N

N

Detecting topics and overlapping communities in
Question and Answer sites
Zide Meng, Fabien Gandon, Catherine Faron Zucker, Ge Song

» To cite this version:

Zide Meng, Fabien Gandon, Catherine Faron Zucker, Ge Song. Detecting topics and overlapping
communities in Question and Answer sites. Social Network Analysis and Mining, 2015, 5 (1), pp.27:1-
27:17. 10.1007/s13278-015-0268-y . hal-01187445

HAL Id: hal-01187445
https://hal.science/hal-01187445
Submitted on 13 Jul 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01187445
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Detecting topics and overlapping communities in Question
and Answer sites

Zide Meng - Fabien Gandon - Catherine
Faron-Zucker - Ge Song

Received: date / Accepted: date

Abstract In many social networks, people interact based on their interests. Commu-
nity detection algorithms are then useful to reveal the sub-structures of a network and
in particular interest groups. Identifying these users’ communities and the interests
that bind them can help us assist their life-cycle. Certain kinds of online commu-
nities such as question-and-answer (Q&A) sites or forums, have no explicit social
network structure. Therefore, many traditional community detection techniques do
not apply directly. In this paper, we propose an efficient approach for extracting data
from Q&A sites in order to detect communities of interest. Then we compare three
community detection methods we applied on a dataset extracted from the popular
Q&A site StackOverflow. Our method is based on topic modeling and user member-
ship assignment and is shown to be much simpler and faster than the state of the art
methods while preserving the quality of the detection.

Keywords Overlapping Community Detection - Question Answer sites - Topic
Modeling

Zide Meng
INRIA Sophia Antipolis Méditerranée, 06900 Sophia Antipolis, France
E-mail: zide.meng @inria.fr

Fabien Gandon
INRIA Sophia Antipolis Méditerranée, 06900 Sophia Antipolis, France
E-mail: fabien.gandon@inria.fr

Catherine Faron-Zucker
Univ. Nice Sophia Antipolis, CNRS, I13S, UMR 7271, 06900 Sophia Antipolis, France
E-mail: faron @unice.fr

Ge Song
INRIA Sophia Antipolis Méditerranée, 06900 Sophia Antipolis, France
E-mail: ge.song @inria.fr

2 Zide Meng et al.

1 Introduction

Question-and-answer sites (Q&A sites) initially aimed at enabling users to ask ques-
tions to a community of experts. Since these user-generated contents can be viewed
and searched again, people with the same or similar questions can find answers by
browsing or searching the questions that were already answered. On one hand, Q&A
sites have become huge repositories of question-answer content which support highly
valuable and highly reusable knowledge [3]. On the other hand, Q&A sites also con-
tain a large number of users who keep contributing questions and answers. And most
of them are more likely to ask questions on topics they are interested in and answer
questions in topics they are experts of.

Therefore, we believe that there are two main resources in Q&A sites: the users’
network and the Q&A content. From a user’s perspective, detecting communities of
interests is useful to reveal the sub-structures of the user network and identify rele-
vant peers. From the perspective of content, extracting topics is required to uncover
the key subjects from massive content. So we are interested in the following research
questions: Can we detect communities of interests in Q&A sites? Can we identify the
common topics that bind them? Detecting communities of interests can contribute
to the question routing problem [16][29], which is very important in Q&A sites opti-
mization problems. It can also contribute to the community management, for instance
by allowing to track the interest evolution or community evolution in Q&A sites.

Many community detection algorithms have been developed to discover sub-
structures in social networks. Q&A sites support social networking, however, unlike
networks such as Facebook, there are no explicit relationship-based links between
their users. In fact, Q&A sites capture the users connected by question-answer links
or co-answer links. The users are not mainly concerned with no aware of the links ex-
isting between them. The social network is said to be implicit. As a result, compared
with other classical social networks, Q&A networks contain more star-shape (many
people link to a user) structures than friangle-shape (people link to each other) struc-
tures. According to [22], the number of triangle-shape structures per user in twitter
dataset is 821, while in our experiment dataset, the number of triangle-shape struc-
ture per user is 30 which is far less.Moreover, people have multiple interests i.e. they
belong to several communities of interests. It is therefore important to be able to
detect their overlapping communities of interests.

Adapting the document clustering algorithm to the user clustering problem, sim-
ilarly to [17], we first applied a classic document clustering algorithm, LDA [4], to
assign each user into several topic clusters by replacing the documents by the users,
and the document words by the tags acquired by users. The results were encouraging,
however, the complexity of the probabilistic model was prohibitive. Analyzing the
LDA model, we found that it largely exploits tags’ co-occurrence. This inspired us
to design a much simpler and faster algorithm to detect topics. Then based on the
detected topics, we were able to identify the users’ interests.

So the main contributions of this paper are,

— To propose a topic detection method to extract topics based on question tags.
— To propose a user interest detection method to discover the overlapping commu-
nities of interests.

Detecting topics and overlapping communities in Question and Answer sites 3

The rest of the paper is organized as follows. Firstly, we survey the state of the art of
community detection approaches, and point out the differences among these works.
Secondly, we introduce an empirical method to detect topics. Then we assign each
user to these detected topics based on their interaction behaviors. Thirdly, we conduct
several experiments. It shows that our approach is much faster and simpler compared
with other classic approaches, e.g. LDA [4], SLPA [24], and a Hierarchical clustering
algorithm, while preserving the quality of the detection. Finally, we discuss about
those methods and conclude on our contribution.

2 Related Work

We distinguish between three kinds of approaches for community detection depend-
ing on their characteristics: Graph-based methods are based on network structure;
Clustering methods are based on the similarity of user profiles; LDA-based methods
use probabilistic graphical model.

2.1 Graph-based methods

A first and direct solution is to extract an implicit network structure (such as question-
answer network, co-answer network, etc.) from interaction traces to come down to a
traditional community detection problem on social networks. Since intuitively, users
are grouped by interests, and most of their interactions are based on shared inter-
ests, it is reasonable to induce a network structure from these interactions and then
run community detection algorithms on the network. Many classical algorithms have
been developed such as [24][2]. There are many constraints when adopting these
methods. First, they do not take into account node attributes nor link attributes. Take
co-answer network as an example, where nodes represent users and links represent
users answering the same questions. In case two users are connected, these methods
can only indicate that they have answered the same questions many times. They can-
not provide the information whether they have answered questions on the same topic
or on different topics. Second, some of the work [6], adopting this approach cannot
detect overlapping communities, while some work such as [24][11][10][12] detect
overlapping communities.

2.2 Clustering methods

Community detection can also be envisioned as a clustering problem. By computing
similarities between user profiles, one can detect groups according to clustering re-
sults. The choice of the similarity metrics is quite important and largely influences
clustering results. To find similar interests, we first have to define the distance be-
tween user’s interests and the definition of this distance has a strong influence on the
clustering results. For instance, we can consider a bag of tags with their weights to
represent an interest, then compute the weighted tag distance to define the interest

4 Zide Meng et al.

distance between two users. Clustering methods, such as [25][8], group users ac-
cording to their features. They do not take the network structure into consideration.
Moreover, some clustering algorithms normally output hard-partition communities,
one user can only be assigned to one interest group. However, in the scenario we
are interested in, a user often has more than one interest and should be assigned to
more than one group simultaneously. This is a constrain for those hard-partition algo-
rithms. [5] use spectral clustering to detect topic from tag co-occurrence graph. The
difference is we only run spectral clustering on selected tags (taken only 10% of all
tags) co-occurrence graph which is more efficient, besides, [5] does not give details
on how to compute the topic tag distribution and user topic distribution while we do.

2.3 LDA-based models

A third approach consists in using a probabilistic graphical model for both the user
profiles and the network structure to solve community detection problem. For ex-
ample, [28] transfer links to binary node attributes, then use a LDA-based model to
detect communities. [21] use a LDA-based method on social tagging systems where
users label resources with tags, but they do not consider the problem of overlapping
community detection. [23] use an extended LDA-based model to analyze academic
social networks in order to find expert authors, papers and conferences. A problem of
these LDA-based models is that they normally assume soft-membership [26] which
means that a user cannot have high probabilities to belong to several communities
simultaneously. That is to say that the more communities a user belongs to, the less
it belongs to each community (simply because probabilities have to sum to one).
Moreover, [18] and [14] also use statistic model to detect overlapping communities.
The difference is that LDA-based models normally integrate topic detection which
can be used to interpret detected communities while the two above cited methods
only detect overlapping communities without any topic information on each detected
communities.

2.4 Short Summary

Table 1 summarizes the main features of the three approaches. Graph-based ap-
proaches normally use link information while ignoring node attributes. Some of them
cannot detect overlapping communities or provide membership ratios which are weights
denoting to what extent a user belongs to a community. Most of these methods
can not identify the topic in each detected community. Clustering approaches use
node attributes to group similar users. Some of their results are hard-partition com-
munities, with no overlapping and no membership information. LDA-based models
overcome the shortcomings of graph-based and clustering approaches, using both
node attributes and link information. Besides, LDA-based models normally combine
community detection with topic detection, which could be used to interpret detected
communities. Our proposed method is similar to LDA-based methods. Both can de-
tect overlapping communities and identify the topics at the same time. However, our

Detecting topics and overlapping communities in Question and Answer sites 5

method is different with LDA-based models in the sense that these methods normally
assume soft-membership [26] which means that a user can not have high probabilities
to belong to several communities simultaneously. Our method does not have this lim-
itation. In addition, our proposed method is much simpler and faster than LDA-based
methods while preserving the quality of the detection.

Table 1: Comparison of the main approaches and our method

uses nodes | useslinks | overlap | membership | topic
Graph-based no yes few few no
Clustering methods yes no few few no
LDA-based yes yes yes yes yes
Our-method yes yes yes yes yes

3 Models and Solutions
3.1 Problem Definition

In StackOverflow!, a user submits a question, then assigns 1~5 tags to indicate the
key topics of this question. Other users who are interested in the question may provide
answers to the question or comments to other answers. As tags attached to a question
can reflect its domain, users answering the question can be considered as interested
by this domain. Let U = {uy,ua...u, } be the set of users, Q = {q1,¢2...gm } the
set of questions and 7' = {¢;,¢5...t, } the set of tags. We aim at (1) extracting top-
ics Topic = {topicy,topics...topicy} from T, and for each topic; € T, defining
topicy, = {Dki,Pri---Pr;j} Where py; denotes the probability of tag ¢; to be related
to topicy; and then (2) detecting users’ topic based interests. For a user u; € U,
we define I; = {I;1, I;2...I;x.} where I;;, denotes the probability of u; to be related
to topick. (3) detecting users’ topic based expertises. For a user u; € U, we de-
fine E; = {E;1, Eia...E;, } where E;;, denotes the probability of u; has expertise on
topicg.

3.2 Question Tag Enrichment

We have empirically found that the first tag of a question normally indicates the
domain of the question if sorting question’s tag according to its global frequency.
For example, a question tagged with {c++ iostream fstream} is related to c++; A
question tagged with {hmml css height} is related to html. However, there are also
some questions that only have less and low popular tags, like a question tagged with
{ant} or a question tagged with {gz boost}. For these questions, the domain is not
obvious. The enrichment process is described in Algorithm 1. In pre-process (line 1-
15), for each tag in a question, we compute the frequency of its first tag and record it

I http://www.stackoverflow.com/

Zide Meng et al.

in a hashmap. For example, we have three questions tag list, {hzml css height}, {html
css layout}, and {c# gui layout} then, tag himl’s first tag frequency map is {html:2},
tag css’s map is {html:2}, and tag layout’s map is {html:1,c#:1}. After processing
with all question tags, we normalize the frequencies (line 16-21). For instance tag
css’s first tag map becomes {hmml:1.0} and layout’s map becomes {html:0.5,c#:0.5}.
In order to lower the probability of low frequency tag as first tag, we use the Equation

6]

1:
normalize(tag) = record-req * sigmoid(frequency)
sum(record_freq)

where, record_freq denotes the co-occurrence of first-tag and tag, sum(record-freq)

denotes the sum of these recorded frequencies, freq denotes the global occurrence
of the first-tag, o(x) is sigmoid function, which is used as a squashing function for
numerical stability. The value of sigmoid function is between 0 and 1. However, the
shape of this function is largely determined by parameter k. Considering the maxi-
mum value of tag frequency (tag c#:31801) in our dataset. we chose k as 0.001 (dotted
line), which will lower the probabilities of low frequency tags as first-tag while main-
taining the probabilities of high frequency tags as first-tag. Figure 1 recalls shape of

the sigmoid function for different value of k.

. sigmoid function with different k
1.0 —==
K
.
'
0.9 1
'
;
(] 1
2os8f !
g '
I
[
07|,
1
I
I — k=1
I
06 — k=0.01
i -~ k=0.001
! — k=0.0001
05 n
5000 10000 15000 20000 25000 30000

tag frequency

Fig. 1: Shape of function ﬂﬂ%’“*z) for different value of k&

For example, if the first-tag frequency map for css is {html:10, jquery:2}, then,
when normalizing first-tag html, record _freq is 10, sum(record_freq) is 12, frequency
is 5552 that is the occurrence of tag html in all the questions. As a result, normalize
(html) is equal to 0.8301. which means the probability of html as css$ first-tag is
0.8301. For each tag, we therefore provide a list of enriching first-tags with estimated

probabilities.
We also observed that the relations between tags mainly have two possibilities.
One is vertical relation, for instance, java is more general than ant. Another one is

Detecting topics and overlapping communities in Question and Answer sites 7

horizontal relation, for instance, java is more general than debugging, and debugging
could also be considered as more general than java since debugging can be applied to
any programming language. So, only by one tag, such as debugging, we can not de-
termine the enriched tag. Therefore, In enrich-processing (line 22-40), given a ques-
tion’s tag list, we fetch the top 5 first-tags (with the highest probabilities). Then we
accumulate the corresponding probabilities with a discount taking into account the
position of the tag in the tag list associated to the question, as shown in equation 2.

pj =1+ D2 *dis+ ... +pp;*xdis" forj € [1,V], k€ [I,K] (2)

Where p; denotes the probability of the j*" tag being a first-tag for a given question,
Dk,; denotes the probability for the k" tag to have the j* tag as its first-tag, V'
denotes the number of all the first-tags, K denotes the number of tags in the given
question and dis denotes the discount due to the position, we tune the parameter dis
between 0 to 1 and empirically set it as 0.5.

Then we consider the first-tag with the highest probability as the enriching first-
tag. If this first-tag already exists in the original tag list, we simply skip the insertion,
or else we insert it at the first position of the question’s tag list. We processed 242552
tag lists from the StackOverFlow Q&A site, and our method enriched 33622 of them
(13.5%). Table 2 presents the results of the enrichment of 8 tag lists (enriched tags
are in bold).

3.3 Topic Extraction

From the observation of our dataset, we confirmed the natural intuition that high fre-
quency tags are more generic and low frequency tags are more specific, and most
of the low frequency tags are related to a more generic tag. Similar observation was
also found in [19]. Besides, [27] shows that tag frequency in Q&A sites also satisfy
power law distribution [1]. For example, for a question tagged with {c++, iostream,
Sstream} (with tags sorted according to their frequencies), we could find that it was
related to c++ and to the iostream topic of c++, and more specifically, that it fo-
cused on fstream. This inspired us to build a tag tree to extract that and compute the
probability for a tag to be related to a topic. We describe the process in Algorithm 2.

In the build trees process (line 1-14), we build a tag tree according to the position
of tags in a question, and record the occurrence of each node. For example, let us
consider three question tag lists: {html, css, height}, {html, css, layout}, and {c#,
gui, layout}. We build two trees. The root of the first tree is hsml, the occurrence of
this node is 2, it has only one child css, which occurrence is 2, and this node has itself
two children, layout and height, the occurrence of each of them is /. The root of the
second tree is ¢# with I occurrence. Figure 2 and 3 show examples of html and java’s
prefix tag tree.

By processing all question tag lists, many trees are generated with different sizes.
We construct an affinity matrix only for those root nodes (line 15-23). The similarity

8 Zide Meng et al.

input : tag list of questions

output: enriched tag list of questions
1 /*pre-process*/

2 tag firsttags_map={}

3 foreach taglist of question do
4 first_tag=taglist[0]

5 foreach tag in taglist do
6

7

8

9

if not tag_firsttags_map.contain(tag) then
| tag_firsttags_mapl[tag]={}

end

if tag_firsttags_map|tag].contain(first_tag) then
10 ‘ tag_firsttags_map[tag][first_tag]++
1 else
12 ‘ tag_firsttags_map[tag][first_tag]=1
13 end
14 end

15 end
16 /*compute probability process™*/
17 foreach rag,domaintags in tag_firsttags_map do

18 foreach first_tag,freq in domaintags do

19 ‘ normalize=freq/sum(freq) ** tag_firsttags_map[tag][first_tag]=normalize
20 end

21 end

N
N

/*enrich-process*/
23 foreach question’s taglist: do

24 temp-first_tag_map={}

25 foreach tag in taglist do

26 discount=1

27 get top 5 first_tag from tag_firsttags_map|[tag]

28 foreach first_tag,value in top 5 do

29 value=value*discount, discount*=0.5

30 if temp _first_tag_map.contain(first_tag) then

31 ‘ temp_first_tag_mapl(first_tag]4+ =value

32 end

33 temp_first_tag_mapl(first_tag]=value

34 end

35 end

36 enrich_tag=get top first tag from temp_first_tag_map

37 if enrich_tag not in taglist then

38 ‘ taglist.insert(enrich_tag)

39 end

40 end

41 ** In order to lower the probability of low frequency tag as first tag. we actually use
Equation 1

Algorithm 1: tag enrichment

of two nodes is computed according to Equation 3,

I(root_i,root_j)
I(rooti) 4+ I(root_j)

Simi(root_i,root_j) = 3)
where I (root_i, root_j) denotes the co-occurrence of two tags, and I (root_i),I (root_j)
denotes the occurrence of tag I(root_i) ,tag I(root_j) separately. Then we run spec-
tral clustering [20] on the affinity matrix to group these root nodes into topics. As

Detecting topics and overlapping communities in Question and Answer sites

R I 7. ST I SR

_ =
R R = S

)
N

IS
0

n
S

input : enriched tag list of questions
output: topic-tag distribution
/*build trees process*/
trees=[0,{ }] /* tag frequency and subtree */
foreach question’s taglist do
cur_tree=trees
foreach rag in taglist do
if cur_tree[1].contain(tag) then
| cur_tree[1][tag][0]+=1
end
else
‘ cur_tree[1][tag]=[1,{ }]
end
cur_tree=cur_tree[1][tag]

end
end
/*build affinity matrix for root_tags*/
root_tags=trees[1].keyset()
root_tags_affinities=[#root_tags][#root_tags]
foreach root_i in root_tags do
foreach rootj in root_tags do
value=#(root_i,root_j)/(#root_i+#root_i)
root_tags_affinities[root_i][root_j]=value
end
end
groups=spectrallustering(root_tags_-af finities) *
/*combine tree process*/
newtrees=[0,{}]
foreach group_root_taglist in groups do
subtrees=[0,{}]
foreach root_tag in group_root_taglist do
subtrees[0]+=trees[1][root_tag][0]
subtrees[1][root_tag]=trees[1][root_tag]
end
newtrees| 1 J[groupid]=subtrees
end
/*compute topic-tag distribution*/
all_distributions=[]
foreach groupid in newtrees[1].keyset() do
distribtuion={}
total=trees[1][groupid][0]
compute(groupid, total,trees[1][tag], distribtuion)
all_distributions.append(distribtuion)
end
/*sub function to compute topic-tag distribution*/
Function compute(tag,total,tree,distrib)
if tree[1]!=null then
foreach rag,sub_tree in tree[l].items() do
‘ compute(tag,total, sub _tree,distrib)
end
end
if distrib.contain(tag) then
‘ distrib[tag J+=tree[0]/float(total)
end
distrib[tag]=tree[0]/float(total)

Algorithm 2: topic extraction

10 Zide Meng et al.
Table 2: Original and enriched tag lists
original tag list enriched tag list
ant java, ant
qt, boost c++, qt, boost
django, hosting python, django, hosting
xslt, dynamic, xsl xml, xslt, dynamic, xsl
sql-server-2005, sorting sql, sql-server-2005, sorting
tomcat, grails, connection java, tomcat, grails, connection
cocoa, 0sX, mac, plugins objective-c, cocoa, osx, mac, plugins
spring, j2ee, module, count java, spring, j2ee, module, count
@
g £
8 c
o B ? &
We. g i o S
35,) §6= §
0 88 B 8000003558 F e f
%> 5 b g CHSTLE
%, + %%if‘" o o 2128 i/ 3003&5 ®
% 28 1. 55
%, S el ds 508 o
,,fs/o/},:" Q 5 0 0568 o&g &F Q:Og"'cg ‘\@5‘\\\@
5. %0 % gf o8 F
25, %8 © ° 3 O & & P 5%
g, %55 O, 2% 3 K & e S X 28
B’ g, O 9 2 g S 0% 50° P& \a0®®
073, S oy, Ve, 2) L O 50 0% 0
§s /’gié) N e} ol X o e‘\é’é O‘“(O‘%“g‘é\‘\\ﬁ
ey, S . ¢° 5 $© 2% fice
righeey a R & o° Wigaton
#Ser.co, "emotg, Hexs ons,,, o® “ %\l"c"‘m
"MPatibjy g ouf oo
T eSOy oses S5
omework o Ojsp ye ionalizati
maintenames Qppiications o rubyo omysat (O database &E‘%’E:;a‘mna lizat
Xym! . 9 textbox Ot 5
as’é‘éﬁ%% - pgron1ae© , Eencmv‘?g Sxtm e ::c:snsa:(:;ds
lendar O 0bj
c:’:‘r:\e“&% o Q o, e Sfitp-ciassic
jeb-deve’ 553 1088 jnQ ol s, etioy, Ole Oxhy
iy down e - S v SO ege, o Xhtmy
Weso o d°°\z0 £ o e Oxe"c ang
\o“““‘\ o 8 o, = os&zarn ng
g . WS S
N e’ & 3 i 0, O,
M S L o %l o
G & & Y. s, O,
&0 TS o, Bk,
K b 3
o*‘%ee*co & \°§ g 00093% | % * oQ’foﬁ’/
¢ e o £ 5 2 $33%%% Y %, %, %
&0 sl 5 & 573 %, . 0. % O,
F L LI /% E 833% 7 %% %2
sSSP Q & %8 BB %" %
FEET e g8 o &5% B Ty
5 SS90 9006 2 00% 3223 %
o0 P022835% 5 N T S
PoEFFsmpasstiai Ly
Oy @0 £ F
& s ES 3
3

Fig. 2: html’s tag tree, where html is located in the center

it requires the number of topics, we choose the same number 30 as [5], which has
proved to be a reasonable setting for the Stackoverflow dataset. We then combine
trees if their root nodes belong to the same topic (line 25-34). It leads to a result
where each tree represents a topic. Therefore, in the compute topic-tag distribution
process (line 35-42), for each topic tree, we recursively compute each tag’s probabil-
ity to belong to this topic by Equation 4.

I(subi)
1(p)

where p and I(p) denote the probability and the occurrence of a parent tag, p_sub_i
and I(sub_i) denote the probability and the occurrence of the i_th child tag, then we
can compute the probability of p_sub_i.

p-sub_i = xD 4)

Detecting topics and overlapping communities in Question and Answer sites 11

&
o g
% .
% BE ¥ g le
XN WL _ 55 Q88
% 3% 8z2BagIf8swrs §
2 e BSRRITES B Lo &
5B 3B D006 sE i Pe
% 35 B 0O0OVEIG FRER, o
%5% 2.2 00 3 P&y T o0
% % 52,5709 25 $O58 5B
.0 B0\ g 32 $/ oL
05, %, 5 8
%09,&069 2 3 32 82 @ FXd %ég(\\\x :
2 0%20% 5 % 2z %3 k2 88 & OB
%0, %. 700, 2, & 8 00|00 O ||| ¥ & /& /& e
O, R 60, e B B O % /&R SIS
P G500 % % O OF & o o3
gy, b, Y, 0 G, %005 1| s @“‘,&z
parerc” %, 50 g ¢
b O, 4580 %, % () S o o
" %
/‘;;7/1;"/’0 “""»%:"% 0 ,% ‘-‘i% o o - 0P
Streg 9FG TS %, % & 208 8 0B o
/';,'7 o ar, “0 80 o) Ooa‘?;{“eb o%‘!s‘:\“\g
B0 "o e
=Ekigsg %20 & o o owe
U ooy = s, g oo P PC i
Eﬁéfo’gfiﬁ Parison; %0 oy 3 MBmory-1e
Strea @ texto onewo® " o geometry
Comparison o encog o8d ject-oriented
w0 i P Y S onammg-cor%?a%%es
’fé% g Oiterat o
tor ibilit
escapingO —_fledod -4 ERessiviity
¥ od
\?‘?‘i‘ oo™ % O%mameo, epsnde"cgﬁ%ﬁg‘f
955256‘5% 2P o o Convery SreMhotatione
10ad© o AO 3 O”’ag.a on r:m""
N % Wo© z % O, On, N 1OXY
cesi g o Yo oy '
e s, g %06, Ogp.lse
<089 J AR 5t Mes
e
s 5 £ o b Ry S
QAR 2.0 5 o, 0, ’ggs@%e
e e o H S, otk s
& O 2 Oon % oFor,
S & o 8 o, Ol
R o $ o $¥%% o0, X
M LR o £ o 00 B\ % 0.9, 57, g
RNl & s 0O 09 22 0,0 %, 0 %,
F A g 8§ . % % 8 0.%,%
R g £ 3p % \% % O %%, S,
S o g g4 [0% %% %,
& FIFS s E 2208 50A%% %
&1§%§mbn 25 B0 e B
A”\'”%‘Se&t\):oo 2 500%% %
a?\NW‘mSo%C(DODOoNW?}%%% b
& S omesS%5255% %,
& 595'19”::03 TS EETETDY T 380)
€ & S E L E S A 2
&8 SETES W 8,
< $
g
£

Fig. 3: java’s tag tree, where java is located in the center

Table 3 compares some results of this process with the state-of-the-art topic model
LDA. We used the same topic number 30 for LDA. We can find that both results
are very relevant to topics. However, our model does not require many iterations to
converge, which makes it more efficient. We also need to point out that we use the
spectral clustering algorithm in a step of our method. We used the implementation of
this algorithm from scikit-learn toolkit?>. But we only run it on the root node, which
have quite a small size (around 1175 nodes with the tag enrichment process), which
means we only need to build affinity matrix on these root nodes and the overall cost
is acceptable.

3.4 User Interest Detection

In StackOverflow, users answering a question can be considered as interested in the
tags of the question. As a result, a starting point for user interest detection is to model
the initial situation as follows: a user answering a question acquires the tags attached
to this question and gradually, each user acquires a list of tags. So we use a tag list
to represent a user: U = {U;|i = 1,...,n},U; = {tag;|i = m,n,...,k}. Then our

2 Scikit-learn toolkit:
http://scikit-learn.org/stable/modules/clustering.html#
spectral-clustering

Zide Meng et al.

Table 3: Top tags and their probabilities for topics iphone, sql and linux computed by our method and LDA

method

our method LDA

(iphone, 0.300), (objective-c, (cocoa, 0.182), (objective-c,
0.147), (iphone-sdk, 0.088), | 0.173), (iphone, 0.0795), (cocoa-
(cocoa-touch, 0.087), (cocoa, | touch, 0.048), (iphone-sdk,
0.073), (xcode, 0.029), (uikit, | 0.034), (mac, 0.028), (osx,

0.012), (uitableview, 0.011), (osx,
0.010)

0.027), (xcode, 0.018), (memory-
management, 0.013)

(sql, 0.185), (sql-server, 0.157),
(mysql, 0.078), (database, 0.069),
(sql-server-2005, 0.046), (tsql,

(sql-server, 0.216), (sql, 0.198),
(sql-server-2005, 0.061), (tsql,
0.055), (database, 0.052), (stored-

0.032), (oracle, 0.018), (query, | procedures, 0.024), (database-
0.017), (stored-procedures, | design, 0.020), (performance,
0.015) 0.016), (c#, 0.016)

(linux, 0.292), (bash, 0.088), | (linux, 0.074), (c, 0.058), (bash,
(unix, 0.070), (shell, 0.048), | 0.049), (unix, 0.042), (perl,
(scripting, 0.023), (command- | 0.032), (shell, 0.030), (vim,
line, 0.019), (ubuntu, 0.016), | 0.027), (regex, 0.024), (c++,
(belongs-on-serverfault, 0.013), | 0.016)

(shell-script, 0.012)

goal is, for each U;, to find I; = {I;1, I;a...I;1.} where I;;, denotes the probability of
user U; to be related to topicy. As we already have a topic-tag distribution we simply
compute user-topic distribution by the equation 5 where P, ;, denotes the probability
of tag ¢ to be related to topic k. We then normalize the probabilities between 0 and 1
by dividing the global max value. We use log function for numerical stability. Here
we don not like apply normalization at the level of the user, because like [26], we
believe that each user could have a high interest in two or more topics simultaneously.
But most of the probabilistic graphical model including LDA, PLSA require the sum
of all the probabilities is 1, which means that a user cannot have high probabilities
to many topics simultaneously. Our method does not have this limitation. Then we
identify users’ communities of interests based on the user-topic distribution: Users
who have high probabilities for a topic should be a member of the community of the
topic.

Lik :log{ZPt,kH} ©)

t=1

3.5 User Expertise Detection

Users who are interested in the question may provide answers to the question or
comments to other answers. And the answer could be chosen as best answer, and
each answer may also get votes from other users. As tags attached to a question can
reflect its topic, answers which have high votes or is chosen as best answer can be
considered as expertise by this topic. So if U; give answer A, to Q,, which has tag;,
then A,,, Q. get votes A,,,v and Q,,,v. As we already have topic-tag distribution (see
section 3.3), we simply use the vote information to compute user expertise with the
Equation 6 where P, ;. denotes the probability of tag ¢ related to topic k, @, denotes

Detecting topics and overlapping communities in Question and Answer sites 13

the question m which user i answered. As we described before, the sigmoid function
is W, which is used as a squashing function for numerical stability. If a vote
is higher than a threshold, which can be determined by parameter k, the value of the
function is approximate to 1. Therefore, the value of the multiply will not be too large

for certain answer.

Ei,= Z P, 1 * sigmoid(Q_votes) * sigmoid(A_votes) (6)

a=1

4 Experiments and Evaluation on StackOverflow data

We conducted experiments on a dataset from the popular Q&A site StackOverflow
to evaluate the performance of our approach compared to three other community
detection algorithms.

4.1 Dataset and Protocol

Some basic statistics of our dataset are given in Table 4. The total number of users
is 103K. Among them, 47K users submitted at least one question, and 54K users
answered at least one question. The total number of tags attached to questions is
24K, and 20% of them are used more than 10 times. The frequency of tags follows
a power law distribution. The total number of posts is 1.1M; among which there are
242K questioners and 870K answers. Traditional community detection algorithms

Table 4: Basic statistics of the stackoverflow dataset

item description
total users 103K (47K questioner, 54K answerer)
total tags 24K (20% used more than 10 times)

total posts 1.1M (question 242K, answer 870K)
co_answer-10 902 users, 6746 co_answer link
co_answer-15 401 users, 2326 co_answer link
co_answer_20 241 users, 1064 co_answer link
co_answer_25 153 users, 592 co_answer link

labeled user 902 users, 1~3 labels per user

are based on network structure. As there is no explicit network in our dataset and
in order to compare our work with other approaches on the same dataset, we have
extracted a network of interactions between users: we extracted a co-answer network
inspired by the notion of co-view network introduced in [9]. The idea behind it is that
if two users answer the same questions they have at least one common interest on this
question. Therefore, they share some of their interests. So, this co-answer network,
to some extent, can reflect the co-interests of users. Then we filtered the co-answer
links with a rule stating that a link is kept if two users answer the same questions
more than 10, 15, 20 or 25 times. As a result, we obtained four noise-less datasets.

14 Zide Meng et al.

4.2 Performance of the proposed Topic Extraction Method

Table 5 shows the top tags and their probabilities detected by out method. We use
the Perplexity [4] metric to measure the topic extraction performance. It is a common
metric in the topic modeling area, measuring how well the words in test documents
are represented by the word distribution of extracted topics. The intuition is that a
better model will tend to assign higher probabilities to the test dataset, corresponding
to a lower perplexity value. We split the dataset (question tag lists), 80% as training
set, 20% as testing set. We run LDA and our method on the training set to get the
topic distribution. Then for a test set of M question tag lists, the Perplexity score is
computed as shown in equation 7:

)

M
1 t
Perplexity(Diest) = exp {—Zd:l og p(tag) }

chlvil Na

In our model, p(tag) is computed by p(topic|question) x p(tag|topic). In order

450

LDA
Empirical
Empirical_noEnrich

|
gon

400

350 [

300 —

perplexity
- n n
u o o
o o o

o
S

o
=)

o

K=20 K=30 K=40 K=50
Number of Topics

Fig. 4: Topic extraction performance comparison

to obtain p(topic|question) distribution, we just compute it similarly to user inter-
est detection (see Section 3.4), by replacing user tag lists by question tag lists. The
only difference is that we normalize the question topic distribution to make sure that
the sum of a question’s topic distribution is 1. We show and compare the average
perplexity score in Figure 4. empirical represents our method, empirical_ noEnrich
represents our method without first-tag enrichment. We find that our method could
outperform the state-of-the-art topic model LDA. The reason is, compared with tra-
ditional document topic modeling use cases, question tag lists in Q&A sites are very
short, therefore, LDA perform poorly in this situation. Besides, our first-tag enrich-
ment method can improve the performance when the topic number is not very large.

Detecting topics and overlapping communities in Question and Answer sites 15

Another point is that, benefiting from a tree structure for topics, we could easily ex-
tract sub-topic from a given topic. Besides, our community detection method is based
on a topic model, so extracting these sub-topics can help us find sub-communities
within a detected community. Table 6 shows the top tags of java’s sub-topic html and
of topic html. We can find that the differences are noticeable for topics: a user who is
interested in topic A#ml is not necessarily interested in java’s sub-topic html and vice
versa.

Table 5: Top tags and their probabilities for some topics computed by our method

topic4 topic5 topic6
iphone 0.203 git 0.198 sql 0.177
objective-c 0.112 svn 0.096 mysql 0.122
i0s 0.109 version-control 0.045 sql-server 0.074
xcode 0.042 github 0.033 database 0.040
cocoa-touch 0.021 tfs 0.033 oracle 0.030
ipad 0.020 maven 0.029 sql-server-2008 0.029
cocoa 0.018 tortoisesvn 0.018 tsql 0.026
uitableview 0.012 msbuild 0.016 query 0.025
i0s5 0.010 jenkins 0.015 sql-server-2005 0.019
core-data 0.009 tfs2010 0.014 database-design 0.011

topic12 topicl3 topicl4
html 0.214 Jjavascript 0.264 machine-learning 0.247
css 0.201 jquery 0.114 | artificial-intelligence | 0.130
xhtml 0.017 html 0.035 neural-network 0.062
web-development | 0.016 ajax 0.031 classification 0.046
ie 0.012 css 0.016 data-mining 0.037
css-layout 0.010 firefox 0.013 svm 0.031
div 0.010 dom 0.011 weka 0.025
layout 0.010 php 0.011 libsvm 0.015
firefox 0.009 ie 0.010 nlp 0.024
ie6 0.009 | web-development | 0.008 bayesian 0.011

Table 6: top tags for java’s sub-topic html and mysql, denoted by java_html, and java_mysql respectively,
compared with topics html and mysqgl

[javahtml T jsp swing xml parsing jsf jeditorpane pdf applet dom |
[html [css xhtml web-development table div ie layout css-layout firefox]
java_mysql | jdbc hibernate database tomcat prepared-statement spring connection-pooling connection security
mysql database query mysql-query ruby-on-rails database-design performance stored-procedures innodb

optimization

4.3 Genericity of the proposed Topic Extraction Method

In order to test that whether our proposed topic extraction methods is generic, we
collected a dataset from flickr® which contains 1211499 photos attached with tags.
For instance, a photo tagged with {china pinyao} indicates the location information.

3 flickr website: https://www.flickr.com/

16 Zide Meng et al.

A photo tagged with {night people bar} describes the time and content information.
We run our topic extraction method on this dataset, and we list some results in Table
7. We can find that the detected topics are interesting. For example, topic 3 includes
photos which contains airplanes, topic 24 includes photos which contains bicycles,
and topic 23 includes photos taken in cities of Italy.

Table 7: Top tags and their probabilities on flickr dataset

topic3 topic4 topicS
airplane 0.074 tshirt 0.216 music 0.077
airport 0.053 shirt 0.154 rock 0.040
aircraft 0.029 shirts 0.112 concert 0.036
flying 0.028 threadless 0.109 live 0.025
plane 0.027 tshirts 0.009 band 0.022
aviation 0.022 tee 0.008 singing 0.019
flight 0.014 clothing 0.007 guitar 0.018
aeroplane | 0.012 media 0.006 festival 0.017
jet 0.010 models 0.006 show 0.014
boeing 0.009 camiseta 0.004 livemusic 0.010

topic23 topic24 topic25
italy 0.179 bike 0.114 portrait 0.049
italia 0.053 motorcycle 0.052 girl 0.029
rome 0.028 racing 0.033 woman 0.014
florence 0.021 bicycle 0.028 smile 0.014
venice 0.014 race 0.027 model 0.010
tuscany 0.014 motorbike 0.024 sexy 0.009
roma 0.011 sport 0.019 face 0.008
europe 0.011 speedway 0.011 fun 0.008
firenze 0.010 500cc 0.010 man 0.008
milan 0.007 methanol 0.010 love 0.008

4.4 Comparative evaluation of Different Community Detection Approaches
4.4.1 Experimentation of the Graph based Approach

Let G = {N,E},N = {Uili = 1,...,n},E = A;; € {0,1}*¥ be a network
where N denotes the set of users, E the set of edges between users answering the same
questions. Graph-based community detection algorithms aim to find out overlapping
interest groups g = {¢;|t = 1,...,k},9; = {Uili = [, m,..n}. We implemented
the SLPA algorithm proposed in [24]’s work. Figures 5 and 6 show the results we
obtained on co_answer_10 and co_answer_25 networks, each color representing a de-
tected community.

The co_answer_10 network is hard-core or octopus shaped. We can see that com-
pared with normal social graph, there are few triangle-shape structures, so the graph-
based algorithm fails to find a good partitioning over this network. We run the SLPA
algorithm many times, most of the time there are only one or two huge partitions
detected which group 80% users of the network while the remaining partitions are
extremely small (each one containing about 2~5%users).

The co_answer_25 network is more like a flat graph, we can view some triangle-
shape structures in the graph. As Figure 6 shows it, the SLPA algorithm works fine on

Detecting topics and overlapping communities in Question and Answer sites 17

Fig. 5: Co_answer_10 network

.) .
LN TS o®
LT)
. .'. n:.
o<e® o)
.
o0 o
o® o 0 00 ® ®e
Sy) o e,
. o o0
e oo N
4 L/ L)
L] L4 °
0 [. .
o o

Fig. 6: Co_answer_25 network

this network. In order to better understand these communities, we randomly selected
four users in each of three detected communities (in blue, red and purple in Figure 6
) and we present their associated tags in Table 8.

As we introduced it in Section 2, most of the graph-based community detection
methods do not take into account user attributes. In this scenario, although the co-
answer network, to some extent, can reflect common interests between users, it still
does not represent the different interests captured in the same link. In other words, two
users are linked because they co-answer the same questions many times (according
to a filter threshold, here 25). However, they may co-answer java-related question 5
times and c#-related question 20 times, and this information is not represented by
their link. As a result, as it appears in Table 8 some groups do reflect some common

18 Zide Meng et al.

Table 8: Illustration results of graph-based approach
group 1 (blue color)

1d_16883 java(364), subjective(45), best-practices(41), php(36), c#(29)
1d_15459 java(118), javascript(70), subjective(59), php(43), regex(41)
1d_8155 c#(264), linq(228), sql(148), .net(104), ling-to-sql(91)
1d_16076 c#(290), sql-server(200), .net(169), sql(138), sql-server-2005(78)
group 2 (red color)
1d_64960 c++(108), c(18), stl(16), multithreading(14), windows(14)
1d_54684 c++(128), vim(48), best-practices(27), java(12), c(10)
1d_3146 c++(233), ¢(76), windows(71), c#(60), .net(37)
1d_3153 c++(216), c(76), win32(43), windows(37), subjective(33)

group 3 (purple color)

1d_10661 python(944), django(201), subjective(134), best-practices(106), database(82)
1d_57757 python(130), subjective(27), c(21), c#(20), c++(18)

1d_9493 python(194), regex(9), string(8), beginner(8), list(5)

1d_15401 sql-server(108), database(64), sql(63), subjective(45), python(43)

interest while some others do not. For example, users in group 1 do not share the
same interests while users in group 2 have more similar interests.

4.4.2 Experimentation of the Clustering Approach

We first formalized the vector representation of each user. Again, we used a tag list
to represent each user: N = {U;|i = 1,...,n},U; = {Fregiq,|i = 1,...,k}. We
then used an implementation of a hierarchical clustering algorithm from scikit-learn
toolkit*, introduced in [7]’s work, to detect groups on co_answer_10 dataset. We set
group number as 30, which is the same as other compared model. We randomly listed
(at most) 5 users from 6 groups out of 30 groups in Table 9, (Group 2 only has 2
users). The first column contains user ids and the five other columns the top five tags
in each user tag list. This table shows that users with similar frequent tags are grouped
together. The results are very reasonable. However, in group 1, "user_82187’ is inter-
ested in c#-dev and database topics, "user_38206’ is interested in c#-dev and java-dev
topics, and “user_234’ is interested in ’c#-dev’ and web-dev tags. Therefore, the in-
terest of group 1 is not very focused. Moreover, clustering-based algorithms normally
output hard-partitioned communities, one user can only be assigned to one interest
group. However, in the scenario we are interested in, a user often has more than one
interest and should be assigned to more than one group simultaneously. This is a
big constraint for those hard-partition algorithms. In addition, clustering-based algo-
rithms need the definition of a distance between instances. To find similar interests,
we first have to define the distance between user’s interests and the definition of this
distance will directly influence the clustering results. For instance, we can consider a
bag of tags with their weights to represent an interest, then compute the weighted tag
distance to define the interest distance between two users.

4 Scikit-learn toolkit:
http://scikit-learn.org/stable/modules/clustering.html#
hierarchical-clustering

Detecting topics and overlapping communities in Question and Answer sites

Table 9: Illustration results of clustering approach

group 1

1d_48082

c#(145),.net(137),wcf(50),zip(39),asp.net(36),

1d_38206

c#(206),.net(146),subjective(56),best-practices(31),java(30),

1d_1196

c#(169),.net(142),subjective(42),best-practices(37),wpf(30),

1d_234

ruby(102),c#(91),.net(72),ruby-on-rails(69),subjective(61),

1d_82187

c#(189),.net(76),sql-server(40),sql(36),windows-forms(33),

group 2

1d_16036

5q1(288),sql-server(137),tsql(43),sql-server-2005(41),database(30),

1d_60308

sql-server(213),5ql(84),sql-server-2005(50),tsql(28),database(18),

1d_18255

5q1(296),sql-server(280),sql-server-2005(74),database(73),tsql(71),

1d_740

sql-server(273),sql(184),sql-server-2005(76),tsql(74),database(39),

1d_27535

sql-server(430),sql(197),sql-server-2005(158),tsql(90),sql-server-2008(38),

group 3

1d_33213

c++(366),c#(88),c(73),subjective(67),.net(40),

1d_15416

c++(355),c(70),windows(67),win32(42),c#(34),

1d_12711

c++(341),c(146) c#(63), net(49), windows(44),

1d_66692

c++(376),c(141),flex(80),actionscript-3(61),flash(39),

1d_14065

c++(459),st1(42),c(40),exception(31),subjective(25),

group 4

1d_3474

java(381),security(44),encryption(41),ssl(27),best-practices(25),

1d_57695

java(476),multithreading(29),performance(26),c#(17),jvm(14),

1d_12960

java(428),xml(42),c#(26),best-practices(18),vim(16),

1d_13531

java(394),swing(60),regex(22),generics(22),collections(20),

1d_53897

java(366),eclipse(24),tomcat(20),performance(18),subjective(18),

group 5

1d_18275

sql(54),sql-server(39),subjective(27),tsql(19),mysql(18),

1d_383

c#(50),asp.net(40),sql-server(37),sql(28),language-agnostic(24),

1d_3241

sql-server(90),5q1(69).sql-server-2005(21),tsql(21),stored-procedures(13),

1d_65070

iphone(37),sql(37),c#(36),java(35),php(35),

1d_19937

sql(88),database-design(86),database(44),sql-server(23),subjective(16),

group 6

1d_76583

jquery(69),javascript(63),php(61),css(29),html(28),

1d_18936

Jjavascript(208),html(114),python(102),css(65),php(63),

1d_6144

Jjavascript(117),html(64),css(52),web-development(30),internet-explorer(29),

1d_61027

Jjavascript(117),subjective(66),iphone(43),jquery(38),best-practices(19),

1d_811

javascript(124),jquery(59),c++(40),c#(36),subjective(36),

4.4.3 Experimentation of the LDA-based Model

We run LDA to build a user-topic-tag model on the co_answer_10 dataset, each user

being represented by her tag list like in the above experiment. We set the parameters

a, B, K to, respectively, S0/K, 0.1, and 30 as adopted in many related work. « is the
prior distribuion for user-topic distribuion. and [is the prior distribuion for topic-tag
distribuion. For the group number K, we chose the same setting as the clustering
algorithm. One of the model’s result is the probability for each user to belong to each

interest group. This is shown in Table 10.

Table 10 shows six randomly chosen users and their top 10 tags. The first row
contains user ids, the second row contains their detected interest groups with their
probability. The following ten rows show the top 10 tags for each user. We replaced

group ids with names assigned according to tags in each group.

20 Zide Meng et al.

Table 10: Ilustration results of LDA-based approach

user-10224 user-103043 user-113570
database(0.764), c-dev(0.039) java-dev(0.603), database(0.157), web-dev(0.395), c#-dev(0.287)
sql-server(21) java(135) c#(107)
sql(21) swing(28) jquery(89)
tsql(6) oracle(27) javascript(56)
performance(4) sql(23) .net(47)
database(4) subjective(15) asp.net(27)
stored-procedures(3) windows(13) css(23)
sql-server-2005(3) eclipse(12) regex(20)
.net(3) best-practices(12) html(20)
mysql(2) regex(10) iphone(12)
sql-server-2000(2) plsql(10) string(10)
user_24181 user-34509 user_30461
web-dev(0.863), database(0.035), c-dev(0.767), linux-dev(0.128), i0s-dev(0.947), other-topic(0.011)
php(304) c++(703) cocoa(333)
javascript(193) c(187) objective-c(184)
mysql(116) templates(62) iphone(47)
html(86) stl(53) cocoa-touch(39)
css(57) linux(48) 0sx(35)
regex(40) subjective(45) mac(34)
jquery(37) pointers(44) iphone-sdk(20)
sql(27) java(42) xcode(18)
ajax(26) bash(40) cocoa-bindings(18)
apache(23) boost(31) core-graphics(18)

4.4.4 Experimentation of Our Empirical Model

‘We run our approach on the co answer 10 dataset, For the topic number K, we chose
the same setting 30 as the above algorithms. Table 11 shows some users and their
top 10 tags. The first row contains user ids, the second row contains their detected
communities of interests with their probabilities. The following ten rows show the top
10 tags for each user. We replaced community labels by names assigned according to
the tags in each topic interest.

4.4.5 User Study of User Interest Detection

We now want to evaluate whether a user is correctly assigned to the right interest
group, and to which extent the user belongs to the interest group. To achieve this, we
invited volunteers to manually label 902 users (co_answer_10 dataset) as the ground-
truth and assigned each user with eight group labels, chosen from c-development
group, java-development group, c#-development group, web-development group, ios-
development group, database group, linux-development group and other-topic group.
For example, user A sequentially has three group labels, which are java-development,
web-development,ios-development. It means that user A has a big interest in the group
Jjava-development, a medium interest in the group web-development, a lower interest
in the group ios-development. Since each user has an ordered label list, we have to
evaluate both the correctness of detected groups and the correctness of the order.

We ask another volunteer (who was not involved in labeling the ground-truth) to
label the results of the methods with the same 8 labels. As SLPA algorithm can detect
overlapping communities. She was asked to assign an interest group name, from the 8
labels, to each community according to users tag lists in each community, then each

Detecting topics and overlapping communities in Question and Answer sites

21

Table 11: Illustration results of our empirical approach

user-10224 user-103043 user_113570
database(0.531) c#-dev(0.095) java-dev(0.699)database(0.232) c#-dev(0.898) web-dev(0.512)
sql-server(21) java(135) c#(107)
sql(21) swing(28) jquery(89)
tsql(6) oracle(27) Jjavascript(56)
performance(4) sql(23) .net(47)
database(4) subjective(15) asp.net(27)
stored-procedures(3) windows(13) css(23)
sql-server-2005(3) eclipse(12) regex(20)
.net(3) best-practices(12) html(20)
mysql(2) plsql(10) iphone(12)
sql-server-2000(2) regex(10) string(10)
user_24181 user-34509 user-30461
web-dev(0.631), database(0.616) c-dev(0.773), linux-dev(0.417) i0s-dev(0.885), linux-dev(0.218)
php(304) c++(703) cocoa(333)
javascript(193) c(187) objective-c(184)
mysql(116) templates(62) iphone(47)
html(86) stl(53) cocoa-touch(39)
css(57) linux(48) osx(35)
regex(40) subjective(45) mac(34)
jquery(37) pointers(44) iphone-sdk(20)
sql(27) java(42) xcode(18)
ajax(26) bash(40) cocoa-bindings(18)
apache(23) boost(31) core-graphics(18)

user gets at least one interest group name. Besides, SLPA algorithm can evaluate
to which extent a user belongs to a community by the frequency (a ’Post-process’
in SLPA algorithm). Combined with the interest group name we assigned for each
community, SLPA algorithm now can output an ordered interest group name list for
each user. Clustering algorithm can only generate one cluster id for each user, so she
was asked to assign an interest group name, from the 8 labels, for each cluster. LDA
method can give the probability membership to each topic. Large probability can
indicate that a user is more interested in that group. She only needed to associate the
detected 30 topics with 8 group labels. Then we can get a ordered interest group name
list for each user after sorted by the probabilities. Same as LDA, our approach can
also give the probability membership to each topic, so she only needed to associate
the detected 30 topics with 8 group labels. Then we can get a ordered interest group
name list for each user after sorting by the probability. Here, we only choose the top 3
group name for each user. Discounted cumulative gain (DCG) is used to measure the
quality, or gain of result based on its position in result list. The gain is accumulated
from the top of the result list to the bottom with the gain of each result discounted at
lower ranked position. The DCG measurement penalizes high score results appearing
lower in a ranked list of results. Given scores for each items in a ranked list, rel;
representing the score of result at position i, DCG at rank position p(DCG@p) is
computed as:

rel’
loga (i)

p
DCG@p =rely +» ®)
=2

The Normalized DCG (NDCGQG) is introduced to compare different ranking list. It is
done by sorting scores of a ranking list result to get the maximum DCQG till position

22 Zide Meng et al.

P, also called Ideal DCG (IDCG). The NDCG at rank position p is computed as:

DCGap

NDCGOy = 15 ecap

©))
The value of NDCG is between 0.0 and 1.0. In our scenario, a NDCG@p value of
1.0 means detected interests and their order are totally the same as the ground-truth
till position p, while a NDCG@p value of 0.0 means that the detected interests are
completely different from the ground-truth. For values between 0.0 to 1.0, it means
that the detected interests are partially correct or ordered incorrectly.

Here, we evalute NDCG@ 1, NDCG@2, and NDCG@3. The ideal ranking list of
each user is the ground-truth and corresponding score is 10, 8 and 6. Figure 7 show
the result of NDCG performance for each method. NDCG@1 reflects the prominent

Fig a

3 SLPA |
Clustering

I SLPA
@ LDA]
3 Empirical

0c'g_answer_lo co_answer_15 co_answer_20 co_answer_25
09 Fig c
0.8
0.7
m 0.6
®os
g0t = sLpA
0:2 IO LDA
0.1f [Empirical |
0c'g_answer_lo co_answer_15 co_answer_20 co_ansv\;er_zs

Dataset

Fig. 7: NDCG results comparaison

interest detected by each algorithm compared with the ground-truth of user’s promi-
nent interest. We noticed that our Empirical method is partially better than LDA, and
outperforms SLPA and hierarchical clustering. We also mention that with the dataset
becoming less noisy (people have prominent and clear-intention interests), all meth-
ods’ performance increase. The same phenomenon is also observed in NDCG@2, 3.
As hierarchical clustering algorithms give a hard partition there are no performance
comparison for hierarchical clustering algorithm in NDCG @2, 3.

Detecting topics and overlapping communities in Question and Answer sites 23

4.4.6 Performance of User Interest Detection

We want to evaluate the similarity between users within a detected community of
interest. We compare our method with three other methods chosen from different
kinds of community detection methods. In order to evaluate the results of overlapping
community detection, for each user, a method should output 1 ~ 3 community labels
with corresponding probabilities to indicate to what extent the user is interest in the
community. Then we define three levels of interests: High, Medium, Low according
to the probabilities. In addition, we set the community number as 30 for all these
methods empirically.

— SLPA [24]: An overlapping community detection method inspired by a classical
Label propagation algorithm (LPA). SLPA algorithm can evaluate to which extent
a user belongs to a community by the received propagated label (a "Post-process’
in SLPA algorithm). So, it can output more than one community label according
to these frequencies.

— LDA: Similar to [27], we run LDA to build a user-topic-tag model on the given
dataset, users are represented by their tag list. As the output contains a user-topic
distribution, we just sort the distribution for each user and chose the top 3 topic
labels as community label together with their probabilities.

— Clustering: We used the implementation of hierarchical clustering from scikit-
learn toolkit>. As clustering algorithm are hard-partition, it can only generate one
group label for each user.

— Empirical: it is our method. We just sort the results of user interest detection (sec-
tion 3.4) and chose the top 3 as community label together with their probabilities.

Our aim was to evaluate the similarity between users within a detected community
of interest. We mainly used the jaccard similarity and cosine similarity of two user’s
tag lists to evaluate the similarity of two user’s interests. We used a modified mod-
ularity metric to compute the difference between the average similarity between the
users within a community (avg_inner) and the average similarity between the users
in a community and some user randomly chosen from the whole dataset (avg_rand).
It is described in Equation 10, where N represents the number of users in a com-
munity C, and Simi denotes the similarity function. Rand_U represents users that
are randomly chosen from the whole data set. A higher value of avg_tnner denotes
that users within a community are very similar. A lower value of avg_rand denotes
that users of a community are not very similar to random users. So A higher value
of modularity means a larger difference between avg_inner and avg_rand, which
is considered as a better partition of communities. As the metric has random vari-
ables, we run the experiments 10 times and we used different random users at each
time. Besides, we created a center user in each community by averaging all users’ tag
lists and frequencies, then we computed the average similarity between each user in
a community and this center user as avg_center. As introduced before, each method
gives 1 ~ 3 community labels for each user to indicate the level of interest. So we

5 http://scikit-learn.org/stable/modules/clustering.html#
hierarchical-clustering

24 Zide Meng et al.

evaluated each level of interest respectively.

Avg(Y,1, >0, Simi(U-,U)
Avg(X,, 332, Simi(U i, Randy)

Modularity(C) = (10)

Experiment results are shown in Table 12. We run each method on the co-answer
dataset for 10 times, and listed the average value. We found that our method is better
than the three other methods in detecting High level communities of interests with
both metrics. The reason why our method is not very good on Low level interest
is that it allows users to belong to more than one community with high probabilities.
This puts some irrelevant users in Low level communities of interests which decreases
the similarity between users.

Table 12: Performance of User Interest Detection

Similarity Jaccard Similarity Cosine Similarity
Level High Interest High Interest
Metric avg.inner avg._rand modularity avg_center avg_inner avg._rand modularity avg_center
Empirical 0.162 0.033 4.909 0.218 0.736 0.574 1.282 0.857
LDA 0.147 0.035 4.200 0.178 0.836 0.660 1.267 0917
SLPA 0.131 0.040 3.275 0.166 0.749 0.624 1.200 0.854
Clustering 0.130 0.041 3.171 0.161 0.763 0.622 1.226 0.875
Level Medium Interest Medium Interest
Empirical 0.135 0.039 3.462 0.171 0.573 0.602 0.952 0.761
LDA 0.131 0.039 3.359 0.177 0.900 0.612 1.471 0.948
SLPA 0.129 0.040 3.225 0.159 0.590 0.621 0.950 0.687
Clustering 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Level Low Interest Low Interest
Empirical 0.107 0.042 2.548 0.131 0.475 0.629 0.755 0.695
LDA 0.144 0.041 3.512 0.193 0.757 0.600 1.262 0.865
SLPA 0.121 0.039 3.103 0.155 0.702 0.625 1.123 0.844
Clustering 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4.5 Scalability

We also evaluated the scalability of each method. However, as these methods are
written in different programming languages, it is not fair to consider this as a precise
evaluation, but more as an indication. To increase the stability of the comparison, we
run experiments 10 times, and only listed the average values. We used a Java imple-
mentation of LDA algorithm. All the other methods were implemented in Python.
For our method, the time of topic detection was also counted in. For LDA and SLPA,
we set the iteration number at 100. We run the experiments on a computer with 3GHz
Intel i7 CPU and 8GB RAM. From the experiment, we could find that LDA, SLPA
and our method are linear in terms of the number of users. Although LDA algorithm
is theoretically O(nm) in each iteration, with n representing the number of users, and
m representing the number of tags for each user, when we test it on large datasets, it
clearly appears that only n actually has an impact. m changes very little, so it could
be regarded as linear. Besides, [13] proved that LDA model require a few hundreds of
iterations to obtain stable topic distribution. Our model does not have this limitation.

Detecting topics and overlapping communities in Question and Answer sites 25

700

*—x SLPA
+—— Clustering
»—+ LDA
e—e Empirical

600

500

200

100

O — |
1%00 2000 3000 4000 5000 6000 7000 8000 9000
Number of users

Fig. 8: Scalability of the compared user interest detection methods

4.6 Discussion

To sum up, most community detection algorithms work well on real-life social net-
works which contain many triangle-shape structures. The interactions between the
users in these networks are mainly based on their relationships. It is also noticeable
that the relationships which a user in such network can maintain are limited and
most likely restricted by the location (co-author networks in academia is also in this
situation), so the overall structure of the network is flatter, scattered and with many
triangle-shape structures. Comparatively, in Q&A sites, such as StackOverflow, there
are no fixed relationships between users. Users interact with each other based on their
own interests. And they are not aware of whom they are interacting with, so they will
not maintain explicit relationships. Besides, a user can interact with any other user
and mainly interacts with the ”gurus” (most of questions are answered by a small
group of people). So the overall structure of the network is octopus-shape [15] with
less triangle-shape structures. According to [22], the number of triangle-shape struc-
tures per user in twitter dataset is 821, while in our co-answer dataset, the number of
triangle-shape structure per user is 30 which is far less. So, graph-based community
detection methods fail in such situation. The result of SLPA algorithm shows that it
outputs one or two giant groups, together with many tiny groups that only contain
small number of users as depicted in Figure 5, where each color represents a detected
community. We can also see that the network contains less friangle-shape structures
and a high-density core. It also indicates that the network has huge overlaps. Since
clustering methods normally generate hard-partitions algorithm, they cannot detect
the overlapping communities which are typical in our case. Concerning the LDA-
based methods, on one hand, in our dataset, question tag lists are quite short, and
the experiment shows that our topic extraction method gives better results in this
situation. On the other hand, the probabilistic graphical model requires hundreds of
iterations to get stable results [13] which is more complicated and slower than our

26 Zide Meng et al.

method. Recalling our research questions (Can we detect communities of interests in
Q&A sites? Can we also identify the topics that attract them?) we believe we propose
a topic detection method which is very suitable for Q&A datasets and an efficient
user interest detection method to discover overlapping communities of interests.

5 Conclusion

In this paper, we addressed the problem of detecting overlapping communities of
interests in Q&A sites. By studying the Stackoverflow dataset and the LDA algorithm,
we proposed a tag tree based topic extraction model. We then exploited the extracted
topic information to detect overlapping communities of interests. We conducted a
comparative evaluation of different approaches of community detection on a dataset
from the popular Q&A site StackOverflow. The results indicate that for this kind
of web communities our method can be a good replacement for more complicated
methods in detecting overlapping communities of interests. There are also limitations
in our work and in particular our model requires each question to have several tags to
the question. There are many potential future directions for this work. An interesting
one is to track the evolution of communities of interests and the evolution of users’
interests.

Acknowledgment

The authors would like to thank StackOverflow for sharing their data. We also sin-
cerely thank volunteers for helping us label the dataset for evaluation. We thank the
ANR ocktopus project grant for the support of this research. We also appreciate very
helpful advices from anonymous reviewers.

References

1. Adamic, L.A., Huberman, B.A.: Power-law distribution of the world wide web. Science 287(5461),
2115-2115 (2000)

2. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks.
Nature 466(7307), 761-764 (2010)

3. Anderson, A., Huttenlocher, D.P., Kleinberg, J.M., Leskovec, J.: Discovering value from community
activity on focused question answering sites: a case study of stack overflow. In: KDD, pp. 850-858
(2012)

4. Blei, D.M., Ng, A.Y., Jordan, M.L.: Latent dirichlet allocation. the Journal of machine Learning
research 3, 993-1022 (2003)

5. Chang, S., Pal, A.: Routing questions for collaborative answering in community question answering.
In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, ASONAM 13, pp. 494-501. ACM, New York, NY, USA (2013)

6. Duan, L., Street, W.N., Liu, Y., Lu, H.: Community detection in graphs through correlation. In:
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 1376-1385. ACM (2014)

7. Fortunato, S.: Community detection in graphs. CoRR abs/0906.0612 (2009)

8. Gargi, U., Lu, W., Mirrokni, V.S., Yoon, S.: Large-scale community detection on youtube for topic
discovery and exploration. In: ICWSM (2011)

Detecting topics and overlapping communities in Question and Answer sites 27

9.

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Gargi, U., Lu, W., Mirrokni, V.S., Yoon, S.: Large-scale community detection on youtube for topic
discovery and exploration. (2011)

Gopalan, PK., Blei, D.M.: Efficient discovery of overlapping communities in massive networks. Pro-
ceedings of the National Academy of Sciences 110(36), 14,534-14,539 (2013)

Gregory, S.: Finding overlapping communities in networks by label propagation. New Journal of
Physics 12(10), 103,018 (2010)

Gregory, S.: Fuzzy overlapping communities in networks. Journal of Statistical Mechanics: Theory
and Experiment 2011(02), P02,017 (2011)

Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National academy of Sci-
ences of the United States of America 101(Suppl 1), 5228-5235 (2004)

Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant commu-
nities in networks. PloS one 6(4), €18,961 (2011)

Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure
in large social and information networks. In: Proceedings of the 17th international conference on
World Wide Web, pp. 695-704. ACM (2008)

Li, B., King, I.: Routing questions to appropriate answerers in community question answering ser-
vices. In: Proceedings of the 19th ACM international conference on Information and knowledge
management, pp. 1585-1588. ACM (2010)

Li, D., He, B., Ding, Y., Tang, J., Sugimoto, C., Qin, Z., Yan, E., Li, J., Dong, T.: Community-based
topic modeling for social tagging. In: Proc. of the 19th ACM International Conference on Information
and Knowledge Management, CIKM ’10, pp. 1565-1568. ACM, New York, NY, USA (2010)

. McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-based overlapping

seed expansion. In: Advances in Social Networks Analysis and Mining (ASONAM), 2010 Interna-
tional Conference on, pp. 112-119. IEEE (2010)

Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semantics:
Science, Services and Agents on the World Wide Web 5(1), 5-15 (2007)

Ng, A.Y., Jordan, MLI., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: ADVANCES
IN NEURAL INFORMATION PROCESSING SYSTEMS, pp. 849-856. MIT Press (2001)

Sun, X., Lin, H.: Topical community detection from mining user tagging behavior and interest. JA-
SIST 64(2), 321-333 (2013)

Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In: Proceedings of the
20th international conference on World wide web, pp. 607-614. ACM (2011)

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic
social networks. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 990-998. ACM (2008)

Xie, ., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: The state-of-the-
art and comparative study. ACM Comput. Surv. 45(4), 43 (2013)

Xu,Z.,Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed graph clustering.
In: SIGMOD Conference, pp. 505-516 (2012)

Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: Data
Mining (ICDM), 2013 IEEE 13th International Conference on, pp. 1151-1156. IEEE (2013)

Yang, L., Qiu, M., Gottipati, S., Zhu, F., Jiang, J., Sun, H., Chen, Z.: Cqarank: jointly model topics
and expertise in community question answering. In: Proceedings of the 22nd ACM international
conference on Conference on information & knowledge management, pp. 99-108. ACM (2013)
Zhang, H., Qiu, B., Giles, C.L., Foley, H.C., Yen, J.: An lda-based community structure discovery
approach for large-scale social networks. In: ISI, pp. 200-207 (2007)

Zhou, T.C., Lyu, M.R., King, I.: A classification-based approach to question routing in community
question answering. In: Proceedings of the 21st International Conference Companion on World Wide
Web, WWW ’12 Companion, pp. 783-790. ACM, New York, NY, USA (2012)

