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Bayesian Estimation of the Multifractality Parameter
for Image Texture Using a Whittle Approximation
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Jean-Yves Tourneret, Senior Member, IEEE, Stephen McLaughlin, Fellow, IEEE,

and Patrice Abry, Fellow, IEEE

Abstract— Texture characterization is a central element in
many image processing applications. Multifractal analysis is
a useful signal and image processing tool, yet, the accurate
estimation of multifractal parameters for image texture remains
a challenge. This is due in the main to the fact that current
estimation procedures consist of performing linear regressions
across frequency scales of the 2D dyadic wavelet transform,
for which only a few such scales are computable for images.
The strongly non-Gaussian nature of multifractal processes,
combined with their complicated dependence structure, makes
it difficult to develop suitable models for parameter estimation.
Here, we propose a Bayesian procedure that addresses the
difficulties in the estimation of the multifractality parameter.
The originality of the procedure is threefold. The construction
of a generic semiparametric statistical model for the logarithm
of wavelet leaders; the formulation of Bayesian estimators that
are associated with this model and the set of parameter values
admitted by multifractal theory; the exploitation of a suitable
Whittle approximation within the Bayesian model which enables
the otherwise infeasible evaluation of the posterior distribution
associated with the model. Performance is assessed numerically
for several 2D multifractal processes, for several image sizes
and a large range of process parameters. The procedure yields
significant benefits over current benchmark estimators in terms
of estimation performance and ability to discriminate between the
two most commonly used classes of multifractal process models.
The gains in performance are particularly pronounced for small
image sizes, notably enabling for the first time the analysis of
image patches as small as 64 × 64 pixels.

Index Terms— Texture characterization, multifractal analysis,
wavelet leaders, Bayesian estimation, Whittle approximation,
multiplicative cascades, fractional Brownian motion.

I. INTRODUCTION

A. Context and Motivation

S INCE the early origins of digital image processing, texture
has been recognized as one of the central characteristic

features in images. There is no common definition for texture,
and different paradigms have been introduced in the litera-
ture [1]. Several authors have proposed to model texture using
random fractals, scale invariance or self-similarity [2], [3].
Indeed, it has been reported in the literature that scale
invariant processes are relevant and effective models for
textures associated with a large class of natural images [4]–[6].

The concepts of scale invariance and self-similarity are
deeply tied to the degree of pointwise singular behavior or
local regularity of the image amplitudes [7], [8]. It has long
been recognized that multiscale and wavelet analyzes consti-
tute ideal tools to study data regularity [8]–[12]. It is therefore
not surprising that these tools play a central role not only
for the study of image contours (edges), but also for texture
characterization [13]–[15]. Yet, while contours are essentially
isolated singularities, the texture models consist of densely
interwoven sets of singularities of different regularity strength.
Multifractal analysis provides a mathematical framework for
the study of such spatial fluctuations of local regularity and
texture characterization is therefore nowadays often conducted
using this tool [16], [17].

Multifractal Analysis: The local regularity of an image X
is commonly measured using the so-called Hölder exponent
h(t) [8], [11]. Qualitatively, the smaller h(t0), the rougher X
is at spatial location t0 and the larger h(t0), the smoother X
is at t0. The goal of multifractal analysis is the estimation
of the multifractal spectrum D(h), which provides a global
description of the spatial fluctuations of h(t). It is defined as
the collection of the fractal dimensions of the sets of points
for which the Hölder exponent takes the same value [8], [11],
cf., Section II-A. Multifractal analysis has recently matured
into a standard image processing tool and has been success-
fully used in a large number of applications including texture
classification [5], [6], biomedical applications [18], [19],
physics [20], [21] and art investigation [22]–[25].

In most applications, the estimation of D(h) cannot be based
directly on its definition [11]. Instead, a so-called multifractal



formalism is constructed based on multiresolution coefficients
TX (a, k), essentially capturing the content of the image X
around the discrete spatial location k for a given frequency
scale a = 2 j . Examples are given by increments, wavelet
coefficients and more recently wavelet leaders �( j, k) [11]
(defined in Section II-B), which yield the current benchmark
multifractal formalism. The multifractal formalism provides
an expansion of the multifractal spectrum of the image X in
terms of the so-called log-cumulants cp , p ≥ 1 [12], [26]
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when c2 < 0, while D(h) = δ(h −c1) when c2 ≡ 0 (c2 cannot
be positive theoretically [8], [11], [27]).

Estimation of c2: The leading order coefficients cp

provide a relevant summary of the multifractal properties of
X in applications where it would often not be convenient
to handle an entire function D(h) [12], [26]–[28]. The first
log-cumulant c1, for instance, is the mode of D(h) and can
be read as a measure for the “average” smoothness of X . More
importantly, the coefficient c2, referred to as the multifractality
or intermittency parameter, is directly related to the width
of D(h) and captures the multifractal signature (i.e., the
fluctuations of the local regularity) of the image X . Its primary
importance stems from the fact that it enables the identification
of the two major classes of multifractal stochastic processes:
self-similar processes for which c2 = 0 and multifractal
multiplicative cascade (MMC) based processes for which c2 is
strictly negative [29]. While the former class is tied deeply
to additive constructions, the latter is based on multiplicative
constructions and is hence linked to fundamentally different
physical principles [7], [8], [30]. Moreover, the magnitude of
c2 quantifies the degree of multifractality of an image for the
latter class. For an overview and details on scale invariant and
multifractal processes, the reader is referred to, e.g., [8], [31]
and references therein.

In the seminal contribution [27], it has been shown that
the log-cumulants cp are tied to the quantities �( j, k) through
the key relation Cump[log �( j, k)] = c0

p + cp log 2 j , where
Cump[·] is the p-th order cumulant. In particular

C2( j) � Var [log �( j, k)] = c0
2 + c2 log 2 j . (2)

Relation (2) leads to the definition of the current standard
and benchmark estimator for the parameter c2, based on
linear regression of the sample variance, denoted by V̂ar, of
log �( j, k) over a range of scales j ∈ [ j1, j2]

ĉ2 = 1

log 2

j2∑
j= j1

w j V̂ar[log �( j, ·)] (3)

where w j are suitably defined regression weights [12], [28].
Limitations: The use of multifractal analysis remains

restricted to images of relatively large size (of order
5122 pixels) because a sufficient number of scales j must
be available to perform the linear regression (3). While a

similar issue is encountered for the analysis of 1D signals, it is
significantly more severe for images: indeed, modulo border
effects of the wavelet transform, the number of available
scales is proportional to the logarithm of the number of
samples for 1D signals and to the logarithm of the square
root of the number of pixels for an image. For instance,
for a 1D signal with 256 × 256 = 65536 samples,
j2 = 13 or 14 scales can be computed, while j2 = 4 or 5
for an image of N × N = 256 × 256 pixels. In addition,
the finest scale, j = 1, should not be used in (3) [32]. The
practical consequences for the multifractal analysis of images
are severe: First, images of small size and thus image patches
cannot be analyzed in practice. Second, (3) yields modest
performance for images when compared with 1D signals of
equivalent sample size [12], making it difficult to discriminate
between c2 ≡ 0 and values c2 < 0 that are encountered in
applications (typically, c2 lies between −0.01 and −0.08).
The goal of this work is to propose and validate a novel
procedure for the estimation of c2 for images that addresses
these difficulties.

B. Related Works

There are a limited number of reports in the literature that
attempt to overcome the limitations of multifractal analysis for
images described above. The generalized method of moments
has been proposed and studied in, e.g., [33]–[35] and formu-
lates parameter inference as the solution (in the least squares
sense) of an over-determined system of equations that are
derived from the moments of the data. The method depends
strongly on fully parametric models and yields, to the best of
our knowledge, only limited benefits in practical applications.

Although classical in parameter inference, maximum
likelihood (ML) and Bayesian estimation methods have mostly
been formulated for a few specific self-similar and multifractal
processes [36], [37]. The main reason for this lies in the
complex statistical properties of most of these processes,
which exhibit marginal distributions that are strongly
non-Gaussian as well as intricate algebraically decaying
dependence structures that remain poorly studied to date. The
same remark is true for their wavelet coefficients and wavelet
leaders [38], [39].

One exception is given by the fractional Brownian motion
(in 1D) and fractional Brownian fields (in 2D) (fBm), that
are jointly Gaussian self-similar (i.e., c2 ≡ 0) processes with
fully parametric covariance structure appropriate for ML and
Bayesian estimation. Examples of ML and Bayesian estimators
for 1D fBm formulated in the spectral or wavelet domains
can be found in [36], [37], [40], and [41]. For images, an
ML estimator has been proposed in [42] (note, however, that
the estimation problem is reduced to a univariate formulation
for the rows/columns of the image there).

As far as MMC processes are concerned,
Løvsletten and Rypdal [43] proposes an ML approach
in the time domain for one specific process. However, the
method relies strongly on the particular construction of
this process and cannot easily accommodate more general
model classes. Moreover, the method is formulated for
1D signals only. Finally, a Bayesian estimation procedure



for the parameter c2 of multifractal time series has recently
been proposed in [44]. Unlike the methods mentioned above,
it does not rely on specific assumptions but instead employs
a heuristic semi-parametric model for the statistics of the
logarithm of wavelet leaders associated with univariate
MMC processes. Yet, it is designed for and can only be
applied to univariate time series of small sample size.

C. Goals and Contributions

The use of fully parametric models for the data can be very
restrictive in many real-world applications. Therefore, the goal
and the main contribution of this work is to study a Bayesian
estimation procedure for the multifractality parameter c2 with
as few as possible assumptions on the data (essentially, the
relation (2)) that can actually be applied to real-world images
of small as well as large sizes. To this end, we adopt a strategy
that is inspired by [44] and develop the key elements that are
required for its formulation for images.

First, we show by means of numerical simulations that the
distribution of the logarithm of wavelet leaders log �( j, k) of
2D MMC processes can, at each scale j , be well approximated
by a multivariate Gaussian distribution. Inspired by the covari-
ance properties induced by the multiplicative nature of cascade
constructions, we propose a new generic radial symmetric
model for the variance-covariance of this distribution. This
second-order statistical model is parametrized only by the
two parameters c2 and c0

2 in (2) and enables us to formulate
estimation in a Bayesian framework.

Second, we formulate a Bayesian estimation procedure for
the parameter c2 of images that permits to take into account
the constraints that are associated with the proposed statistical
model. To this end, an appropriate prior distribution is assigned
to the parameter vector (c2, c0

2) which essentially ensures
that the variance (2) is positive. Additional prior information,
if available, can easily be incorporated. The Bayesian estima-
tors of c2 associated with the posterior distribution of interest
cannot be evaluated directly because of the constraints that the
parameter vector (c2, c0

2) has to satisfy. Therefore, we design
a suitable Markov chain Monte Carlo (MCMC) algorithm that
generates samples that are asymptotically distributed according
to the posterior distribution of interest. These samples are
in turn used to approximate the Bayesian estimators. More
precisely, we propose a random-walk Metropolis-Hastings
scheme to explore efficiently the posterior distribution accord-
ing to the admissible set of values for c2 and c0

2.
Finally, the exact evaluation of the likelihood associated

with the proposed model for the log-wavelet leaders requires
the computation of the inverse and the determinant of large
dense matrices, which is numerically and computationally too
demanding for practical applications. To obtain a stable and
efficient algorithm that can actually be applied to images,
following intuitions developed in the univariate case,
e.g., [36], we approximate the exact likelihood with a
Whittle-type expansion that is adapted to the proposed model
and can be efficiently evaluated in the spectral domain.

The proposed algorithm for the estimation of the
multifractality parameter c2 is effective both for small and

large image sizes. Its performance is assessed numerically
by means of Monte Carlo simulations for two classical
and representative 2D MMC constructions, the canonical
Mandelbrot cascades (CMC) [7] and compound Poisson
cascades (CPC) [45], using the most common multipliers,
and a large range of process parameters and sample sizes
from 64 × 64 to 512 × 512 pixels. Complementary results are
provided for 2D fBms (that are self-similar but not MMC).
Our results indicate that the proposed estimation procedure
is robust with respect to different choices of process
constructions and greatly outperforms (2), in particular for
small images and for identifying a value c2 ≡ 0. It enables,
for the first time, a multifractal analysis of images (or image
patches) whose sizes are as small as 64 × 64 pixels.

The remainder of this work is organized as follows.
Section II summarizes the main concepts of multifractal analy-
sis and the wavelet leader multifractal formalism. Section III
introduces the statistical model and the Bayesian framework
underlying the estimation procedure for the parameter c2 of
images, which is formulated in Section IV. Numerical results
are given in Section V. In Section VI, the proposed procedure
is applied to the patch-wise analysis of a real-world image,
illustrating its potential benefits for practical applications.
Finally, Section VII concludes this paper and presents some
future work.

II. MULTIFRACTAL ANALYSIS OF IMAGES

Let X : R
2 → R denote the 2D function (image) to be

analyzed. The image X is assumed to be locally bounded
in what follows (see Section II-B for a practical solution to
circumvent this prerequisite).

A. Multifractal Analysis

Hölder Exponent: Multifractal analysis aims at
characterizing the image X in terms of the fluctuations
of its local regularity, characterized by the so-called Hölder
exponent, which is defined as follows [8], [11]. The image X
is said to belong to Cα(t0) if there exists α > 0 and a
polynomial Pt0 of degree smaller than α such that

||X (t)− Pt0(t)|| ≤ C||t − t0||α
where || · || is the Euclidian norm. The Hölder exponent at
position t0 is the largest value of α such that this inequality
holds, i.e.,

h(t0) � sup{α : X ∈ Cα(t0)}. (4)

Multifractal Spectrum: For large classes of stochastic
processes, the Hölder exponents h(t) can be theoretically
shown to behave in an extremely erratic way [11], [26].
Therefore, multifractal analysis provides a global description
of the spatial fluctuations of h(t) in terms of the multifractal
spectrum D(h). It is defined as the Hausdorff dimension
(denoted dimH ) of the sets of points at which the Hölder
exponent takes the same value, i.e.,

D(h) � dimH
(
Eh = {t : h(t = h}). (5)

For more details on multifractal analysis and a precise
definition of the Hausdorff dimension [11], [26].



B. Wavelet Leader Multifractal Formalism

Historically, multifractal formalisms have been proposed
based on increments or wavelet coefficients. These choices of
multiresolution quantities lead to both theoretical and practical
limitations, see [12], [28] for a discussion. Recently, it has
been shown that a relevant multifractal formalism can be
constructed from the wavelet leaders [11], [26], [28], which
are specifically tailored for this purpose.

Wavelet Coefficients: We assume that the image is given
in form of discrete sample values X (k), k = (k1, k2).
A 2D orthonormal discrete wavelet transform (DWT) can
be obtained as the tensor product of 1D DWT as follows.
Let G0(k) and G1(k) denote the low-pass and high-pass
filters defining a 1D DWT. These filters are associated with a
mother wavelet ψ , characterized by its number of vanishing
moments Nψ > 0. Four 2D filters G(m)(k), m = 0, . . . , 3 are
defined by tensor products of Gi , i = 1, 2. The 2D low-pass
filter G(0)(k) � G0(k1)G0(k2) yields the approximation
coefficients D(0)

X ( j, k), whereas the high-pass filters defined
by G(1)(k) � G0(k1)G1(k2), G(2)(k) � G1(k1)G0(k2) and
G(3)(k) � G1(k1)G1(k2) yield the wavelet (detail) coefficients
D(m)

X ( j, k), m = 1, 2, 3 as follows: at the finest scale j = 1,
the D(m)

X ( j, k), m = 0, . . . , 3 are obtained by convolving
the image X with G(m), m = 0, . . . , 3, and decimation;
for the coarser scales j ≥ 2 they are obtained iteratively
by convolving G(m), m = 0, . . . , 3, with D(0)

X ( j − 1, ·) and
decimation. For scaling and multifractal analysis purposes,
the approximation coefficients D(0)

X are discarded and it is
common to normalize the wavelet coefficients according to
the L1-norm

d(m)X ( j, k) � 2− j D(m)
X ( j, k), m = 1, 2, 3 (6)

so that they reproduce the self-similarity exponent for
self-similar processes [17]. For a formal definition and
details on (2D) wavelet transforms, the reader is referred
to [13] and [46].

Wavelet Leaders: Denote as

λ j,k = {[k12 j , (k1 + 1)2 j ), [k22 j , (k2 + 1)2 j )}
the dyadic cube of side length 2 j centered at k2 j and

3λ j,k =
⋃

n1,n2∈{−1,0,1}
λ j,k1+n1,k2+n2

the union of this cube with its eight neighbors. The wavelet
leaders are defined as the largest wavelet coefficient magnitude
within this neighborhood over all finer scales [11]

�( j, k) ≡ �(λ j,k) � sup
m∈(1,2,3),λ′⊂3λ j,k

|d(m)X (λ′)|. (7)

Wavelet leaders reproduce the Hölder exponent as follows

h(t0) = lim inf
j→−∞

(
log �(λ j,k(t0))

/
log 2 j ) (8)

where λ j,k(t0) denotes the cube at scale j including the spatial
location t0 [11]. It has been shown that (8) is the theoretical
key property required for constructing a multifractal formal-
ism, see [11] for details. In particular, it can be shown that the
wavelet leader multifractal formalism (WLMF), i.e., the use

of (1) with coefficients cp estimated using wavelet leaders,
is valid for large classes of multifractal model processes,
see [12], [28] for details and discussions. The WLMF has
been extensively studied both theoretically and in terms of
estimation performance and constitutes the benchmark tool for
performing multifractal analysis [12], [28].

Negative Regularity: The WLMF can be applied to locally
bounded images (equivalently, to images with strictly positive
uniform regularity) only, see [12], [28], [47] for precise
definitions and for procedures for assessing this condition in
practice. However, it has been reported that a large number
of real-world images do not satisfy this prerequisite [5], [12].
In these cases, a practical solution consists of constructing the
WLMF using the modified wavelet coefficients

d(m),αX ( j, k) � 2α j d(m)X ( j, k), α > 0 (9)

instead of d(m)X in (7). When α is chosen sufficiently large,
the WLMF holds (see [12] for details about the theoretical
and practical consequences implied by this modification).

Finally, note that the above analysis as well as the WLMF
are meaningful for homogeneous multifractal functions X ,
for which the multifractal spectra D(h) of different subsets
of t are identical. This excludes the class of multifractional
models [48], [49], for which the function h(t) is given by a
smooth non-stationary evolution. Such models, also of interest
in other application contexts, are not considered here, as the
focus is on multifractality parameter c2 which is not relevant
to characterize multifractional processes.

III. BAYESIAN FRAMEWORK

In this section, a novel empirical second-order statistical
model for the logarithm of wavelet leaders for 2D MMC
processes is proposed. This model is the key tool for estimating
the multifractality parameter c2 in a Bayesian framework.

A. Modeling the Statistics of Log-Wavelet Leaders

Marginal Distribution Model: It has recently been observed
that for 1D signals the distribution of the log-wavelet leaders

l( j, k) � log �( j, k) (10)

can be reasonably well approximated by a Gaussian
distribution [44]. Here, we numerically investigate the mar-
ginal distributions of l( j, ·) for 2D images. To this end,
a representative selection of scaling processes (the MMC
processes CMC-LN, CMC-LP, CPC-LN and CPC-LP, as
well as fBm, where LN stands for log-Normal and LP for
log-Poisson, respectively) have been analyzed for a wide range
of process parameters (see Section V-A for a description of
these processes). Representative examples of quantile-quantile
plots of the standard Normal distribution against empirical dis-
tributions of log-wavelet leaders (scale j = 2) associated with
CPC-LN, CPC-LP and fBm are plotted in Fig. 1 (upper row).

Clearly, the normal distribution provides, within
±3 standard deviations, a reasonable approximation for
the marginal distribution of log-wavelet leaders of images
for both members of the MMC class. It is also the case for
the fBm, a Gaussian self-similar process that is not a member



Fig. 1. Quantile-quantile plots of the empirical distributions of the
log-wavelet leaders l(2, k) (top) and wavelet coefficients log dX

(3)(2, k)
(bottom) against standard normal for CPC-LN (left column) and CPC-LP
(center column) with c2 = −0.04, respectively, and for fBm (right column).

of MMC. Note that the fact that the marginal distributions
of the log-wavelet leaders are approximately Gaussian for
scale invariant processes confirms the intuitions formulated
by Mandelbrot [50]. However, it is not a trivial finding: There
is no a priori reason for this property even if the analyzed
stochastic process has log-normal marginals (as is the case
for CMC-LN, for instance). Indeed, it is not the case for the
logarithm of the absolute value of wavelet coefficients whose
marginal distributions are significantly more complicated and
strongly depart from Gaussian, cf., Fig. 1 (bottom row).

Variance-Covariance Model: We introduce a model for
the covariance of the logarithm of 2D wavelet leaders for
MMC processes at fixed scale j denotated as Cov[l( j, k),
l( j, k + �k)]. It is motivated by the asymptotic covariance
of the logarithm of multiscale quantities generically asso-
ciated with multiplicative construction (see [7]), studied in
detail for wavelet coefficients of 1D random wavelet cascades
in [51], and also by recent numerical results obtained for
the covariance of the logarithm of 1D wavelet leaders for
MMC processes [44]. These results suggest a linear decay
of Cov[l( j, k), l( j, k + �k)] in log coordinates log�k, with
slope given by the parameter c2. Numerical simulations with
2D MMC processes for a wide range of process parameters
(detailed in Section V-A) indicate that the empirical intra-scale
covariance is radially symmetric and decays as c2 log�r with
�r � ||�k|| for an intermediary range of values �r given
by 3 < �r ≤ �rmax

j

Cov[l( j, k), l( j, k + �k)]

≈ �
(1)
j (�r; c2) � γ + c2(log2 �r + j) log 2 (11)

where �rmax
j = √

2(
√

n j − 1) and n j ≈ �N2/22 j
 denotes
the number of wavelet leaders at scale 2 j of an N × N image.
The constant γ is found to be well approximated by using the
heuristic condition �

(1)
j (�√n j/4
; c2)) = 0, where the

operator � 
 truncates to integer values.
The theoretical variance of the log-wavelet leaders is given

by C2( j) = C2( j; c2, c0
2) defined in (2). Finally, the short-

term covariance is modeled as a line connecting C2( j; c2, c0
2)

Fig. 2. Fitting between the sample covariance (a), averaged on 100 realiza-
tions of CMC-LN ([N, c2] = [29,−0.04]), and the parametric covariance (b);
(c) and (d) compare the model (blue) and the sample covariance (red) for
two slices.

at �r = 0 and �(1)j (�r; c2) at �r = 3 as follows

�
(0)
j (�r; c2, c0

2)

� log(�r + 1)

log 4
[�(1)j (3; c2)− C2( j; c2, c0

2)] + C2( j; c2, c0
2).

(12)

Combining (2), (11) and (12) yields the following full
model for the covariance, parametrized by two parameters
θ = [c2, c0

2]T only

� j (�r; θ) =

⎧⎪⎨
⎪⎩

C2( j; c2, c0
2) �r = 0

�
(0)
j (�r; c2, c0

2) 0 ≤ �r ≤ 3

max(0, �(1)j (�r; c2)) 3 ≤ �r ≤ �rmax
j .

(13)

Here, only the positive portions of �(1)j are considered for
numerical reasons (conditioning of the covariance matrix).
The proposed covariance model is illustrated in Fig. 2 for
CMC-LN.

The joint Gaussian model with covariance model (13)
assumes limited information on the dependence between dif-
ferent scales, essentially the variance (2). The corresponding
covariance matrix model for log-wavelet leaders at several
scales j ∈ [ j1, j2] has thus block-diagonal structure. For
convenience and without loss of generality, the formulations
given below and in Section IV will be stated in block-diagonal
form yet could be extended without difficulty to any other valid
covariance matrix model.

B. Likelihood, Prior and Posterior Distributions

We focus on the estimation of the parameter c2 and therefore
work with centered log-wavelet leaders below. Let l j denote
the vector of the n j centered coefficients l( j, k)− Ê[lX ( j, .)]



at scale j ∈ [ j1, j2], organized in lexicographic order, where
Ê[·] stands for the sample mean. Let � j (θ) denote the
corresponding n j × n j covariance matrix whose entries are
given by the 2D parametric covariance function model (13).
For convenience of notation, all coefficients are stacked in a
unique zero-mean vector L = [lT

j1, ..., lT
j2]T .

Likelihood: With the above notation and assumptions, the
likelihood of l j is given by

p(l j |θ) �
exp

(
− 1

2 lT
j � j (θ)

−1l j

)
√
(2π)n j det � j (θ)

. (14)

Using the independence between l( j, k) and l( j ′, k′) for
j �= j ′, the likelihood of L is given by

p(L|θ) =
j2∏

j= j1

p(l j |θ). (15)

Prior Distribution: The parameter vector θ must be chosen
such that the variances of l( j, k) are positive, C2( j) ≥ 0.
We define the admissible set

A = (A+ ∪ A−) ∩ Am (16)

where

A− = {(c2, c0
2) ∈ R

2 | c2 < 0 and c0
2 + c2 j2ln 2 > 0},

A+ = {(c2, c0
2) ∈ R

2 | c2 > 0 and c0
2 + c2 j1ln 2 > 0},

Am = {(c2, c0
2) ∈ R

2 | |c0
2| < c0,m

2 , |c2| < cm
2 }

and cm
2 , c0,m

2 quantify the largest admissible values for
c2 and c0

2, parameters that need to be tuned by practitioners and
may depend on the application considered. When no additional
prior information is available regarding θ , a uniform prior
distribution on the set A is assigned to θ

π(θ) = UA(θ) ∝ 1A(θ). (17)

Posterior Distribution and Bayesian Estimators: The
posterior distribution of θ is obtained from the Bayes rule

p(θ |L) ∝ p(L|θ) π(θ) (18)

and can be used to define the Bayesian maximum a pos-
teriori (MAP) and minimum mean squared error (MMSE)
estimators given in (20) and (21) below.

IV. ESTIMATION PROCEDURE

The computation of the Bayesian estimators is not
straight-forward because of the complicated dependence of the
posterior distribution (18) on the parameters θ . Specifically,
the inverse and determinant of � j in the expression of the
likelihood (14) do not have a parametric form and hence (18)
can not be optimized with respect to the parameters θ .
In such situations, it is common to use a Markov Chain
Monte Carlo (MCMC) algorithm generating samples that are
distributed according to p(θ |L). These samples are used in
turn to approximate the Bayesian estimators.

A. Gibbs Sampler

The following Gibbs sampler enables the generation of
samples {θ (t)}Nmc

1 that are distributed according to the posterior
distribution (18). This sampler consists of successively
sampling according to the conditional distributions p(c2|c0

2,L)
and p(c0

2|c2,L) associated with p(θ |L). To generate the
samples according to the conditional distributions, a
Metropolis-within-Gibbs procedure is used. The instrumental
distributions for the random walks are Gaussian and have
variances σ 2

c2
and σ 2

c0
2
, respectively, which are adjusted to

ensure an acceptance rate between 0.4 and 0.6 (to ensure good
mixing properties). For details on MCMC methods, the reader
is referred to [52].

Sampling According to p(c2|c0
2, L): At iteration t , denote as

θ (t) = [c(t)2 , c0,(t)
2 ]T the current state vector. A candidate c(�)2

is drawn according to the proposal distribution p1(c
(�)
2 |c(t)2 ) =

N (c(t)2 , σ
2
c2
). The candidate state vector θ (�) = [c(�)2 , c0,(t)

2 ]T

is accepted with probability πc2 = min(1, rc2) (i.e., θ (t+
1
2 ) =

θ (�)) and rejected with probability 1−πc2 (i.e., θ (t+
1
2 ) = θ (t)).

Here, rc2 is the Metropolis-Hastings acceptance ratio, given by

rc2 = p(θ (�)|L) p1(c
(t)
2 |c(�)2 )

p(θ (t)|L) p1(c
(�)
2 |c(t)2 )

= 1A(θ (�))
j2∏

j= j1

√
det � j (θ

(t))

det � j (θ
(�))

× exp

(
−1

2
lT

j

(
� j (θ

(�))−1 − � j (θ
(t))−1

)
l j

)
. (19)

Sampling According to p(c0
2|c2,L): Similarly, at itera-

tion t + 1
2 , a candidate c0,(�)

2 is proposed according to the
instrumental distribution p2(c

0,(�)
2 |c0,(t)

2 ) = N (c0,(t)
2 , σ 2

c0
2
). The

candidate state vector θ (�) = [c(t+
1
2 )

2 , c0,(�)
2 ]T is accepted with

probability πc0
2

= min(1, rc0
2
) (i.e., θ (t+1) = θ (�)) and rejected

with probability 1−πc0
2

(i.e., θ (t+1) = θ (t+
1
2 )). The Metropolis-

Hastings acceptance ratio rc0
2

is given by (19) with p1 replaced

by p2, c2 replaced by c0
2 and t replaced by t + 1

2 .
Approximation of the Bayesian Estimators: After a burn-in

period defined by t = 1, . . . , Nbi, the proposed Gibbs sampler
generates samples {θ (t)}Nmc

t=Nbi+1 that are distributed according
to the posterior distribution (18). These samples are used to
approximate the MAP and MMSE estimators

θ̂
MMSE � E[θ |L] ≈ 1

Nmc − Nbi

Nmc∑
t=Nbi +1

θ (t) (20)

θ̂
MAP � argmax

θ

p(θ |L) ≈ argmax
t>Nbi

p(θ (t)|L). (21)

B. Whittle Approximation

The Gibbs sampler defined in subsection IV-A requires the
inversion of the n j × n j matrices � j (θ) in (19) for each
sampling step in order to obtain rc2 and rc0

2
. These inversion

steps are computationally prohibitive even for very modest
image sizes (for instance, a 64 × 64 image would require the
inversion of a dense matrix of size ∼ 1000 × 1000 at scale
j = 1 at each sampling step). In addition, it is numerically



instable for larger images (due to growing condition number).
To alleviate this difficulty, we propose to replace the exact
likelihood (15) with an asymptotic approximation due to
Whittle [53], [54]. With the above assumptions, the collection
of log-leaders {l( j, ·)} are realizations of a Gaussian random
field on a regular lattice Pj = {1, ..,m j }2, where m j = √

n j .
Up to an additive constant, the Whittle approximation for
the negative logarithm of the Gaussian likelihood (14)
reads [36], [54]–[56]

− log p(l j |θ)
≈ pW (l j |θ) = 1

2

∑
ω∈D j

logφ j (ω; θ)+ I j (ω)

n jφ j (ω; θ)
(22)

where the summation is taken over the spectral grid
D j = { 2π

m j
�(−m j − 1)/2
,−1, 1,m j − �m j/2
}2. Here I j (ω)

is the 2D standard periodogram of {l( j, k)}k∈Pj

I j (ω) =
∣∣∣∣
∑
k∈Pj

l( j, k) exp(−ikT ω)

∣∣∣∣
2

(23)

and φ j (ω; θ) is the spectral density associated with the covari-
ance function � j (�r; θ), respectively. Without a closed-form
expression for φ j (ω; θ), it can be evaluated numerically by
discrete Fourier transform (DFT)

φ j (ω; θ) =
∣∣∣∣
∑
k∈Pj

� j (

√
k2

1 + k2
2; θ) exp(−ikT ω)

∣∣∣∣. (24)

Frequency Range: It is commonly reported in the literature
that the range of frequencies used in (22) can be restricted.
This is notably the case for the periodogram-based estimation
of the memory coefficient of long-range dependent time series
for which only the low frequencies can be used [36], [57], [58].
Similarly, in the present context, the proposed spectral
density model φ j (ω; θ) yields an excellent fit at low frequen-
cies and degrades at higher frequencies. This is illustrated
in Fig. 3 where the average periodograms of l( j, k) for
CPC-LN are plotted together with the model φ j (ω; θ).
We therefore restrict the summation in (22) to low frequencies
D†

j (η) =
{
ω ∈ D j |‖ω‖2 ≤ √

η 2π
m j

�m j/2

}

where the fixed
parameter η approximately corresponds to the fraction of
the spectral grid D j that is actually used. We denote the
approximation of pW (l j |θ) obtained by replacing D j with D†

j

in (22) by p†
W (l j |θ). The final Whittle approximation of the

likelihood (15) is then given by the following equation

p(L|θ)≈ exp

⎛
⎝−

j2∑
j= j1

p†
W (l j |θ)

⎞
⎠

= exp

⎛
⎜⎝−

j2∑
j= j1

1

2

∑
ω∈D†

j (η)

logφ j (ω; θ)+ I j (ω)

n jφ j (ω; θ)

⎞
⎟⎠

(25)

up to a multiplicative constant. It is important to note that
the restriction to low frequencies in (25) is not a restriction
to a limited frequency content of the image (indeed, scales

Fig. 3. Fitting between the periodogram (a), averaged on 100 realizations
of CMC-LN ([N, c2, j] = [29,−0.04, 2]), and the model φ j (ω; θ), obtained
from a DFT of � j (�r; θ). (c) and (d) compare the model (blue) and the
periodogram (red) for two slices.

j ∈ [ j1, j2] are used) but only concerns the numerical
evaluations of the likelihood (15).

V. NUMERICAL EXPERIMENTS

The proposed algorithm is numerically validated for several
types of scale invariant and multifractal stochastic processes
for different sample sizes and a large range of values for c2.

A. Stochastic Multifractal Model Processes

Canonical Mandelbrot Cascade (CMC): CMCs [7] are
the historical archetypes of multifractal measures. Their
construction is based on an iterative split-and-multiply
procedure on an interval; we use a 2D binary cascade for two
different multipliers: First, log-normal multipliers W = 2−U ,
where U ∼ N (m, 2m/ log 2) is a Gaussian random variable
(CMC-LN); Second, log-Poisson multipliers W =
2γ exp (log(β)πλ), where πλ is a Poisson random variable
with parameter λ = − γ log 2

(β−1) (CMC-LP). For CMC-LN, the
log-cumulants are given by c1 = m + α, c2 = −2m and
cp = 0 for all p ≥ 3. For CMC-LP, c1 = α + γ

(
log(β)
β−1 − 1

)
and all higher-order log-cumulants are non-zero with
cp = − γ

β−1 (− log(β))p , p ≥ 2. Below, γ = 1.05 and β is
varied according to the value of c2.

Compound Poisson Cascade (CPC): CPCs were introduced
to overcome certain limitations of the CMCs that are caused by
their discrete split-and-multiply construction [4], [45]. In the
construction of CPCs, the localization of the multipliers in
the space-scale volume follows a Poisson random process
with specific prescribed density. We use CPCs with
log-normal multipliers W = exp(Y ), where Y ∼ N (μ, σ )
is a Gaussian random variable (CPC-LN), or log-Poisson
CPCs for which multipliers W are reduced to a constant w
(CPC-LP). The first log-cumulants of CPC-LN are given
by c1 = − (

μ+ 1 − exp
(
μ+ σ 2/2

)) + α, c2 = −(μ2 + σ 2),



Fig. 4. Influence of the bandwidth parameter, η, on estimation performance
for two different sizes of LN-CMC and two different values of c2 values
(−0.02 in red and −0.08 in blue).

and cp �= 0 for p ≥ 3. Here, we fix μ = −0.1. For CPC-LP,
c2 = − log(w)2.

Fractional Brownian Motion (fBm): We use 2D fBms as
defined in [59]. FBm is not a CMC process and is based on
an additive construction instead. Its multifractal and statistical
properties are entirely determined by a single parameter H
such that c1 = H , c2 = 0 and cp = 0 for all p > 2, and
below we set H = 0.7.

B. Numerical Simulations

Wavelet Transform: A Daubechies’s mother wavelet with
Nψ = 2 vanishing moments is used, and α = 1 in (9), which is
sufficient to ensure positive uniform regularity for all processes
considered.

Estimation: The linear regression weights w j in the standard
estimator (3) have to satisfy the usual constraints

∑ j2
j1

jw j = 1

and
∑ j2

j1
w j = 0 and can be chosen to reflect the confidence

granted to each V̂arn j [log �( j, ·)] [12], [28]. Here, they are
chosen proportional to n j as suggested in [28]. The linear
regression based standard estimator (3) will be denoted LF
(for “linear fit”) in what follows. The Gibbs sampler is run
with Nmc = 7000 iterations and a burn-in period of
Nbi = 3000 samples. The bandwidth parameter η in (25)
has been set to η = 0.3 following preliminary numerical
simulations; these are illustrated in Fig. 4 where estimation
performance is plotted as a function of η for LN-CMC
(N = 28 top, N = 29 bottom) with two different values
of c2 (−0.02 in red, −0.08 in blue). As expected, η tunes
a classical bias-variance tradeoff: a large value of η leads to
a large bias and small standard deviation and vice versa. The
choice η = 0.3 yields a robust practical compromise.

Performance Assessment: We apply the LF estimator (3)
and the proposed MAP and MMSE estimators (20) and (21)
to R = 100 independent realizations of size N × N each
for the above described multifractal processes. A range
of weak to strong multifractality parameter values
c2 ∈ {−0.01,−0.02,−0.04,−0.06,−0.08} and sample
sizes N ∈ {26, 27, 28, 29} are used. The coarsest scale j2 used
for estimation is set such that n j2 ≥ 100 (i.e., the coarsest
available scale is discarded), yielding j2 = {2, 3, 4, 5},
respectively, for the considered sample sizes. The finest
scale j1 is commonly set to j1 = 2 in order to avoid pollution
from improper initialization of the wavelet transform, see [32]

TABLE I

ESTIMATION PERFORMANCE FOR CMC-LN (a), CPC-LN (b)

CMC-LP (c), CPC-LP (d) FOR SAMPLE SIZES N = {28, 29}
AND j1 = 2, j2 = {4, 5}. BEST RESULTS

ARE MARKED IN BOLD

for details. Performance is evaluated using the sample mean,
the sample standard deviation and the root mean squared
error (RMSE) of the estimates averaged across realizations

m = Ê[ĉ2], s =
√

V̂ar[ĉ2], rms =
√
(m − c2)2 + s2.

C. Results

Estimation Performance: Tab. I summarizes the estimation
performance of LF and MMSE estimators for CMC-LN,
CPC-LN, CMC-LP, CPC-LP (subtables (a)-(d), respectively)
and for sample sizes N = {28, 29}. The performance of the
MAP estimator was found to be similar to the MMSE esti-
mator and therefore is not reproduced here due to space con-
straints. Note, however, that different (application dependent)
priors for θ may lead to different results (here, the
non-informative prior (17) is used).

First, it is observed that the proposed algorithm slightly but
systematically outperforms LF in terms of bias. This reduction
of bias does not depend on a specific choice of the multifractal



TABLE II

ESTIMATION PERFORMANCE FOR CMC-LN (a) AND CPC-LN (b)

FOR SAMPLE SIZES N = {26, 27} AND j1 = 1, j2 = {2, 3}.

BEST RESULTS ARE MARKED IN BOLD

process or its parameters, or on the sample size. Second,
and most strikingly, the proposed Bayesian estimators yield
significantly reduced standard deviations, with a reduction of
up to a factor of 3 as compared to linear regressions. The
standard deviation reduction is more important for small values
of |c2| yet remains above a factor of 1.5 for large values of |c2|.

These performance gains are directly reflected in the overall
RMSE values, which remain up to a factor of 2.5 below those
of linear fits. Finally, note that the estimation performance for
CMCs and CPCs with log-Poisson multipliers are found to
be slightly inferior to those with log-normal multipliers. This
may be due to an arguably slightly stronger departure from
Gaussian for the former, cf. Fig. 2.

Performance for Small Sample Size: For small sample
sizes N ≤ 27, the limited number of available scales forces
the choice j1 = 1. Results for N = {26, 27} (for which
j2 = {2, 3}, respectively) are reported in Tab. II. They indicate
that the performance gains of the proposed Bayesian estima-
tors with respect to LF estimators are even more pronounced
for small sample size, both in terms of bias and standard
deviations, yielding a reduction of RMSE values of up to a
factor of 4. In particular, note that LF yields biases that are
prohibitively large to be useful in real-world applications due
to the use of the finest scale j = 1 [12]. Notably, values
c2 = 0 cannot be reliably detected with LF. In contrast,
the proposed Bayesian procedure yields sufficiently small
bias and standard deviations to enable the estimation of the
multifractality parameter c2 even for very small images
(or image patches) of size 64 × 64. The reported performance
gains come at the price of an increased computational cost,
with computation times of the order of 8s (N = 64) to
50s (N = 512) per image, respectively, on a standard desktop

TABLE III

fBm ESTIMATION PERFORMANCE FOR SAMPLE SIZES N = {27, 28, 29}
AND j1 = 2, j2 = {3, 4, 5}. BEST RESULTS

ARE MARKED IN BOLD

computer, which is two orders of magnitude larger than the
computational cost of the LF estimator.

Performance for Fractional Brownian Motion: Self-similar
fBms with c2 = 0 do not belong to the class of MMC
processes for which the proposed estimation procedure was
designed. The correlation structure of the wavelet coefficients
of fBms has been studied in [60]. This correlation is weak,
i.e., it goes to zero fast with the distance between wavelet
coefficients in the time-scale plane. FBm results are summa-
rized in Tab. III. They indicate that the performance of the
LF estimator is comparable to the case c2 = −0.01 reported
in Tab. I. In contrast, the proposed Bayesian estimators are
practically unbiased and have standard deviations and RMSE
values that significantly outperform those of LF by up to a
factor 10. Therefore, it is much more likely to be able to
identify a model for which c2 = 0 when using the proposed
Bayesian procedure instead of the classical LF.

VI. ILLUSTRATION FOR REAL-WORLD DATA

We illustrate the proposed Bayesian estimation procedure
for the multifractal analysis of a real-world image in Fig. 5(a).
The image of size 960 × 1952 pixels is the channel #20 of a
hyperspectral datacube corresponding to a forested area near
a city that was acquired by the Hyspex hyperspectral scanner
over Villelongue, France, during the Madonna project [61].
Estimates of c2 are computed for 29 ×60 overlapping patches
of size 64 × 64 pixels.

The estimates are plotted in Fig. 5 for MMSE (c) and
LF (d), subfigure (b) provides a magnification (indicated
by a red frame) on the square of patches of rows
11-19/columns 16-24. Visual inspection indicates that the
Bayesian estimates are much better reproducing the spa-
tial structure of the image texture than the classical LF
(cf., Fig. 5(a), (c) and (d)). Specifically, the zoom in Fig. 5(b)
(equivalently, the corresponding textures in Fig. 5(a) and (c)),
shows that the Bayesian estimates are spatially strongly homo-
geneous for the forested regions with visually homogeneous
texture (e.g., upper right portions in Fig. 5(b)), indicating a
weak yet non-zero multifractality for these regions. Similar
observations are obtained for other homogeneous vegetation
patches (e.g., bottom left corners in Fig. 5(b)). Moreover, the
zones of mixed vegetation (e.g., upper left corner in Fig. 5(b))
also yield spatially coherent and consistent estimates of c2,
with more negative values (stronger multifractality). The
LF based estimates display a strong variability through-
out the image. Indeed, even for the homogeneous texture
in the forested regions, LF yields strongly spatially



Fig. 5. Band #20 of a hyperspectral datacube (a); estimates of c2 for overlapping 64 × 64 pixel patches obtained by MMSE (c) and LF (d); zooms on the
patches indicated by a red frame (b); the centers of the image patches are indicated by white dots in the original image, the distance between two of the dots
corresponds to one half of the patch size, axis labels indicate patch numbers. Histograms and Fisher linear discriminant criteria for estimates of c2 obtained
by MMSE and LF (e).

varying estimates. Finally, note that the strongly negative
values of c2 observed for both MMSE and LF in the bottom
left corner of Fig. 5(c) correspond to regions consisting of both
(textured) vegetations and of roofs of buildings (with close to
zero amplitudes and no texture).

Although no ground truth is available for this illustration,
a more quantitative analysis of the relative quality of estimates
of c2 obtained with MMSE and LF is proposed here. First, the
reference-free image quality indicator of [62], which quantifies
the image sharpness by approximating a contrast-invariant
measure of its phase coherence [63], is calculated for the
maps of c2 in Fig. 5(c) and (d). These sharpness indexes are
10.8 for MMSE and a considerably smaller value of 4.6 for
LF, hence reinforcing the visual inspection-based conclusions
of improved spatial coherence for MMSE described above.
Second, Fig. 5(e) (top) shows histograms of the estimates
of c2 obtained with MMSE and LF, which confirm the above
conclusions of significantly larger variability (variance) of LF
as compared to MMSE. Moreover, LF yields a large portion
of estimates with positive values, which are not coherent
with multifractal theory since necessarily c2 < 0, while
MMSE estimates are consistently negative. Finally, the Fisher
linear discriminant criterion [64, Ch. 3.8] is calculated for c2
obtained with MMSE and with LF, as a function of a threshold
for c2 separating two classes of textures. The results, plotted
in Fig. 5(e) (bottom), indicate that the estimates obtained with
MMSE have a far superior discriminative power than those
obtained with LF.

VII. CONCLUSIONS

This paper proposed a Bayesian estimation procedure for the
multifractality parameter of images. The procedure relies on
the use of novel multiresolution quantities that have recently
been introduced for regularity characterization and multifractal
analysis, i.e., wavelet leaders. A Bayesian inference scheme
was enabled through the formulation of an empirical yet

generic semi-parametric statistical model for the logarithm
of wavelet leaders. This model accounts for the constraints
imposed by multifractal theory and is designed for a large
class of multifractal model processes. The Bayesian estimators
associated with the posterior distribution of this model were
approximated by means of samples generated by a Metropolis-
within-Gibbs sampling procedure, wherein the practically
infeasible evaluation of the exact likelihood was replaced by
a suitable Whittle approximation. The proposed procedure
constitutes, to the best of our knowledge, the first operational
Bayesian estimator for the multifractality parameter that is
applicable to real-world images and effective both for small
and large sample sizes. Its performance was assessed numeri-
cally using a large number of multifractal processes for several
sample sizes. The procedure yields improvements in RMSE of
up to a factor of 4 for multifractal processes, and up to a factor
of 10 for fBms when compared to the current benchmark esti-
mator. The procedure therefore enables, for the first time, the
reliable estimation of the multifractality parameter for images
or image patches of size equal to 64×64 pixels. It is interesting
to note that the Bayesian framework introduced in this paper
could be generalized to hierarchical models, for instance, using
spatial regularization for patch-wise estimates. In a similar
vein, future work will include the study of appropriate models
for the analysis of multivariate data, notably for hyperspectral
imaging applications.
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