
HAL Id: hal-01187519
https://hal.science/hal-01187519

Submitted on 27 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking Federated Queries in the Linked Data
Georges Nassopoulos, Patricia Serrano-Alvarado, Pascal Molli, Emmanuel

Desmontils

To cite this version:
Georges Nassopoulos, Patricia Serrano-Alvarado, Pascal Molli, Emmanuel Desmontils. Tracking
Federated Queries in the Linked Data. [Research Report] LINA-University of Nantes. 2015. �hal-
01187519�

https://hal.science/hal-01187519
https://hal.archives-ouvertes.fr

Tracking Federated Queries in the Linked Data

Georges Nassopoulos, Patricia Serrano-Alvarado,
Pascal Molli, Emmanuel Desmontils

LINA Laboratory, Université de Nantes – France
firstName.lastName@univ-nantes.fr

Abstract. Federated query engines allow data consumers to execute
queries over the federation of Linked Data (LD). However, as feder-
ated queries are decomposed into potentially thousands of subqueries
distributed among SPARQL endpoints, data providers do not know fed-
erated queries, they only know subqueries they process. Consequently,
unlike warehousing approaches, LD data providers have no access to sec-
ondary data. In this paper, we propose FETA (FEderated query TrAcking),
a query tracking algorithm that infers Basic Graph Patterns (BGPs) pro-
cessed by a federation from a shared log maintained by data providers.
Concurrent execution of thousand subqueries generated by multiple fed-
erated query engines makes the query tracking process challenging and
uncertain. Experiments with Anapsid show that FETA is able to extract
BGPs which, even in a worst case scenario, contain BGPs of original
queries.

1 Introduction

The federation of the Linked Data (LD) interlinks massive amounts of data
across the Web. Federated query engines [12, 1, 2, 6, 10], allow data consumers
to query data residing in the federation in a transparent way as if they were a
single RDF graph.

Query engines split user’s query into subqueries distributed among SPARQL
endpoints without revealing the whole federated query. Hence, data providers do
not know the complete federated query in which they participate, they do not
know which of their data are combined, when and by whom. Consequently, data
providers have a partial access to secondary data [3, 4], unlike data warehousing
approaches.

In this paper we propose FETA (FEderated query TrAcking), a query tracking
algorithm that computes original federated BGPs (Basic Graph Patterns) from
shared logs maintained by data providers. Concurrent execution of thousand sub-
queries generated by multiple federated query engines makes the query tracking
process challenging and uncertain. To tackle this problem, we developed a set
of heuristics that links or unlinks variables used in different subqueries of a join
federated query. We experimented FETA over concurrent execution of queries
of the benchmark FedBench [11]. Even in a worst case scenario, FETA extracts
BGPs that contain federated BGPs used in original queries.

2. BACKGROUND AND MOTIVATIONS

The paper is organized as follows: Section 2 introduces a motivating example
and describes the scientific problem. Section 3 presents FETA and heuristics for
query deduction. Section 4 illustrates experimental results. Section 5 overviews
some related work. Finally, conclusions and future work are outlined in Section 6.

2 Background and Motivations

Given a SPARQL query and a federation defined as a set of SPARQL endpoints,
a federated query engine performs the following tasks [7, 9]: (i) query decomposi-
tion, normalizes, rewrites and simplifies queries; (ii) data localization, performs
source selection among defined federation and rewrites the query into a dis-
tributed query; (iii) global query optimization, optimizes distributed query by
rewriting an equivalent distributed query with various heuristics: minimizing in-
termediate results, minimizing number of calls to endpoints, etc. In Figure 1, we
observe that two join operations will be executed in the federated query engine
with data coming from subqueries sent to SPARQL endpoints; (iv) distributed
query execution, executes the optimized plan with physical operators available
in federated query engines.

SELECT ?pres ?party ?page WHERE {
?pres rdf : type dbpedia − owl : P resident. (tp1)
?pres dbpedia − owl : nationality dbpedia : United_States. (tp2)
?pres dbpedia − owl : party ?party. (tp3)
?x nytimes : topicP age ?page. (tp4)
?x owl : sameAs ?pres } (tp5)

Query CD3 of FedBench

tp2 1 tp3

tp4 1 tp5

tp1

1

1

Query parsing,
source selection,
optimization techniques

Federation
configuration:

DBPedia, Jamendo,
LMDB, NYTimes,
Geonames, SWDFsymhash

nlfo

DBPedia
(InstancesTypes)
DBPedia NYTimes

(InfoBox)
@DBPedia
(InstancesTypes)

@NYTimes

@DBPedia
(InfoBox)

Anapsid(QEi)

FETA

BGPCD3
<QEi,[11:24:19]-[11:24:27]>

log
log

log

tp2 1 tp3tp1 tp4 1 tp5

nlfo

symhash

Fig. 1. Query processing and FETA’s deduction for CD3.

Federated query tracking infers federated queries from a shared log main-
tained by data providers. We illustrate the general process in Figure 1. A feder-
ated query engine executes a federated query on a federation of SPARQL end-
points. FETA collects the logs of a federation of data providers and infers BGPs
used in federated queries. By this way, data providers that collaborate have ac-
cess to secondary data. In our example, FETA allows NYTimes data provider

2

2. BACKGROUND AND MOTIVATIONS

to know which of his data are used in conjunction with DBPedia data. Query
tracking can be applied to many federated query engines, in this paper we focus
on tracking queries processed by the Anapsid [1] federated query engine, with
its join physical operators, nested loop with filter options (nlfo) and symmetric
hash (symhash).

Time Subquery/Answer Endpoint
11:24:19 (Subquery 1) SELECT ?pres WHERE { DBPedia

?pres rdf:type dbpedia-owl:President } InstancesTypes
11:24:23 (Answer) { {var: "pres", values: DBPedia

"http://dbpedia.org/resource/Ernesto_Samper,..., InstancesTypes
"http://dbpedia.org/resource/Shimon_Peres,...,
http://dbpedia.org/resource/Barack_Obama" } }

11:24:21 (Subquery 2) SELECT ?party ?pres WHERE { DBPedia
?pres dbpedia-owl:nationality dbpedia:United_States . InfoBox
?pres dbpedia-owl:party ?party }

11:24:24 (Answer) { {var: "party", values: DBPedia
"http://dbpedia.org/resource/Democratic_Party_ InfoBox
"%28United_States%29,...,
http://dbpedia.org/resource/Independent_%28politics%29",
http://dbpedia.org/resource/Republican_Party_%28US%29" },
{ var: "pres", values:
"http://dbpedia.org/resource/Barack_Obama,...,
http://dbpedia.org/resource/Johnny_Anders,...,
http://dbpedia.org/resource/Judith_Flanagan_Kennedy,..." } }

11:24:25 (Subquery 3) SELECT ?pres ?x ?page WHERE { NYTimes
?x nytimes:topicPage ?page .
?x owl:sameAs ?pres . FILTER
((?pres=<http://dbpedia.org/resource/Barack_Obama>) ||
(?pres=<http://dbpedia.org/resource/Johnny_Anders>) ||
(?pres=<http://dbpedia.org/resource/Judith_Flanagan_Kennedy>),...) ||
}} LIMIT 10000 OFFSET 0

11:24:27 (Answer) { {var: "pres", values: NYTimes
"http://dbpedia.org/resource/Barack_Obama" }
{ var: "x", values:
"http://data.nytimes.com/47452218948077706853" }
{ var: "page", values:
"http://topics.nytimes.com/top/reference/timestopics/
people/o/barack_obama/index.html" }

Table 1. Partial logs of DBPedia (InstancesTypes, InfoBox) and NYTimes.

Figure 1 illustrates how Anapsid processes query CD3 from FedBench1 [11].
The goal is to find all US presidents, their party membership and pages with
news about them. Table 1, presents an extraction of federated log with traces of
1 Prefixes for queries presented in this article are:
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX linkedMDB: <http://data.linkedmdb.org/resource/movie/>
PREFIX nytimes: <http://data.nytimes.com/elements/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX purl: <http://purl.org/dc/terms/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3

2. BACKGROUND AND MOTIVATIONS

SELECT ?pres ?party ?page WHERE {
?pres rdf : type dbpedia − owl : P resident . (tp1)
?pres dbpedia − owl : nationality dbpedia : United_States . (tp2)
?pres dbpedia − owl : party ?party . (tp3)
?x nytimes : topicP age ?page . (tp4)
?x owl : sameAs ?pres } (tp5)

Query CD3 of FedBench
SELECT ?actor ?news WHERE {
?film purl:title ’Tarzan’ . (tp1)
?film linkedMDB:actor ?actor . (tp2)
?actor owl:sameAs ?x . (tp3)
?y owl:sameAs ?x . (tp4)
?y nytimes:topicPage ?news } (tp5)

Query CD4 of FedBench

tp2 1 tp3

tp4 1 tp5

tp1 tp1 1 tp2 1 tp3

tp5 1 tp4

1

1 1nlfo

Query parsing,
source selection,
optimization techniques

Federation
configuration:

DBPedia, Jamendo,
LMDB, NYTimes,
Geonames, SWDF

symhash

nlfo

DBPedia
(InstancesTypes)

DBPedia
(InfoBox)

@DBPedia
(InstancesTypes)

@NYTimes

@DBPedia
(InfoBox)

@LMDB

@NYTimes

Anapsid(QEi)

NYTimes LMDB

FETABGPCD3
<QEi,[11:24:19]-[11:24:27]>

BGPCD4
<QEi,[11:24:23]-[11:24:28]>

log
log log

log

query query

tp2 1 tp3tp1 tp4 1 tp5 tp1 1 tp2 1 tp3tp5 1 tp4

nlfo

symhash

Fig. 2. Query processing and FETA’s deduction for CD3, CD4 concurrent execution.

the CD3 execution. It contains some subqueries and associated answers2 of end-
points. These traces correspond to subqueries sent by one query engine, identified
by its IP address.

In Figure 1 we see that Anapsid evaluates individually tp1 of CD3, at DBPedia-
instances types. Subsequently, this query engine choses a nlfo implementation to
join data retrieved from DBPedia-infobox and NYTimes. Consequently, Anap-
sid sends tp2 1 tp3 to DBPedia-infobox and stores intermediate results. Then,
it calls NYTimes with several subqueries containing these intermediate results
in filter options. This is confirmed in Table 1, where answers of subquery 2
from DBPedia-infobox are injected in the filter part of subquery 3 and sent to
NYTimes. Anapsid iterates until all intermediate results are sent to NYTimes,
in order to avoid reaching the endpoint’s limit response. Finally, results of the
nlfo implementation are joined locally at Anapsid with results of the first triple
pattern’s evaluation, using the symhash operator.

Operator nlfo is represented by an arrow because the order of the join is
deduced from logs, i.e., it is possible to know in which direction the nested loop
2 Query results are sent in JSON format.

4

3. FETA: FEDERATED QUERY TRACKING

is made. But, symhash is represented by a dash line because it is impossible to
know the order of the join made locally by the query engine.

It is clear that a single federated query can generate many subqueries sent
to endpoints according to physical join operators. However, such behavior can
be tracked if endpoints collaborate and BGPs from the federated query can be
inferred.

Federated query tracking is challenging if many federated queries having
common join conditions are executed concurrently. The most challenging case is
when, in addition, queries are sent by the same query engine. We propose some
heuristics to separate subqueries belonging to different federated queries sent by
the same query engine. Figure 2 shows the concurrent execution of queries CD3
and CD4 sent by query engine QEi. These queries have common variable ?x.
When logs are federated, this variable joins BGPs of both queries.

Problem statement. Given a federated log containing independent sub-
queries, link subqueries on their common join conditions, i.e., variable, IRI or
literal, if they participate to the same federated query and deduce BGPs pro-
cessed by the federation. The desired output is a set of BGPs indicating (i) which
endpoints evaluated which triple patterns, (ii) whom issued the federated query,
and (iii) in which period of time the deduced BGP was processed.
At the bottom of Figures 1 and 2 there are deduced BGPs corresponding to
queries appearing at the top of these Figures. Information about which end-
points collaborate with which triple pattern, the federated query engine that
issued the query, and the time period where the queries were processed appear
too.

3 FETA: FEderated query TrAcking

Figure 3 describes how FETA processes a federated log. A federated log is a
sequence of subqueries with answers as described in Table 1. The goal is to
link different subqueries participating in the same join, in order to reconstruct
federated BGPs. T1, Same queries and Common join condition, allow to join
subqueries’ BGPs. NLFO, Same Concept/Same As and Not Null Join verify
joins and potentially unlink BGPs.

T1
Federated

Log
Same queries

Common
join condition NLFO Same Concept/

Same As
Not Null Join

FETA input
FETA output

(subqueries/answers)
(BGPs)

subqueries
answers

Fig. 3. Workflow processing of FETA’s heuristics.

5

3. FETA: FEDERATED QUERY TRACKING

T1 identifies subqueries of the same time interval that will be analyzed to-
gether. For instance, all subqueries in Table 1, are captured in the interval of
few seconds. The challenge is to choose the appropriate time interval. A small
window may separate subqueries pertaining to the same federated query. A large
window may join subqueries of different federated queries.

Same queries merges identical subqueries but also subqueries differing only
in their offset values. Same queries are sent twice to the same endpoint to be
sure obtaining an answer and to different endpoints in order to have complete
answers. For instance, every query in Table 1 is sent twice consecutively to each
selected endpoint. Additionally in Figure 6, we observe that the first two triple
patterns of CD6 are evaluated separately to different endpoints, with the aim
of having complete answers. Similar queries with different offsets, on the other
hand, are sent to avoid reaching the endpoint’s limit response. For instance,
the subqueries below which are sent to Geonames for evaluating query CD7,
are merged by FETA and considered as a unique subquery without the part
limit/offset:

SELECT ?location ?news WHERE {
?y <http://data.nytimes.com/elements/topicPage> ?news
?y <http://www.w3.org/2002/07/owl#sameAs> ?location }
LIMIT 10000 OFFSET 0

SELECT ?location ?news WHERE {
?y <http://data.nytimes.com/elements/topicPage> ?news
?y <http://www.w3.org/2002/07/owl#sameAs> ?location }
LIMIT 10000 OFFSET 10000

Common join condition, joins BGPs of queries having common projected
variables or triple patterns with common IRI/literal on their subjects or objects.
We are aware that, in general, subqueries are joined on their common projected
variables. However, we consider also IRIs and literals, even if it can produce some
noise on our deduction approach, because they are used in some cases as a com-
mon join condition. For instance, in Figure 4, the IRI dbpedia:Barack_Obama,
is a join condition between triple patterns of CD2. We presume that subqueries
with common join condition, closely in time, may be joined locally at the query
engine using the symmetric hash operator. For instance, in Table 1, all sub-
queries have variable ?pres in common and thus we suppose they are joined at
Anapsid.

Nested Loop with Filter Options (NLFO), verifies if BGPs, joined in the previ-
ous heuristic, were executed with a nested loop operator. In particular, we group
queries varying only in their filter values, if these values are contained in answers
of a previously evaluated subquery, with which we confirm that they are joined.
For instance, in Table 1 we identify that filter values of subquery 3 correspond to
answers of variable ?pres, e.g., <http://dbpedia.org/resource/Barack_Obama>,
for subquery 2. This certifies a nlfo between subqueries 2 and 3, discarding a
global symhash join among the three subqueries.

6

4. EXPERIMENTS

Same Concept/Same As, verifies if answers of joined queries correspond to
same concepts or concepts related with a sameAs property.3 If this is not the
case, concerned BGPs are unlinked. For instance, in Table 1, answers of the triple
pattern of subquery 1 have the same concept with the second triple pattern of
subquery 3, for variable ?pres, i.e., <http://dbpedia.org/ontology/President>.

Not Null Join, verifies if a join returns an empty set of answers. If this is
the case, concerned BGPs are unlinked. For instance, in Table 1, triple pat-
terns in subqueries 1 and 3 have a common value for projected variable ?pres,
i.e., <http://dbpedia.org/resource/Barack_Obama> and therefore they remain
linked in the same BGP.

4 Experiments

We analyzed the collection of 7 federated queries of Cross Domain (CD) of the
benchmark FedBench [11]. Datasets are those concerned by these queries: DBPe-
dia, Jamendo, LMDB, NYTimes, SWDF and Geonames. Virtuoso OpenLink4

6.1.7 is hosting SPARQL endpoints. We used Anapsid 2.7 as federated query
engine with the cache disabled. Answers of endpoints to the subqueries they
received, are captured with tcpdump 4.5.15. FETA is implemented in Java 1.7
and the collected federated log is stored in a CouchDB database6.

We evaluated FETA under two configurations. In the first configuration, one
Anapsid client processes all federated queries sequentially with a delay between
each query. In the second one, one Anapsid client processes all queries concur-
rently, each one into an individual thread. Executing queries concurrently from
a single client is clearly a worst case scenario for FETA because the IP address of
the client cannot be used to split subqueries of the federated log. For the scope
of this paper, we suppose that all endpoints concerned by federated queries share
their logs.

With the first configuration, FETA reconstructs correctly all federated BGPs
of the CD collection. 7 We focus now on the second experiment. In this case,
Anapsid produces 529 subqueries.8 Size of queries and answers logs are of 300KB
and 14MB, respectively.

Table 2 shows the number of BGPs produced after each heuristic following
the FETA execution workflow shown in Figure 3. FETA processes this federated
log in approximately 90 seconds. T1 is not significant here, we consider it big
enough to cover the execution of all federated queries of CD. Initial log contains
238 SELECT subqueries as they are unlinked, there are 238 BGPs. Same queries
3 Note that we do not consider generic concepts for this heuristic, e.g.,

<http://www.w3.org/2002/07/owl#Thing>.
4 http://virtuoso.openlinksw.com/
5 http://www.tcpdump.org/
6 http://couchdb.apache.org/
7 Each deduced BGP corresponds to the federated query, once simplified and rewritten
by the query engine at the query decomposition phase.

8 Note that we subsequently remove ASKs and consider only SELECT subqueries.

7

4. EXPERIMENTS

FETA Heuristic Number of produced BGPs
Same queries 109
Common join condition 1
NLFO 1
Same Concept/Same As 2
Not Null Join 4

Table 2. Number of BGP’s produced by heuristic.

heuristic removes or merges more than 60% of subqueries and their respective
answers, producing 109 BGPs. Common join condition produces a single BGP
because chaining among queries. NLFO confirms joins, by identifying the injec-
tion of answers from a subquery into subqueries which vary only in their filter
values. Same Concept/Same As heuristic unlinks some joins and certifies others.
Not Null Join certifies that a symmetric hash is certainly possible, because an
intersection of answers on a common projected variable of every two subqueries.

SELECT ?predicate ?object WHERE {
dbpedia : Barack_Obama ?predicate ?object } (tp1_CD1)
UNION {
?subject owl : sameAs dbpedia : Barack_Obama . (tp2_CD1)
?subject ?predicate ?object } } (tp3_CD1)

SELECT ?party ?page WHERE {
dbpedia : Barack_Obama dbpedia − owl : party ?party . (tp1_CD2)
?x nytimes : topicP age ?page . (tp2_CD2)
?x owl : sameAs dbpedia : Barack_Obama } (tp3_CD2)

SELECT ?pres ?party ?page WHERE {
?pres rdf : type dbpedia − owl : P resident . (tp1_CD3)
?pres dbpedia − owl : nationality dbpedia : United_States . (tp2_CD3)
?pres dbpedia − owl : party ?party . (tp3_CD3)
?x nytimes : topicP age ?page . (tp4_CD3)
?x owl : sameAs ?pres } (tp5_CD3)

tp1_CD1
@DBPedia (Labels,
InstanceTypes,
Images, Articles,
InfoBox, NYTimes)

tp2_CD1 1 tp3_CD1 @NYTimes

tp1_CD2 @DBPedia
(InfoBox)

tp3_CD2 1 tp2_CD2 @NYTimes

tp4_CD3 1 tp5_CD3 @NYTimes

tp2_CD3 1 tp3_CD3

@DBPedia
(InstanceTypes)tp1_CD3

@DBPedia
(InfoBox)

BGP1
<QEi,[11:24:19]-[11:24:32]>

CD1

CD2

CD3

symhash
nlfo

Fig. 4. FETA’s deduced BGP1 for CD concurrent execution.

Figures 4-7 present BGPs extracted by FETA for all concurrently executed
CD queries. Note that query plans established by Anapsid for each query, may
differ depending on endpoints availability and when operators are blocked. Ide-
ally, FETA should reconstruct 8 BGPs. The CD collection consists of 7 queries
but CD1 is a union query normally decomposed in 2 BGPs. FETA extracted 4
BGPs containing the 8 original BGPs. Even if this result is not precise, extracted
BGPs with endpoints’ information give valuable information to data providers

8

4. EXPERIMENTS

SELECT ?film ?director ?genre WHERE {
?film dbpedia − owl : director ?director . (tp1_CD5)
?director dbpedia − owl : nationality dbpedia : Italy . (tp2_CD5)
?x owl : sameAs ?film . (tp3_CD5)
?x linkedMDB : genre ?genre } (tp4_CD5)

tp2_CD5 1 tp1_CD5 @DBPedia
(InfoBox)

tp4_CD5 1 tp3_CD5 @LMDB

BGP2
<QEi,[11:24:24]-[11:24:30]>CD5

symhash
nlfo

Fig. 5. FETA’s deduced BGP2 for CD concurrent execution.

SELECT ?name ?location WHERE {
?artist foaf : name ?name . (tp1_CD6)
?artist foaf : based_near ?location . (tp2_CD6)
?location geonames : parentF eature ?germany . (tp3_CD6)
?germany geonames : name "Federal Republic of Germany" } (tp4_CD6)

tp4_CD6 1 tp3_CD6 @Geonames

tp2_CD6
@Jamendo, @SWDF
@LMDB

tp1_CD6
@DBPedia,
(InfoBox, Person)
@Jamendo, @SWDF

CD6
BGP3

<QEi,[11:24:25]-[11:24:33]>

symhash
nlfo

Fig. 6. FETA’s deduced BGP3 for CD concurrent execution.

SELECT ?actor ?news WHERE {
?film purl : title ’Tarzan’ . (tp1_CD4)
?film linkedMDB : actor ?actor . (tp2_CD4)
?actor owl : sameAs ?x . (tp3_CD4)
?y owl : sameAs ?x . (tp4_CD4)
?y nytimes : topicP age ?news } (tp5_CD4)

SELECT ?location ?news WHERE {
?location geonames : parentF eature ?parent . (tp1_CD7)
?parent geonames : name "California" . (tp2_CD7)
?y owl : sameAs ?location . (tp3_CD7)
?y nytimes : topicP age ?news } (tp4_CD7)

tp1_CD4 1 tp2_CD4 1 tp3_CD4 @LMDB

tp5_CD4 1 tp4_CD4 @NYTimes

tp2_CD7 1 tp1_CD7 @Geonames

tp4_CD7 1 tp3_CD7 @NYTimes

BGP4
<QEi,[11:24:23]-[11:24:36]>

CD4

CD7

symhash
nlfo

Fig. 7. FETA’s deduced BGP4 for CD concurrent execution.

bout how their data are processed and (potentially) joined with other endpoints.
In the following paragraphs, we explain how FETA deduces each particular BGP.

Figure 4 describes how FETA processes federated queries CD1, CD2 and CD3.
CD1 is composed of two BGPs separated by a union, which we expect to identify
individually. In fact, these two BGPs were deduced as a single BGP because they
have a common IRI, dbpedia:Barack_Obama and also share common answers for
both variables ?predicate and ?object which concern Barack Obama. Next,
we observe that CD1, CD2, and CD3 were grouped in one BGP. CD1 and CD2

9

5. RELATED WORK

were not separated because of the common IRI dbpedia:Barack_Obama, which is
actually also a join condition between triple patterns of CD2. BGPs of CD2 and
CD3 were not separated because results of CD2 are included in CD3 for their
common triple pattern, ?x nytimes : topicPage ?page, but also for the other
triple patterns of CD2.

In Figures 5 and 6, we can see that BGPs of CD5 and CD6 were well recon-
structed. CD4 and CD5 are linked in the same BGP with Same Concept/Same
As, as both concern films. Subsequently, Not Null Join separated CD4 from CD5
on the content of the ?film variable, as CD4 concerns films related to Tarzan
while CD4 concerns films of Italian directors. In a similar way, CD6 and CD7
are linked with Same Concept/Same As, as both concern localizations but they
were separated because they have no common answer for variable ?location as
the first concerns the Federal Republic of Germany and the second California,
USA.

Figure 7 shows FETA’s deduced BGP, grouping CD4 and CD7. On the other
hand CD4 and CD7 share common concepts but also answers because, for the
currently employed heuristics, we infer that these two queries share the same
triple pattern ?y nytimes : topicPage ?news.

From this experiments we conclude that (i) it is possible to reconstruct precise
federated BGPs if federated queries are different enough, and (ii) reconstructed
BGPs contain all original BGPs, i.e., false joins are not deduced.

5 Related Work

Federated query tracking is related to web tracking [8]. In web tracking, a first-
party website authorizes a third party to learn about its users. Analogously,
FETA plays the role of the third party. However, logs collected in federated query
tracking is the result of the execution of a physical plan in distributed query
processing compared to a more simple web navigation flow in web tracking.

Extracting information from raw logs is traditionally a data mining pro-
cess [5] involving the following steps: (i) data selection identifies the target
dataset and relevant attributes that will be used to derive new information;
(ii) data cleaning removes noise and outliers, transforms field values to common
units, generates new fields and finally brings the data into the structured data
schema that is used for storage, e.g., relational databases, XML; (iii) data min-
ing applies data analysis and discovery algorithms based on machine learning,
pattern recognition, statistics and other methods; (iv) finally evaluation presents
the new knowledge in a form that will be also understandable from the end user,
e.g., through visualization.

FETA can be located at the data mining step because it transforms raw logs
into a sequence of sets of BGPs. In experiments, we presented one extraction
for a period of time. Repeating extractions will generate a sequence of extracted
BGPs than can be used for association rules mining of frequent pattern detection.

10

6. CONCLUSIONS AND FUTURE WORK

6 Conclusions and future work

Federated query tracking allows data providers to access secondary data in
Linked Data federation. We proposed FETA, a federated query tracking approach
that extracts original federated Basic Graph Patterns from a shared log main-
tained by data providers. FETA links and unlinks variables present in different
subqueries of the federated log by applying a set of heuristics we presented in
this paper.

Even in a worst case scenario with Anapsid, FETA extracts BGPs that con-
tain original BGPs of federated join queries. Extracted BGPs with endpoints’
information give valuable information to data providers about which triples are
joined, when and by whom.

We think FETA opens several interesting perspectives. First, heuristics can
be improved in many ways by better using semantics of predicates and answers.
Second, we conducted experiments on one slice of federated log. Repeating BGPs
extractions on successive slices allows to apply traditional data mining techniques
such as extracting frequents patterns. Third, we limited experiments to Anapsid.
Extending to FedX query engine [12] will challenge proposed heuristics because
FedX physical operators produce slightly different query traces.

References

1. M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: An
Adaptive Query Processing Engine for SPARQL Endpoints. In The Semantic Web
- ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, Proceedings, Part I, pages 18–34, 2011.

2. O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploit-
ing VOID Descriptions. In Proceedings of the Second International Workshop on
Consuming Linked Data (COLD2011), Bonn, Germany, October 23, 2011.

3. S. Grumbach. Intermediation Platforms, an Economic Revolution. ERCIM News,
2014(99), 2014.

4. S. Grumbach, M. Rafanelli, and L. Tininini. Querying Aggregate Data. In Proceed-
ings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 31 - June 2, Philadelphia, Pennsylvania, USA, pages
174–184, 1999.

5. J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques. Elsevier,
2011.

6. O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL Queries over the Web
of Linked Data. In The Semantic Web - ISWC 2009 - 8th International Semantic
Web Conference, Chantilly, VA, USA, October 25-29, Proceedings, pages 293–309,
2009.

7. D. Kossmann. The state of the art in distributed query processing. ACM Com-
puting Surveys (CSUR), 32(4):422–469, 2000.

8. J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking: Policy and Technology.
In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May, San Francisco,
California, USA, pages 413–427. IEEE Computer Society, 2012.

9. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third
Edition. Springer, 2011.

11

6. CONCLUSIONS AND FUTURE WORK

10. B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL.
Springer, 2008.

11. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fed-
Bench: A Benchmark Suite for Federated Semantic Data Query Processing. In
The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference,
Bonn, Germany, October 23-27, Proceedings, Part I, pages 585–600, 2011.

12. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization
Techniques for Federated Query Processing on Linked Data. In The Semantic Web
- ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, Proceedings, Part I, pages 601–616, 2011.

12

