Zide Meng
email: zide.meng@inria.fr

Fabien Gandon
email: fabien.gandon@inria.fr

Catherine Faron-Zucker

Ge Song
email: ge.song@inria.fr

Detecting topics and overlapping communities in Question and Answer sites

Keywords: Overlapping Community Detection, Question Answer sites, Topic Modeling

In many social networks, people interact based on their interests. Community detection algorithms are then useful to reveal the sub-structures of a network and in particular interest groups. Identifying these users' communities and the interests that bind them can help us assist their life-cycle. Certain kinds of online communities such as question-and-answer (Q&A) sites or forums, have no explicit social network structure. Therefore, many traditional community detection techniques do not apply directly. In this paper, we propose an efficient approach for extracting data from Q&A sites in order to detect communities of interest. Then we compare three community detection methods we applied on a dataset extracted from the popular Q&A site StackOverflow. Our method is based on topic modeling and user membership assignment and is shown to be much simpler and faster than the state of the art methods while preserving the quality of the detection.

Introduction

Question-and-answer sites (Q&A sites) initially aimed at enabling users to ask questions to a community of experts. Since these user-generated contents can be viewed and searched again, people with the same or similar questions can find answers by browsing or searching the questions that were already answered. On one hand, Q&A sites have become huge repositories of question-answer content which support highly valuable and highly reusable knowledge [START_REF] Anderson | Discovering value from community activity on focused question answering sites: a case study of stack overflow[END_REF]. On the other hand, Q&A sites also contain a large number of users who keep contributing questions and answers. And most of them are more likely to ask questions on topics they are interested in and answer questions in topics they are experts of.

Therefore, we believe that there are two main resources in Q&A sites: the users' network and the Q&A content. From a user's perspective, detecting communities of interests is useful to reveal the sub-structures of the user network and identify relevant peers. From the perspective of content, extracting topics is required to uncover the key subjects from massive content. So we are interested in the following research questions: Can we detect communities of interests in Q&A sites? Can we identify the common topics that bind them? Detecting communities of interests can contribute to the question routing problem [START_REF] Li | Routing questions to appropriate answerers in community question answering services[END_REF] [START_REF] Zhou | A classification-based approach to question routing in community question answering[END_REF], which is very important in Q&A sites optimization problems. It can also contribute to the community management, for instance by allowing to track the interest evolution or community evolution in Q&A sites.

Many community detection algorithms have been developed to discover substructures in social networks. Q&A sites support social networking, however, unlike networks such as Facebook, there are no explicit relationship-based links between their users. In fact, Q&A sites capture the users connected by question-answer links or co-answer links. The users are not mainly concerned with no aware of the links existing between them. The social network is said to be implicit. As a result, compared with other classical social networks, Q&A networks contain more star-shape (many people link to a user) structures than triangle-shape (people link to each other) structures. According to [START_REF] Suri | Counting triangles and the curse of the last reducer[END_REF], the number of triangle-shape structures per user in twitter dataset is 821, while in our experiment dataset, the number of triangle-shape structure per user is 30 which is far less.Moreover, people have multiple interests i.e. they belong to several communities of interests. It is therefore important to be able to detect their overlapping communities of interests.

Adapting the document clustering algorithm to the user clustering problem, similarly to [START_REF] Li | Community-based topic modeling for social tagging[END_REF], we first applied a classic document clustering algorithm, LDA [START_REF] Blei | Latent dirichlet allocation[END_REF], to assign each user into several topic clusters by replacing the documents by the users, and the document words by the tags acquired by users. The results were encouraging, however, the complexity of the probabilistic model was prohibitive. Analyzing the LDA model, we found that it largely exploits tags' co-occurrence. This inspired us to design a much simpler and faster algorithm to detect topics. Then based on the detected topics, we were able to identify the users' interests.

So the main contributions of this paper are, -To propose a topic detection method to extract topics based on question tags.

-To propose a user interest detection method to discover the overlapping communities of interests.

The rest of the paper is organized as follows. Firstly, we survey the state of the art of community detection approaches, and point out the differences among these works. Secondly, we introduce an empirical method to detect topics. Then we assign each user to these detected topics based on their interaction behaviors. Thirdly, we conduct several experiments. It shows that our approach is much faster and simpler compared with other classic approaches, e.g. LDA [START_REF] Blei | Latent dirichlet allocation[END_REF], SLPA [START_REF] Xie | Overlapping community detection in networks: The state-of-theart and comparative study[END_REF], and a Hierarchical clustering algorithm, while preserving the quality of the detection. Finally, we discuss about those methods and conclude on our contribution.

Related Work

We distinguish between three kinds of approaches for community detection depending on their characteristics: Graph-based methods are based on network structure; Clustering methods are based on the similarity of user profiles; LDA-based methods use probabilistic graphical model.

Graph-based methods

A first and direct solution is to extract an implicit network structure (such as questionanswer network, co-answer network, etc.) from interaction traces to come down to a traditional community detection problem on social networks. Since intuitively, users are grouped by interests, and most of their interactions are based on shared interests, it is reasonable to induce a network structure from these interactions and then run community detection algorithms on the network. Many classical algorithms have been developed such as [START_REF] Xie | Overlapping community detection in networks: The state-of-theart and comparative study[END_REF][2]. There are many constraints when adopting these methods. First, they do not take into account node attributes nor link attributes. Take co-answer network as an example, where nodes represent users and links represent users answering the same questions. In case two users are connected, these methods can only indicate that they have answered the same questions many times. They cannot provide the information whether they have answered questions on the same topic or on different topics. Second, some of the work [START_REF] Duan | Community detection in graphs through correlation[END_REF], adopting this approach cannot detect overlapping communities, while some work such as [START_REF] Xie | Overlapping community detection in networks: The state-of-theart and comparative study[END_REF][11] [START_REF] Gopalan | Efficient discovery of overlapping communities in massive networks[END_REF][12] detect overlapping communities.

Clustering methods

Community detection can also be envisioned as a clustering problem. By computing similarities between user profiles, one can detect groups according to clustering results. The choice of the similarity metrics is quite important and largely influences clustering results. To find similar interests, we first have to define the distance between user's interests and the definition of this distance has a strong influence on the clustering results. For instance, we can consider a bag of tags with their weights to represent an interest, then compute the weighted tag distance to define the interest distance between two users. Clustering methods, such as [START_REF] Xu | A model-based approach to attributed graph clustering[END_REF][8], group users according to their features. They do not take the network structure into consideration. Moreover, some clustering algorithms normally output hard-partition communities, one user can only be assigned to one interest group. However, in the scenario we are interested in, a user often has more than one interest and should be assigned to more than one group simultaneously. This is a constrain for those hard-partition algorithms. [START_REF] Chang | Routing questions for collaborative answering in community question answering[END_REF] use spectral clustering to detect topic from tag co-occurrence graph. The difference is we only run spectral clustering on selected tags (taken only 10% of all tags) co-occurrence graph which is more efficient, besides, [START_REF] Chang | Routing questions for collaborative answering in community question answering[END_REF] does not give details on how to compute the topic tag distribution and user topic distribution while we do.

LDA-based models

A third approach consists in using a probabilistic graphical model for both the user profiles and the network structure to solve community detection problem. For example, [START_REF] Zhang | An lda-based community structure discovery approach for large-scale social networks[END_REF] transfer links to binary node attributes, then use a LDA-based model to detect communities. [START_REF] Sun | Topical community detection from mining user tagging behavior and interest[END_REF] use a LDA-based method on social tagging systems where users label resources with tags, but they do not consider the problem of overlapping community detection. [START_REF] Tang | Arnetminer: extraction and mining of academic social networks[END_REF] use an extended LDA-based model to analyze academic social networks in order to find expert authors, papers and conferences. A problem of these LDA-based models is that they normally assume soft-membership [START_REF] Yang | Community detection in networks with node attributes[END_REF] which means that a user cannot have high probabilities to belong to several communities simultaneously. That is to say that the more communities a user belongs to, the less it belongs to each community (simply because probabilities have to sum to one). Moreover, [START_REF] Mcdaid | Detecting highly overlapping communities with model-based overlapping seed expansion[END_REF] and [START_REF] Lancichinetti | Finding statistically significant communities in networks[END_REF] also use statistic model to detect overlapping communities.

The difference is that LDA-based models normally integrate topic detection which can be used to interpret detected communities while the two above cited methods only detect overlapping communities without any topic information on each detected communities.

Short Summary

Table 1 summarizes the main features of the three approaches. Graph-based approaches normally use link information while ignoring node attributes. Some of them cannot detect overlapping communities or provide membership ratios which are weights denoting to what extent a user belongs to a community. Most of these methods can not identify the topic in each detected community. Clustering approaches use node attributes to group similar users. Some of their results are hard-partition communities, with no overlapping and no membership information. LDA-based models overcome the shortcomings of graph-based and clustering approaches, using both node attributes and link information. Besides, LDA-based models normally combine community detection with topic detection, which could be used to interpret detected communities. Our proposed method is similar to LDA-based methods. Both can detect overlapping communities and identify the topics at the same time. However, our method is different with LDA-based models in the sense that these methods normally assume soft-membership [START_REF] Yang | Community detection in networks with node attributes[END_REF] which means that a user can not have high probabilities to belong to several communities simultaneously. Our method does not have this limitation. In addition, our proposed method is much simpler and faster than LDA-based methods while preserving the quality of the detection.

Question Tag Enrichment

We have empirically found that the first tag of a question normally indicates the domain of the question if sorting question's tag according to its global frequency. For example, a question tagged with {c++ iostream fstream} is related to c++; A question tagged with {html css height} is related to html. However, there are also some questions that only have less and low popular tags, like a question tagged with {ant} or a question tagged with {qt boost}. For these questions, the domain is not obvious. The enrichment process is described in Algorithm 1. In pre-process (line 1-15), for each tag in a question, we compute the frequency of its first tag and record it in a hashmap. For example, we have three questions tag list, {html css height}, {html css layout}, and {c# gui layout} then, tag html's first tag frequency map is {html:2}, tag css's map is {html:2}, and tag layout's map is {html:1,c#:1}. After processing with all question tags, we normalize the frequencies (line [START_REF] Li | Routing questions to appropriate answerers in community question answering services[END_REF][START_REF] Li | Community-based topic modeling for social tagging[END_REF][START_REF] Mcdaid | Detecting highly overlapping communities with model-based overlapping seed expansion[END_REF][START_REF] Mika | Ontologies are us: A unified model of social networks and semantics[END_REF][START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF][START_REF] Sun | Topical community detection from mining user tagging behavior and interest[END_REF]. For instance tag css's first tag map becomes {html:1.0} and layout's map becomes {html:0.5,c#:0.5}.

In order to lower the probability of low frequency tag as first tag, we use the Equation 1:

normalize(tag) = record f req sum(record f req) * sigmoid(f requency) (1)
where, record f req denotes the co-occurrence of first-tag and tag, sum(record f req) denotes the sum of these recorded frequencies, f req denotes the global occurrence of the first-tag, σ(x) is sigmoid function, which is used as a squashing function for numerical stability. The value of sigmoid function is between 0 and 1. However, the shape of this function is largely determined by parameter k. Considering the maximum value of tag frequency (tag c#:31801) in our dataset. we chose k as 0.001 (dotted line), which will lower the probabilities of low frequency tags as first-tag while maintaining the probabilities of high frequency tags as first-tag. Figure 1 recalls shape of the sigmoid function for different value of k. For example, if the first-tag frequency map for css is {html:10, jquery:2}, then, when normalizing first-tag html, record freq is 10, sum(record freq) is 12, frequency is 5552 that is the occurrence of tag html in all the questions. As a result, normalize (html) is equal to 0.8301. which means the probability of html as cssś first-tag is 0.8301. For each tag, we therefore provide a list of enriching first-tags with estimated probabilities.

We also observed that the relations between tags mainly have two possibilities. One is vertical relation, for instance, java is more general than ant. Another one is horizontal relation, for instance, java is more general than debugging, and debugging could also be considered as more general than java since debugging can be applied to any programming language. So, only by one tag, such as debugging, we can not determine the enriched tag. Therefore, In enrich-processing (line 22-40), given a question's tag list, we fetch the top 5 first-tags (with the highest probabilities). Then we accumulate the corresponding probabilities with a discount taking into account the position of the tag in the tag list associated to the question, as shown in equation 2.

p j = p 1,j + p 2,j * dis + ... + p k,j * dis k-1 f orj ∈ [1, V], k ∈ [1, K] (2)
Where p j denotes the probability of the j th tag being a first-tag for a given question, p k,j denotes the probability for the k th tag to have the j th tag as its first-tag, V denotes the number of all the first-tags, K denotes the number of tags in the given question and dis denotes the discount due to the position, we tune the parameter dis between 0 to 1 and empirically set it as 0.5.

Then we consider the first-tag with the highest probability as the enriching firsttag. If this first-tag already exists in the original tag list, we simply skip the insertion, or else we insert it at the first position of the question's tag list. We processed 242552 tag lists from the StackOverFlow Q&A site, and our method enriched 33622 of them (13.5%). Table 2 presents the results of the enrichment of 8 tag lists (enriched tags are in bold).

Topic Extraction

From the observation of our dataset, we confirmed the natural intuition that high frequency tags are more generic and low frequency tags are more specific, and most of the low frequency tags are related to a more generic tag. Similar observation was also found in [START_REF] Mika | Ontologies are us: A unified model of social networks and semantics[END_REF]. Besides, [START_REF] Yang | Cqarank: jointly model topics and expertise in community question answering[END_REF] shows that tag frequency in Q&A sites also satisfy power law distribution [START_REF] Adamic | Power-law distribution of the world wide web[END_REF]. For example, for a question tagged with {c++, iostream, fstream} (with tags sorted according to their frequencies), we could find that it was related to c++ and to the iostream topic of c++, and more specifically, that it focused on fstream. This inspired us to build a tag tree to extract that and compute the probability for a tag to be related to a topic. We describe the process in Algorithm 2.

In the build trees process (line 1-14), we build a tag tree according to the position of tags in a question, and record the occurrence of each node. For example, let us consider three question tag lists: {html, css, height}, {html, css, layout}, and {c#, gui, layout}. We build two trees. The root of the first tree is html, the occurrence of this node is 2, it has only one child css, which occurrence is 2, and this node has itself two children, layout and height, the occurrence of each of them is 1. The root of the second tree is c# with 1 occurrence. Figure 2 and3 show examples of html and java's prefix tag tree.

By processing all question tag lists, many trees are generated with different sizes. We construct an affinity matrix only for those root nodes (line [START_REF] Leskovec | Statistical properties of community structure in large social and information networks[END_REF][START_REF] Li | Routing questions to appropriate answerers in community question answering services[END_REF][START_REF] Li | Community-based topic modeling for social tagging[END_REF][START_REF] Mcdaid | Detecting highly overlapping communities with model-based overlapping seed expansion[END_REF][START_REF] Mika | Ontologies are us: A unified model of social networks and semantics[END_REF][START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF][START_REF] Sun | Topical community detection from mining user tagging behavior and interest[END_REF][START_REF] Suri | Counting triangles and the curse of the last reducer[END_REF][START_REF] Tang | Arnetminer: extraction and mining of academic social networks[END_REF]. The similarity Algorithm 1: tag enrichment of two nodes is computed according to Equation 3,

Simi(root i, root j) = I(root i, root j) I(root i) + I(root j) (3)
where I(root i, root j) denotes the co-occurrence of two tags, and I(root i),I(root j) denotes the occurrence of tag I(root i) ,tag I(root j) separately. Then we run spectral clustering [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF] on the affinity matrix to group these root nodes into topics. As it requires the number of topics, we choose the same number 30 as [START_REF] Chang | Routing questions for collaborative answering in community question answering[END_REF], which has proved to be a reasonable setting for the Stackoverflow dataset. We then combine trees if their root nodes belong to the same topic (line 25-34). It leads to a result where each tree represents a topic. Therefore, in the compute topic-tag distribution process (line 35-42), for each topic tree, we recursively compute each tag's probability to belong to this topic by Equation 4.

p sub i = I(sub i) I(p) * p (4)
where p and I(p) denote the probability and the occurrence of a parent tag, p sub i and I(sub i) denote the probability and the occurrence of the i th child tag, then we can compute the probability of p sub i. Table 3 compares some results of this process with the state-of-the-art topic model LDA. We used the same topic number 30 for LDA. We can find that both results are very relevant to topics. However, our model does not require many iterations to converge, which makes it more efficient. We also need to point out that we use the spectral clustering algorithm in a step of our method. We used the implementation of this algorithm from scikit-learn toolkit 2 . But we only run it on the root node, which have quite a small size (around 1175 nodes with the tag enrichment process), which means we only need to build affinity matrix on these root nodes and the overall cost is acceptable.

User Interest Detection

In StackOverflow, users answering a question can be considered as interested in the tags of the question. As a result, a starting point for user interest detection is to model the initial situation as follows: a user answering a question acquires the tags attached to this question and gradually, each user acquires a list of tags. So we use a tag list to represent a user: U = {U i |i = 1, ..., n}, U i = {tag i |i = m, n, ..., k}. Then our Table 3: Top tags and their probabilities for topics iphone, sql and linux computed by our method and LDA method our method LDA (iphone, 0.300), (objective-c, 0.147), (iphone-sdk, 0.088), (cocoa-touch, 0.087), (cocoa, 0.073), (xcode, 0.029), (uikit, 0.012), (uitableview, 0.011), (osx, 0.010) (cocoa, 0.182), (objective-c, 0.173), (iphone, 0.0795), (cocoatouch, 0.048), (iphone-sdk, 0.034), (mac, 0.028), (osx, 0.027), (xcode, 0.018), (memorymanagement, 0.013) (sql, 0.185), (sql-server, 0.157), (mysql, 0.078), (database, 0.069), (sql-server-2005, 0.046), (tsql, 0.032), (oracle, 0.018), (query, 0.017), (stored-procedures, 0.015) (sql-server, 0.216), (sql, 0.198), (sql-server-2005, 0.061), (tsql, 0.055), (database, 0.052), (storedprocedures, 0.024), (databasedesign, 0.020), (performance, 0.016), (c#, 0.016) (linux, 0.292), (bash, 0.088), (unix, 0.070), (shell, 0.048), (scripting, 0.023), (commandline, 0.019), (ubuntu, 0.016), (belongs-on-serverfault, 0.013), (shell-script, 0.012) (linux, 0.074), (c, 0.058), (bash, 0.049), (unix, 0.042), (perl, 0.032), (shell, 0.030), (vim, 0.027), (regex, 0.024), (c++, 0.016) goal is, for each U i , to find I i = {I i1 , I i2 ...I ik } where I ik denotes the probability of user U i to be related to topic k . As we already have a topic-tag distribution we simply compute user-topic distribution by the equation 5 where P t,k denotes the probability of tag t to be related to topic k. We then normalize the probabilities between 0 and 1 by dividing the global max value. We use log function for numerical stability. Here we don not like apply normalization at the level of the user, because like [START_REF] Yang | Community detection in networks with node attributes[END_REF], we believe that each user could have a high interest in two or more topics simultaneously. But most of the probabilistic graphical model including LDA, PLSA require the sum of all the probabilities is 1, which means that a user cannot have high probabilities to many topics simultaneously. Our method does not have this limitation. Then we identify users' communities of interests based on the user-topic distribution: Users who have high probabilities for a topic should be a member of the community of the topic.

I i,k = log v t=1 P t,k + 1 (5)

User Expertise Detection

Users who are interested in the question may provide answers to the question or comments to other answers. And the answer could be chosen as best answer, and each answer may also get votes from other users. As tags attached to a question can reflect its topic, answers which have high votes or is chosen as best answer can be considered as expertise by this topic. So if

U i give answer A m to Q m which has tag t , then A m Q m get votes A m v and Q m v.
As we already have topic-tag distribution (see section 3.3), we simply use the vote information to compute user expertise with the Equation 6 where P t,k denotes the probability of tag t related to topic k, Q m denotes the question m which user i answered. As we described before, the sigmoid function is

1 (1+e -k * z)
, which is used as a squashing function for numerical stability. If a vote is higher than a threshold, which can be determined by parameter k, the value of the function is approximate to 1. Therefore, the value of the multiply will not be too large for certain answer.

E i,k = m a=1 P t,k * sigmoid(Q votes) * sigmoid(A votes) (6)

Experiments and Evaluation on StackOverflow data

We conducted experiments on a dataset from the popular Q&A site StackOverflow to evaluate the performance of our approach compared to three other community detection algorithms.

Dataset and Protocol

Some basic statistics of our dataset are given in Table 4. The total number of users is 103K. Among them, 47K users submitted at least one question, and 54K users answered at least one question. The total number of tags attached to questions is 24K, and 20% of them are used more than 10 times. The frequency of tags follows a power law distribution. The total number of posts is 1.1M; among which there are 242K questioners and 870K answers. Traditional community detection algorithms are based on network structure. As there is no explicit network in our dataset and in order to compare our work with other approaches on the same dataset, we have extracted a network of interactions between users: we extracted a co-answer network inspired by the notion of co-view network introduced in [START_REF] Gargi | Large-scale community detection on youtube for topic discovery and exploration[END_REF]. The idea behind it is that if two users answer the same questions they have at least one common interest on this question. Therefore, they share some of their interests. So, this co-answer network, to some extent, can reflect the co-interests of users. Then we filtered the co-answer links with a rule stating that a link is kept if two users answer the same questions more than 10, 15, 20 or 25 times. As a result, we obtained four noise-less datasets.

Performance of the proposed Topic Extraction Method

Table 5 shows the top tags and their probabilities detected by out method. We use the Perplexity [START_REF] Blei | Latent dirichlet allocation[END_REF] metric to measure the topic extraction performance. It is a common metric in the topic modeling area, measuring how well the words in test documents are represented by the word distribution of extracted topics. The intuition is that a better model will tend to assign higher probabilities to the test dataset, corresponding to a lower perplexity value. We split the dataset (question tag lists), 80% as training set, 20% as testing set. We run LDA and our method on the training set to get the topic distribution. Then for a test set of M question tag lists, the Perplexity score is computed as shown in equation 7:

P erplexity(D test) = exp - M d=1 log p(tag) M d=1 N d (7)
In our model, p(tag) is computed by p(topic|question) * p(tag|topic). In order Fig. 4: Topic extraction performance comparison to obtain p(topic|question) distribution, we just compute it similarly to user interest detection (see Section 3.4), by replacing user tag lists by question tag lists. The only difference is that we normalize the question topic distribution to make sure that the sum of a question's topic distribution is 1. We show and compare the average perplexity score in Figure 4. empirical represents our method, empirical noEnrich represents our method without first-tag enrichment. We find that our method could outperform the state-of-the-art topic model LDA. The reason is, compared with traditional document topic modeling use cases, question tag lists in Q&A sites are very short, therefore, LDA perform poorly in this situation. Besides, our first-tag enrichment method can improve the performance when the topic number is not very large.

Another point is that, benefiting from a tree structure for topics, we could easily extract sub-topic from a given topic. Besides, our community detection method is based on a topic model, so extracting these sub-topics can help us find sub-communities within a detected community. Table 6 shows the top tags of java's sub-topic html and of topic html. We can find that the differences are noticeable for topics: a user who is interested in topic html is not necessarily interested in java's sub-topic html and vice versa.

Genericity of the proposed Topic Extraction Method

In order to test that whether our proposed topic extraction methods is generic, we collected a dataset from flickr 3 which contains 1211499 photos attached with tags.

For instance, a photo tagged with {china pinyao} indicates the location information.

A photo tagged with {night people bar} describes the time and content information. We run our topic extraction method on this dataset, and we list some results in Table 7. We can find that the detected topics are interesting. For example, topic 3 includes photos which contains airplanes, topic 24 includes photos which contains bicycles, and topic 23 includes photos taken in cities of Italy.

Experimentation of the Graph based Approach

Let G = {N, E}, N = {U i |i = 1, ..., n}, E = A i,j ∈ {0, 1} N ×N be a network where N denotes the set of users, E the set of edges between users answering the same questions. Graph-based community detection algorithms aim to find out overlapping interest groups g = {g i |i = 1, ..., k}, g i = {U i |i = l, m, ..n}. We implemented the SLPA algorithm proposed in [START_REF] Xie | Overlapping community detection in networks: The state-of-theart and comparative study[END_REF]'s work. Figures 5 and6 show the results we obtained on co answer 10 and co answer 25 networks, each color representing a detected community. The co answer 10 network is hard-core or octopus shaped. We can see that compared with normal social graph, there are few triangle-shape structures, so the graphbased algorithm fails to find a good partitioning over this network. We run the SLPA algorithm many times, most of the time there are only one or two huge partitions detected which group 80% users of the network while the remaining partitions are extremely small (each one containing about 2∼5%users).

The co answer 25 network is more like a flat graph, we can view some triangleshape structures in the graph. As Figure 6 shows it, the SLPA algorithm works fine on this network. In order to better understand these communities, we randomly selected four users in each of three detected communities (in blue, red and purple in Figure 6) and we present their associated tags in Table 8.

As we introduced it in Section 2, most of the graph-based community detection methods do not take into account user attributes. In this scenario, although the coanswer network, to some extent, can reflect common interests between users, it still does not represent the different interests captured in the same link. In other words, two users are linked because they co-answer the same questions many times (according to a filter threshold, here 25). However, they may co-answer java-related question 5 times and c#-related question 20 times, and this information is not represented by their link. As a result, as it appears in Table 8 some groups do reflect some common interest while some others do not. For example, users in group 1 do not share the same interests while users in group 2 have more similar interests.

Experimentation of the Clustering Approach

We first formalized the vector representation of each user. Again, we used a tag list to represent each user: N = {U i |i = 1, ..., n}, U i = {F req tagi |i = 1, ..., k}. We then used an implementation of a hierarchical clustering algorithm from scikit-learn toolkit 4 , introduced in [7]'s work, to detect groups on co answer 10 dataset. We set group number as 30, which is the same as other compared model. We randomly listed (at most) 5 users from 6 groups out of 30 groups in Table 9, (Group 2 only has 2 users). The first column contains user ids and the five other columns the top five tags in each user tag list. This table shows that users with similar frequent tags are grouped together. The results are very reasonable. However, in group 1, 'user 82187' is interested in c#-dev and database topics, 'user 38206' is interested in c#-dev and java-dev topics, and 'user 234' is interested in 'c#-dev' and web-dev tags. Therefore, the interest of group 1 is not very focused. Moreover, clustering-based algorithms normally output hard-partitioned communities, one user can only be assigned to one interest group. However, in the scenario we are interested in, a user often has more than one interest and should be assigned to more than one group simultaneously. This is a big constraint for those hard-partition algorithms. In addition, clustering-based algorithms need the definition of a distance between instances. To find similar interests, we first have to define the distance between user's interests and the definition of this distance will directly influence the clustering results. For instance, we can consider a bag of tags with their weights to represent an interest, then compute the weighted tag distance to define the interest distance between two users.

Experimentation of the LDA-based Model

We run LDA to build a user-topic-tag model on the co answer 10 dataset, each user being represented by her tag list like in the above experiment. We set the parameters α, β, K to, respectively, 50/K, 0.1, and 30 as adopted in many related work. α is the prior distribuion for user-topic distribuion. and β is the prior distribuion for topic-tag distribuion. For the group number K, we chose the same setting as the clustering algorithm. One of the model's result is the probability for each user to belong to each interest group. This is shown in Table 10.

Table shows six randomly chosen users and their top 10 tags. The first row contains user ids, the second row contains their detected interest groups with their probability. The following ten rows show the top 10 tags for each user. We replaced group ids with names assigned according to tags in each group.

Experimentation of Our Empirical Model

We run our approach on the co answer 10 dataset, For the topic number K, we chose the same setting 30 as the above algorithms. Table 11 shows some users and their top 10 tags. The first row contains user ids, the second row contains their detected communities of interests with their probabilities. The following ten rows show the top 10 tags for each user. We replaced community labels by names assigned according to the tags in each topic interest.

User Study of User Interest Detection

We now want to evaluate whether a user is correctly assigned to the right interest group, and to which extent the user belongs to the interest group. To achieve this, we invited volunteers to manually label 902 users (co answer 10 dataset) as the groundtruth and assigned each user with eight group labels, chosen from c-development group, java-development group, c#-development group, web-development group, iosdevelopment group, database group, linux-development group and other-topic group. For example, user A sequentially has three group labels, which are java-development, web-development,ios-development. It means that user A has a big interest in the group java-development, a medium interest in the group web-development, a lower interest in the group ios-development. Since each user has an ordered label list, we have to evaluate both the correctness of detected groups and the correctness of the order.

We ask another volunteer (who was not involved in labeling the ground-truth) to label the results of the methods with the same 8 labels. As SLPA algorithm can detect overlapping communities. She was asked to assign an interest group name, from the 8 labels, to each community according to users tag lists in each community, then each user gets at least one interest group name. Besides, SLPA algorithm can evaluate to which extent a user belongs to a community by the frequency (a 'Post-process' in SLPA algorithm). Combined with the interest group name we assigned for each community, SLPA algorithm now can output an ordered interest group name list for each user. Clustering algorithm can only generate one cluster id for each user, so she was asked to assign an interest group name, from the 8 labels, for each cluster. LDA method can give the probability membership to each topic. Large probability can indicate that a user is more interested in that group. She only needed to associate the detected 30 topics with 8 group labels. Then we can get a ordered interest group name list for each user after sorted by the probabilities. Same as LDA, our approach can also give the probability membership to each topic, so she only needed to associate the detected 30 topics with 8 group labels. Then we can get a ordered interest group name list for each user after sorting by the probability. Here, we only choose the top 3 group name for each user. Discounted cumulative gain (DCG) is used to measure the quality, or gain of result based on its position in result list. The gain is accumulated from the top of the result list to the bottom with the gain of each result discounted at lower ranked position. The DCG measurement penalizes high score results appearing lower in a ranked list of results. Given scores for each items in a ranked list, rel i representing the score of result at position i, DCG at rank position p(DCG@p) is computed as:

DCG@p = rel 1 + p i=2 rel i log 2 (i) (8)
The Normalized DCG (NDCG) is introduced to compare different ranking list. It is done by sorting scores of a ranking list result to get the maximum DCG till position P, also called Ideal DCG (IDCG). The NDCG at rank position p is computed as:

N DCG@p = DCG@p IDCG@p (9)
The value of NDCG is between 0.0 and 1.0. In our scenario, a NDCG@p value of 1.0 means detected interests and their order are totally the same as the ground-truth till position p, while a NDCG@p value of 0.0 means that the detected interests are completely different from the ground-truth. For values between 0.0 to 1.0, it means that the detected interests are partially correct or ordered incorrectly.

Here, we evalute NDCG@1, NDCG@2, and NDCG@3. The ideal ranking list of each user is the ground-truth and corresponding score is 10, 8 and 6. Figure 7 show the result of NDCG performance for each method. NDCG@1 reflects the prominent Fig. 7: NDCG results comparaison interest detected by each algorithm compared with the ground-truth of user's prominent interest. We noticed that our Empirical method is partially better than LDA, and outperforms SLPA and hierarchical clustering. We also mention that with the dataset becoming less noisy (people have prominent and clear-intention interests), all methods' performance increase. The same phenomenon is also observed in NDCG@2, 3. As hierarchical clustering algorithms give a hard partition there are no performance comparison for hierarchical clustering algorithm in NDCG@2, 3.

Performance of User Interest Detection

We want to evaluate the similarity between users within a detected community of interest. We compare our method with three other methods chosen from different kinds of community detection methods. In order to evaluate the results of overlapping community detection, for each user, a method should output 1 ∼ 3 community labels with corresponding probabilities to indicate to what extent the user is interest in the community. Then we define three levels of interests: High, Medium, Low according to the probabilities. In addition, we set the community number as 30 for all these methods empirically.

-SLPA [START_REF] Xie | Overlapping community detection in networks: The state-of-theart and comparative study[END_REF]: An overlapping community detection method inspired by a classical Label propagation algorithm (LPA). SLPA algorithm can evaluate to which extent a user belongs to a community by the received propagated label (a 'Post-process' in SLPA algorithm). So, it can output more than one community label according to these frequencies. -LDA: Similar to [START_REF] Yang | Cqarank: jointly model topics and expertise in community question answering[END_REF], we run LDA to build a user-topic-tag model on the given dataset, users are represented by their tag list. As the output contains a user-topic distribution, we just sort the distribution for each user and chose the top 3 topic labels as community label together with their probabilities. -Clustering: We used the implementation of hierarchical clustering from scikitlearn toolkit 5 . As clustering algorithm are hard-partition, it can only generate one group label for each user. -Empirical: it is our method. We just sort the results of user interest detection (section 3.4) and chose the top 3 as community label together with their probabilities.

Our aim was to evaluate the similarity between users within a detected community of interest. We mainly used the jaccard similarity and cosine similarity of two user's tag lists to evaluate the similarity of two user's interests. We used a modified modularity metric to compute the difference between the average similarity between the users within a community (avg inner) and the average similarity between the users in a community and some user randomly chosen from the whole dataset (avg rand).

It is described in Equation 10, where N represents the number of users in a community C, and Simi denotes the similarity function. Rand U represents users that are randomly chosen from the whole data set. A higher value of avg inner denotes that users within a community are very similar. A lower value of avg rand denotes that users of a community are not very similar to random users. So A higher value of modularity means a larger difference between avg inner and avg rand, which is considered as a better partition of communities. As the metric has random variables, we run the experiments 10 times and we used different random users at each time. Besides, we created a center user in each community by averaging all users' tag lists and frequencies, then we computed the average similarity between each user in a community and this center user as avg center. As introduced before, each method gives 1 ∼ 3 community labels for each user to indicate the level of interest. So we

Discussion

To sum up, most community detection algorithms work well on real-life social networks which contain many triangle-shape structures. The interactions between the users in these networks are mainly based on their relationships. It is also noticeable that the relationships which a user in such network can maintain are limited and most likely restricted by the location (co-author networks in academia is also in this situation), so the overall structure of the network is flatter, scattered and with many triangle-shape structures. Comparatively, in Q&A sites, such as StackOverflow, there are no fixed relationships between users. Users interact with each other based on their own interests. And they are not aware of whom they are interacting with, so they will not maintain explicit relationships. Besides, a user can interact with any other user and mainly interacts with the "gurus" (most of questions are answered by a small group of people). So the overall structure of the network is octopus-shape [START_REF] Leskovec | Statistical properties of community structure in large social and information networks[END_REF] with less triangle-shape structures. According to [START_REF] Suri | Counting triangles and the curse of the last reducer[END_REF], the number of triangle-shape structures per user in twitter dataset is 821, while in our co-answer dataset, the number of triangle-shape structure per user is 30 which is far less. So, graph-based community detection methods fail in such situation. The result of SLPA algorithm shows that it outputs one or two giant groups, together with many tiny groups that only contain small number of users as depicted in Figure 5, where each color represents a detected community. We can also see that the network contains less triangle-shape structures and a high-density core. It also indicates that the network has huge overlaps. Since clustering methods normally generate hard-partitions algorithm, they cannot detect the overlapping communities which are typical in our case. Concerning the LDAbased methods, on one hand, in our dataset, question tag lists are quite short, and the experiment shows that our topic extraction method gives better results in this situation. On the other hand, the probabilistic graphical model requires hundreds of iterations to get stable results [START_REF] Griffiths | Finding scientific topics[END_REF] which is more complicated and slower than our method. Recalling our research questions (Can we detect communities of interests in Q&A sites? Can we also identify the topics that attract them?) we believe we propose a topic detection method which is very suitable for Q&A datasets and an efficient user interest detection method to discover overlapping communities of interests.

Conclusion

In this paper, we addressed the problem of detecting overlapping communities of interests in Q&A sites. By studying the Stackoverflow dataset and the LDA algorithm, we proposed a tag tree based topic extraction model. We then exploited the extracted topic information to detect overlapping communities of interests. We conducted a comparative evaluation of different approaches of community detection on a dataset from the popular Q&A site StackOverflow. The results indicate that for this kind of web communities our method can be a good replacement for more complicated methods in detecting overlapping communities of interests. There are also limitations in our work and in particular our model requires each question to have several tags to the question. There are many potential future directions for this work. An interesting one is to track the evolution of communities of interests and the evolution of users' interests.

Fig. 1 :

 1 Fig. 1: Shape of function

 input : tag list of questions output: enriched tag list of questions /*pre-process*/ tag firsttags map={} foreach taglist of question do first tag=taglist[0] foreach tag in taglist do if not tag firsttags map.contain(tag) then tag firsttags map[tag]={} end if tag firsttags map[tag].contain(first tag) then tag firsttags map[tag][first tag]++ else tag firsttags map[tag][first tag]=1 end end end /*compute probability process*/ foreach tag,domaintags in tag firsttags map do foreach first tag,freq in domaintags do normalize=freq/sum(freq) ** tag firsttags map[tag][first tag]=normalize end end /*enrich-process*/ foreach question's taglist: do temp first tag map={} foreach tag in taglist do discount=1 get top 5 first tag from tag firsttags map[tag] foreach first tag,value in top 5 do value=value*discount, discount*=0.5 if temp first tag map.contain(first tag) then temp first tag map[first tag]+ =value end temp first tag map[first tag]=value end end enrich tag=get top first tag from temp first tag map if enrich tag not in taglist then taglist.insert(enrich tag) end end ** In order to lower the probability of low frequency tag as first tag. we actually use Equation 1

Fig. 2 :

 2 Fig. 2: html's tag tree, where html is located in the center

Fig. 3 :

 3 Fig. 3: java's tag tree, where java is located in the center

Fig. 5 :Fig. 6 :

 56 Fig. 5: Co answer 10 network

Fig. 8 :

 8 Fig. 8: Scalability of the compared user interest detection methods

Table 1

 1 Other users who are interested in the question may provide answers to the question or comments to other answers. As tags attached to a question can reflect its domain, users answering the question can be considered as interested by this domain. Let U = {u 1 , u 2 ...u n } be the set of users, Q = {q 1 , q 2 ...q m } the set of questions and T = {t 1 , t 2 ...t v } the set of tags. We aim at (1) extracting topics T opic = {topic 1 , topic 2 ...topic k } from T , and for each topic k ∈ T , defining topic k = {p ki , p kl ...p kj } where p ki denotes the probability of tag t i to be related to topic k ; and then (2) detecting users' topic based interests. For a user u i ∈ U , we define I i = {I i1 , I i2 ...I ik } where I ik denotes the probability of u i to be related to topic k . (3) detecting users' topic based expertises. For a user u i ∈ U , we define E i = {E i1 , E i2 ...E ik } where E ik denotes the probability of u i has expertise on topic k .

	: Comparison of the main approaches and our method	
		uses nodes	uses links	overlap	membership	topic
	Graph-based	no	yes	few	few	no
	Clustering methods	yes	no	few	few	no
	LDA-based	yes	yes	yes	yes	yes
	Our-method	yes	yes	yes	yes	yes
	3 Models and Solutions					
	3.1 Problem Definition					
	In StackOverflow 1 , a user submits a question, then assigns 1∼5 tags to indicate the
	key topics of this question.					

Table 2 :

 2 Original and enriched tag lists

	original tag list	enriched tag list
	ant	java, ant
	qt, boost	c++, qt, boost
	django, hosting	python, django, hosting
	xslt, dynamic, xsl	xml, xslt, dynamic, xsl
	sql-server-2005, sorting	sql, sql-server-2005, sorting
	tomcat, grails, connection	java, tomcat, grails, connection
	cocoa, osx, mac, plugins	objective-c, cocoa, osx, mac, plugins
	spring, j2ee, module, count	java, spring, j2ee, module, count

Table 4 :

 4 Basic statistics of the stackoverflow dataset

	item	description
	total users	103K (47K questioner, 54K answerer)
	total tags	24K (20% used more than 10 times)
	total posts	1.1M (question 242K, answer 870K)
	co answer 10	902 users, 6746 co answer link
	co answer 15	401 users, 2326 co answer link
	co answer 20	241 users, 1064 co answer link
	co answer 25	153 users, 592 co answer link
	labeled user	902 users, 1∼3 labels per user

Table 5 :

 5 Top tags and their probabilities for some topics computed by our method

	topic4		topic5		topic6	
	iphone	0.203	git	0.198	sql	0.177
	objective-c	0.112	svn	0.096	mysql	0.122
	ios	0.109	version-control	0.045	sql-server	0.074
	xcode	0.042	github	0.033	database	0.040
	cocoa-touch	0.021	tfs	0.033	oracle	0.030
	ipad	0.020	maven	0.029	sql-server-2008	0.029
	cocoa	0.018	tortoisesvn	0.018	tsql	0.026
	uitableview	0.012	msbuild	0.016	query	0.025
	ios5	0.010	jenkins	0.015	sql-server-2005	0.019
	core-data	0.009	tfs2010	0.014	database-design	0.011
	topic12		topic13		topic14	
	html	0.214	javascript	0.264	machine-learning	0.247
	css	0.201	jquery	0.114	artificial-intelligence	0.130
	xhtml	0.017	html	0.035	neural-network	0.062
	web-development	0.016	ajax	0.031	classification	0.046
	ie	0.012	css	0.016	data-mining	0.037
	css-layout	0.010	firefox	0.013	svm	0.031
	div	0.010	dom	0.011	weka	0.025
	layout	0.010	php	0.011	libsvm	0.015
	firefox	0.009	ie	0.010	nlp	0.024
	ie6	0.009	web-development	0.008	bayesian	0.011

Table 6 :

 6

	java html	jsp swing xml parsing jsf jeditorpane pdf applet dom
	html	css xhtml web-development table div ie layout css-layout firefox
	java mysql jdbc hibernate database tomcat prepared-statement spring connection-pooling connection security
	mysql	database query mysql-query ruby-on-rails database-design performance stored-procedures innodb
		optimization

top tags for java's sub-topic html and mysql, denoted by java html, and java mysql respectively, compared with topics html and mysql

Table 7 :

 7 Top tags and their probabilities on flickr dataset

	topic3		topic4		topic5	
	airplane	0.074	tshirt	0.216	music	0.077
	airport	0.053	shirt	0.154	rock	0.040
	aircraft	0.029	shirts	0.112	concert	0.036
	flying	0.028	threadless	0.109	live	0.025
	plane	0.027	tshirts	0.009	band	0.022
	aviation	0.022	tee	0.008	singing	0.019
	flight	0.014	clothing	0.007	guitar	0.018
	aeroplane	0.012	media	0.006	festival	0.017
	jet	0.010	models	0.006	show	0.014
	boeing	0.009	camiseta	0.004	livemusic	0.010
	topic23		topic24		topic25	
	italy	0.179	bike	0.114	portrait	0.049
	italia	0.053	motorcycle	0.052	girl	0.029
	rome	0.028	racing	0.033	woman	0.014
	florence	0.021	bicycle	0.028	smile	0.014
	venice	0.014	race	0.027	model	0.010
	tuscany	0.014	motorbike	0.024	sexy	0.009
	roma	0.011	sport	0.019	face	0.008
	europe	0.011	speedway	0.011	fun	0.008
	firenze	0.010	500cc	0.010	man	0.008
	milan	0.007	methanol	0.010	love	0.008
	4.4 Comparative evaluation of Different Community Detection Approaches

Table 8 :

 8 Illustration results of graph-based approach

		group 1 (blue color)
	Id 16883	java(364), subjective(45), best-practices(41), php(36), c#(29)
	Id 15459	java(118), javascript(70), subjective(59), php(43), regex(41)
	Id 8155	c#(264), linq(228), sql(148), .net(104), linq-to-sql(91)
	Id 16076	c#(290), sql-server(200), .net(169), sql(138), sql-server-2005(78)
		group 2 (red color)
	Id 64960	c++(108), c(18), stl(16), multithreading(14), windows(14)
	Id 54684	c++(128), vim(48), best-practices(27), java(12), c(10)
	Id 3146	c++(233), c(76), windows(71), c#(60), .net(37)
	Id 3153	c++(216), c(76), win32(43), windows(37), subjective(33)
		group 3 (purple color)
	Id 10661	python(944), django(201), subjective(134), best-practices(106), database(82)
	Id 57757	python(130), subjective(27), c(21), c#(20), c++(18)
	Id 9493	python(194), regex(9), string(8), beginner(8), list(5)
	Id 15401	sql-server(108), database(64), sql(63), subjective(45), python(43)

Table 9 :

 9 Illustration results of clustering approach

		group 1
	Id	c#(145),.net(137),wcf(50),zip(39),asp.net(36),
	Id	c#(206),.net(146),subjective(56),best-practices(31),java(30),
	Id	c#(169),.net(142),subjective(42),best-practices(37),wpf(30),
	Id	ruby(102),c#(91),.net(72),ruby-on-rails(69),subjective(61),
	Id	c#(189),.net(76),sql-server(40),sql(36),windows-forms(33),
		group 2
	Id	sql(288),sql-server(137),tsql(43),sql-server-2005(41),database(30),
	Id	sql-server(213),sql(84),sql-server-2005(50),tsql(28),database(18),
	Id	sql(296),sql-server(280),sql-server-2005(74),database(73),tsql(71),
	Id	sql-server(273),sql(184),sql-server-2005(76),tsql(74),database(39),
	Id	sql-server(430),sql(197),sql-server-2005(158),tsql(90),sql-server-2008(38),
		group 3
	Id	c++(366),c#(88),c(73),subjective(67),.net(40),
	Id	c++(355),c(70),windows(67),win32(42),c#(34),
	Id	c++(341),c(146),c#(63),.net(49),windows(44),
	Id	c++(376),c(141),flex(80),actionscript-3(61),flash(39),
	Id	c++(459),stl(42),c(40),exception(31),subjective(25),
		group 4
	Id	java(381),security(44),encryption(41),ssl(27),best-practices(25),
	Id	java(476),multithreading(29),performance(26),c#(17),jvm(14),
	Id	java(428),xml(42),c#(26),best-practices(18),vim(16),
	Id	java(394),swing(60),regex(22),generics(22),collections(20),
	Id	java(366),eclipse(24),tomcat(20),performance(18),subjective(18),
		group 5
	Id	sql(54),sql-server(39),subjective(27),tsql(19),mysql(18),
	Id	c#(50),asp.net(40),sql-server(37),sql(28),language-agnostic(24),
	Id	sql-server(90),sql(69),sql-server-2005(21),tsql(21),stored-procedures(13),
	Id	iphone(37),sql(37),c#(36),java(35),php(35),
	Id	sql(88),database-design(86),database(44),sql-server(23),subjective(16),
		group 6
	Id	jquery(69),javascript(63),php(61),css(29),html(28),
	Id	javascript(208),html(114),python(102),css(65),php(63),
	Id	javascript(117),html(64),css(52),web-development(30),internet-explorer(29),
	Id	javascript(117),subjective(66),iphone(43),jquery(38),best-practices(19),
	Id	javascript(124),jquery(59),c++(40),c#(36),subjective(36),

http://www.stackoverflow.com/

Scikit-learn toolkit: http://scikit-learn.org/stable/modules/clustering.html# spectral-clustering

flickr website: https://www.flickr.com/

Scikit-learn toolkit: http://scikit-learn.org/stable/modules/clustering.html# hierarchical-clustering

http://scikit-learn.org/stable/modules/clustering.html# hierarchical-clustering

Acknowledgment

The authors would like to thank StackOverflow for sharing their data. We also sincerely thank volunteers for helping us label the dataset for evaluation. We thank the ANR ocktopus project grant for the support of this research. We also appreciate very helpful advices from anonymous reviewers.

Table 10: Illustration results of LDA-based approach user 10224

user 103043 user 113570 database(0.764), c-dev(0.039) java-dev(0.603), database(0.157), web-dev(0.395), c#-dev(0.287) sql-server [START_REF] Sun | Topical community detection from mining user tagging behavior and interest[END_REF] java(135) c#(107) sql [START_REF] Sun | Topical community detection from mining user tagging behavior and interest[END_REF] swing(28) jquery(89) tsql [START_REF] Duan | Community detection in graphs through correlation[END_REF] oracle(27) javascript(56) performance [START_REF] Blei | Latent dirichlet allocation[END_REF] sql [START_REF] Tang | Arnetminer: extraction and mining of academic social networks[END_REF] .net(47) database [START_REF] Blei | Latent dirichlet allocation[END_REF] subjective [START_REF] Leskovec | Statistical properties of community structure in large social and information networks[END_REF] asp.net(27) stored-procedures [START_REF] Anderson | Discovering value from community activity on focused question answering sites: a case study of stack overflow[END_REF] windows(13) css(23) sql-server-2005 [START_REF] Anderson | Discovering value from community activity on focused question answering sites: a case study of stack overflow[END_REF] eclipse [START_REF] Gregory | Fuzzy overlapping communities in networks[END_REF] regex [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF] .net [START_REF] Anderson | Discovering value from community activity on focused question answering sites: a case study of stack overflow[END_REF] best-practices [START_REF] Gregory | Fuzzy overlapping communities in networks[END_REF] html(20) mysql [START_REF] Ahn | Link communities reveal multiscale complexity in networks[END_REF] regex [START_REF] Gopalan | Efficient discovery of overlapping communities in massive networks[END_REF] iphone(12) sql-server-2000 [START_REF] Ahn | Link communities reveal multiscale complexity in networks[END_REF] plsql(10) string(10) user 24181 user 34509 user 30461 web-dev(0.863), database(0.035), c-dev(0.767), linux-dev(0.128), ios-dev(0.947), other-topic(0.011) php(304) c++(703) cocoa(333) javascript(193) c(187) objective-c(184) mysql(116) templates(62) iphone(47) html(86) stl(53) cocoa-touch(39) css(57) linux(48) osx(35) regex(40) subjective(45) mac(34) jquery(37) pointers(44) iphone-sdk(20) sql(27) java(42) xcode(18) ajax(26) bash(40) cocoa-bindings(18) apache(23) boost(31) core-graphics(18)

Table 11: Illustration results of our empirical approach user 10224 user 103043 user 113570 database(0.531) c#-dev(0.095) java-dev(0.699)database(0.232) c#-dev(0.898) web-dev(0.512) sql-server(21) java(135) c#(107) sql(21) swing(28) jquery(89) tsql [START_REF] Duan | Community detection in graphs through correlation[END_REF] oracle(27) javascript(56) performance(4) sql [START_REF] Tang | Arnetminer: extraction and mining of academic social networks[END_REF] .net(47) database(4) subjective(15) asp.net(27) stored-procedures [START_REF] Anderson | Discovering value from community activity on focused question answering sites: a case study of stack overflow[END_REF] windows(13) css(23) sql-server-2005 [START_REF] Anderson | Discovering value from community activity on focused question answering sites: a case study of stack overflow[END_REF] eclipse(12) regex(20) .net [START_REF] Anderson | Discovering value from community activity on focused question answering sites: a case study of stack overflow[END_REF] best-practices(12) html(20) mysql [START_REF] Ahn | Link communities reveal multiscale complexity in networks[END_REF] plsql(10) iphone(12) sql-server-2000 [START_REF] Ahn | Link communities reveal multiscale complexity in networks[END_REF] regex [START_REF] Gopalan | Efficient discovery of overlapping communities in massive networks[END_REF] string [START_REF] Gopalan | Efficient discovery of overlapping communities in massive networks[END_REF] user 24181 user 34509 user 30461 web-dev(0.631), database(0.616) c-dev(0.773), linux-dev(0.417) ios-dev(0.885), linux-dev(0.218) php(304) c++(703) cocoa(333) javascript(193) c(187) objective-c(184) mysql(116) templates(62) iphone(47) html(86) stl(53) cocoa-touch(39) css(57) linux(48) osx(35) regex(40) subjective(45) mac(34) jquery(37) pointers(44) iphone-sdk(20) sql(27) java(42) xcode(18) ajax [START_REF] Yang | Community detection in networks with node attributes[END_REF] bash(40) cocoa-bindings(18) apache [START_REF] Tang | Arnetminer: extraction and mining of academic social networks[END_REF] boost(31) core-graphics [START_REF] Mcdaid | Detecting highly overlapping communities with model-based overlapping seed expansion[END_REF]

evaluated each level of interest respectively.

M odularity(C) =

Avg(N i=1 N j=1 Simi(U i, U j)) Avg(N i=1 50 j=1 Simi(U i, Rand U j)) [START_REF] Gopalan | Efficient discovery of overlapping communities in massive networks[END_REF] Experiment results are shown in Table 12. We run each method on the co-answer dataset for 10 times, and listed the average value. We found that our method is better than the three other methods in detecting High level communities of interests with both metrics. The reason why our method is not very good on Low level interest is that it allows users to belong to more than one community with high probabilities. This puts some irrelevant users in Low level communities of interests which decreases the similarity between users.

Scalability

We also evaluated the scalability of each method. However, as these methods are written in different programming languages, it is not fair to consider this as a precise evaluation, but more as an indication. To increase the stability of the comparison, we run experiments 10 times, and only listed the average values. We used a Java implementation of LDA algorithm. All the other methods were implemented in Python. For our method, the time of topic detection was also counted in. For LDA and SLPA, we set the iteration number at 100. We run the experiments on a computer with 3GHz Intel i7 CPU and 8GB RAM. From the experiment, we could find that LDA, SLPA and our method are linear in terms of the number of users. Although LDA algorithm is theoretically O(nm) in each iteration, with n representing the number of users, and m representing the number of tags for each user, when we test it on large datasets, it clearly appears that only n actually has an impact. m changes very little, so it could be regarded as linear. Besides, [START_REF] Griffiths | Finding scientific topics[END_REF] proved that LDA model require a few hundreds of iterations to obtain stable topic distribution. Our model does not have this limitation.