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Land use/cover change (LUCC), as an important factor in global change, is a topic that has recently
received considerable attention in the prospective modeling domain. There are many approaches and
software packages for modeling LUCC, many of them are empirical approaches based on past LUCC such
as CLUE-S, DINAMICA EGO, CA_MARKOV and Land Change Modeler (both available in IDRISI). This study
reviews the possibilities and the limits of these four modeling software packages. First, a revision of the
methods and tools available for each model was performed, taking into account how the models carry
out the different procedures involved in the modeling process: quantity of change estimate, change

Keywords: X R . . . .

LucC potential evaluation, spatial allocation of change, reproduction of temporal and spatial patterns, model
Modeling evaluation and advanced modeling options. Additional considerations, such as flexibility and user
GIS friendliness were also taken into account. Then, the four models were applied to a virtual case study to

illustrate the previous descriptions with a typical LUCC scenario that consists of four processes of change
(conversion of forest to two different types of crops, crop abandonment and urban sprawl) that follow
different spatial patterns and are conditioned by different drivers. The outputs were compared to assess
the quantity of change estimates, the change potential and the simulated prospective maps. Finally, we
discussed some basic criteria to define a “good” model.

Virtual case study
Prospective
Simulation

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction LUCC express social, environmental, institutional, and economic

processes. Therefore, modeling LUCC involves the coupled human-

Land use/cover change (LUCC) is significant to a range of aspects
of global environmental change and has, thus, received increasing
attention from scientists and decision makers. Over the last two
decades, a broad range of models of LUCC have been developed to
assist in land management and to better understand, evaluate and
project the future role of LUCC within the functioning of the earth
system. Modeling, particularly if performed using a spatially
explicit approach, is an important technique for projecting and
exploring alternative future scenarios, for conducting experiments
that help understanding and for quantitatively describing key
processes (Veldkamp and Lambin, 2001).
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environment system. LUCC models comprise a wide variety of
methodological approaches, which can be categorized in different
ways (Parker et al., 2003; Gaucherel and Houet, 2009). The models
can be static or dynamic, spatial or non-spatial (i.e., exploring
patterns of change vs. rates of change), inductive or deductive (i.e.,
with model parameters based on statistical correlations vs. explicit
descriptions of the process), agent-based or pattern-based (i.e.,
emulation of individual decision makers vs. inference of underlying
behavior from the observation of patterns in the LUCC). The models
can use a large range of information (remotely sensed classified
images, biophysical and socioeconomic variables, economic in-
dicators and scenarios, census data, field survey, etc.), are often
embedded in GIS and can eventually be used in combination (see,
for example, Castella and Verburg, 2007; Overmars et al., 2007).
The models concerned by the present study are dynamic spatially
explicit models based on an inductive pattern-based approach.
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Important modeling approaches, such as agent based models
(Parker et al., 2001), are therefore not included in the present study.

In this inductive pattern approach, LUCC is modeled empirically
using past LUCC or land use/cover (LUC) spatial distribution to
develop a mathematical model that estimates the change potential
as a function of a set of explanatory spatial variables (Veldkamp and
Lambin, 2001; Paegelow and Camacho Olmedo, 2008). This math-
ematical model can also be based on theoretical assumptions. In
models based on past LUCC, usually two LUC maps from two
different dates are compared to estimate the patterns and pro-
cesses of change (types of transitions and rates of change) for model
parameterization called hereafter calibration (Fig. 1). The analysis
of past changes or LUC distributions with regard to spatial
explanatory variables enables to assess the degree to which loca-
tions might likely change in the future (Kolb et al., 2013). This
change potential is also referred to as propensity, probability, sus-
ceptibility and suitability in the literature. These maps by them-
selves can be considered as a first product generated in the
modeling process.

Further procedures, applied to create a prospective LUC map,
involve techniques that are used to allocate the amount of certain
changes established through the projection of the amount of his-
torical LUCC across space, and the procedures eventually reproduce
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Fig. 1. Flowchart of the general procedure used in LUCC modeling. The rectangle shape
indicates a process, the parallelogram inputs to and outputs from a process.

the spatial patterns of changing landscapes. Finally, an assessment
of the model performance is carried out and is often based on the
spatial coincidence between a simulated map and an observed LUC
map, which is generally obtained through remotely sensed image
classification. Other methods include expert opinion, comparison
of outputs generated with multiple models or multiple runs with
the same model. The modeling process is shown in Fig. 1.

Different modeling software packages have certain functions
that may be useful and appropriate depending on the available
input data and the purpose of the LUCC modeling. Although some
models have been widely used, and their performance has been
evaluated more or less extensively (Agarwal et al., 2002; Eastman
et al., 2005; Johnson, 2009; Pontius et al., 2008; Schaldach and
Priess, 2008; Verburg et al., 2004b), there are very few studies
aimed at understanding the benefits and limitations of modeling
software programs by evaluating and comparing their tools and
performance (Theobald and Hobbs, 1998; Pontius and Malanson,
2005; Castella and Verburg, 2007; Pocewicz et al., 2008; Kim,
2010; Mas et al., 2011).

2. Methods

We compared and evaluated four frequently used models that
are all based on an inductive pattern approach, but present impor-
tant differences with respect to 1) the algorithm used to calibrate
the model (from statistical to machine learning approaches), 2) the
way they simulate the change (e.g. use or not of an automata
cellular), 3) the methods used to assess the model performance and,
4) the flexibility to adapt the model to user’s demands.

o IDRISI's CA_MARKOV uses Markov chain matrices to determine
the quantity of change along with suitability maps and cellular
automata to spatially allocate these changes. A detailed appli-
cation of this approach can be found in Paegelow and Camacho
Olmedo (2005). Examples of applications can be found in Houet
and Hubert-Moy (2006), Poska et al. (2007), Shirley and Batta-
glia (2008), Kamusoko et al. (2009), Paegelow et al. (2008),
Mobaied et al. (2011), Sang et al. (2011) and Adhikari and
Southworth (2012).

CLUE-S/Dyna-CLUE (Conversion of Land Use and Its Effects at
Small regional extent) is based upon an analysis of location
suitability using logistic regressions and simulates the compe-
tition and interactions between the different LUC types. More
information on the development of this model can be found in
Verburg et al. (2002) and Verburg and Overmars (2009). CLUE-S
(hereafter CLUE) has been applied to a large variety of topics,
including tropical deforestation (Verburg and Veldkamp, 2004;
Wassenaar et al., 2007), biofuel crops (Hellmann and Verburg,
2009), farmland abandonment (Verburg and Overmars, 2009)
and the effects of LUCC on carbon sequestration (Schulp et al.,
2008).

DINAMICA EGO (hereafter DINAMICA) uses transition proba-
bility maps that are based on the weight of evidence and genetic
algorithm methods. These maps simulate landscape dynamics
using both Markov chain matrices to determine the quantity of
change and a cellular automata approach to reproduce spatial
patterns. DINAMICA has been applied to a variety of studies,
such as modeling urban growth (Almeida et al., 2003; Thapa and
Murayama, 2011), tropical deforestation from local to basin-
wide scales (Soares-Filho et al., 2002, 2006, 2013; Cuevas and
Mas, 2008; Mas and Flamenco, 2011), fire regimes (Silvestrini
et al., 2011; Soares-Filho et al., 2012), rent and opportunity
cost of public policies or timber industry (http://www.
springerlink.com/content/100370/ Merry et al., 2009; Bowman
et al.,, 2012; Giudice et al., 2012), the evaluation of the costs
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and benefits of reducing carbon emissions from deforestation
and forest degradation (http://www.csr.ufmg.br/dinamica/
publications/publications.html Nepstad et al, 2009), the
assessment of the role of protected areas in reducing carbon
emissions (http://[www.csr.ufmg.br/dinamica/publications/
publications.html Soares-Filho et al., 2010: Yanai et al., 2012),
the assessment of the co-benefits of REDD (http://www.csr.
ufmg.br/dinamica/publications/publications.html Stickler et al.,
2009; Nunes et al.,, 2012) and ROC analysis (Mas et al., 2013).

e Land Change Modeler (available in IDRISI or as an ARC-GIS
extension) is a suite of tools with which the LUCC analysis and
modeling can be combined with biodiversity and greenhouse
gas emission assessments. The change modeling module is
based on Markov chain matrices and transition susceptibility
maps obtained by logistic regression or by training learning
machines (Eastman, 2009; Johnson, 2009; Pineda-Jaimes et al.,
2009). The Land Change Modeler was applied to identify trends
in LUCC (Vaclavik and Rogan, 2009), tropical deforestation (Koi
and Murayama, 2010), urban growth (Aguejdad and Houet,
2008), erosion under different conservation scenarios (Gaspari
et al.,, 2009) and habitat modeling (Gontier et al., 2009).

Additionally, the R software environment for statistical
computing and graphics was used to carry out the analysis of the
results and elaboration of graphics of the virtual case study (R
Development Core Team, 2012).

A review of the methods and tools offered by each model to
perform LUCC simulations was carried out by taking into account
the principal tasks involved in LUCC spatial modeling. 1) How does
the model estimate the quantity of changes? 2) How does the
model establish the relationship between the explanatory variables
and the changes to assess the degree of change potential? 3) How
does the model allocate the changes? 4) How does the model
simulate spatial patterns? Finally, 5) Which tools are provided to
evaluate the model? The first two tasks are related to the model
calibration, the two following ones to the simulation and the last
one to the model assessment (Fig. 1). We also examined the pos-
sibility of developing more sophisticated models along with user
friendliness and support materials.

In a subsequent step, each model was applied to a virtual case
study, which is a data set created by the authors for this compar-
ative study. This strategy made it possible to control the conditions
and offered the possibility for elaborating challenging situations to
test specific modeling tasks. Therefore, the model assessment was
not based upon the comparison between simulated and observed
maps because such results largely depend on the specificities of the
study area and change dynamics. In this simplified case study, the
models were assessed using a range of criteria involving an analysis
of the outputs (projection of the change magnitude, maps of the
change potential, prospective LUC maps). The application to the
virtual case was not intended to rank the models but rather to
illustrate the different approaches used by the models to accom-
plish the modeling tasks. Consequently no assessment of model
results were carried out, however in the discussion we evaluate the
flexibility/performance of each software package to accomplish the
modeling tasks.

3. Results
3.1. Model reviews
3.1.1. Modeling procedures
In the following section, the methods and tools offered by each

model to accomplish each one of the five principal tasks involved in
LUCC spatial modeling are described. Subsequently, descriptions

concerning advanced parameter settings and additional consider-
ations are presented.

3.1.2. Quantity of change estimate

In CA_MARKOV, DINAMICA and LCM, the changes are computed
from a Markov matrix that is generally obtained through the
comparison of the LUC maps from two dates. Markov chain pro-
jection provides the model with the estimated areas of each LUC
category for future dates and the amount of change for each tran-
sition (“from-to” quantities).

The transition matrix for the period between dates to and t;
(t1 = to + T) is obtained by overlaying the two LUC maps dated ty
and t1. This matrix indicates the area (or number of pixels) for each
transition and can be transformed into a Markov chain probability
matrix for the entire period (hereafter the base transition matrix),
which is the basis for projecting to a future date after one or several
periods T (for instance date t; + T). However, it is often desirable to
use a time set different from the original period T for projecting into
the future. For instance, the period between the two LUC maps used
to calibrate the model is typically multiple years (10 years in our
example) and the model runs using one year as the time step.

In DINAMICA, the base transition probability matrix is trans-
formed into an annual matrix A by matricial calculation (Equation
(1)) to project the trends of change on an annual basis (Bell and
Hinojosa, 1977; Soares-Filho et al., 2002; Takada et al., 2010).

(' 0
A=H H1 (1)
( 0 <An>”‘>

where A is the annual matrix, t is the number of years, B is the
original base transition matrix, H is the eigenvector of B, and 4; is
the i-th eigenvalue of B.

In IDRISI (CA_MARKOV and LCM), the projections are also per-
formed by creating a matrix to calculate the quantity of each LUC
for a desired date. When the date being projected forward is a
multiple of the calibration period, this transition probability matrix
is calculated using a simple powering. For example, as in our virtual
case study with a calibration period of 10 years (2000—2010), the
base matrix squared would correspond to change probabilities for
2020, raised to the power of three to 2030 and so on. When the
projected time period is not a multiple of the calibration period,
then the power rule is used to generate three transition matrices
that envelop the projection time period (the date to be interpolated
will be between the first two dates). The three values at each cell in
the transition probability matrix are then fed into a quadratic
regression (thus, there is a separate regression for each cell), and
this equation is then used to interpolate the unknown transition
probability. A complete description of the algorithm can be found in
the IDRISI Selva help system (command Markov).

CA_MARKOV is the only model that takes into account the ac-
curacy of the input LUC maps and uses this information to modify
the transition matrix. When a proportional error greater than zero
is specified, probability values that are equal to or greater than the
values established for the probability of the permanence of that
row in the matrix are reduced by the amount of the error (in
percent). The remaining probability values (except null values) are
evenly increased to force the probabilities to sum to one. Usually,
this adjustment decreases the probability values of persistent pairs
and increases the probability values of change pairs. However, in
most cases, the mapping errors lead to an overestimation of the
quantity of change, and the application of this corrective method
will exacerbate the bias of the estimates of change probabilities.

In CLUE, the area of land cover categories (and not of each
transition) is provided by the user for each simulated year. These


http://www.csr.ufmg.br/dinamica/publications/publications.html
http://www.csr.ufmg.br/dinamica/publications/publications.html
http://www.csr.ufmg.br/dinamica/publications/publications.html
http://www.csr.ufmg.br/dinamica/publications/publications.html
http://www.csr.ufmg.br/dinamica/publications/publications.html
http://www.csr.ufmg.br/dinamica/publications/publications.html

J.-E Mas et al. / Environmental Modelling & Software 51 (2014) 94—111 97

areas can be obtained through a large variety of approaches (simple
trend extrapolations, Markov projections, and economic models,
among others) but should be evaluated using tools external to
CLUE. In the absence of information about the quantity of change
per transition, the indication of which LUC can be transformed into
another is provided to the model through the concept of conversion
elasticity and LUC type-specific transition sequences. The elasticity
is related to the reversibility of LUCC. LUC with high capital in-
vestment or irreversible impact on the environment, such as in
urban areas, are not easily converted into other LUC and, therefore,
present a low elasticity. Other LUC are more easily converted and,
therefore, have more elasticity (Verburg, 2010). A dimensionless
value that represents the relative elasticity to conversion, which
ranges from zero (easy conversion) to one (irreversible change), is
specified by the user based on expert knowledge or observed
behavior in the recent past. The transition sequence is a set of rules
that determine the possible LUC conversions.

3.1.3. Change potential evaluation

Model calibration aims at selecting biophysical or socio-
economical explanatory variables and establishing their relation-
ships with change potential. Typical explanatory variables are the
slope, the distance to roads and settlements, the land tenure and
the soil types. The change potential of a given transition can be
represented through two slightly different approaches: the suit-
ability of a location for a given LUC resulting from the transition and
the probability to present this transition.

CLUE and CA_MARKOV use maps that express the suitability of a
location for each of the LUC types. DINAMICA and LCM compute the
probability of each transition taking place (in fact, when using
neural networks or other machine learning tools, the values cannot
be considered to be probabilities in a strict sense but are inter-
preted in the same manner, which is as values ranking the potential
of change). The drawback of the suitability approach is that it does
not consider the spatial configuration of past changes during the
calibration period because it is based on the relationship of LUC to
explanatory factors. For instance, a suitability map for a secondary
forest will not indicate the more likely areas for the transition from
forest to secondary forest (degradation) because this category can
also be obtained through cropland abandonment (recovery), and
these two processes are likely to occur at different places (Kolb
et al,, 2013). In this context CLUE uses the elasticity values to
manage the amount of changes from one LUC to another, necessary
to fulfill the established change rules. However, for a simulation
over a long period of time with non-stationary change patterns, the
suitability approach is likely to be more stable and give better re-
sults. Another advantage of this approach is that a model can be
calibrated with only one available LUC map. In contrast, transition
probability maps are derived from the relationships between areas
that changed in the past and explanatory variables; therefore, these
maps are more likely to be able to capture change processes and
provide better spatial future LUCC estimations, which is observed
specifically for stationary change processes and short simulations
(Kolb et al., 2013). Conversely, due to the reduced number of
changes in relation to the entire study area, the statistical signifi-
cance of the probability values can be affected, and this effect is less
pronounced in the suitability approach.

Both types of change potential maps are elaborated by estab-
lishing a relationship between explanatory variables and LUC or
transition types. In CA_MARKOV, the suitability maps are generated
by a multicriteria evaluation (MCE) for which the IDRISI framework
provides multiple tools. CLUE uses logistic regression models that
have to be run in separate programs for statistical analysis. It is also
possible to use other models to elaborate the suitability maps,
because these maps can be directly read by the model (Overmars

et al., 2007). DINAMICA calculates a probability map using the
weights of the evidence method (Bonham-Carter, 1994) and can
also cope with probability maps generated outside DINAMICA. The
weights of evidence can be tuned using expert knowledge or a
genetic algorithm to improve the fit between the maps of the
change probability and the LUCC map used for the model calibra-
tion (Soares-Filho et al., 2013). LCM offers three approaches to
produce the probability map: logistic regression, multilayer per-
ceptron (MLP) trained by backpropagation, which is a commonly
used supervised neural network, and a similarity-weighted
instance-based machine learning tool known as SimWeight
(Sangermano et al., 2010).

These methods imply different assumptions and preprocessing
of the explanatory variables. Logistic regression models and
weights of evidence are based on the assumption of independence
between explanatory variables. Such independence is often lacking,
and DINAMICA and IDRISI have tools to evaluate the correlation
between maps (Cramer’s coefficient, Chi square, correlation and
Kappa in IDRISI; Cramer’s, contingency and joint information un-
certainty in DINAMICA). The weight of evidence computing is based
on categorical variables, and DINAMICA has a tool to preserve the
data structure when converting continuous structures into a cate-
gorical map. Conversely, the logistic regression models, the multi-
layer perceptron and SimWeight use preferentially continuous
variables because the conversion of a map of k categories into k—1
categorical binary maps (dummy variables) increases the size of the
model, affecting its performance. In IDRISI, categorical maps can be
converted into continuous maps using the Evidence Likelihood
transformation based on the relative frequency of pixels belonging
to the different categories within areas of change.

These methods offer different degrees of integration regarding
expert knowledge and ability to fit the relationship between the
explanatory variables and the transition potential or the suitability.
Multicriteria evaluation (CA_MARKOV) enables the consideration
of expert knowledge, while logistic regression and especially ma-
chine learning tools (neural networks, genetic algorithms, Sim-
Weight) do not. In DINAMICA, the relationships between
explanatory variables and the weights of evidence can be displayed
and eventually edited (Fig. 2). It is, therefore, possible to tune the
level of consideration of expert knowledge from an entirely sta-
tistical, data-driven approach (without modifying the statistically
calculated values of the weights or modifying them through the
genetic algorithm) to an expert knowledge-driven approach
(important modification of the weights or complete edition by the
expert). However, in all of these approaches, the use of expert
knowledge is critical for the determination of the main processes,
the selection of the potential driving variables and the evaluation of
the outcomes of the change potential evaluation (Verburg et al.,
2003). It is worth noting that even in machine learning, the user
must specify the input maps based on hypotheses regarding
possible determinants to avoid finding spurious correlations.

The methods also differ in their flexibility to capture the re-
lationships between the change potential and the explanatory
variables. Logistic regression models will be unable to properly
model a function that is not sigmoidal, but explanatory variables
can be transformed to allow deviations from a sigmoid function. As
the weights of evidence are calculated for each category, the
weights can fit complex functions depending on the way the cat-
egories were defined. These two approaches are based on an ad-
ditive effect of the explanatory variables. Conversely, machine
learning approaches use model-free functions and can handle
complex non-linear functions, taking into account the synergism or
the inhibitory effects between variables. These approaches are,
therefore, expected to better fit a function between change po-
tential and explanatory variables. However, the capacity to model
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Fig. 2. Display and edition of weights of evidence (DINAMICA). This graph presents the weights of evidence of transition Forest to cropland 1 as a function of the distance from road.
If the user would consider that the weight associated with the 12th range category is not an adequate representation of the effect of distance from road on the transition probability,

he can modify its value.

complex functions with a high goodness of fit is not necessarily an
advantage in prospective modeling because it can lead to over-
fitting a model to the calibration period, such that the model will
demonstrate a poor performance when the past conditions (used to
calibrate the model) and the conditions during the simulated
period are not the same. For example, Mas et al. (2004) found that
more complex neural networks allow for better fitting during the
calibration period but fail in predicting change in the following
period. Soares-Filho et al. (2013) observed the same overfitting
effect using a genetic algorithm. DINAMICA enables the user to
specify an envelope of maximum variation to overcome overfitting.
Pérez Vega et al. (2012) reported that the principal drawback when
modeling deforestation was due to the differences between rates
and spatial patterns of change during the calibration and the
simulation periods. The multilayer perceptron used in LCM has
different stopping criteria to avoid overfitting. In DINAMICA, the
genetic algorithm constrains the new values of weights of evidence

Table 1

to an envelope around each statistically determined original value
to avoid overfitting.

Finally, the approaches provide different levels of information to
understand the effect of the explanatory variables on change and
their interactions. From this point of view, logistic regression is
perhaps the more useful approach. During regression model elab-
oration, a large number of methods and indices (stepwise selection
of explanatory variables, Wald index, Akaike’s Information Criterion,
and analysis of variance, among others) can be used to select the
variables with more predictive power based on their relative
contribution to the model. However, the use of regression models
to seek the best predictive model and identify factors influencing
response variables (such as species or LUCC occurrence) may
generate spurious results due to multicollinearity (Mac Nally, 2000,
2002). The graphing of weights of evidence provided by DINAMICA
also allows the visualization of the effects of the variables, but this
graphing only takes into account one transition and one variable at

Model features related to change potential evaluation. This table is based on the standard methods of each model, change potential maps obtained through other methods can

be eventually incorporated into the models.

Program Change Analysis of drivers Expert knowledge Data driven Expected goodness of fit
potential map integration (GF)/over fitting risk (OFR)
CA_MARKOV Suitability Multicriteria evaluation Yes* Yes* Depending on expert knowledge,
satisfactory GF without OFR
CLUE Suitability Logistic regression No Yes Poor GF if change potential is not a sigmoid
function of the variable, OFR unlikely
DINAMICA Transition Weight of evidence Yes* Yes* High GF with OFR if change is
probability statistically under-represented
Genetic algorithm No Yes High GF with OFR
LCM Transition Logistic regression No Yes Poor GF if change potential is not a sigmoid
probability function of the variable, OFR unlikely
Multilayer perceptron No Yes High GF with OFR
SimWeight No Yes High GF with OFR

2 CA_MARKOV and DINAMICA enable expert knowledge or data driven modeling depending on the way change potentials are created.
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a time, without considering the interaction between variables. The
interpretation is very intuitive: a positive value indicates that the
category favors the transition, while a negative value indicates an
inhibition of the transition (low probability). For example, the
values of the weights decrease with the distance from roads, and
the difference in weight value between short and long distances
indicates that the distance from roads has a strong effect on the
transition probability (Fig. 2). Machine learning approaches, such as
neural networks, genetic algorithms or SimWeight, are often
perceived as black boxes that establish a transfer function between
inputs (the explanatory variables) and output (change potential)
without any knowledge of their internal working (Qiu and Jensen,
2004; Mas and Flores, 2008). This perception can be nuanced,
such as in the case of SimWeight, which is simple to understand
and provides the user with information on the relative importance
of each explanatory variable (Sangermano et al., 2010). In order to
train the IDRISI MLP, half of the training data are randomly selected
for learning and half for validation. After the MLP has been trained,
validation data are used to calculate a “skill measure” (computed as
the accuracy of transition prediction minus the accuracy expected
by chance). Different subsets of variables are maintained constant,
are used to assess the contribution of individual variables, along
with interaction effects. Table 1 summarizes the mean character-
istics of the methods related to change potential evaluation.

3.14. Spatial allocation of change

Change allocation is essentially a decision process that selects
the pixels that actually change from one category to another from
the change potential maps. Under the assumption that the pixels
that will change are those that have the highest potential (or
highest suitability for the “destination” LUC category), CA_MARKOV
and LCM rank the pixels and then select the top ranks according to
the area required. Because there will commonly be competition for
specific land parcels (the same location can be a candidate for
various transitions), CA_MARKOV and LCM use a multi-objective
allocation procedure that iteratively reclassifies the ranked suit-
ability maps to perform a first-stage allocation, checks for conflicts,
and then resolves the conflicts based on a minimum-distance-to-
ideal-point rule using the weighted ranks.

CLUE uses a ranking dynamic modeling approach that locally
selects most suitable land use accounting for the aggregate land
claims as a driver of the relative competitiveness of the different
land use types. Additionally, conversion elasticities, which are
established by the user (expert knowledge, only applied if the pixel
is already under the specific land use type in the current modeling
step) and by a conversion matrix to indicate unlikely conversions as
well as fixed conversion trajectories, are accounted for in the
model. Local suitability, conversion elasticity and the relative
competitiveness represent the land rent for each use at each loca-
tion, and competitiveness is updated during an iterative procedure
to match the allocation and land claims.

DINAMICA normalizes the probability maps of concurrent
transitions (the probabilities of transitions concerning the same
initial (from) LUC category must sum to one). Next, DINAMICA uses
two cellular automata-based transition functions that employ a
stochastic selection algorithm: pixels are ranked according to their
change potential from greatest to lowest potential. A pruning factor
is multiplied by the expected number of cells to be changed and
selects the cells that will take part in the selection mechanism
based on their spatial probability. Therefore, increasing the pruning
factor allows simulated changes to occur in less likely areas. By
default, the pruning factor value is ten, which means that ten times
the number of cells to be changed are selected based on their
transition probabilities and eventually selected using a lottery
process taking into account their change potential and a random

number. If the pruning factor is reduced to one, the model becomes
almost deterministic.

3.1.5. Reproduction of temporal and spatial patterns

CA_MARKOV and DINAMICA use a neighborhood filter referred
as cellular automata (CA) approach to obtain a proximity effect that
makes changes occur in the form of patches to simulate landscape
patterns. In CA_MARKOV, the CA reduces the suitability of land
away from existing areas of that type, using by default a 5 x 5 filter,
which can be substituted by a user-defined filter. Users can also
control the number of cellular automata iterations and, therefore,
the effect of agglomeration around pre-existing or newly created
patches. The same CA is applied to all transitions. DINAMICA uses
two complementary CA: 1) the Expander and 2) the Patcher. The
first process is dedicated only to the expansion of previously
formed patches. The second process is designed to generate new
patches through a seeding mechanism. The combination of these
two CA presents numerous possibilities with respect to the gen-
eration of spatial patterns of change. The user can set parameters to
control the mean patch size, the patch size variance, and the
isometry for each transition separately. Increasing the patch size
leads to a model with a less fragmented landscape; increasing the
patch size variance leads to a more diverse landscape, and setting
the isometry greater than one leads to the creation of more iso-
metric patches. CLUE and LCM do not apply a CA procedure. CLUE
has the option to consider neighborhood interaction that influences
the suitability maps through spatial filters (Verburg et al., 2004a).

Additional features aimed at reproducing the spatio-temporal
patterns in the different models include the possibility of dealing
with transition trajectories, sojourn time, saturation effects, the use
of dynamic variables and areas where change is restricted. To
address fluctuations in change rates, DINAMICA allows the
replacement of the Markov matrix at specific steps of the simula-
tion. Certain transitions are deterministic, such as the transition
from secondary forest to mature forest, and depend on the sojourn
time of the vegetation succession. Only CLUE allows setting a
sojourn time for each transition. In CA_MARKOV and DINAMICA, a
procedure to control the sojourn times using time counters can be
easily implemented. Certain transitions stop when the amount of
change has reached a given level. For instance, a deforestation front
will move forward, resulting in a certain number of remaining
forest fragments. In CA_MARKOV and DINAMICA, a procedure to
control this saturation effect can easily be implemented. However,
due to its fixed structure, such implementations are not possible in
LCM. In CLUE, the saturation effect can be modeled at the expense
of other spatial patterns (neighborhood interactions) because the
user is allowed to use only one additional logistic regression by
transition.

The use of constraints or incentives in certain areas makes it
possible to adjust the change potential to particular spatial policies,
such as subsidies of agriculture in certain areas, which cannot be
derived from the explanatory variables. LCM and DINAMICA allow
the use of constraint or incentive areas at a certain time step of
simulation. In CLUE, these areas can both be implemented as a hard
constraint for all or specific conversions or by supplying a map with
pixel values between zero and one so that these maps are
compatible with the regression results and can be used as a soft
incentive or constraint. In CA_MARKOV, the incorporation of
constraint or incentive areas can be achieved through the elabora-
tion of suitability maps, taking these areas into account. To simulate
the effect taking place at a certain time, a script could be written.

3.1.6. Model evaluation
Generally, the evaluation of LUC prospective maps is based on
the comparison between the simulated and the observed (true)
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map. IDRISI offers various methods to assess the simulations’ soft
and hard results: 1) the area under ROC (Relative Operating Char-
acteristics) curve, 2) a modified Kappa agreement index (Pontius,
2000) and 3) a validation based on a three-way cross-tabulation.
The ROC analysis is a widely used quantitative method to measure
the degree to which the presence of a Boolean variable (e.g. the
observed change) is associated with high ranks for the change
potential variable (Pontius and Schneider, 2001; Mas et al., 2013).
Therefore, ROC evaluates the model until the change potential
stage, but it is unable to assess the LUC simulated map which aims
at mimicking temporal and spatial patterns. The three-way cross-
tabulation based validation uses the LUC map of the first date and
both, simulated and observed maps (second date) to focus the
comparison only on the simulated and observed changes, because
simulated and true maps can present a large proportion of coinci-
dence, due to persistence, although changes are poorly modeled
(low coincidence between true and simulated changes). DINAMICA
allows computing a fuzzy similarity index based on the concept of
fuzziness of location, in which coincidence is not restricted to a
strict, cell-by-cell overlay but also includes the cells in a neigh-
borhood (Hagen, 2003). Comparisons can be conducted by applying
the fuzziness to the simulated and the true maps of change alter-
natively. As simulated maps with scattered small patches tend to
score higher, the minimum fit value from the two-way comparison
is used in order to obtain a conservative assessment of the model. In
CLUE, the assessment of the logistic regressions is generally based
on ROC analysis, but this assessment has to be carried out using an
external program. Applications of CLUE have been assessed using a
wide range of methods, such as through the fuzzy equivalent of the
Kappa statistic, which evaluates the fuzziness of the location and
the category of the simulated land-use patterns (Hagen, 2003) and
through a multiple resolution procedure, which evaluates the
model performance by quantifying the degree of similarity be-
tween the simulated and observed land-use pattern over a range of
resolutions (Verburg et al., 2003; Castella and Verburg, 2007).
Other methods of assessment, such as the figure of merit (Pontius
et al., 2008), can be easily implemented in software packages
with GIS operators (DINAMICA and IDRISI).

Mas et al. (2012) pin-pointed the limitations of using only
indices based on spatial coincidence when assessing prospective
LUC maps. Additional computational criteria, such as landscape
indices, can easily be evaluated in programs allowing GIS opera-
tions, such as DINAMICA or IDRISI, or these criteria can be carried
out using external software packages, such as FRAGSTATS or Patch
Analyst (McGarigal et al., 2012; Elkie et al., 1999).

3.1.7. Advanced options

The elaboration of complex models involves splitting the study
areas into various subregions that can present different dynamics
(e.g., different rates of change, different types of transition, different
explanatory variables or/and different effects of the same vari-
ables). In CLUE, the user can provide a map of regions that are
associated with the corresponding demand for each LUC class and
logistic regression models, which define the change potential.
DINAMICA also has the option to divide the study area into regions
with particular specifications and parameters. Only DINAMICA is
able to run subregion-based models with interactions between the
subregions enabling certain variables to have an effect on certain
subregions only and variables based on distance to affect the entire
study area (e.g., the proximity of a deforestation front in one sub-
region can influence deforestation in neighboring subregions). In
CLUE and IDRISI, subregions can be obtained by running indepen-
dent models for each and, as a following step, mosaicking the
simulated maps, but subregions will not interact, and in-
compatibilities on the boundaries between regions usually arise.

Dynamic variables are variables that are updated at each time
step of the simulation, allowing certain simulated events in previ-
ous steps to have an effect on posterior changes. Only CA_MARKOV
does not allow for dynamic variables. Another aspect is the inte-
gration of different LUCC patterns and the amount of change over
time. This task can be easily performed using DINAMICA, which
allows for the substitution of virtually all parameters at given time-
steps during simulation, such as the matrices of transition or
explanatory variables. For example, Carlson et al. (2012) used
different transition matrices for El Niflo-Southern Oscillation
(ENSO) and non-ENSO years because such years present different
patterns and rates of change. IDRISI’s macro modeler can be used to
carry out such modeling procedures using CA_MARKOV. In CLUE,
the explanatory variables can be changed in certain time steps, but
the regression equations cannot be changed. LCM allows changing
some variables during modeling (infrastructure and spatial con-
straints/incentives), and a substitution of the matrix can be made
by concatenating different independent models over time, using
the output of one model as the input of the subsequent model.
Additionally, DINAMICA allows simulation to be performed in
different ways using conditional execution functions (“if then”,
“while”).

LCM can use a fixed transition matrix from an exterior model
instead of the Markov matrix. DINAMICA can be coupled with an
external model that calculates dynamic transition rates and passes
them on to the model. This type of external model can be scripted
by taking advantage of the operators dealing with images, tables
and values, which allows for interaction with the simulated map of
previous steps, or running an external process inside DINAMICA. In
CA_MARKOV and LCM, certain transition dynamics could be
included by concatenating models and splitting the simulation
horizon into several periods. This concatenating can be performed
more easily with CA_MARKOV because this module can be inte-
grated into a script (macro language) or a macro modeler, which is a
graphical modeling interface that enables dynamic linking of GIS
modules and raster maps in an algorithmic chain.

Due to the fact that road network is a strong predictor of the
spatial patterns of tropical deforestation, but maps of unplanned
roads are not available, predictive modeling of the development of
roads was developed in DINAMICA and LCM. New road end-points
are stochastically selected in areas with highest change potential
and are connected to the existing road network using friction maps
(e.g. related to topography) in order to achieve the least-cost path
and/or to link various areas of high change potential.

LCM provides tools aimed at assessing the impact of change for
ecological sustainability and conservation planning, such as tools
for species-specific habitat assessment and change studies, gap
analysis, landscape pattern evaluation, biodiversity analysis and
CO, emission assessment. DINAMICA provides some additional
tools to model wood harvest volumes processed by sawmills and
carbon pool mapping.

Table 2 summarizes the mean characteristics of the methods
and tools implemented in each program packages to carry out the
main modeling tasks.

3.1.8. Additional considerations

As additional considerations, we assess the flexibility, user
friendliness, and cost.

Flexibility involves the possibility of adapting the model to the
user’s needs and the possibilities of interaction with other pro-
grams. The programs offering more flexibility in the development
of the modeling step of model fitting according to user needs are
CA_MARKOV and DINAMICA. Models can be constructed taking
advantage of the large pool of tools and operators available in the
program environments. Moreover, programming is easy even for
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Simulation
Spatial allocation of change

Multi-objective allocation

Reproduction of temporal and spatial patterns

Landscape patterns simulation

Sojourn time
Constraints or incentives
Assessment

Available tools in the software
Alternative approaches easily

implemented?
Advanced options
Subregion

Dynamic variables
Dynamic change rates

CA
Easily implemented
Through suitability maps

ROC, Kappa
Yes

Running independent
models

No

Concatenating models

Ranking dynamic modeling
approach

Optional spatial filters

Stochastic selection
algorithm

CA

Table 2
Methods implemented in each program package.
Tasks CA_MARKOV CLUE-S DINAMICA LCM
Calibration
Quantity of change
Markov y n y y
Alternative approaches easily n y y n
implemented?
Change potential evaluation
Data driven statistical approach - Log Reg W of E Log Reg
Data driven machine learning - Gen Alg MLP, SimWeight
approach
Knowledge driven approach MCE Weight edition

Multi-objective allocation

Road modeling No No

Yes Easily implemented No

Yes Yes Yes

None Fuzzy similarity index ROC, Kappa

No Yes Yes

Running independent Yes No

models

Yes Yes Yes

From external model From external or internal From external transition
submodel matrix or concatenating

models

Yes Yes

users without previous programming experience because a
graphical interface is provided in which operators can be dragged
and linked dynamically to integrate feedback and iterative opera-
tions. In DINAMICA, advanced modelers can directly develop their
models using the EGO or XML programming languages. LCM and
CLUE present a rigid structure that defines a fixed flow of pro-
cedures with respect to LUCC modeling. This structure can be ad-
vantageous for new users because the procedures are well defined
and documented. However, it becomes a drawback when users
want to develop “custom-made” or more complex models. In
general, all of the models, with the exception of CA_MARKOV, can
make use of external data, and all can be validated using different
freely chosen methods that are independent from the integrated
assessment module. DINAMICA and IDRISI offer the possibility of
running external processes.

User friendliness refers to the features that make the use of the
model easier, such as employing a particular tool and offering ex-
planations in the documentation provided to the user. This char-
acteristic is rather subjective, as it also depends on the user’s
previous experience, background and preference. The IDRISI pro-
grams (CA_MARKOV and LCM) may be more user-friendly than the
others because 1) they are well documented (IDRISI manual and
tutorial, IDRISI discussion forum, tutorial videos), 2) all of the op-
erations can be executed in a window interface environment but
can also be automated through the script and programming tools
and 3) operations prior to modeling (e.g., image classification to
create LUC maps) can be performed in the same environment.
DINAMICA also has an intuitive programming interface and is very
well documented (user guide, video guides, wiki page and discus-
sion list). Recent versions include the possibility of using or writing
a wizard, which a sequence of pages that may contain text, tables,
images, diagrams and videos (similar to a PowerPoint presenta-
tion). Each page can contain general information about the model
and the simulation inputs that are directly linked to the script in-
puts, which enables the user to set parameters and run simulations.

CLUE is also relatively well documented (user guide with exercises
and a large amount of scientific publications) but requires some
laborious manual operations (e.g., text file editing to enter pa-
rameters) and carrying out operations using external programs
(logistic regression, map displaying, model input and assessment).
This lack of integration and visualization also makes it very difficult
to find errors in the model implementation. In IDRISI, an error
message appears in case of input error. However, in some cases,
CA_MARKOV does not work properly but no message error is given
(Houet and Hubert-Moy, 2006). In DINAMICA, a debug mode is
available and error messages identifying error origins are also
given. For these two last packages, a log file is available.

DINAMICA and IDRISI allow importing and exporting a large
amount of raster formats, while CLUE only accepts ASCII files. A
DINAMICA operator allows reading and writing directly from/to zip
files as well as defining a root folder, which makes it easier to share
and transport models across computers with different folder
structures. It is worth noting that user friendliness can be a coun-
terproductive factor because the possibility of elaborating a LUCC
model easily and rapidly can lead to poorly informed applications.

All of the software programs assessed are designed for Microsoft
Windows and run on 32- and 64-bit platforms. IDRISI is a hybrid
32/64-bit program, and CLUE requires a 32-bit system. DINAMICA
can be installed as a native 64-bit program, which allows the use of
the expanded memory address and performance optimizations.
This program is able to handle multiple sets of large maps (up to
64,000 x 64,000 cells) because of its mechanism of disk paging. It
enables multiprocessor architecture to split execution pipelines on
different processors and run several operators’ internal algorithms
using parallel processing; models can also be executed from a
command line, which increases the model speed. The source code is
not provided for any of these packages.

CLUE and DINAMICA are available for use at no cost. IDRIS], is a
relatively low-cost software package and presents a large number of
GIS and image processing modules which can be used in other tasks.
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3.2. The virtual case study

The virtual case study was inspired by real LUCC situations (Mas
and Flamenco, 2011; Pérez Vega et al., 2012) and included two LUC
maps (dated 2000 (tp) and 2010 (t1), 200 x 300 pixels) and only a
few explanatory maps (elevation, distance to roads, distances to
previous LUC) available at http://www.ciga.unam.mx/ciga/images/
proyectos/vigentes/modelos/images/virtual_case_data.zip. ~ Four
different LUC categories were distinguished for the simulation:
forest (F), two types of cropland (CL1 and CL2) and urban area (U)
(Fig. 3). During 2000—2010 (the calibration period), only four types
of transitions were produced, including two different deforestation
patterns (forest to croplands), forest regeneration, which followed
the abandonment of cropland 1, and urban growth. Patches of
cropland were created through both the expansion of previous
patches and the creation of new patches. Cropland 1 was associated
with low elevations (<600 m) and a close proximity to roads and
urban area, although some conversions of forest to cropland 1 were

LUC 2000

[ Forest
I Crop 1
[ cCrop2
[ Urban

Roads

LUC 2010

[ Forest
I Crop 1
[Icrop2
[ Urban

Roads

DEM

N

300 Elevation (m) 1350

Fig. 3. Virtual LUCC case. The LUC maps were created following the rules about LUC
distribution and LUCC patterns described in Section 3.2.

Table 3

Transition matrix 2000—2010 in number of pixels (change pixels are in bold).
2000 2010

F CL1 CL2 8] Total

F 51,799 2725 201 0 54,725
CL1 33 3190 0 602 3825
CL2 0 0 149 0 149
U 0 0 0 1301 1301
Total 51,832 5915 350 1903 60,000

located in remote areas. An unexpected, large amount of change
from forest to cropland 1 was placed in a particular distance range
from roads (1650—1700 m). Cropland 2 was limited to an optimal
elevation range between 850 and 1100 m. Urban areas were
expanded only at the expense of cropland 1 surrounding the
existing urban area. The four software packages were applied to the
virtual LUCC case study using a basic past trend-based simulation to
create prospective LUC maps for 2020 (t3) to illustrate their
different tools and settings.

3.2.1. Quantity of change estimate

By overlaying the two LUC maps from 2000 and 2010, a transition
matrix was generated that depicts four change transitions: 1) forest
to cropland 1, 2) forest to cropland 2, 3) cropland 2 to forest and 4)
cropland 1 to urban (Table 3). Tables 4 and 5 show the base transition
matrix (for the entire 10-year period) and the annual matrix,
respectively, and was obtained from DINAMICA using Equation (1).

The projected areas for 2011 to 2030 were obtained by itera-
tively applying the annual matrix to the areas of the previous year.
A set of Markov probability matrices was calculated using IDRISI to
calculate areas for each projected year during the same period. As
IDRISI provides a method of correction to compensate for the
classification errors (see Section 3.1.2. Quantity of change estimate),
two sets of matrices were created (without correction and with
correction to 15% error maps, Tables 6 and 7).

A projection of areas of LUC for a medium term (20 years, see
Fig. 4) does not show important differences between DINAMICA
and IDRISI (option without using the error correction). When LUC
areas are projected to 2030, the differences between the projected
areas in both approaches range between 0.2% (Cropland 1) and
10.0% (Urban). In practice, the differences between IDRISI (without
correction) and DINAMICA do not affect the accuracy of the esti-
mation of change, especially when considering that the assumption
of the linearity of LUCC is generally wrong (e.g., the assumption that
trends of change during the calibration period are similar to the
following period of time). When the correction used by IDRISI to
correct errors in the maps is applied, this correction affects the
projected area estimations significantly (Fig. 4). Differences in the
projected areas for 2030 calculated by IDRISI with and without
correction ranging from 14.6% (Forest) to 73.1% (Cropland 2) are
observed. The difference in the projected areas between DINAMICA
and IDRISI (without correction) increases slowly over time because
the same annual matrix is applied iteratively (that is, areas for 2030
were obtained applying this matrix first to the 2010 areas, a second

Table 4
Base transition matrix (entire period) obtained by DINAMICA.
2000 2010
F CL1 CL2 U
F 0.9465 0.0498 0.0037 0
CL1 0.0086 0.8340 0 0.1574
CL2 0 0 1 0
U 0 0 0 1
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Table 5
Annual transition matrix obtained by DINAMICA.
F CL1 CL2 8]
F 0.994088 0.005536 0.000376 0
CL1 0.000959 0.981983 0 0.017058
CL2 0 0 1 0
U 0 0 0 1

time to the 2011 projected areas, and so on). The difference be-
tween these two projections and the projection obtained by IDRISI
with correction is stable over time because the projected areas are
obtained by applying different matrices to the same vector of areas
at the end of the calibration period (the areas of 2010, in our case).

In some cases, Equation (1), used by DINAMICA to obtain the
annual transition matrix, does not result in a solution that is
expressed with real numbers and DINAMICA is not able to provide
such a matrix (for details see Takada et al., 2010). The advantage of
the IDRISI approach resides in the fact that it does not use matricial
calculation and is always able to provide a result. Conversely, the
correction performed by IDRISI, to correct the bias related to the
mapping errors, modifies all the transition probabilities with
probability >0 (and probabilities of 0 if only the permanence
transition has probability > 0, Table 7). The user has to be sure that
these values are realistic. In this case, Tables 6 and 7 show that, after
this correction, all permanence probabilities are lowered. More-
over, impossible or unobserved transitions present high probabil-
ities: For instance, the transitions urban and CL2 to other categories
exhibits a probability of 5% (Table 7).

3.2.2. Change potential evaluation

Maps of the change potential were constructed using weight of
evidence and genetic algorithm (DINAMICA) as well as a MLP,
SimWeight and logistic regression (LCM). Neural network training
was carried out with the default setting (learning rate from 0.01 to
0.001, momentum 0.5, number of hidden nodes calculated as the
average between numbers of input and output nodes, 10,000 iter-
ations). In the case of overfitting, the number of iterations was
reduced. In the elaboration of the logistic regression models,
stepwise backward selection of variables was performed outside of
IDRISI using the Akaike’s Information Criterion (AIC), a measure of
the relative quality of a statistical model that enables to manage a
tradeoff between goodness of fit and model complexity and expert
knowledge about the importance of each variable on the distribu-
tion of the LUCC.

For CA_MARKOV and CLUE, suitability maps for the two types of
cropland, forest and urban areas were elaborated using multi-
criteria evaluation (MCE) and the logistic regression method,
respectively. For CA_MARKOV, suitability maps were constructed
using linear and sigmoid functions to establish a relationship be-
tween suitability and explanatory variables. Then, suitability maps
for the same LUC were combined by weighing them using the

Table 6

Transition matrix generated by IDRISI to project one year after the end of the cali-
bration period (2011). Note that due to the IDRISI method, this matrix is not
equivalent to the annual matrix of DINAMICA. It allows estimating LUC areas of 2011
based upon 2010 but it cannot be iteratively used 10 times to obtain 2020 LUC area
estimates, for example. Unobserved transitions (value of zero) are indicated in bold
characters.

F CL1 CL2 U
F 0.994300 0.005400 0.000300 0
CL1 0.001200 0.978100 0 0.020700
CL2 0 0 1 0
U 0 0 0 1

Table 7

Transition matrix generated by IDRISI to project one year after the end of the cali-
bration period (2011), including the option to correct estimate considering the
classification error of 15% in the input map. Note that some unobserved transitions
exhibit high probabilities (in bold characters).

F CL1 CL2 U
F 0.845100 0.146900 0.007900 0.000000
CL1 0.009500 0.831400 0.000000 0.159100
CL2 0.050000 0.050000 0.850000 0.050000
U 0.050000 0.050000 0.050000 0.850000

analytical hierarchy method (a pairwise comparison technique, see
Saaty, 1977) to form a single, final suitability map using MCE. The
weighting process allowed an evaluation of tradeoffs so that more
weight was given to distance based factors, like distance to road or
distance to a specific LUC, as to DEM or DEM derived factors, such as
slope (both less than 10%). For CLUE, the logistic regression models
were developed using the same criteria used for the change po-
tential maps. We used the same variables in the models based on
change potential maps except when other explanatory variables
were more appropriate to the models according to AIC index. As
shown in Table 8, the different approaches can lead to selecting
different explanatory variables to elaborate the change potential
maps.

Fig. 5 shows the relationship between two explanatory variables
and the change potential maps for the transition “Forest to cropland
1” or suitability values for Cropland 1. Fig. 5(f) shows the proportion
of pixels of forest that experienced the transition. It is important to
note that the two suitability maps (Fig. 5(g) and (h)) were elabo-
rated using, as explanatory variables, “Elevation” and “Distance to
urban”, and in contrast, all the change potential maps (Fig. 5(a)—
(e)) were based upon the explanatory variables “Elevation”, “Dis-
tance to Cropland 1” and “Distance to Roads”. It can be observed
that the relationship between the change potential and the
explanatory variables obtained by the weights of evidence presents
a more complex (irregular) shape than the other approaches. An
intermediate complexity is given by SimWeight and very similar,
almost monotonic shapes are obtained by logistic regression and
the MLP. This can be attributed to the fact that the weight of evi-
dence for a particular explanatory category is calculated taking into
account the frequency of change and no change inside or outside
this category. The other methods try to adjust a function by taking
into account the values and the observed changes of all the cate-
gories. As a consequence, each weight of evidence is calculated
almost independently and therefore this method is able to produce
very complex functions. SimWeight enables fitting a more complex
function than the Logistic regression and MLP (at least the MLP
based in a simple architecture as the one used in this study).

Fig. 6 indicates that almost all the maps are highly correlated.
The change potential maps obtained by LCM using MLP and logistic
regression are very similar (Spearman = 0.92), and the main dif-
ference is that the values of the high change potential of the MLP
tend to saturate. The higher change probabilities ranging from 0.3
to 0.5 in the logistic regression correspond to one probability in the
MLP change potential map. The methods of weights of evidence
(with or without GA adjustment) and the MLP generated highly
correlated maps (Spearman = 0.79). The two suitability maps are
also highly correlated (Spearman = 0.72) and present low corre-
lation with the change potential maps, mainly because they are
based on different explanatory variables.

In this exercise, the weights of evidence were not edited, and a
visual editing consisting of smoothing the relationship between the
weights and the explanatory variables (eliminating noisy fluctua-
tions of weight values) is expected to lead to more regular shapes.
Conversely, a more complex MLP (more nodes in hidden layers)
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Fig. 4. Projected areas with DINAMICA and IDRISI (both with and without correction of LUC maps error).

could lead to a more complex shape. The ability to use complex
functions to establish the relationship between change and
explanatory variables is expected to control the goodness of fit of
such a relationship in addition to the tendency to overfit.

To assess these two last aspects, we conducted two experiments.
As a first step, in order to test the likely tendency of the different
approaches to overfit the probabilities, the change potential of
forest to cropland 1 was examined as a function of the distance
from roads (Fig. 7). Only the weights of evidence (both weights of
evidence only and the weights adjusted by genetic algorithm) show
a clear increase in the change potential values for the range of
distance where a large amount of this transition was placed. Due to
the fact that the computing of a category’s weight of evidence takes
into account the frequency of change and no change inside or
outside this category, this method is prone to overfit more easily
than methods known to be highly flexible, such as neural networks.
In the case of DINAMICA, a visual inspection of the relationship
between weight values and explanatory variable categories can be
easily performed in the weights display tool to detect and correct
such cases of overfitting.

To detect the opposite effect, specifically an overgeneralization
of the relationship between the explanatory variables and the
change potential/suitability, the change potential/suitability of the
transition “Forest to cropland 2”/category cropland 2 was graphed
as a function of the elevation (Fig. 8). It can be observed that only
the weights of evidence (DINAMICA), the SimWeights method
(LCM) and the multicriteria evaluation (CA_MARKOV) were able to
reproduce the optimal range of elevation for cropland 2. The sig-
moid curve of the logistic regression was not able to replicate this
pattern. The MLP used to produce the change potential map in LCM
had only one hidden layer with two nodes, and allowed for the

correct classification of more than 90% of the training data but was
unable to replicate the elevation pattern. An MLP with more nodes
or hidden layers would likely replicate the elevation pattern but
would be more likely to overfit.

3.2.3. Allocation of change and reproduction of temporal and
spatial patterns

Prospective maps for 2020 were produced using the different
software packages. The same quantity of change (derived from
DINAMICA matricial computing) was used in order to make the
comparison easier (Fig. 9). Although the general pattern of the
different maps is similar because all of the simulations start from
the LUC map of 2010, they present important differences. The
location of the change is different because it depends on the
different change potential or suitability maps. For instance, LCM
presents different results with the change potential maps obtained
using logistic regression, MLP or SimWeight. In some cases, changes
are allocated in improbable places as, for example, the patches of
Cropland 2 at elevations above 1200 m in LCM with MLP. This is due
to inaccuracies in the change potential maps. Programs without
cellular automata were able to create new patches (for example
LCM with MLP and CLUE) due to the spatial autocorrelation of the
explanatory variables that leads to the formation of small areas of
high change potential in the change potential/suitability maps,
which are allocated to be changed by the model. Nevertheless, the
user cannot control the size and the shape of these patches because
they depend only on the spatial distribution of areas with a high
change potential and the quantity of change to be modeled. Only
DINAMICA can influence landscape pattern simulation using its
cellular automata without modifying input data. However, the
control of patch characteristics is not an easy task because the
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Table 8
Variables used to elaborate the change potential and suitability maps.
Transition/category Elevation Distance Distance Distance Distance to Distance to
to roads to forest to Cropland1 urban No forest
Change Potential F to CL1 X X X
(DINAMICA and LCM) F to CL2 X
CL1toF X X
CL1toU X X
Suitability F MCE X X X
(CA_MARKOV and CLUE) F CLUE X X
CL1 (MCE and CLUE) X X
CL2 (MCE and CLUE) X
U (MCE) X
U (CLUE) X X

landscape structure of the simulated maps depends on the change

4. Discussion

potential maps and the cellular automata setting (mean patch size,

size variance and isometry). It is also worth noting that in DINA-
MICA, the change allocation is not completely a deterministic
process see the section on spatial allocation of change), and
consequently, each run results in a slightly different result.
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(b) DINAMICA Genetic Algorithm

According to Pontius (2011), the following questions can be
formulated to define a “good” model: Can the user understand the
model? Can the user’s audience understand the model? Can the
user control the model? Is the model relevant to the user's

Distance to Cropland 1

Distance to Cropland 1

Scatterplot representing the relationship between change potential (or suitability) and two explanatory variables with the different calibration methods (transition

“Forest to cropland 1” and cropland 1). (Part 2) — Scatterplot representing the relationship between change potential (or suitability) and two explanatory variables with the different
calibration methods (transition “Forest to cropland 1” and cropland 1).
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Fig. 5. (continued).

question? We revised these different aspects, taking into account
the modeling tasks used in the model review.

With regard to the understanding of the way the models
accomplish the modeling tasks, there are few differences in the
manner in which they calculate the quantity of change to be
modeled (with exception of CLUE where the user must use external
data). In contrast, the change potential is produced using very
different approaches. The MCE in CA_MARKOV is a knowledge-
driven approach that requires manual work and thus necessitates
the comprehension of the relationships between drivers and LUCC.
Automated approaches, such as MLP, SimWeight (LCM) or genetic
algorithms (DINAMICA), can be perceived as black box approaches
that elaborate change potential maps without the necessity of
understanding the relationship drivers/change. In the case of the
logistic regression models and the weights of evidence, the level of
required understanding depends on the way the models are carried
out. A sound analysis of the logistic regression outputs or the
revision and eventual edition of the weights allows for a compre-
hensive examination of change potential evaluation. Spatial

allocation is also a topic that is more complex for users, especially
when using either the CLUE approach, due to the dynamic
competition and the inclusion of the concept of elasticity, or the
DINAMICA approach, which is not deterministic (pruning factor).
Only CA_MARKOV and DINAMICA have cellular automata, and their
functions and parameters are easy to understand, as are other
procedures aimed at controlling the reproduction of spatial and
temporal patterns, such as constraints and incentives. However,
concerns about the understanding of the model should not be
construed to mean that the simplest model is the best. More
complex LUCC processes need a more complex representation, and
a quality modeling software package offers a range of tools used to
adapt the model to the complexity of the processes and the ob-
jectives of the modeling effort.

The understanding of the model by a larger audience than the
modelers alone depends more on the capacity of the modelers to
communicate than on the models themselves. However, a more
knowledge-based approach (CA_MARKOV) or intuitive methods
(weights of evidence, DINAMICA) are most likely easier to be
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Fig. 6. Change potential of the transition “Forest to cropland 1” and cropland 1 suitability (CLUE, CA_MARKOV). The lower part of the figure shows a scatterplot of the values of
change potential or suitability of the 7 approaches examined. Histograms of the frequency of the values obtained by each approach are presented in the diagonal. The upper part of
the figure indicates the Spearman coefficient of correlation between the values of pair of approaches.

explained and understood by a wide audience. Finally, tools such as
wizards (DINAMICA) can improve the sharing and communication
of the model.

The control of the model by the user depends on its flexibility
and the use of approaches enabling the intervention of the user.
Change potential maps obtained by knowledge-driven approaches
are more suitable to be controlled than machine learning.
Conversely, promoters of the machine-learning approach argue
that a purely automatic, data-driven approach is more objective
because it depends only on the data and not on the user. However,
more flexible models allow the user to implement mechanisms to
control the modeling procedures (variation of rates of LUCC, feed-
back effects, temporal and spatial patterns, etc.) and construct
relevant models adapted to the particular objectives. Due to its rigid
structure, LCM does not permit the implementation of such control
mechanisms or user-oriented adaptations. Models with a poor
likelihood of being adapted are prone to work only on their niche,

such as, for instance, the CA model designed to model urban
growth, which is not suitable for other specific applications in
which there are no neighboring interactions. However, the stan-
dard functioning of CLUE is rather rigid, and there are many inno-
vative modeling approaches using this software (see, for example,
Castella and Verburg, 2007 and, Overmars et al., 2007). Neverthe-
less, most of the modeling procedures are conducted outside the
program, which is primarily used to allocate changes. With regard
to these aspects, DINAMICA is the more comprehensive platform.
This software program evolved from a LUCC modeling tool with a
rigid structure (early versions) to an environmental modeling
platform allowing the design of complex spatio-temporal models.
DINAMICA allows performing calculations on various types of data,
such as values, tables, matrices and raster graphics, and has a high
flexibility, with its functions allowing advanced dynamic models
involving nested iterations, dynamic feedbacks, bifurcating and
joining execution pipelines, and so on; moreover, this program
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Fig. 7. Relationship between change potential of transition “Forest to cropland 1"/
category Cropland 1 and distance to road. DINAMICA change potential maps exhibit an
important increase of their values around the distance 1650—1700 m where a large
area of “Forest to cropland 1” was placed.

allows the implementation of models based on a large range of
approaches. For example, the level of consideration of expert
knowledge can be adjusted from an entirely statistical, data-driven
approach to an expert knowledge-driven approach (complete
editing of the weights by the user), and neighborhood interactions
can be handled using the two available CA by implementing ah-doc
CA or by simply ignoring CA.

In this context, more deductive knowledge-based models are
potentially more useful to help to better understand LUCC and
design policy. For instance, the use of past trends based models for
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Fig. 8. Relationship between change potential/suitability of transition “Forest to
cropland 2”/category Cropland 2 and elevation. Only DINAMICA and LCM using Sim-
Weight were able to shape the optimum range of elevation between 850 and 1100 m
approximately.

establishing REDD baselines are likely unsound because they do not
take into account that projection of baselines are questionable
because deforestation trajectories can vary drastically over time
(Nunes et al., 2012; Pérez Vega et al., 2012). Modeling has then to be
considered as a tool useful, not to predict LUCC, but rather to
support the design of policies as setting priority areas and assessing
effectiveness, through the modeling of scenarios and opportunity
cost (Nepstad et al, 2009; http://www.csr.ufmg.br/dinamica/
publications/publications.html Stickler et al., 2009, Soares-Filho
et al., 2010; Nunes et al., 2012; Yanai et al., 2012).

Finally, the relevance of the model with respect to the questions
the user wants to answer depends obviously on the objectives of
the modeling exercise. Does the user want to predict future change
or project alternative scenarios? Does the model use historic pat-
terns of change only or is it able to modify these patterns to carry
out the simulation? Is the user interested to calibrate the model
following: 1) the inductive approach that analyses past change to
link LUCC to its causal drivers or 2) a more deductive theory-
connected approach that uses an explicit theory of LUCC to
choose the explanatory variables and eventually to determine their
interactions with LUCC? Both approaches are not dichotomic and
Overmars et al. (2007) proposed six intermediate positions be-
tween extreme induction and extreme deduction. The great ma-
jority of LUCC models, including the “standard” use of the four
packages programs involved in the present study, follows an
inductive approach. However, depending on its flexibility, a model
enables users to adopt a more deductive approach or not by
considering different sources than the past trend analysis (theory of
LUCC, expert knowledge, interviews, etc.). This is feasible in the
framework of CA_MARKOV, CLUE and DINAMICA, while LCM, due
to its rigid structure, is only able to project past trend pattern of
LUCC. When users want to model change under different scenarios,
only the more flexible models will enable him to manage rates,
transitions and spatial patterns of change different from the ones
observed in the calibration period.

5. Conclusion

In this study, we reviewed four program packages commonly
used to model LUCC using an inductive pattern-based approach:
CA_MARKOV, CLUE, DINAMICA and LCM. The comparison was
focused on the tasks used to calibrate the model (evaluation of the
quantity of change, elaboration of the change potential maps), carry
out the simulation (allocation of change, landscape patterns
simulation) and model assessment.

CA_MARKOV, DINAMICA and LCM use a Markov matrix to
calculate the quantity of change for each transition whereas in the
case of CLUE the quantity of each LC category is estimated outside
the model. An annualized Markov matrix is calculated using
different methods in IDRISI (CA_MARKOV and LCM) and DINAMICA,
but both methods give similar results. When using the IDRISI op-
tion to correct for the classification error in the input map, the
matrix can show incongruent results, as has been shown with the
virtual case study (Tables 6 and 7). Markov projections are based on
the assumption that the rates of change observed during the cali-
bration period will remain the same during the simulation period,
which is an erroneous assumption in many cases. Models able to
use different matrices from the calibration period or obtain the
quantity of change from other approaches are therefore able to
model variations of the rates of change. Such procedures can be
easily implemented inside DINAMICA. In the other packages,
models have to be concatenated or external processes have to be
run to obtain similar models.

To assess the change potential, CLUE and CA_MARKOV use
suitability maps and DINAMICA and LCM compute the probability
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Fig. 9. Simulated LUC maps for 2020 obtained by the different software programs.

of each transition. For non-stationary change patterns, the suit-
ability approach is likely to be more appropriate whereas transition
probability maps are more likely to be able to capture change
processes and provide better future LUCC estimations for stationary
change processes and simulations over short time spans. These
change potential maps are elaborated using different methods that
can be differentiated by the degree of incorporation of expert
knowledge and the ability to fit the change potential pattern to the
observed patterns during the calibration period. Multicriteria
evaluation (CA_MARKOV) and the weights of evidence, when
editing the weights (DINAMICA), enables users to apply expert
knowledge and to carry out a more deductive theory-based
approach. Machine learning approaches such as genetic algo-
rithms (DINAMICA), MLP and SimWeights (LCM) or a statistical
approach as logistic regression (CLUE, LCM) are more data driven
oriented. These methods also present different degrees of fitting
the change potential to observed past changes. For non-stationary
change patterns, more general functions are likely to be more
appropriate whereas methods enabling a better fit are more likely
to capture change potential for stationary change processes and
short simulations. Models that are able to manage different
methods to elaborate the change potential maps can therefore be
adapted at different situations concerning the stationarity of the
LUCC and the time of simulation.

To spatially allocate the changes, the four packages rank the
pixels using the change potential map in order to select the pixels
with high change potential and take into account the competition
between land cover category. CA_MARKOV, CLUE and LCM are
deterministic and changes are limited to areas with higher change
potential only. DINAMICA has a more stochastic behavior, which
depends on the prune factor of the automata cellular, so that a
certain part of changes can be simulated in areas with less change
potential, enabling the simulation of more realistic landscapes (Mas
et al., 2012). Such simulations are done at the expense of predicting
change allocation because simulated changes are not allocated only
at the highest change potential pixels, so the objectives of the study
will determine whether it is an advantage or not.

Finally, flexibility and user friendliness are subjective but are
useful features to present to the users. DINAMICA is the package
that offers more flexibility and tools to develop custom made
models. A huge diversity of models has been developed using CLUE
but many tasks were carried out using external tools. At the other
extreme, LCM has a rigid structure that makes it very difficult to
modify the behavior of the model. Depending on the objectives of
the study, approaches based on a data driven past trends can be
satisfying or not. However, the facility to construct a model easily
and in a short time is a dubious advantage. This aspect can be
positive to help new users without previous experience in spatial
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modeling to apply those tools and this way “democratize” the use
of such models. On the other hand, we can expect that more
complex and customized model involve a more deliberate choice to
apply certain methods.

More research assessing models performance in different situ-
ations are still lacking. We hope this study’s insights will help re-
searchers to gain a deeper knowledge on the way models are
working and the implications of the use of different methods in
model behavior and performance.
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