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Color Sparse Representations for Image Processing:
Review, Models and Prospects

Quentin Barthélemy, Anthony Larue and Jérôme I. Mars

Abstract—Sparse representations have been extended to deal
with color images composed of three channels. A review of
dictionary-learning-based sparse representations for color images
is made here, detailing the differences between the models, and
comparing their results on real data and simulated data. These
models are considered in a unifying framework that is based on
the degrees of freedom of the linear filtering/transformation of the
color channels. Moreover, this allows it to be shown that the scalar
quaternionic linear model is equivalent to constrained matrix-
based color filtering, which highlights the filtering implicitly
applied through this model. Based on this reformulation, the new
color filtering model is introduced, using unconstrained filters. In
this model, spatial morphologies of color images are encoded by
atoms, and colors are encoded by color filters. Color variability
is no longer captured in increasing the dictionary size, but with
color filters, this gives an efficient color representation.

Index Terms—Sparse representation; dictionary learning;
color image; model; quaternion; color filter.

I. INTRODUCTION

In image processing, sparse representations based on dic-
tionary learning have become a widespread tool for grayscale
images. In this framework, the redundant dictionary that is
most adapted to a given dataset is estimated such that each
datum is decomposed as a sparse linear sum of learned atoms
[1]. Redundancy coupled with sparsity provides efficient rep-
resentations for image processing [2]–[4], such as compression
[5], denoising [6], [7], deblurring [2], inpainting [8], [9],
demosaicking [7], super-resolution [10], [11], clustering [12],
classification [13], [14], and others.

The question here is: how can we extend these representa-
tions to color images? A color image is composed of three
color channels that are expressed in different spaces, such
as RGB, YCbCr, HSL, Lab, XYZ, and other transformed
color bases [15]. The classical RGB (i.e., red, green, blue)
color space is chosen as it respects the hypothesis of the
spherical structure of the noise, which is required by sparse
approximations [7]. It is also the simplest way to express
natural images. An efficient color representation has to work
on the whole color space to capture correlations between
channels, encode the color diversity of the database without
increasing the redundancy (i.e., the dictionary size), and avoid
color artifacts.
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For color representations, a naı̈ve and classical approach
consists of processing each color channel independently [6],
although this approach cannot consider correlations between
the color channels1. A first approach [7] that considers the
whole color space consists of vectorizing the color channels.
In this case, the dictionary contains many gray atoms and it
introduces artifacts, such as lack of color saturation, washing
effects, and hue bias. To improve the solution, adapting the
dictionary on a specific image provides more colored atoms,
but does not suppress color artifacts. Following in this way
[17], [7], the scalar product is modified to enforce average
colors, which improves the efficiency of the representation for
denoising, inpainting and demoisacking. However, some color
distortions and blurring effects persist. When adapted to three-
dimensional (3D) structures, quaternions extend complex num-
bers using a real part and three imaginary parts. Quaternion-
based methods have been shown to efficiently deal with color
images [18]–[22], encoding the color channels into the three
imaginary parts. Recently, sparse representations have been
extended to quaternions [23]–[25], which have shown better
performances for reconstruction [23], denoising [23], [25],
inpainting [23] and super-resolution [24].

In this article, dictionary-learning-based sparse representa-
tions for color images are first reviewed, detailing the dif-
ferences between the models, and comparing their results on
real data and simulated data. These models are considered in a
unifying framework that is based on the degrees of freedom of
the linear filtering/transformation of the color channels. This
allows it to be shown that the scalar quaternionic linear model
is equivalent to constrained matrix-based color filtering, which
highlights the filtering implicitly applied through this model.
Based on this reformulation, a new model is introduced: the
color filtering model using unconstrained filters. These refor-
mulated models are compared, to show the differences with
respect to their degrees of freedom. However, the complete
study of this new model will be reported in a future article.

In Section II, quaternion algebra is presented, so as to
understand the color representation based on the quaternionic
model. In Section III, sparse approximation and dictionary
learning problems are explained. The different models for
color sparse representations are reviewed in Section IV, and
in particular, the vectorized and quaternionic models. These
are then compared with real and simulated data in Section V.
In Section VI, these models are reformulated in a unifying
framework in terms of the color filtering, and a new model is

1For the LabelMe database studied here [16], the median correlation
coefficient is 0.97 between the red and green channels, 0.93 between the
red and blue, and 0.97 between the blue and green.
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proposed. These models are then compared in Section VII. In
Section VIII, several directions for future research are given
as prospects to improve the results obtained by color sparse
representations.

II. QUATERNIONS

In this section, quaternion algebra and its vector representa-
tion are presented. For the notations, lower-case letters denote
scalars, bold lower-case letters denote vectors, and bold upper-
case letters denote matrices. Also, sans serif font is used for
quaternions, to distinguish them from real numbers.

A. Quaternion algebra

Quaternion algebra is denoted as H, and it is an extension
of the complex space C using three imaginary parts [26], [27].
A quaternion q ∈ H is defined as:

q = q0 + q1i + q2j + q3k , (1)

where q0, q1, q2, q3 ∈ R, and the imaginary units are defined
as:

ij = k, jk = i, ki = j and ijk = i2 = j2 = k2 = −1 . (2)

Quaternionic algebra is characterized by its noncommutativity:
in general qr 6= rq, for q, r ∈ H. The real part is <(q) = q0,
and the imaginary part is =(q) = q1i+q2j+q3k. If its real part
is null, a quaternion is said to be pure, and otherwise it is said
to be full. The conjugate q ∗ is defined as: q ∗ = <(q)−=(q)
and we have (qr) ∗ = r ∗q ∗. The modulus is defined as |q| =√
q∗q, and the inverse as q−1 = q∗/ |q|2. A unit quaternion

is a quaternion with a modulus of one.
Moreover, an N -dimensional quaternionic vector is defined

as q ∈ HN :
q = q0 + q1i + q2j + q3k , (3)

where q0, q1, q2, q3 ∈ RN . In the following, [ · , · ] will
denote the horizontal concatenation and [ · ; · ] the vertical
concatenation. For vectors, (.)T denotes the transpose opera-
tor, and (.)H the conjugate transpose operator. For matrices,
Q(:, n) and Q(m, :) denote the nth column and the mth row,
respectively, of the matrix Q.

B. Vector representation of quaternions

For any nonnull quaternion x ∈ H, the orthogonal matrix
U(x) ∈ R4×4 is defined as [26]:

U(x) =
1

|x|


x0 x1 x2 x3

−x1 x0 −x3 x2

−x2 x3 x0 −x1

−x3 −x2 x1 x0

 . (4)

Using the vector representation of quaternion q ∈ H ≡
[q0, q1, q2, q3] ∈ R4, the product of two quaternions q and
x ∈ H, with x being a unit quaternion, can be expressed in
terms of the product of a vector and an orthogonal matrix:

qx ≡ [q0, q1, q2, q3]U(x) . (5)

This comes from expansion of the quaternion product:

qx = (q0 + q1i + q2j + q3k) (x0 + x1i + x2j + x3k) (6)
= q0x0 − q1x1 − q2x2 − q3x3

+ (q0x1 + q1x0 + q2x3 − q3x2) i

+ (q0x2 − q1x3 + q2x0 + q3x1) j

+ (q0x3 + q1x2 − q2x1 + q3x0) k . (7)

Now, considering a quaternion vector q ∈ HN ≡
[q0, q1, q2, q3] ∈ RN×4 and a non-unit quaternion x ∈ H,
the product becomes:

qx ≡ |x| [q0, q1, q2, q3]U(x) . (8)

This vector representation of this quaternionic product will be
useful in the following.

III. DICTIONARY LEARNING PRINCIPLE

In this section, linear decomposition, sparse approximation,
and dictionary-learning problems are presented.

A. Linear decomposition

Considering a signal y ∈ RN of N samples and a matrix
D ∈ RN×M of M vectors {dm}Mm=1, the linear decompo-
sition of the signal y is carried out on the matrix D, such
that:

y = Dx + e =

M∑
m=1

dmxm + e , (9)

where x ∈ RM are the coding coefficients, and e ∈ RN is the
residual error. Moreover, the matrix D is normalized, which
means that its columns are normalized, so that coefficients x
reflect the energy of each vector in the signal.

Due to noncommutativity, two quaternionic linear models
are possible [28]: coefficients can be multiplied on the left
side of the vectors, or on their right side. With the definition
of a quaternionic signal y ∈ HN and a dictionary D ∈ HN×M ,
the right-multiplication linear decomposition is:

y = Dx + e =

M∑
m=1

dmxm + e , (10)

where x ∈ HM is the coefficients vector, and e ∈ HN is the
error. For this model, considering quaternionic vectors q, r ∈
HN , the right Hermitian scalar product is defined as 〈q, r〉 =
r Hq ∈ H, and its associated `2 norm is denoted by ‖.‖2.

B. Sparse approximation

1) Generalities: When the matrix D of the linear model
contains more vectors than the number of samples, i.e.,
M > N , it is called a dictionary, and its normalized vectors are
called atoms. The dictionary is thus a redundant/ overcomplete
basis, and it provides a more efficient representation than
a basis [1], [29], [30]: it is more robust to noise, it has
more flexibility for matching patterns in the data, and it
allows a more compact representation. As the dictionary is
redundant, the linear system of Eq. (9) is thus underdetermined
and has multiple possible solutions for x. The introduction
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of constraints, such as smoothness, positivity, sparsity, or
others, allows the solution to be regularized. In particular, the
decomposition of a signal y under a sparsity constraint can be
formalized by [31]:

min
x
‖y −Dx‖22 s.t. ‖x‖s ≤ K , (11)

where ‖x‖s is the `0 pseudo-norm or the `1 norm, and K
is a constant. Many algorithms deal with this problem for
real signals: greedy optimizations such as matching pursuit
[32] or orthogonal matching pursuit (OMP) [33], and also
`1-norm based optimizations that ensure convex properties,
such as basis pursuit [34], least-angle regression [35], iterative
shrinkage-thresholding [36], and others (see [31] for a review).

2) OMP and Q-OMP: Orthogonal matching pursuit is a
greedy sparse approximation that iteratively selects the atoms
in an active dictionary that best explain the current residue
[33]. As described in Algorithm 1, at the current iteration k,
OMP selects the atom dm that produces the strongest decrease
in the residue. This is equivalent to selecting the atom that
is the most correlated with the residue: the scalar products
between the residue ek−1 and atoms dm are computed (step
4). The selection (step 6) searches the maximum of their
absolute values to determine the optimal atom dmk . An active
dictionary Dk ∈ RN×k is formed, which contains all of the
selected atoms (step 7). Active, i.e., nonzero, coding coeffi-
cients xk ∈ Rk are computed via the orthogonal projection of
y on Dk (step 8).

Algorithm 1 : x = OMP (y,D)

1: initialization: k = 1, e0 =y, active dictionary D0 =∅
2: repeat
3: for m← 1,M do
4: Scalar Product: ckm ← dHm ek−1

5: end for
6: Selection : mk ← arg maxm

∣∣ ckm ∣∣
7: Active Dictionary: Dk ← [Dk−1,dmk ]
8: Active Coefficients: xk ← arg minx ‖y −Dkx‖22
9: Residue: ek ← y −Dkyk

10: k ← k + 1
11: until stopping criterion

The first extension of the sparse approximation to quater-
nions is the quaternionic OMP (Q-OMP) [37], [28]. Due to the
noncommutativity of quaternions, two Q-OMPs are detailed
in [28] that depend on the multiplication side in the linear
decomposition. The quaternionic coefficients are calculated by
orthogonal projection of the signal on selected atoms, and
they are computed recursively using block matrix inversion
[37], [28]. Another QOMP version is also given in [23],
[24], although with naı̈ve implementation of the orthogonal
projection, using the expensive quaternionic pseudo-inverse.
Note that these algorithms are given for full quaternions,
without constraint on the signal, atoms and residue during the
coefficient estimations.

The Q-OMP algorithm is not detailed here as it is similar
to Algorithm 1. There are two main differences: quaternions

are noncommutative, so the order of the variables in multi-
plications is crucial (e.g., the scalar product in step 4); and
calculations are more expensive, as quaternions are composed
of four real numbers. As shown in Eq. (7), the product of
two quaternions contains 16 terms, whereas a complex one
contains 4 terms, and a real one, only 1 term.

C. Dictionary learning

1) Generalities: The goal of dictionary learning is to empir-
ically learn the dictionary that is the most adapted to a signals
set, i.e., where each signal of this set is sparsely approximated
over the learned dictionary [1], [5], [38].

A training set of signals Y =
[
yp
]P
p=1
∈ RN×P is now

considered (the index p is added to the other variables), and
the associated coefficients are denoted by X = [ xp ]

P
p=1 ∈

RM×P . The admissible set of dictionaries is convex, and it is
defined as SD = {D ∈ RN×M : ‖dm‖2 6 1, m = 1 . . .M}.
The dictionary learning problem can be formalized as:

min
X ,D∈SD

‖Y −DX‖2F s.t. ‖xp‖s ≤ K, p = 1 . . . P . (12)

This non-convex problem is usually solved by alternating
between two steps: extraction of the main atoms (i.e., the
sparse approximation step) that are then learned (i.e., the
dictionary update step). This optimization scheme reduces the
error criterion iteratively. There are several dictionary learning
algorithms (DLAs) [1], such as maximum likelihood (ML)
[29], method of optimal directions (MOD) [38], [39] and K-
SVD [5] for batch methods, and online dictionary learning
[40] and recursive least squares (RLS)-DLA [41] for online
methods, which are less expensive in computational time and
memory than batch methods.

2) K-SVD and K-QSVD: In the K-SVD method [5] de-
scribed in Algorithm 2, all of the signals are decomposed
with OMP (step 4) and the atoms are then updated one
by one, fixing others when the considered atom is updated
simultaneously with its associated coefficients:

min
X (m,:),dm

∥∥Y −DiX
∥∥2

F
= ‖Em − dmX (m, :)‖2F . (13)

This is solved through computation of a truncated SVD of
Em = UΛV H (steps 8, 9), which gives a rank-1 approxima-
tion: the atom d i+1

m is defined as the first column of U (step
10), and the coefficients X (m, :) as the product between the
highest singular value λ1 = Λ(1, 1) and the first row of V H

(step 11). To keep the sparsity of coefficients, only nonzero
coefficients are used in these steps, which are selected by the
active set Γm = {p = 1 . . . P : X (m, p) 6= 0} (step 7).

Using quaternionic sparse approximation, some DLAs have
been extended to quaternions: K-SVD has been extended to
K-QSVD [23], [25] and online learning [24].

The K-QSVD algorithm is not detailed here as it is very
close to Algorithm 2. The main differences are the use of
Q-OMP instead of OMP for sparse approximation (step 4),
and the use of Q-SVD [42] instead of SVD for the dictionary
update (step 9). As noted previously in Section III-B2, the
variables order is crucial (as for the coefficients update, in
step 11) and calculations are more expensive.
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Algorithm 2 : D = K-SVD (Y = [yp]
P
p=1)

1: initialization: i = 0; D0 = [M white noise atoms]
2: repeat
3: for p← 1, P do
4: Sparse approximation: xp = OMP (yp,D

i)
5: end for
6: for m← 1,M do Dictionary update
7: Active set: Γm = {p = 1 . . . P : X (m, p) 6= 0}
8: Residue: Em = Y −

∑
ν 6=m d i

ν X (ν, :)
9: SVD: (U ,Λ,V ) = SVD (Em(:, p)|p∈Γm

)
10: Atom update: d i+1

m = U(:, 1)
11: Coefficients update: X (m, p)|p∈Γm = λ1V

H(1, :)
12: end for
13: i = i+ 1
14: until stopping criterion

IV. MODELS FOR COLOR IMAGES

In this section, linear models for color images are reviewed.
A color image patch of

√
N by

√
N pixels is filled in

three N -dimensional vectors. Its RGB channels are called
yc ∈ RN , where c = {r, g, b} is defined for red, green and
blue, respectively. This image is decomposed on a dictionary
composed of three channels that are denoted Dc ∈ RN×M ,
where c = {r, g, b}.

As previously said, a naı̈ve model consists of treating the
three RGB channels separately as [10], [43], [44]:

yc = Dcxc + ec , c = {r, g, b} , (14)

with the coefficients xc ∈ RM and the residue ec ∈ RN . This
model, which treats channels independently as gray images,
does not work on the whole color space, and it cannot capture
correlations between channels.

A. Vectorized model

In the vectorized model [7], the RGB channels are concate-
nated as y =

[
yr;yg;yb

]
∈ R3N and D = [Dr;Dg;Db] ∈

R3N×M . The coding coefficients x ∈ RM are now common
to the three vectorized channels:

y = Dx + e =

M∑
m=1

dmxm + e , (15)

with the residue e = [er; eg; eb] ∈ R3N . Using K-SVD on
the vectorized data, this approach gives better results than
the previous approach, although processed patterns tend to
be mono-chromatic following the gray axis (r = g = b)
[45], [7]. Gray atoms introduce artifacts, such as lack of
color saturation, washing effects, and hue bias. To improve the
solution, adapting the dictionary to a specific image provides
more colored atoms, but does not suppress color artifacts.

To overcome these color artifacts, the scalar product is
modified to enforce average colors, improving the K-SVD
[17], [7]. For this purpose, the sparse approximation step is
modified, transforming the color patches, such as:

yc ← yc + a ȳc , c = {r, g, b} , (16)

where a = 1.5 is an empirically fixed parameter, and ȳc
is the spatial average of channel c. Atoms are transformed
too, and a normalization factor is taken into account during
atom selection (Algorithm 1, step 6). This transformation is
equivalent to spatial filtering, and it provides a more colored
learned dictionary, which gives good results for denoising,
inpainting and demosaicking of color images [7]. This color
enforcement can increase low frequencies, which generates
blurring effects, and some color distortions persist.

B. Quaternionic model

In the literature, many studies have shown that quaternions
are adapted to color images [18]–[22], [46], [47]. Quaternions
produce good results, as they take into account the structure
between the color channels. The RGB channels are filled in
pure quaternions. The color patch is now defined as y = 0 +
yri+ ygj+ ybk ∈ HN , and the dictionary as D = 0 +Dri+
Dgj + Dbk ∈ HN×M . The linear model is:

y = Dx + e =

M∑
m=1

dmxm + e , (17)

where x ∈ HM is the full quaternionic coefficients vector, and
e = e0 +eri+egj+ebk ∈ HN is the full quaternionic residue.
This model gives excellent results for color image processing
[20], [23], and it reduces blurring effects and color distortions
using a quaternionic extension of the K-SVD, called the K-
QSVD [23]. It also has no empirically fixed parameter.

However, the main drawback is in the processing of the real
part of the quaternionic data. Although the image y and the
atoms D are pure, the obtained sparse approximation ŷ = Dx
is not necessarily pure, and even this would be convenient.
Its real part has to be reset, <(ŷ) ← 0, for some tasks such
as reconstruction and denoising, which increases the residue.
In the same way, during the dictionary learning iterations, the
atoms are not necessarily pure after their updates (Algorithm 2,
step 10). For each updated atom, its real part has to be reset
to ensure a pure atom [23], [24]: <(dm) ← 0, and it is then
re-normalized. Despite this drawback, the quaternionic model
gives better performances for tasks such as reconstruction [23],
denoising [23], [25], inpainting [23], and super-resolution [24].

The difference between these two models is illustrated in
Fig. 1: the vectorized model of Eq. (15) in Fig. 1(a), and the
quaternionic model of Eq. (17) in Fig. 1(b).

(a) (b)

Fig. 1. Illustration of the color models: (a) is the vectorized model of Eq. (15),
and (b) is the quaternionic model of Eq. (17).
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V. MODELS COMPARISON

After this review, the existing color models are applied to
real data, and then to simulated data. The corresponding DLAs
derived from the same learning process K-SVD are compared.

A. Comparison of learned dictionaries

In this experiment, the dictionaries learned by K-SVD [5],
i.e., the improved K-SVD [7] (iK-SVD), and K-QSVD [23]
are compared2. DLAs are applied to the LabelMe database
[16], and P = 2500 patches are randomly selected to form
the training database. DLAs learn dictionaries composed of
M = 256 atoms, and the size patch is fixed to 7, which gives
atoms of N = 7 × 7 = 49 pixels. Each dictionary is trained
with I = 100 learning iterations, a sparsity K = 6 for sparse
approximation, and an initial dictionary composed of randomly
selected training patches.

Learned atoms are normalized, although they can contain
negative values due to the learning process. To visualize these,
a shift and a rescale are required. Considering an atom d, we
have:

d ← (d− dmin)/(dmax − dmin) , (18)

and this is finally multiplied by 255. This shift and rescale can
be applied channel-wise (on each channel dc, independently)
as in [7], [23], or globally (on the three channels simulta-
neously). The channel-wise transformation does not preserve
the color distributions of the original atom as it equalizes the
contrast in the three channels. This tends to center and thicken
the distributions, thus providing atoms following the gray axis.
The two types of visualization can be useful: the channel-wise
allows focus on the spatial structures; and the global one, on
colors.

The dictionary learned with K-SVD, iK-SVD and K-QSVD
are visualized in Fig. 2, with the two types of rescales: the
channel-wise shift and rescale (top), and the global rescale
(bottom). All dictionaries contain similar spatial morphologies,
i.e., atoms with edges and others with low-frequencies and
smooth textures. However, their color contents are different.
The dictionary learned by the vectorized K-SVD is shown in
Fig. 2 (left column). In the channel-wise rescale (Fig. 2 left
top), there are many color-less atoms, dedicated to the recon-
struction of spatial structures. Colored atoms contain opposite
colors, such as yellow-blue or green-magenta, which is a
phenomenon that was already observed in [45]: atoms tend
to follow the diagonals of the RGB cube. Achromatic atoms
disappear with the global rescale (Fig. 2 left bottom). The
dictionary learned by improved vectorized K-SVD and iK-
SVD is shown in Fig. 2 (middle column). In the channel-
wise rescale (Fig. 2 middle top), iK-SVD atoms are more
colored than K-SVD atoms. This is obtained by the color
average enforcement of Eq. (16). However, this enforcement
can increase low-frequencies [7], and thus generate blurring
effects in atoms. Average enforcement also tends to produce
similar distributions in the channels of the iK-SVD atoms,
which explains that both visualizations (Fig. 2 top, bottom) are

2Quaternionic algorithms are coded with the Quaternion toolbox for Matlab
(QTFM) [48].

Fig. 3. Left: averaged training fitting errors as a function of learning
iterations, for K-SVD (cyan, solid line), iK-SVD (blue, dotted line), K-QSVD
(red, dashed line) and K-QSVD (full) with full quaternionic atoms (magenta,
solid line). Right: averaged testing the fitting errors to evaluate over-fitting.

similar, as both rescales have similar effects. The dictionary
learned by K-QSVD is shown in Fig. 2 (right column). For
both visualizations, this is the most colored dictionary with
respect to the previous ones. It encodes spatial morphologies
and diversified colors. So, we can assume that the quaternionic
model captures more colors than the vectorized ones.

B. Comparison of fitting errors

Another useful evaluation is to compare the evolution of
the fitting errors during the learning process. The optimization
criterion of Eq. (12) is slightly changed in:

‖Y −DX‖2F / ‖Y‖
2
F (19)

This thus gives the relative mean square error (rMSE). This
allows measurement of the efficiency of the color repre-
sentation. Due to the random initialization of the atoms on
image patches, and the random order in the atoms update,
the experiment is averaged on 15 learnings. The average
and standard deviation of the rMSE are plotted in Fig. 3,
as a function of the learning iterations (the iterations are
stopped at 20, as there is no supplementary information in the
following iterations). The settings of the previous experiment
are retained, except that the training set is now composed of
P = 1000 color patches, randomly generated. To evaluate
over-fitting, averaged rMSE is also computed on a distinct
testing set composed of 1000 random patches.

The K-SVD has two specificities: it is batch optimization,
and the atoms updated by SVD are already normalized,
which avoids a re-normalization step that generally generates
fluctuations in the criterion minimization. If the strict decrease
in the MSE at each iteration of K-SVD is observed empirically,
the theoretical proof is not available, due to the nonconvexity
of the sparse approximation step carried out using `0-pursuit
algorithm [5], [49].

In Fig. 3, the smooth curve of K-SVD shows this property,
and low errors underline the efficiency of this color representa-
tion. For iK-SVD, this is the same model as K-SVD, but with
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(a)

(b)

Fig. 2. Visualization of the color image dictionaries learned by K-SVD (left column), improved K-SVD (middle), and K-QSVD (right), with the channel-wise
shift and rescaling (a), and the global shift (b). Better colors can be seen on a computer screen.

a modified criterion during the sparse approximation step. This
additional constraint provides a more colored dictionary, but
explains why its global learning criterion is slightly worse than
the original K-SVD. K-QSVD is used with full quaternionic
atoms (Algorithm 2), denoted as K-QSVD (full), it has the
best criterion evolution. However, its atoms have a nonnull real
part that is difficult to interpret with respect to color images.
For K-QSVD, the reset of the real part of the atoms and
their re-normalization (Algorithm 2 with modifications given
in Section IV-B) are the unique difference from K-QSVD
(full), thus explaining the important difference between their
respective criteria. Moreover, this additional step generates
fluctuations in the reduction of rMSE, indicated by higher
deviations.

As usual in machine learning, the testing fitting errors are
higher than the training ones. On the right part of Fig. 3,
the testing rMSE increase is similar for the different methods.
Consequently, if the quaternionic models are more complex
than the vectorized ones, they do not over-fit the training data.
This experiment has shown the representative power of the
different models, with a clear advantage for the quaternionic
model. However, a slight over-fitting could be observed for K-
SVD (full): since patches are pure quaternions, the real parts of
atoms learned on the training set, and which help to decrease
the training rMSE, then increase the rMSE on the testing set.

To conclude, these experiments demonstrate the efficiency
of the quaternionic model over the vectorized models. This is
correlated to the results obtained in color image processing,

such as reconstruction [23], denoising [23], [25], inpainting
[23] and super-resolution [24].

VI. UNIFYING FRAMEWORK FOR COLOR MODELS

One main objective of this article is to reformulate existing
models in a unifying framework, in order to shed new light
on color models, and a new model is proposed. For this
reformulation, the color channels are not vertically vectorized
any more, but horizontally concatenated in a matrix.

A. Reformulated vectorized model

The color patch is now defined as a matrix Y =[
yr,yg,yb

]
∈ RN×3. Similarly, each atom is defined as

Dm = [dm,r,dm,g,dm,b] ∈ RN×3. The vectorized model
in Eq. (15) becomes:

Y =

M∑
m=1

xm Dm + E , (20)

with the residue E = [er, eg, eb] ∈ RN×3. This basic
reshape of the decomposition model allows its unique degree
of freedom to be shown: the scaling factor xm.

B. Reformulated quaternionic model

The quaternionic model of Eq. (17) ignores the real part of
the product Dx. So, only the imaginary part of the product
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(a) (b) (c)

Fig. 4. Illustration of the reformulated color models: (a) is the vectorized
model of Eq. (20), (b) is the quaternionic model of Eq. (23) and (c) is the
the color filter model of Eq. (24).

dmxm is studied. The matrix V (x) ∈ R3×3 is defined as the
bottom right part of matrix U(x):

V (x) =
1

|x|

 x0 −x3 x2

x3 x0 −x1

−x2 x1 x0

 , (21)

and the imaginary part of the product dx is considered, with
the pure atom d ≡ [d1,d2,d3] ∈ RN×3. Using Eq. (8), we
thus have:

=(dx) ≡ |x| [d1, d2, d3]V (x) . (22)

For each atom, defining αm = |xm| and V m = V (xm) as
the quaternionic model in Eq. (17), this becomes:

Y =

M∑
m=1

αm Dm V m + E . (23)

Matrix V m applies a linear transformation/combination be-
tween the color channels. This reformulation shows that this
model adds color transformation due to V m, which we will
call the color filter. Consequently, this model has four degrees
of freedom: one for the scaling factor, and three for the color
filter (four variables in matrix V m, less the normalization
constraint). This reformulation, which highlights the implicit
color filtering applied through the scalar quaternionic linear
model, explains why quaternions are so efficient for color
image processing in general. This linear transformation of
the channels enables relations and interactions between the
channels, which allows the color channel correlations to be
captured. We note that the vectorized model of Eq. (20) is
recovered, with V m = I3 if xm > 0, and with −I3 otherwise.

Note that quaternion-based color filters have already been
studied in [46]. However, they were derived from equations
that were linear with respect to the image vector, but not with
respect to the coefficients. Consequently, these color filters are
not adapted for the sparse linear model of Eq. (17).

C. Color filtering model

Pursuing this idea of filtering matrix, the generalized mul-
tivariate model [50] is considered here. Each multivariate
atom Dm is linearly transformed by an unconstrained matrix
Wm ∈ R3×3:

Y =

M∑
m=1

αm Dm Wm + E . (24)

This model has nine degrees of freedom: one for the scaling
factor, and eight for the color filter Wm (nine variables, less
a normalization constraint).

In the reformulated quaternionic model of Eq. (23), the
channels of Y are constrained linear transformations of atoms:
Eq. (21) shows that the matrices V m have a constrained
structure that is inherited from the quaternion algebra. In the
current model, matrices Wm have no more constraints: they
are data-driven estimated, and they can generate colors that
cannot be generated by the quaternionic model. Indeed, this
model is invariant to linear transformations/combinations. This
affine-invariance allows to span all the column space of the
atom Dm, contrary to the quaternionic model. Adding this
color filter, each atom Dm can be replicated in a huge family
of linearly transformed color patterns DmWm. Consequently,
this model allows the color image analysis to be separated
into two parts: the spatial morphology of images is encoded
by atoms Dm, and the color diversity is encoded by the color
filters Wm.

The difference between these three reformulated models
is illustrated in Fig. 4: the vectorized model of Eq. (20) in
Fig. 4(a), the quaternionic model of Eq. (23) in Fig. 4(b), and
the color filter model of Eq. (24) in Fig. 4(c).

Concerning the implementation, a supplementary advantage
of this model is that the data are always defined in RN×3: there
are no more problems to ensure atoms are pure quaternions,
resetting their real parts. However, a new constraint has to be
added. In Eq. (12), the atoms are normalized to avoid the
uncertainty of the product DX . Without constraint on the
atom norm, if {X ,D} is a solution,

{
λX , 1

λD
}

is also a
solution for all nonnull scalar λ ∈ R. As a new matrix has been
added in the color filtering model of Eq. (24), this introduces a
new uncertainty. Consequently, a normalization is required for
the matrices Wm. Among the possibilities, the normalization
such that ‖DmWm‖F = ‖Dm‖F = 1 keeps the atom norm
equal after linear transformation. This normalization appears
to be an appropriate choice, as it has been used efficiently for
matrices Wm restricted to rotations [51].

VII. COMPARISON OF THE REFORMULATED MODELS

In this section, the three reformulated models are compared,
showing the differences concerning their degrees of freedom.
To fully understand, this is first illustrated in the spatial space,
and then in the color space.

A. Illustration in spatial space

To more easily understand the differences between the linear
transformations, the model differences are illustrated with a 3D
pattern in a x, y, z spatial space. The considered pattern is a
cube composed of eight points, living in R8×3.

First, the linear transformation V (x) given in Eq. (21) is
characterized. General linear transformations include isotropic
and anisotropic scalings, rotations, reflections and shearings
[52]. The linear transformation V (x) is composed of an
isotropic scaling of x0/ |x|. Once this scaling is set apart, V
can be seen as a shearing transformation [52]:

S =

 1 shxy shxz

shyx 1 shyz

shzx shzy 1

 , (25)
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(a) (b) (c)

(d) (e)

Fig. 5. Illustration of 3D linear transformations in x, y, z spatial space: original atom (a), isotropic scaling (b), anisotropic scaling (c), anti-symmetric shearing
(d), and general transformation (e).

where shxy is the coefficient that shears y into x. In the spatial
domain, the shearing transforms a cube into a parallelepipoid.
Consequently, matrix V given in Eq. (21) is a scaled shearing
transformation with anti-symmetric off-diagonal coefficients,
thus generating particular proportions in the parallelepipoid.

Fig. 5 illustrates the effects of the different linear trans-
formations on the original cube of Fig. 5(a), with numbered
vertices. The isotropic scaling of Fig. 5(b) corresponds to a
transformation provided by the vectorized model of Eq. (20).
An anisotropic scaling is represented in Fig. 5(c). The anti-
symmetric shearing of Fig. 5(d) corresponds to a transforma-
tion that is provided by the quaternionic model of Eq. (23). The
general transform of Fig. 5(e) corresponds to a transformation
provided by the color filtering model of Eq. (24). In the
example of Fig. 5(e), the transformation is an anisotropically
scaled and sheared reflection (the order of the vertices is
inversed, see numbers), an example of a transformation that
cannot be reached by the quaternionic model of Eq. (23).

This illustration in the spatial space has allowed the differ-
ences between the models to be more easily seen.

B. From spatial space to color space

For the interpretation of such linear transformations, it is
possible to carry out a comparison between the x, y, z axis in
spatial space and the RGB axis in color space. The considered
pattern consists of 10 equally spaced values along each of the
12 edges of the cube of the previous experiment. These 3D
values define the color pixels in the RGB color cube [46], thus
giving a color image.

Keeping the same linear transformations as the previous
experiment, these are applied on this color image. Fig. 6 shows
the effects of the transformations on the 3D RGB cube (top)
and on the associated color image (bottom).

C. Illustration in color space

The differences are now illustrated in the color space with
a real image. In the previous experiment of Section V-A,
the visualized atoms were learned from a database: different
models generate different dictionaries. Here, considering a
same atom, the patterns generated by the degrees of freedom
of each model are illustrated. A subpart of the image Lena is
considered, and is coded over 8 bits, from 0 to 255. This sub
image is then normalized to create an atom.

For the vectorized model with one degree of freedom, scalar
multiplication is applied to the atom. Three scaling factors
are chosen: x = 255, 180 and 105. The results here are
illustrated in Fig. 7(a)-(c). For x = 255, the original image
is recovered, and for x = 1, the original atom is visually
black. Intermediary factors are proportional to the luminous
intensity. In Fig. 7(d), each atom pixel is represented as a
color point in a 3D RGB color cube, to show the distribution
of the pixels in the color space. For the quaternionic model
with four degrees of freedom, a scalar multiplication is applied
to the atom as well as the color filter V given in Eq. (21).
The three previous scalars are kept: α = 255, 180 and 105,
and two filters V are randomly generated. After a global shift
and rescale, the resulting patterns are plotted in Fig. 7(e)-
(g) for the first color filter, and in Fig. 7(i)-(k) for the
second color filter. For the filtering model with nine degrees
of freedom, scalar multiplication is applied to the atom as
well as an unconstrained color filter W . The three previous
scalars are kept: α = 255, 180 and 105, and two filters W
are randomly generated. After a global shift and rescale, the
resulting patterns are plotted in Fig. 7(m)-(o) for the first color
filter, and in Fig. 7(q)-(s) for the second color filter.

An infinity of color filters could be generated to illustrate
the differences between the degrees of freedom of the models.
Contrary to the spatial space, it is less easy to visualize the
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(a) (b) (c) (d) (e)

Fig. 6. Illustration of the linear transformations in the RGB color space, with the same transformations as used in Fig. 5: original image (a), isotropic scaling
(b), anisotropic scaling (c), anti-symmetric shearing (d), and general transformation (e). Pixel values in the 3D RGB cube (top) and the associated color image
(bottom).

improvement in the color space that is due to the nine degrees
of freedom of the color filtering model with respect to the four
degrees of freedom of the model quaternionic. However, the
RGB color cubes of Fig. 7 show that the color filter model can
apply transformations less usual than the quaternionic model,
and obviously, than the vectorized one. With color filters, a
unique atom Dm can be replicated in a highly redundant
collection of linearly filtered color patterns DmWm.

To conclude, this section has highlighted the advantage of
the color filter model over the existing models.

VIII. PROSPECTS

For color image processing based on sparse representation,
many open questions remain. Several research directions are
listed in this section.

A. Prospects relating to quaternions

Recent studies have dealt with the quaternionic model [23]–
[25], although many problems have not been studied yet, such
as:

1) For sparse approximations, to our knowledge, Q-OMP
is currently the unique existing algorithm. Methods based on
the `1-norm with convex properties [31] can be extended to
quaternions. For dictionary learning, the different quaternionic
DLAs can be compared, with the adaptation of classical
comparison criteria to quaternions [53]. Theoretical aspects
for sparse approximation [54], [55] and dictionary learning
[49], [56], [57] can be extended to quaternions too.

2) Contrary to the actual reset of the real part and re-
normalization during the dictionary learning [23], [24], dedi-
cated optimizations that ensure atoms are pure quaternionic
vectors can be useful, to avoid loss of performance and
fluctuations in the learning optimization. However, where the
coefficients are currently estimated without constraint, sparse
approximations can be improved for this purpose too. Note
that in [25], the atoms were tolerated to be full. What is the
impact of such an approach? Is there a risk of over-fitting?

3) Optimization of the algorithm implementations is a
major issue. Having rapid implementations is crucial for the
processing of large databases, as in sparse approximation and
dictionary learning, and more generally in machine learning.
This is especially because the calculus is already heavy for
quaternions, as noted in Section III-B2. This has a critical
impact during the quaternionic matrix calculus.

To illustrate this, the two available implementations of
the Q-OMP are compared here in a short experiment: the
recursive Q-OMP [28], [37] and the naı̈ve Q-OMP [23], [24].
The vectorized OMP [33] is also used as the baseline. The
computational times of the decompositions are evaluated for
different database sizes3. The results are averaged five times
and are plotted in Fig. 8 for different values of signal length
N and signal number P . Performance differences between the
Q-OMP implementations are clearly highlighted in Fig. 8. The
recursive implementation outperforms the naı̈ve implementa-
tion for small parameters, and the difference is greater for
larger parameters.

B. Prospects relating to color filters

As this model is new, all aspects have to be studied.
1) First of all, as mentioned in Section VI-C, a new con-

straint has to be added for matrices Wm. If the normalization
of each product DmWm appears appropriate, other possibil-
ities exist, such as the normalization of each matrix Wm, or
any normalization. Which is the most suitable, theoretically
and empirically?

2) The sparse approximations dedicated to this model have
to jointly estimate coefficients and color filters. Multiple
optimizations are conceivable: should these be simultaneous
or alternating estimations? Similarly, associated DLAs have to

3A dictionary of D ∈ HN×M of M = 2N atoms with N samples is
generated from white uniform noise and is then normalized. Then, P signals{
yp ∈ HN

}P

p=1
are randomly created. The computational time (in seconds)

is noted to decompose the P signals over the dictionary D, when the Q-OMP
is stopped after K = 3 iterations for each signal. The algorithms were run
on Matlab 2013 (8.1), as 32-bit, on an Intel Core i7 CPU of 2.4 GHz.
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Fig. 7. Comparison of the transformations applied by the color models on an atom. Vertical: scalar multiplication: x = 255 (left), 180 (middle), and 105
(right). Horizontal: color filtering: no filtering for the vectorized model (1st row), two random filterings for the quaternionic model (2nd and 3rd rows), and
two random filterings for the color filter model (4th and 5th rows).

take into account color filters during atom updates. Theoreti-
cally, the uniqueness and stability of these learned dictionaries
have to be established.

3) The color dimension that is composed of three channels
here, can be generalized in a spectral dimension composed
of C channels. This generalization allows multi- or hyper-
spectral images to be considered [58], denoted as Y ∈ RN×C
and decomposed on spectral atoms Dm ∈ RN×C with their
associated spectral filters Wm ∈ RC×C . This thus opens a
new field of applications (e.g., remote sensing, spectroscopy,
and others).

C. Other general prospects
Other general research directions can be studied for color

images, such as:

1) Generally, a global dictionary is learned on a database,
and it is then adapted on the processed image to give a local/
adaptive dictionary [3], [6]. This step is important, to ensure
better efficiency [6] and more colored atoms [7]. This point
seems to be less crucial for the quaternion-based approach
where the global dictionary is already efficient [23], [25].
Thus, the influence of global versus local dictionary is not
clear yet.

2) Dictionary learning algorithms have several hyper-
parameters. It will be useful to test the influence of these
parameters on the processing [6], [7], [25], such as the patch
size, redundancy level M/N of the dictionary, number of
iterations in the DLAs, and others.

3) Current color methods can be improved, including in
particular the structure in the patch analysis, such as the multi-
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Fig. 8. Averaged computational time (in seconds) of the vectorized OMP,
recursive Q-OMP, and naı̈ve Q-OMP to decompose signals, as a function of
the signal length N and the signal number P .

scale architecture [7], [59], spatial shift-invariance (also called
convolutional) [60], [61], rotation invariance [62], multi-layer
architecture from deep learning [63], and others.

Even though this section is not an exhaustive list, all of
these points can contribute to improvements in the results of
color image processing.

IX. CONCLUSIONS

In this article, a review of dictionary-learning-based sparse
representations for color images is provided, which details the
differences between the models and compares their results for
real and simulated data. These models are considered in a
unifying framework that is based on the degrees of freedom
of the linear filtering/transformation of the color channels.
Moreover, this allows the scalar quaternionic linear model to
be shown as equivalent to constrained matrix-based color fil-
tering, which highlights the filtering implicitly applied through
this model. With four degrees of freedom, this linear filtering
is a scaled shearing transformation with anti-symmetric off-
diagonal coefficients. Then, the new color filtering model is
introduced, using unconstrained filters and with nine degrees
of freedom. In this model, spatial morphologies of color
images are encoded by atoms, and the colors are encoded
by color filters. Color variability is no longer captured with
increasing of the dictionary size, but with color filters, which
gives an efficient color representation.
When the atoms can be replicated in a collection of shifted
patterns (resp. rotated patterns), the model is called shift-
invariant [60], [61] (resp. rotation invariant [62]). Similarly,
as atoms can be replicated in a family of colored patterns,
the model introduced can be called color invariant. This
opens a lot of prospects for the improvement of color image
processing.
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