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Abstract

A finite ergodic Markov chain exhibits cutoff if its distance to equilibrium remains close to

its initial value over a certain number of iterations and then abruptly drops to near 0 on a much

shorter time scale. Originally discovered in the context of card shuffling (Aldous-Diaconis,

1986), this remarkable phenomenon is now rigorously established for many reversible chains.

Here we consider the non-reversible case of random walks on sparse directed graphs, for which

even the equilibrium measure is far from being understood. We work under the configuration

model, allowing both the in-degrees and the out-degrees to be freely specified. We establish the

cutoff phenomenon, determine its precise window and prove that the cutoff profile approaches

a universal shape. We also provide a detailed description of the equilibrium measure.

1 Introduction

Given two sequences of positive integers (d−i )1≤i≤n and (d+
i )1≤i≤n with equal sum m, we construct a

directed multigraph G with in-degrees (d−i )1≤i≤n and out-degrees (d+
i )1≤i≤n as follows. We formally

equip each vertex i ∈ V := {1, . . . , n} with a set E+
i of d+

i tails and a set E−i of d−i heads. We then

simply choose a tail-to-head bijection ω :
⋃
iE

+
i →

⋃
iE
−
i (the environment), and interpret each

coordinate ω(e) = f as an arc ef from the vertex of e to that of f (loops and multiple edges are

allowed). Our interest is in the Random Walk on the resulting digraph G, i.e. the discrete-time

Markov chain with state space V and transition matrix

P (i, j) :=
1

d+
i

card
{
e ∈ E+

i : ω(e) ∈ E−j
}
.

Starting from i ∈ V , the probability that the walk is at j ∈ V at time t ∈ N can be expanded as

P t(i, j) =
∑
p∈Ptij

w(p), (1)
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where the sum ranges over all directed paths p of length t from i to j, i.e. sequences of arcs

p = (e1f1, . . . , etft) with e1 ∈ E−i , ft ∈ E+
j and (fk, ek+1) ∈ E+

ik
×E−ik for some ik ∈ V , with weight

w(p) :=
1

d+
i d

+
i1
· · · d+

it−1

.

As long as G is non-bipartite and strongly connected, the classical theory of ergodic Markov chains

(see, e.g., the book [28]) guarantees that the chain mixes: there is a probability measure π? on V

such that P t(i, j)→ π?(j) as t→∞ for all i, j ∈ V . A natural way to quantify this convergence is

to consider, from every starting state i ∈ V , the total-variation distance to equilibrium at time t :

Di(t) := ‖P t(i, ·)− π?‖tv =
1

2

∑
j∈V

∣∣P t(i, j)− π?(j)∣∣ ∈ [0, 1]. (2)

The aim of this paper is to investigate the profile of the decreasing functions t 7→ Di(t), i ∈ V under

the configuration model, i.e. when the environment ω is chosen uniformly at random from the m!

possible choices. This turns G, P , π? and the (Di)i∈V into random objects, parametrized by the

degrees (d±i )1≤i≤n. In order to study large-size asymptotics, we let all quantities implicitly depend

on n and consider the limit as n→∞. We restrict our attention to the sparse regime, where

δ :=
n

min
i=1

d±i ≥ 2 and ∆ :=
n

max
i=1

d±i = O(1). (3)

The requirement on δ guarantees that G is strongly connected with high probability (see, e.g., [14]),

so that the equilibrium measure π? is unique. Note also that m = Θ(n). In this regime, the mixing

time of the walk turns out to be determined by a simple statistics, namely the mean logarithmic

out-degree of the end-point of a uniformly chosen head. More precisely, define

µ :=
1

m

n∑
i=1

d−i ln d+
i and t? :=

lnn

µ
.

Our first result is that t? steps are necessary and sufficient for the walk to mix, regardless of

the initial vertex. More precisely, as the number of iterations t approaches t?, the distance to

equilibrium undergoes the following remarkable phase transition, known as a cutoff phenomenon.

Theorem 1 (Cutoff at time t?). For t = λt? + o(t?) with fixed λ ≥ 0, we have

λ < 1 =⇒ min
i∈V
Di (t)

P−−−→
n→∞

1,

λ > 1 =⇒ max
i∈V
Di (t)

P−−−→
n→∞

0,

where
P−→ denotes convergence in probability.
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In view of Theorem 1, it is tempting to “zoom in” around the cutoff point t? until the details of

the abrupt transition from 1 to 0 become visible. The appropriate window-width turns out to be

w? :=
σ
√

lnn

µ3/2
, where σ2 :=

1

m

n∑
i=1

d−i
(
ln d+

i − µ
)2
.

Remarkably enough, the graph of the function t 7→ Di(t) inside this window approaches a universal

shape, independent of the initial position i and the precise degrees: the gaussian tail function.

Theorem 2 (Inside the cutoff window). Assume that the variance σ2 is asymptotically non-

degenerate in the following weak sense:

σ2 � (ln lnn)2

lnn
. (4)

Then, for t = t? + λw? + o(w?) with λ ∈ R fixed, we have

max
i∈V

∣∣∣∣Di(t)− 1√
2π

∫ ∞
λ

e−
u2

2 du

∣∣∣∣ P−−−→
n→∞

0.

In contrast, our third main result asserts that the mixing time is reduced from t? to constantly

many steps when starting from a more spread-out distribution, such as the in-degree distribution:

π0(i) :=
d−i
m
, i ∈ V. (5)

For future reference, the out-degree distribution is naturally defined by changing the − to + above.

Theorem 3 (Exponential convergence from a uniform tail). Fix t ∈ N and set πt := π0P
t. Then,

4‖πt − π?‖2tv ≤ n (γ − 1)

m(1− %)
%t + oP(1),

where oP(1) denotes a term that tends to 0 in probability as n→∞, and where %, γ are defined by

% :=
1

m

∑
i∈V

d−i
d+
i

and γ :=
1

m

n∑
i=1

(
d−i
)2

d+
i

.

Note that % ≤ 1
δ , that γ ≥ 1 by the Cauchy-Schwarz inequality, and that the constant in front

of %t is less than ∆. One surprising implication of this result is that the equilibrium mass π?(i) is

essentially determined by the backward local neighbourhood of i only. By combining this with a

simple branching process approximation (see Section 7), we obtain rather precise asymptotics for

the equilibrium measure. Specifically, our last main result asserts that the empirical distribution

of the numbers (nπ?(i))i∈V concentrates around a deterministic probability measure L, explicitly

identified as the law of the random variable

M? =
n

m

d−I∑
k=1

Zk, (6)
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where I is uniformly distributed on V and independent of the (Zk)k≥1. The latter are i.i.d. mean-

one random variables with law determined by the distributional fixed-point equation

Z1
d
=

1

d+
J

d−J∑
k=1

Zk, (7)

where J has the out-degree distribution and is independent of (Zk)k≥1. This recursive distribu-

tional equation has been extensively studied, Z1 being a special case of a random variable stable by

weighted sum. Such self-similar variables appear notably in connections with Mandelbrot’s multi-

plicative cascades and branching random walks. A more general version of (7) has been studied by

Rösler [38], Liu [30, 29, 31, 32] and Barral [4, 5]. Among others, these references provide detailed

results concerning the uniqueness of the solution Z1, its left and right tails, its positive and negative

moments, its support, and even its absolute continuity w.r.t. Lebesgue’s measure.

To state our result, we recall that the 1−Wasserstein (or Kantorovich-Rubinstein) distance

between two probability measures L1,L2 on R (see, e.g., [40][Chapter 6]) is defined as

W (L1,L2) = sup
f

∣∣∣∣∫
R
f dL1 −

∫
R
f dL2

∣∣∣∣ ,
where the supremum runs over all f : R→ R satisfying |f(a)− f(b)| ≤ |a− b| for all a, b ∈ R.

Theorem 4 (Structure of the equilibrium measure). Let L be the law of M?. Then,

W

(
1

n

n∑
i=1

δnπ?(i),L

)
P−−−→

n→∞
0.

Remark 1 (dependence on n). Note that the deterministic measure L actually depends on n, as

did the quantities µ, σ2, γ, % appearing in the above theorems: we have chosen to express all our

approximations directly in terms of the true degree sequence (d±i )1≤i≤n (which we view as our input

parameter), rather than loosing in generality by artificially assuming the weak convergence of the

empirical degree distribution 1
n

∑n
i=1 δ(d−i ,d

+
i ) to some n−independent limit. Of course, any external

assumption on the n→∞ behaviour of the degrees can then be “projected” onto the n−dependent

constants provided by our results to yield bona fide convergence results, if needed.

2 Related work

The phase transition described in Theorem 1 is an instance of the celebrated cutoff phenomenon,

first singled out in the early 1980’s in the context of card shuffling by Diaconis, Shahshahani and

Aldous [23, 2, 3]. This remarkable discontinuity in the convergence to equilibrium of an ergodic

Markov chain has since then been identified in a variety of contexts, ranging from random walks on
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groups to interacting particle systems. We refer the reader to [21, 39, 11] for more details. Perhaps

surprisingly, the emergence of the gaussian shape inside the cutoff window in our Theorem 2 is not

isolated: the very same feature has been observed in a few unrelated models, such as the random

walk on the n−dimensional hypercube [22], or the simple-exclusion process on the circle [27].

Motivated by applications to real-world networks (see, e.g., the survey by Cooper [13] and the

references therein), the mixing properties of random walks on large but finite random graphs have

recently become the subject of many investigations. The attention has been mostly restricted to

the undirected setting, where the in-degree distribution is reversible. In particular, Frieze and

Cooper have studied the cover time (i.e., the expected time needed for the chain to visit all states)

of various random graphs [15, 16, 17, 18], and analyzed the precise component structures induced

by the walk on random regular graphs [20]. Bounds for the mixing time on the largest component

of the popular Erdős–Renyi model have also been obtained by various authors, in both the critical

and super-critical connectivity regime [36, 7, 25, 24].

More directly related to our work is the inspiring paper [34] by Lubetzky and Sly, which estab-

lishes the cutoff phenomenon and determines its precise window and shape for the simple and the

non-backtracking random walks on random regular graphs. The results therein were very recently

generalized to all non-bipartite regular Ramanujan graphs by Lubetzky and Peres [33], thereby

confirming a long-standing conjecture of Peres [37]. In [8], Berestycki, Lubetsky, Peres and Sly

establish the cutoff phenomenon on the Erdős–Renyi model and on the more general configuration

model, for both the simple and non-backtracking random walks. The latter case was simultaneously

and independently addressed by Ben-Hamou and Salez [6], who additionally determine the precise

second-order behaviour inside the cutoff window.

In contrast, very little is known about random walks on random directed graphs. The failure of

the crucial reversibility property makes many of the ingredients used in the above works unavail-

able. Even understanding the equilibrium measure already constitutes an important theoretical

challenge, with applications to linked-based ranking in large databases (see, e.g., [12] and the ref-

erences therein). In [19], Cooper and Frieze consider the random digraph on n vertices formed by

independently placing an arc between every pair of vertices with probability p = d lnn
n , where d > 1

is fixed while n → ∞. In this regime, they prove that the equilibrium measure is asymptotically

close to the in-degree distribution. The recent work [1] by Addario-Berry, Balle and Perarnau

provides precise estimates on the extrema of the equilibrium measure in a sparse random digraph

where all out-degrees are equal. To the best of our knowledge, the present paper provides the first

proof of the cutoff phenomenon in the non-reversible setting of random directed graphs.
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3 Proof outline and main ingredients

3.1 Dealing with an unknown equilibrium measure

One difficulty in controlling the distance to equilibrium is that π? is not known a priori. We will

have to work instead with the proxy πh := π0P
h, where π0 is the in-degree distribution and

h :=

⌊
lnn

10 ln ∆

⌋
. (8)

Establishing Theorems 1 and 2 with D̃i(t) := ‖P t(i, ·)−πh‖tv instead of Di(t) is actually sufficient.

Indeed, it ensures in particular that for (say) t ≥ 2t?,

max
i∈V
‖P t(i, ·)− πh‖tv

P−−−→
n→∞

0.

Now, by convexity, this maximum automatically extends to all initial distributions on V . In

particular, one may start from the invariant measure π? itself: since π?P
t = π?, we obtain

‖π? − πh‖tv
P−−−→

n→∞
0. (9)

By the triangle inequality, we finally deduce that

sup
i∈V,t∈N

∣∣∣D̃i(t)−Di(t)∣∣∣ P−−−→
n→∞

0,

so that the conclusions obtained for D̃i in Theorems 1 and 2 are automatically transferred to Di.
In all proofs below, we will thus replace π? with πh and Di with D̃i, without explicit notice.

3.2 Sequential generation and tree-like structure

An elementary yet crucial observation about the uniform environment ω is that it can be generated

sequentially, starting with all heads and tails unmatched, by repeating m times the following steps:

1. an unmatched tail e is selected according to some priority rule;

2. an unmatched head f is chosen uniformly at random;

3. e is matched with f to form the arc ef , that is, ω(e) := f .

The resulting bijection ω is uniform, regardless of which particular priority rule is used. In the

sequel, we shall intensively exploit this degree of freedom to simplify the analysis of the environment.

In this respect, the following observation will prove useful. Let us say that a collision occurs

whenever a head gets chosen, whose end-point i was already alive in the sense that some tail

e ∈ E+
i or head f ∈ E−i had previously been chosen. Since less than 2k vertices are alive when

the kth head gets chosen, less than 2∆k of the m− k + 1 possible choices can result in a collision.

Thus, the conditional chance that the kth arc causes a collision, given the past, is less than 2∆k
m−k+1 :
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Lemma 5 (Collisions are rare). Let 1 ≤ k ≤ m. The number Zk of collisions caused by the first k

arcs is stochastically dominated by a Binomial
(
k, 2∆k

m−k+1

)
random variable. In particular,

P (Zk ≥ 1) ≤ 2∆k2

m− k + 1
and P (Zk ≥ 2) ≤ 2∆2k4

(m− k + 1)2
.

Here is one application: the forward ball of radius t around i ∈ V is the subgraph B+(i, t) ⊆ G
induced by the directed paths of length t from i. It can be sequentially generated by giving priority

to those unmatched tails e that currently lie at minimal distance from i, until this minimal distance

exceeds t. At most k = ∆ + · · · + ∆t edges are formed by then, and each collision corresponds to

the formation of a transverse arc violating the directed-tree structure of B+(i, t). Choosing t = 2h

with h defined in (8) ensures that P (Zk ≥ 2) = o
(

1
n

)
, uniformly in i ∈ V . We may thus take a

union-bound and conclude that with high probability, G is locally tree-like in the following sense:

∀i ∈ V, B+(i, 2h) is either a directed tree, or a directed tree with an extra arc.

Combining this with the fact that all out-degrees are at least 2, it is straightforward to deduce

the following result. Let V? denote the set of vertices i ∈ V such that B+(i, h) is a directed tree.

Proposition 6. The following property holds w.h.p:

∀i ∈ V,∀` ∈ N, P `(i, V \ V?) ≤ 2−`∧h.

In other words, V? is typically attained in constant time by the random walk, from any initial

position. This will be very helpful, as the walk is much easier to control when starting from V?.

Remark 2 (Sampling with or without replacement). Instead of choosing heads uniformly among

the remaining unmatched ones, we may choose uniformly from all heads, and retry if the chosen

head was already matched. The chance that this occurs within the first k steps is p = 1 − (m−k)!
m! .

This creates a coupling between the first k chosen heads and an i.i.d. sample from the uniform

distribution on all heads, under which both sequences coincide with probability 1−p. In the analysis

of the sequential generation process, we may thus replace the former by the latter at a total-variation

cost p ≤ k2/m. We may even stop the coupling as soon as a head is sampled, whose end-point was

already alive: this ensures the absence of collision, while multiplying the total-variation cost p by a

factor at most ∆. Note that the end-point of a uniform head has the in-degree distribution.

3.3 Typical path weights

At a high level, the cutoff phenomenon around time t? = lnn
µ described in Theorem 1 can be

understood as the consequence of the following two key principles:
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(i) Trajectories whose weight exceeds 1
n constitute the essential obstruction to mixing, in the

precise sense that their total weight is roughly equal to the distance to equilibrium.

(ii) From the point-of-view of the walk, most trajectories of length t have weight e−µt+O(
√
t).

Thus, the essence of the cutoff phenomenon for the random walk on G lies in a sharp concentration

phenomenon for the weight of the paths seen by the walk. To formalize this idea, let

Qi,t(θ) :=
∑
j∈V

∑
p∈Ptij

w(p)1w(p)>θ

denote the quenched probability that a random walk of length t starting at i follow a path whose

weight exceeds θ. The above two claims can then be given the following precise meanings.

Proposition 7 (High-weight paths determine the distance to equilibrium). For any t = t(n),

min
i∈V
Di(t) ≥ min

i∈V
Qi,t

(
ln3 n

n

)
− oP(1)

max
i∈V
Di(t) ≤ max

i∈V
Qi,t

(
1

n ln3 n

)
+ oP(1).

Proposition 8 (Most paths of length t have weight e−µt+O(
√
t)). Assume that t = Θ(lnn), and let

θ depend arbitrarily on n.

1. If µt+ln θ√
t
→ +∞ as n→∞, then

max
i∈V
Qi,t(θ)

P−−−→
n→∞

0.

2. If µt+ln θ√
t
→ −∞ as n→∞, then

min
i∈V
Qi,t(θ)

P−−−→
n→∞

1.

3. If µt+ln θ

σ
√
t
→ λ ∈ R as n→∞ and if assumption (4) holds, then

max
i∈V

∣∣∣∣Qi,t(θ)− 1√
2π

∫ ∞
λ

e−
u2

2 du

∣∣∣∣ P−−−→
n→∞

0.

Those two results clearly imply Theorems 1 and 2, and their proof occupy much of the paper:

the lower and upper bounds in Proposition 7 are respectively established in sections 4 and 6, while

Proposition 8 is proved in section 5. Once (9) is established, the branching process approximation

for G developed in section 7 quickly leads to the proof of Theorems 3 and 4 in sections 8 and 9.
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4 Proof of the lower-bound in Proposition 7

In this section, we prove the easy half of Proposition 7: the lower-bound. Fix the environment ω,

a probability measure π on V , t ∈ N, θ ∈ (0, 1) and i, j ∈ V . Observe that the inequality

P t(i, j) ≥
∑
p∈Ptij

w(p)1w(p)≤θ,

is an equality unless there exists p ∈ Ptij such that w(p) > θ, forcing P t(i, j) > θ. Consequently,

π(j)−
∑
p∈Ptij

w(p)1w(p)≤θ ≤
(
π(j)− P t(i, j)

)+
+ π(j)1P t(i,j)>θ.

Summing over all j ∈ V and invoking the Cauchy–Schwarz inequality, we get

Qi,t(θ) ≤ ‖π − P t(i, ·)‖tv +

√
1

θ

∑
j∈V

π2(j).

We now specialize to our random environment, with θ = ln3 n
n and π = πh. To conclude the proof,

it remains to verify that the square-root term is oP(1). We will in fact show the stronger

E

∑
j∈V

π2
h(j)

 � θ.

Since πh = π0P
h, the left-hand-side may be interpreted as P (Xh = Yh), where conditionally on the

environment, (Xk)0≤k≤h and (Yk)0≤k≤h are two independent random walks starting from the in-

degree distribution π0, and where the average is taken over both the walks and the environment. To

evaluate this annealed probability, we generate the walks together with the environment, forming

arcs along the way, as we need them. Initially, all tails and heads are unmatched, and X0 is chosen

according to the in-degree distribution. Then, inductively, at every step 1 ≤ k ≤ h :

1. A tail e of the vertex Xk−1 is chosen uniformly at random.

2. If e is unmatched, it gets matched to a uniformly chosen unmatched head f , i.e. ω(e) := f .

3. In either case, ω(e) is now well-defined, and we let Xk be its end-point.

Once (Xk)0≤k≤h has been generated, we proceed similarly with (Yk)0≤k≤h. Note that at most 2h

arcs are formed during this process, and that a collision must occur for the event {Xh = Yh} to be

realized. Invoking Lemma 5, we deduce that

P (Xh = Yh) ≤ 8∆(h+ 1)2

m− 2h
.

The right-hand side is O( ln2 n
n ). In view of our choice of θ, this concludes the proof.
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5 Proof of Proposition 8

Recall that Proposition 8 controls, uniformly in i ∈ V , the quenched probability Qi,t(θ) that a

random walk of length t starting at i follows a path whose weight exceeds θ. We first restrict our

attention to those vertices i in V?, and replace Qi,t(θ) with the more stable spatial average

Qi,t(θ) :=
∑
j∈V

P `(i, j)Qj,t(θ), where ` := b3 ln lnnc.

Let (D+
k )k≥1 denote i.i.d. copies of d+

J where J follows the in-degree distribution on V . More

explicitly, P
(
D+
k = d

)
= 1

m

∑n
i=1 d

−
i 1(d+i =d). For θ ∈ [0, 1], define

qt(θ) := P

(
t∏

k=1

1

D+
k

> θ

)
.

Lemma 9. For t = Θ(lnn) and θ depending arbitrarily on n,

max
i∈V?

∣∣Qi,t(θ)− qt(θ)∣∣ P−−−→
n→∞

0.

Proof. Given the environment ω, consider r = bln2 nc independent walks of length `+ t starting at

i ∈ V . Let Ai be the event that their trajectories up to time ` form a tree and that their trajectories

after time ` all have weights > θ. Then 1i∈V?
(
Qi,t(θ)

)r
is clearly a lower-bound for the quenched

probability of Ai. Averaging over ω and using Markov’s inequality, we get for ε > 0,

P
(
i ∈ V?,Qi,t(θ) ≥ qt(θ) + ε

)
≤ P(Ai)

(qt(θ) + ε)r
. (10)

To evaluate the annealed probability P(Ai), we may generate the r walks one after the other

together with the environment, forming arcs only when they are traversed by the walks, as we did

in the previous section. Given that the first k− 1 walks do satisfy the requirement, the conditional

chance that the kth walk also does is at most qt(θ)+o(1) uniformly in i ∈ V and 1 ≤ k < r. Indeed,

• either the kth walk attains length ` before reaching an unmatched tail: thank to the tree

structure, there are at most k − 1 < r possible trajectories to follow, and each has weight at

most 2−` by our assumption on the minimum degrees. Thus, the conditional chance of this

scenario is less than r2−` = o(1).

• or the walk has reached an unmatched tail by time `: as explained in remark 2, the remainder

of the trajectory after the first unmatched tail can be coupled with an i.i.d. sample from the

in-degree distribution on V at a total-variation cost less than ∆r(t+`)2

m = o(1). Thus, the

conditional chance that the walk meet the requirement in that case is at most qt(θ) + o(1).
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This proves that P(Ai) ≤ (qt(θ)+o(1))r, uniformly in i ∈ V . Inserting into (10) and summing over

all possible i ∈ V , we already obtain the first half of the claim:

P
(
∃i ∈ V?,Qi,t(θ) ≥ qt(θ) + ε

)
−−−→
n→∞

0.

Replacing “> θ” by “≤ θ” in the definitions of Ai, Qi,t(θ) and qt(θ) yields the other half.

Proof of Proposition 8. Using the Markov property and the fact that the weight of a path gets

divided by at most ∆ at each step, it is not hard to see that

max
i∈V
Qi,t(θ) ≤ max

i∈V?
Qi,t(θ∆−2`) + max

i∈V
P `(i, V \ V?)

≤ qt(θ∆
−2`) + oP(1), (11)

where in the second line we have used Lemma 9 and Proposition 6. Similarly,

min
i∈V
Qi,t(θ) ≥ min

i∈V?
Qi,t(θ∆2`)−max

i∈V
P `(i, V \ V?)

≥ qt(θ∆
2`)− oP(1). (12)

Recalling that (lnD+
k )k≥0 are i.i.d. with mean µ and variance σ2, we may now conclude as follows:

• If µt+ln θ√
t
→ +∞ then qt(θ)→ 0, by Chebychev’s inequality.

• If µt+ln θ√
t
→ −∞ then qt(θ)→ 1, by Chebychev’s inequality again.

• If µt+ln θ

σ
√
t
→ λ ∈ R and (4) holds, then by Berry–Esseen’s inequality (recall that the random

variable lnD+
k is uniformly bounded thanks to (3)),

qt(θ) −−−→
n→∞

1√
2π

∫ ∞
λ

e−
u2

2 du.

In each case, the assumption on θ is insensitive to multiplication by ∆±2`: indeed, this only shifts

ln θ by O(ln lnn), which is negligible compared to
√
t, and even to σ

√
t under the extra assumption

(4). Consequently, the same three conclusions hold with θ replaced by θ∆±2`, and inserting into

(11) and (12) concludes the proof of Proposition 8.

6 Proof of the upper-bound in Proposition 7

6.1 General strategy

Fix the environment and consider the lower-bound P t0(i, j) ≤ P t(i, j) obtained by restricting the

sum (1) to certain nice paths, to be specified soon. Assume it is small enough so that for all j ∈ V ,

P t0(i, j) ≤ (1 + ε)π(j) +
ε

|V |
, (13)

11



for a given ε > 0 and a given probability measure π on V . Then clearly,

‖π − P t(i, ·)‖tv =
∑
j∈V

(
π(j)− P t(i, j)

)
+

≤
∑
j∈V

(
π(j)(1 + ε) +

ε

|V |
− P t0(i, j)

)
+

= p(i) + 2ε,

where p(i) = 1 − P t0(i, V ) is the quenched probability that the path followed by the random walk

of length t starting at i is not nice. We use this strategy with π = πh and the following nice paths.

Definition 1. A path p of length t starting at i is nice if it satisfies the following conditions:

1. w(p) ≤ 1
n ln2 n

;

2. the first t− h steps of p are contained in a certain subtree Ti ⊆ G, defined below;

3. the last h steps of p form the only path of length at most h from its origin to destination.

With this carefully chosen definition of our nice paths, we will establish the following result.

Proposition 10. Fix ε > 0 and assume that t = t? + o(t?). Then with high probability,

1. every pair (i, j) ∈ V 2 satisfies (13);

2. every i ∈ V? satisfies p(i) ≤ Qi,t
(

1
n ln2 n

)
+ ε.

As a corollary, we immediately deduce that for t = t? + o(t?),

max
i∈V?
Di(t) ≤ max

i∈V?
Qi,t

(
1

n ln2 n

)
+ oP(1). (14)

This statement automatically extends to arbitrary t = t(n), by Proposition 8 and the fact that

Qi,t(θ) and Di(t) are non-increasing in t. Finally, to extend the maximum on the left to all vertices,

we simply take ` = b ln lnn
ln ∆ c and observe that

max
i∈V
Di(t) ≤ max

i∈V?
Di(t− `) + oP(1)

≤ max
i∈V?
Qi,t−`

(
1

n ln2 n

)
+ oP(1)

≤ max
i∈V?
Qi,t

(
1

n ln3 n

)
+ oP(1),

where we have successively used Proposition 6, (14), and the fact that Qi,t−` (θ) ≤ Qi,t
(
θ

∆`

)
.

12



6.2 Construction of the subtree Ti and proof of the first part in Proposition 10

The following procedure generates the environment ω locally around a given origin i ∈ V and

extracts from it a certain subtree T = Ti(ω). Throughout the process, we let ∂+T (resp. ∂−T )

denote the set of unmatched tails (resp. heads) whose vertex belongs to T . Initially, all tails and

heads are unmatched and T is reduced to its root, i. We then iterate the following steps:

1. A tail e ∈ ∂+T is selected according to some rule, see below.

2. e is matched to a uniformly chosen unmatched head f , forming an arc ef .

3. If f was not in ∂−T , then the arc ef and its end-vertex are added to the subtree T .

The condition in step 3 ensures that T remains a directed tree: any e ∈ ∂+T is accessible from the

root by a unique directed path, and we define the height h(e) as the number of vertices along that

path (including the vertex of e), and the weight w(e) as the inverse product of vertex out-degrees

along that path (including the vertex of e). Our rule for step 1 consists in selecting a tail with

maximal weight1 among all e ∈ ∂+T with height h(e) < t− h and weight w(e) > wmin, where

wmin :=
lnn

n
.

The procedure stops when there is no such tail, which occurs after a random number κ of pairings.

The only role of the parameter wmin is to control κ. Specifically, it will follow from Lemma 13 that

κ ≤ 2

wmin
= o(n). (15)

At the end of the procedure, we let E be the set of tails e ∈ ∂+T such that h(e) = t− h. Note that∑
e∈E

w(e) ≤ 1. (16)

We next sequentially generate the backward ball of radius h around a given destination j ∈ V as

we did for the forward ball in subsection 3.2, but with all orientations reversed. This creates an

additional random number τ of arcs, satisfying the crude bound

τ ≤ ∆ + · · ·+ ∆h = o(n). (17)

We may now consider the set F of heads f from the end-point of which the shortest path to j is

unique and has length h. Writing w(f) for the weight of that path, we have by definition of πh,

πh(j) ≥ 1

m

∑
f∈F

w(f). (18)

1using an arbitrary deterministic ordering of the set of all tails to break ties.

13



Finally, we complete the environment by matching the m− κ− τ remaining unmatched heads

to the m−κ− τ remaining unmatched heads uniformly at random. Recalling definition 1, we have

P t0(i, j) =
∑
e∈E

∑
f∈F

w(e)w(f)1w(e)w(f)≤ 1
n ln2 n

1ω(e)=f .

By construction, any arc ef contributing to this sum must be formed during the completion stage.

Conditionally on the σ−field G generated by the κ+τ arcs formed before that, the random variable

P t0(i, j) may thus be regarded as the cost of a uniform bijection, and we can exploit the following

concentration result due to Chatterjee [10].

Theorem 11 ([10]). Fix two finite sets E,F with |E| = |F | and a function c : E × F → R+.

Consider the random variable Z :=
∑

e∈E c(e, ω(e)) where ω : E → F is a uniform bijection. Then,

P (Z −E[Z] ≥ η) ≤ exp

(
− η2

2‖c‖∞ (2E[Z] + η)

)
,

for every η > 0, where ‖c‖∞ = max(e,f)∈E×F c(e, f).

We apply this result to Z = P t0(i, j), conditionally on G. Note that in our case, ‖c‖∞ ≤ 1
n ln2 n

by construction. Moreover,

E[Z|G] ≤ 1

m− κ− τ

(∑
e∈E

w(e)

)∑
f∈F

w(f)

 = (1 + o(1))πh(j),

thanks to (15), (16), (17) and (18), with the o(1) term being deterministic and independent of i, j.

For n large enough, it is smaller than ε/2, and choosing η := ε
2E[Z|G] + ε

n then yields

max
(i,j)∈V 2

P
(
P t0(i, j) ≥ (1 + ε)πh(j) +

ε

n

)
≤ exp

(
− η2 ln2 n

2n(2E[Z|G] + η)

)
≤ exp

(
− ε2 ln2 n

2(4 + ε)

)
.

We may thus take a union bound over all (i, j) ∈ V 2, establishing the first part of Proposition 10.

6.3 Proof of the second part of Proposition 10

It now remains to bound the quenched probability that the trajectory of the random walk of length

t starting at i ∈ V? is not nice. The first requirement in definition 1 fails with probability exactly

Qi,t
(

1
n ln2 n

)
. A failure of the third requirement implies that the (t − h)th vertex is not in V?,

which has probability oP(1) uniformly in i ∈ V thanks to Proposition 6. Regarding the second

requirement, there are, by construction, only two ways of escaping from Ti before time t− h:

14



• Either the weight of the trajectory falls below wmin = lnn
n before time t − h: the quenched

probability of this is 1−Qi,t−h( lnn
n ), which is oP(1) uniformly in i by Proposition 8.

• Or the walk traverses an arc that violated the tree structure in step 3 above. Proposition 12

below will show that their total weight is oP(1) uniformly in i ∈ V?.

Consider again the construction of the subtree T described above. For 1 ≤ k ≤ κ, we let ekfk

denote the kth formed arc, T k the tree obtained after k arcs have been formed, and we consider

the process (Wk)k≥0 defined by W0 = 0 and then inductively,

Wk+1 = Wk + 1k<κ1fk+1∈∂−T kw(ek+1).

Thus, Wκ is the total weight of all tails that violated the tree structure in step 3 above. SinceWh = 0

for i ∈ V?, the following proposition is more than enough to complete the proof of Proposition 10.

Proposition 12. For any fixed ε > 0, we have uniformly in i ∈ V ,

P
(
Wκ ≥Wb2/εc + ε

)
= o

(
1

n

)
.

The proof of this result will exploit the following auxiliary Lemma.

Lemma 13. Amost-surely, for all 1 ≤ k ≤ κ,

w(ek) ≤
2

k + 3
.

Since w(eκ) > wmin by our selection rule, this establishes in particular the announced bound (15).

Proof. Our priority rule clearly ensures that w(e1) ≥ . . . ≥ w(eκ). Thus, it is enough to fix a

threshold w and to show that the largest index k such that w(ek) ≥ w satisfies

w ≤ 2

k + 3
.

Note that the tree T k may not contain all the k arcs e1f1, . . . , ekfk, because some of them may

have caused a collision upon creation. Let us complete the tree by viewing the tails of those missing

arcs as proper pending edges. Then the resulting tree has the following properties:

1. there are exactly k arcs;

2. every non-leaf node has at least two children;

3. the tail of every arc has weight at least w;

4. the weights of the arcs incident to the leaves sum up to 1.

15



Properties 1-2 imply that the number of leaves is at least k+3
2 , and 3-4 that it is at most 1

w .

Proof of Proposition 12. Let (Gk)k be the natural filtration associated with the construction of T ,

i.e. Gk = σ(f1, . . . , fk). Note that ek+1 is Gk−measurable, while the conditional law of fk+1 given

Gk is uniform on the m− k unmatched tails. Consequently,

E

[
Wk+1 −Wk

∣∣∣∣Gk] = 1k<κw(ek+1)
|∂−T k|
m− k

,

E

[
(Wk+1 −Wk)

2

∣∣∣∣Gk] = 1k<κw(ek+1)2 |∂−T k|
m− k

.

Using Lemma 13, its corollary (15), and the crude bound |∂−T k| ≤ ∆(k + 1), we arrive at

κ−1∑
k=0

E

[
Wk+1 −Wk

∣∣∣∣Gk] ≤ 8∆/wmin

m− 2/wmin
=: α, (19)

κ−1∑
k=0

E

[
(Wk+1 −Wk)

2

∣∣∣∣Gk] ≤ 4∆ ln(2/wmin)

m− 2/wmin
=: β. (20)

where we have used
∑κ−1

k=0
1

k+4 ≤ lnκ for κ ≥ 2. In addition, Lemma 13 guarantees the a.-s. bound

0 ≤ Wk+1 −Wk ≤ 2

k + 4
. (21)

In view of (19),(20),(21), a classical result due to Freedman [26] ensures that for every ε > α, k ∈ N,

P (Wκ −Wk ≥ ε) ≤
(
e(k + 4)β

2(ε− α)

) (ε−α)(k+4)
2

.

Note that α and β do not depend on i and satisfy α = o(1) and β = n−1+o(1). Consequently, the

right hand-side is o
(
n−1

)
as soon as k + 4 > 2/ε, and this concludes the proof.

7 The martingale approximation

In this section, we show that B−(I, h), the backward ball of radius h around a uniform vertex I,

can be accurately described by the first h generations of a certain Galton-Watson tree T?, allowing

us to approximate the sequence (nπt(I))0≤t≤h by a martingale defined directly on T?. Specifically,

let T? be the infinite random tree with marks in V obtained by the following branching process:

• Generation 0 consists of a single node (the root), with mark uniformly distributed in V .

• Inductively, every node x in generation t ∈ N independently gives birth to exactly d−i children,

where i is the mark of x. These new nodes form generation t+ 1, and their marks are chosen

independently from the out-degree distribution on V .
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Now, consider a node x at generation t ∈ N, and let (i0, . . . , it) be the marks along the unique path

from x to the root (thus, i0 is the mark of x and it that of the root). Define the weight of x as

w(x) :=
nd−i0
m

t−1∏
k=0

1

d+
ik

.

Note that in particular that the weight of the root has mean 1, since the mean out-degree of a

uniform vertex is m
n . For t ∈ N, we now define Mt as the total weight of the tth generation T t? :

Mt :=
∑
x∈T t?

w(x).

The law of the random variable Mt provides a good approximation to the law of nπt(I), where I
denotes a uniformly chosen vertex, independent of the environment.

Proposition 14 (Branching process approximation). The total variation distance between the law

of the random vector (nπt(I))0≤t≤h and that of (Mt)0≤t≤h is less than ∆2h+3

m .

Proof. We may generate B−(I, h) sequentially as we did for the forward ball in subsection 3.2, with

directions reversed. It is now tails that get uniformly chosen from the remaining unmatched ones.

Building on remark 2, we may instead choose uniformly from all tails, matched or not, until a tail

gets chosen whose end-point was already in the ball. The chance that this event occurs before the

end of the procedure is less than p = ∆2h+3/m. This creates a coupling between B−(I, h) and the

first h generations of the tree T?, under which both structures coincide with probability more than

1− p. Moreover, on this event, (Mt)0≤t≤h equals (nπt(I))0≤t≤h by construction.

This connection to (nπt(I))0≤t≤h motivates a deeper study of the process (Mt)t≥0.

Proposition 15 (The martingale). (Mt)t≥0 is a martingale relative to the natural filtration of the

branching process. The limit M? = limt→∞Mt exists almost-surely and in L2 and for all t ∈ N,

E
[
(M? −Mt)

2
]

=
n(γ − 1)%t

m(1− %)
.

Proof. Write i(x) for the mark of x, and → for the child to parent relation in T?. By definition,

Mt+1 −Mt =
∑
x∈T t?

w(x)

d−i(x)

∑
y→x

(
d−i(y)

d+
i(y)

− 1

)
.

Given Ft, the variables (i(y))y→x are, by construction, just d−i(x) i.i.d. samples from the out-degree

distribution on V . Now, for a variable J with this distribution, we have

E

[
d−J
d+
J

]
=

n∑
i=1

d+
i

m

d−i
d+
i

= 1 and E

(d−J
d+
J

)2
 =

n∑
i=1

d+
i

m

(
d−i
d+
i

)2

= γ.
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Consequently, E [Mt+1 −Mt| Ft] = 0 and

Var [Mt+1 −Mt| Ft] = (γ − 1)
∑
x∈T t?

(w(x))2

d−i(x)

=: Σt.

This shows that (Mt)t∈N is a (non-negative) martingale, and that its almost-sure limit M? satisfies

E
[
(Mt −M?)

2
]

=

∞∑
k=t

E [Σk] , (22)

provided the right-hand side is finite. We now compute E[Σt] for all t ∈ N. First note that

Σt+1 = (γ − 1)
∑
x∈T t?

(
w(x)

d−i(x)

)2 ∑
y→x

d−i(y)(
d+
i(y)

)2 .

Now, recall that given Ft, the variables (i(y))y→x are d−i(x) i.i.d. samples from the out-degree

distribution on V , and observe that for a variable J with this distribution, we have

E

[
d−J(
d+
J
)2
]

=
n∑
i=1

d+
i

m

d−i
(d+
i )2

= %.

Consequently, E [Σt+1| Ft] = %Σt. In particular, E[Σt] = E[Σ0]%t for all t ∈ N. But Σ0 =
n2(γ−1)d−i

m2 ,

where i denotes the mark of the root. As the latter is uniformly distributed on V , we deduce that

E[Σ0] = n(γ−1)
m , and inserting into (22) completes the computation of E[(M? −Mt)

2].

Now that M? is constructed, we may establish the representation announced in the introduction.

Lemma 16. The random variable M? admits the representation (6)-(7).

Proof. Let T t? (x) denote the set of all nodes y from which there is a child-to-parent path of length

t to the node x in T?. Writing i0, . . . , it for the marks along the corresponding path, we define

w(y → x) := d−i0

t∏
k=0

1

d+
ik

.

Now, for every t ∈ N and every node x in the tree T?, we define the quantity

Zt(x) :=
∑

y∈T t? (x)

w(y → x).

A martingale argument similar to the one above shows that the limit Z?(x) = limt→∞ Zt(x) exists

almost-surely. Denote the root of T? by o. By construction, we have for all t ≥ 0,

Mt+1 =
n

m

∑
x→o

Zt(x) and Zt+1(x) =
1

d+
i(x)

∑
y→x

Zt(y).
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Passing to the limit, we deduce that almost-surely

M? =
n

m

∑
x→o

Z?(x) and Z?(x) =
1

d+
i(x)

∑
y→x

Z?(y).

The first equation is precisely (6), since i(o) is uniformly distributed on V and conditionally on F0,

the random vector (Z?(x), x→ o) consists of d−i(o) i.i.d. coordinates. The second equation implies (7)

since conditionally on F1, the nodes x→ o satisfy the following: the random vector (Z?(y), y → x)

consists of d−i(x) i.i.d. coordinates whose marginal distribution is the same as Z?(x).

8 Proof of Theorem 3

Thanks to (9), the proof of Theorem 3 boils down to establishing that for any fixed t ∈ N,

2‖πh − πt‖tv ≤

√
n (γ − 1) %t

m(1− %)
+ oP(1).

We first prove that the left-hand side is concentrated around its expectation.

Lemma 17. For any fixed t ∈ N,

‖πh − πt‖tv = E [‖πh − πt‖tv] + oP(1).

Proof. Fix the environment. The probability that the random walk of length t starting from the

in-degree distribution traverse a particular tail is trivially upper-bounded by the π0−measure of

the backward ball of radius t around its vertex, which is at most ∆t+2

m . Consequently, swapping

two coordinates of the environment ω can not alter the distribution πt by more than 2∆t+2

m in total

variation. By the triangle inequality, we conclude that it can not alter the quantity Z = ‖πt−πh‖tv
by more than b = 2∆t+2+2∆h+2

m . By a now classical application of the Azuma–Hoeffding inequality

(see, e.g., [35, Section 3.2.]), this property implies that under the uniform measure, the random

variable ω 7→ Z(ω) satisfies the following concentration inequality:

P (|Z −E[Z]| ≥ ε) ≤ 2 exp

(
− ε2

2mb2

)
. (23)

We may now let n→∞. With t fixed and h as in (8), we have mb2 → 0, as desired.

It only remains to bound the expectation. First, we may rewrite it as

2E [‖πt − πh‖tv] = E [|nπt(I)− nπh(I)|] ,
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where I is a uniformly chosen vertex, independent of the environment. Now, by Proposition 14, the

total variation distance between the law of the random vector (nπt(I))0≤t≤h and that of (Mt)0≤t≤h

is less than p = ∆2h+3

m . Since all coordinates are crudely bounded by ∆h+1, we deduce that

|E [|nπt(I)− nπh(I)|]−E [|Mt −Mh|]| ≤ p∆h+1 = o(1).

Finally, the Cauchy–Schwarz inequality and the orthogonality of martingale increments yield

E [|Mt −Mh|]2 ≤ E
[
(Mt −Mh)2

]
≤ E

[
(Mt −M?)

2
]
,

and Proposition 15 concludes the proof.

9 Proof of Theorem 4

Fix a function f : R → R that is non-expansive in the sense that |f(a) − f(b)| ≤ |a − b| for all

a, b ∈ R. This property implies that for any probability measures π, π′ on V ,∣∣∣∣∣ 1n
n∑
i=1

f (nπ(i))− 1

n

n∑
i=1

f
(
nπ′(i)

)∣∣∣∣∣ ≤ 2‖π − π′‖tv. (24)

Choosing π = π?, π
′ = πh and invoking (9), we see that

1

n

n∑
i=1

f (nπ?(i)) =
1

n

n∑
i=1

f (nπh(i)) + oP(1).

Now, recall from the proof of Lemma 17 that swapping two coordinates of the environment can not

alter πh by more than 2∆h+2

m in total variation. In view of (24), we deduce that a swap can not alter

the variable Z = 1
n

∑n
i=1 f (nπh(i)) by more than b = 4∆h+2

m . Since mb2 → 0, the concentration

inequality (23) implies

1

n

n∑
i=1

f (nπh(i)) = E

[
1

n

n∑
i=1

f (nπh(i))

]
+ oP(1).

Observe that the expectation on the right-hand side is E [f (nπh(I))], where I is a uniform vertex,

independent of the environment. Proposition 14 provides us with a coupling under which the

random variables nπh(I) and Mh differ with probability less than p = ∆2h+3

m . Since both are

bounded by ∆h+1 and since f is non-expansive, we obtain∣∣∣∣∣E
[

1

n

n∑
i=1

f (nπh(i))

]
−E [f (Mh)]

∣∣∣∣∣ ≤ p∆h+1 = o(1).
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Finally, by the non-expansiveness of f , the Cauchy–Schwarz inequality, and Proposition 15,

|E [f (Mh)]−E [f (M?)]| ≤ E [|Mh −M?|]

≤
√

E
[
(Mh −M?)

2
]

≤

√
n(γ − 1)%h

m(1− %)
= o(1).

Combining the last four equations, we conclude that for every non-expansive function f ,∣∣∣∣∣ 1n
n∑
i=1

f (nπ?(i))−E[f(M?)]

∣∣∣∣∣ P−−−→
n→∞

0.

It is not immediate, but classical that this is equivalent to the convergence stated in Theorem 4.

For details and related questions, see e.g. [9].
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