 and finally ζ d = 0.

  Let us consider the special case where H u is an operator of finite rank N. From identity (2.1.2), H u and H 2 u have the same kernel, hence have the same rank. Then (2.1.4) implies that the rank of K u is N -1 or N. Definition 1. -If d is a positive integer, we denote by V(d) the set of symbols u such that the sum of the rank of H u and of the rank of K u is d.

		1/2 + (S 1 ), K u is Hilbert-Schmidt and symmetric
	as well. As a consequence, operators H 2 u and K 2 u are C-linear trace
	class positive operators on L 2 + (S 1 ). Recall that the singular values of
	H u and K u correspond to the square roots of the eigenvalues of the self-
	adjoint positive operators H 2 u and K 2 u . Moreover, operators H 2 u and K 2 u
	are related by the following important identity,
	(2.1.4)	K 2 u = H 2 u -(•|u)u .

  Remark 3. -At this stage, let us notice that the above construction would break down if, instead of formula (6.2.2), we used for u δ,ε the more natural choice u ((s, δ(1 + εξ 1 ), δ(1 + εη 1 ), . . . , δ(1 + εξ N ), δ(1 + εη N )) , (Ψ, 1, . . . , 1)) ,

	2
	, 1 N
	=k
	which is clearly not zero .
	This completes the proof of Lemma 15, hence of the first part of Propo-
	sition 4.

strongly, and we will see that this requires some non resonance assumption on the corresponding angles.

We consider the case r = 1. The proof in the other cases follows the same lines. Write m j := d 2j-1 + 1 and ℓ k := d 2k + 1. From the assumption, V := V (d 1 ,0,0,d 2 ,...,dn) is non empty, hence Φ establishes a diffeomorphism from V into S (d 1 ,0,0,d 2 ,...,dn) .

Therefore, given ρ > σ 2 > ρ 3 > σ 3 > • • • > ρ q+1 > σ q+1 > 0, and Ψ 1 , θ 1 , ϕ 2 , Ψ 4 , . . . , Ψ n+2 , for every ε > 0 small enough, we define u ε := u((s ε 1 , . . . , s ε 2(q+1) ), (Ψ 1 , . . . , Ψ 2(q+1) )) with s ε 1 := ρ + ε , s ε 2 := ρ , s ε 3 := ρ -ε , s ε 2k := σ k , 2 ≤ k ≤ q + 1 , s ε 2j-1 := ρ j , 3 ≤ j ≤ q + 1 , Ψ 2 := e -iθ 1 , Ψ 3 := e -iϕ 2 .

By making ε go to 0, we are going to construct u in V (d 1 +1,d 2 ,...,dn) , such that s 1 (u) = ρ is of multiplicity m 1 + 1 = d 1 + 2, s 2j-1 (u) = ρ j+1 , j = 2, . . . , q, is of multiplicity m j and s 2k (u) = σ k+1 for k = 1, . . . , q, is of multiplicity ℓ k .

First of all, observe that u ε is bounded in

Hence, by the Rellich theorem, up to extracting a subsequence, u ε strongly converges in L 2 + to some u ∈ H 1/2 + . Similarly, the orthogonal projections u ε j and (u ε k ) ′ are bounded in L 2 + , hence are weakly convergent

Proof. -In view of the continuity of the flow map on H 1/2 + , see [START_REF] Gérard | The cubic Szegő equation[END_REF], we may assume that H u 0 is of finite rank. Let u be the corresponding solution of the cubic Szegő equation. Let ρ be a singular value of H u in Σ H (u) such that m := dim E u (ρ) = dim F u (ρ) + 1 and denote by u ρ the orthogonal projection of u on E u (ρ). Hence, u ρ = 1l {ρ 2 } (H 2 u )(u). Let us differentiate this equation with respect to time. Recall [START_REF] Gérard | The cubic Szegő equation[END_REF], [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF] that (5.1.1)

Here we recall that T b denotes the Toeplitz operator of symbol b,

We get from this Lax pair structure 

On the other hand, differentiating the equation

Hence, using the expression (5.1.2), we get

For the convenience of the reader, we recall the main properties of the hierarchy. For y > 0 and u ∈ H

+ , we set J y (u) = ((I + yH 2 u ) -1 (1)|1) . Notice that the connection with the Szegő equation is made by

Thanks to formula (3.2.7), J y (u) is a function of the singular values s r (u). For every s > 1 2 , J y is a smooth real valued function on H s + , and its Hamiltonian vector field is given by

, which is a Lipschitz vector field on bounded subsets of H s + . By the Cauchy-Lipschitz theorem, the evolution equation

admits local in time solutions for every initial data in H s + for s > 1, and the lifetime is bounded from below if the data are bounded in H s + . We recall that this evolution equation admits a Lax pair structure ( [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF]).

Theorem 10. -For every u ∈ H s + , we have

In particular, Σ H (u 0 ) = Σ H (u(t)) and Σ K (u 0 ) = Σ K (u(t)) for every t, therefore J y (u(t)) is a constant J y . We now state the main result of this section.

The solution of u = X J y (u) , u(0) = u 0 , is characterized by

Proof. -Let ρ ∈ Σ H (u 0 ). Denote by u ρ the orthogonal projection of u on E u (ρ). Hence, u ρ = 1l {ρ 2 } (H 2 u )(u). Let us differentiate this equation with respect to time. We get from the Lax pair structure

On the other hand, differentiating the equation

Hence, using the expression (7.1.2), we get

It remains to prove that the left hand side of this equality is zero. We first show that, for any p ∈ D such that χ p is a factor of χ, for every

We already used that, for any function

.

We claim that H u (e) = χ p H u (χ p e). Indeed, from the assumption e ∈ E u (ρ) and χ p e ∈ E u (ρ), we can write e = f H u (u ρ ) with Π(Ψf ) = Ψf and Π(Ψχ p f ) = Ψχ p f . From Lemma 7, we infer

This proves the claim. Since (1|χ p ) = -p, we conclude that C(z) = 0. Hence [B y u , χ p ](e) = 0. Arguing as in the previous section, we conclude that

It remains to consider the other eigenvalues. Let σ ∈ Σ K (u 0 ). Denote by u ′ σ the orthogonal projection of u on F u (σ). We compute the derivative of u ′ σ = 1l {σ 2 } (K 2 u )(u) as before. From the Lax pair formula, we get

H u w y = J y (I + yK 2 u ) -1 (u) . Formula (7.1.3) follows by taking the orthogonal projection on F u (σ). Using Formula (7.1.3), we get

On the other hand, differentiating the equation

From identity (7.1.5), we use the expression of du ′ σ dt obtained above to get Ψ + 2i

The result follows once we prove that [C y u , Ψ](u ′ σ ) = 0. From the arguments developed before, it is sufficient to prove that [C y u , χ p ](f ) = 0 for any f ∈ F u (σ) such that χ p f ∈ F u (σ). As before

Notice that w y = 1 -yH u w y , hence c = -yc. Let us first prove that c = 0. Using formula (7.1.5),

since, as we already observed at the end of the proof of Theorem 8,

This completes the proof. coefficients of u j , u j H u (u ℓ ), 1 ≤ j, ℓ ≤ q, and of the following functions, for ζ ∈ C and 1 ≤ j, k ≤ q,

We assume Lemma 21 and show how it implies Lemma 20. Notice that

and therefore α(u) cancels on u j , u j H u (u ℓ ), 1 ≤ j, ℓ ≤ q. We now deal with vectors uχr,ζ .

where we used that u j /(z -p) belongs to L 2 + . Since H 2 u (u j ) = ρ 2 j u j and ρ 2 j |u j | 2 = |H u (u j )| 2 on the unit circle, we infer

and consequently

which is 0 for every ζ ∈ C if and only if

Let us prove this identity. Set

Notice that, since χ 2j-1 (p) = 0, v ∈ E u (ρ j ), and moreover

Similarly, we calculate

where we have used that K u (u ′ k )/(z -p) belongs to L 2 + . We conclude that

on the unit circle, we are left to prove

We notice that w ∈ F u (σ k ), and that zw ∈ F u (σ k ). Moreover,

In particular, (K u (w)|1) = K u (w)(0) = 0 .

We now conclude as follows,

classes of some specific unitary equivalence between the pairs (H u , K u ), which we now define.

and there exists a Borel function F : R + → S 1 such that

It is easy to check that the above definition gives rise to an equivalence relation.

Theorem 12. -Given u, ũ ∈ V MO + \ {0}, the following assertions are equivalent.

Proof. -Assume that (1) holds. Then H 2 ũ is unitarily equivalent to H 2 u , and K 2 ũ is unitarily equivalent to K 2 u . This clearly implies Σ H (ũ) = Σ H (u) and Σ K (ũ) = Σ K (u), so that s r (ũ) = s r (u) for every r. Let us show that, for every r, Ψ r (u) and Ψ r (ũ) only differ by a phase factor. Of course the only cases to be addressed are d r ≥ 1. We start with r = 2j -1. From the hypothesis, we infer

U(H u (u j )) = H ũ(U (u j )) = F (ρ 2 j )H ũ(ũ j ) . Next we take advantage of the identity

, by evaluating U * S * U on the closed range of H u . We compute

Next, we study the case r = 2k. Then

. Denote by P u the orthogonal projector onto Ran(H u ), and compute

and a basis of

Applying identity (7.3.3) to z a D u ′ k for a = 0, . . . , d -1, we infer

In particular, the right hand side belongs to E ũ(σ k ) for a = 1, . . . , d. On the other hand, if Q ∈ C[z] has degree at most d,

where γσ k e -i ψ2k is the coefficient of z d in Q. Therefore the left hand side belongs to E ũ(σ k ) if and only if

Consequently, we get

A similar argument combined to Proposition 3 leads to

Next, we prove that U is unitary. It is enough to prove that every map U : E u (s r ) → E ũ(s r ) is unitary, or that the Gram matrix of a basis of E u (s r ) is equal to the Gram matrix of its image. We first deal with r = 2j -1. Equivalently, we prove that, for a, b = 0, . . . , d 2j-1 -1,

We set

and we notice that

We drop the subscript 2j -1 for simplicity and we set

As ΨH u (u j ) is orthogonal to z a D H u (u j ) for a = 0, . . . , d -1, and H u (u j ) 2 = ρ 2 j τ 2 j , we obtain the system Assume for a while that this lemma is proved. Since τ 2 j can be expressed in terms of the (s r )'s -see (3.2.5), we infer that U : E u (ρ j ) → E ũ(ρ j ) is unitary. Similarly, one proves that the Gram matrix of the basis z a D 2k u ′ k , a = 0, . . . , d 2k of F u (σ k ) only depends on the (s r )'s and on D 2k . In particular,

is unitary and finally is unitary from the closed range of H u onto the closed range of H ũ.

Next, we construct V on the closed range of H u which is the orthogonal sum of the F u (σ) for σ ∈ Σ H ∪ Σ K . Thus we just have to define V :

If r = 2k and d 2k ≥ 1, we set

A similar argument combined with Proposition 3 leads to

Using again Lemma 22, V is unitary from the closed range of H u onto the closed range of H ũ.

Now we define U and V on the kernel of H u which is either {0} or an infinite dimensional separable Hilbert space. From Corollary 3, the cancellation of ker H u only depends on the s r 's. Therefore, ker H u and ker H ũ are isometric. We then define U = V from ker H u onto ker H ũ to be any unitary operator.

It remains to prove that U * V = F (H 2 u )F (K 2 u ). On ker H u , it is trivial since U * V = I = F (0)F (0). Similarly, it is trivial on vectors