
HAL Id: hal-01187400
https://hal.science/hal-01187400

Submitted on 13 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplified detection and labeling of overlapping
communities of interest in question-and-answer sites

Zide Meng, Fabien Gandon, Catherine Faron Zucker

To cite this version:
Zide Meng, Fabien Gandon, Catherine Faron Zucker. Simplified detection and labeling of overlapping
communities of interest in question-and-answer sites. IEEE/WIC/ACM 2015 - International Confer-
ence on Web Intelligence and Intelligent Agent Technology (WI-IAT), Dec 2015, Singapore, Singapore.
pp.107-114, �10.1109/WI-IAT.2015.184�. �hal-01187400�

https://hal.science/hal-01187400
https://hal.archives-ouvertes.fr

Simplified detection and labeling of overlapping
communities of interest in question-and-answer sites

Zide Meng
INRIA Sophia Antipolis Méditerranée

France
zide.meng@inria.fr

Fabien Gandon
INRIA Sophia Antipolis Méditerranée

France
fabien.gandon@inria.fr

Catherine Faron Zucker
University Nice Sophia Antipolis, CNRS, I3S

France
faron@unice.fr

Abstract—In many social networks, people interact based on
their interests. Community detection algorithms are then useful
to reveal the sub-structures of a network and in particular
interest groups. Identifying these users’ communities and the
interests that bind them can help us assist their life-cycle.
Certain kinds of online communities such as question-and-answer
(Q&A) sites or forums, have no explicit social network structure.
Therefore, many traditional community detection techniques do
not apply directly. In this paper, we propose TTD (Topic Trees
Distributions) an efficient approach for extracting topic from
Q&A sites in order to detect communities of interest. Then
we compare three detection methods we applied on a dataset
extracted from the popular Q&A site StackOverflow. Our method
based on topic modeling and user membership assignment is
shown to be much simpler and faster while preserving the quality
of the detection.

I. INTRODUCTION

Question-and-answer sites (Q&A sites) initially aimed
at enabling users to ask questions to a community of ex-
perts. Since these user-generated contents can be viewed and
searched again, people with the same or similar questions can
find answers by browsing or searching the questions that were
already answered. On one hand, Q&A sites have become huge
repositories of question-answer content which support highly
valuable and highly reusable knowledge [1]. On the other hand,
Q&A sites also contain a large number of users who keep
contributing questions and answers. And most of them are
more likely to ask questions on topics they are interested in
and answer questions in topics they are experts of.

Therefore, we believe that there are two main resources
in Q&A sites: the users’ network and the Q&A content.
From a user’s perspective, detecting communities of interests
is useful to reveal the sub-structures of the user network
and identify relevant peers. From the perspective of content,
extracting topics is required to uncover the key subjects
from massive content. So we are interested in the following
research questions: Can we detect communities of interests
in Q&A sites? Can we identify the common topics that bind
them? Detecting communities of interests can contribute to
the question routing problem [2][3], which is very important
in Q&A sites optimization problems. It can also contribute to
the community management, for instance by allowing to track
the interest evolution or community evolution in Q&A sites.

Many community detection algorithms have been devel-
oped to discover sub-structures in social networks. Q&A sites
support social networking, however, unlike networks such

as Facebook, there are no explicit relationship-based links
between their users. In fact, Q&A sites capture the connection
of users by question-answer links or co-answer links. The users
are not mainly concerned with nor aware of the links existing
between them. The social network is said to be implicit.
As a result, compared with other classical social networks,
Q&A networks contain more star-shape structures (many users
linked to a central user) than triangle-shape structures (users
linked to each other). Moreover, people have multiple interests
i.e. they belong to several communities of interests. It is
therefore important to be able to detect their overlapping
communities of interests.

We first tried to adapt a document clustering algorithm to
the user clustering problem, similarly to [4]: we applied the
classic LDA [5] algorithm to assign each user into several topic
clusters, by replacing in this algorithm the documents by the
users, and the document words by the tags acquired by users.
The results were encouraging, however, the complexity of the
probabilistic model was prohibitive. When analyzing the LDA
model, we found that it largely exploits tags’ co-occurrence.
This inspired us to design a much simpler and faster algorithm
to detect topics. Then, based on the detected topics, we were
able to identify the users’ interests. So the main contributions
of this paper are, (1) a topic detection method to extract topics
based on question tags, and (2) a user interest detection method
to discover overlapping communities of interests.

The rest of the paper is organized as follows. Firstly, we
survey the state of the art of community detection approaches,
and point out the differences among these works. Secondly,
we introduce an empirical method to detect topics. Then
we assign each user to these detected topics based on their
interaction behaviors. Thirdly, we report the results of several
experiments. They show that our approach is much faster
and simpler, compared with other classic approaches, e.g.
LDA [5], SLPA [6], and a Hierarchical clustering algorithm,
while preserving the quality of the detection. Finally, we
discuss about those methods and conclude on our contribution.

II. RELATED WORK

We distinguish between three kinds of approaches for com-
munity detection, depending on their characteristics: Graph-
based methods are based on network structure; Clustering
methods are based on the similarity of user profiles; LDA-
based methods use probabilistic graphical model.

A. Graph-based methods

A first and direct solution is to extract an implicit net-
work structure (such as question-answer network, co-answer
network, etc.) from interaction traces to come down to a
traditional community detection problem on social networks.
Since intuitively, users are grouped by interests, and most of
their interactions are based on shared interests, it is reasonable
to induce a network structure from these interactions and then
run community detection algorithms on the network. Many
classical algorithms have been developed such as [6][7]. There
are many constraints when adopting these methods. First, they
do not take into account node attributes nor link attributes.
Take co-answer network as an example, where nodes represent
users and links represent users answering the same questions.
In case two users are connected, these methods can only
indicate that they have answered the same questions many
times. They cannot provide the information whether they have
answered questions on the same topic or on different topics.
Second, some of the works adopting this approach cannot
detect overlapping communities, while other works such as [6]
address this problem.

B. Clustering methods

Community detection can also be envisioned as a clustering
problem. By computing similarities between user profiles, one
can detect groups according to clustering results. The choice of
the similarity metrics is quite important and largely influences
clustering results. To find similar interests, we first have to
define the distance between user’s interests and the definition
of this distance has a strong influence on the clustering
results. For instance, we can consider a bag of tags with their
weights to represent an interest, then compute the weighted
tag distance to define the interest distance between two users.
Clustering methods, such as [8][9], group users according to
their features. They do not take the network structure into
consideration. Moreover, some clustering algorithms normally
output hard-partition communities, one user can only be as-
signed to one interest group. However, in the scenario we are
interested in, a user often has more than one interest and should
be assigned to more than one group simultaneously. This is a
constraint for those hard-partition algorithms. [10] use spectral
clustering to detect topics from the graph of tag co-occurrence.
Compared to it, our approach is more efficient since we only
run spectral clustering on a co-occurrence graph of selected
tags (only 10% of all the tags). Besides, [10] does not give
any details on how to compute the topic tag distribution and
user topic distribution, while we do.

C. LDA-based models

A third approach consists in using a probabilistic graphical
model for both the user profiles and the network structure
to solve community detection problem. For example, [11]
transform links to binary node attributes, then use a LDA-
based model to detect communities. [12] use a LDA-based
method on social tagging systems where users label resources
with tags, but they do not consider the problem of overlapping
community detection. [13] use an extended LDA-based model
to analyze academic social networks in order to find expert au-
thors, papers and conferences. A problem of these LDA-based
models is that they normally assume soft-membership [14]

which means that a user cannot have high probabilities to
belong to several communities simultaneously. That is to say
that the more communities a user belongs to, the less it belongs
to each community (simply because probabilities have to sum
to one). Moreover, [15] and [16] also use statistic model to
detect overlapping communities. The difference is that LDA-
based models normally integrate topic detection which can be
used to interpret detected communities while the two above
cited methods only detect overlapping communities without
any topic information on each detected communities.

D. Short Summary

Table I summarizes the main features of the three ap-
proaches. Graph-based approaches normally use link infor-
mation while ignoring node attributes. Some of them cannot
detect overlapping communities or provide membership ratios
which are weights denoting to what extent a user belongs
to a community. Most of these methods cannot identify the
topic in each detected community. Clustering approaches use
node attributes to group similar users. Some of their results
are hard-partition communities, with no overlapping and no
membership information. LDA-based models overcome the
shortcomings of graph-based and clustering approaches, using
both node attributes and link information. Besides, LDA-based
models normally combine community detection with topic de-
tection, which could be used to interpret detected communities.
Our proposed method is similar to LDA-based methods, in that
it also enables to detect overlapping communities and identify
the topics at the same time. It differs from LDA-based methods
in that it enables to consider a user having high probabilities
to belong to several communities simultaneously while these
methods normally assume soft-membership [14]. In addition,
our proposed method is much simpler and faster than LDA-
based methods while preserving the quality of the detection.

TABLE I: Comparison of the main approaches and our method

uses nodes uses links overlap membership topic
Graph-based no yes few few no

Clustering methods yes no few few no
LDA-based yes yes yes yes yes
Our-method yes yes yes yes yes

III. TTD: TOPIC TREES DISTRIBUTIONS MODEL

A. Problem Definition

In StackOverflow1, a user submits a question, then assigns
between 1 and 5 tags to indicate the topic of the question. Other
users who are interested in the question may provide answers
to the question. As the tags attached to the question can reflect
its topic, users answering the question can be considered as
interested by this topic. Let U = {u1, u2...un} be the set
of users, Q = {q1, q2...qm} the set of questions and T =
{t1, t2...tv} the set of tags. We aim at (1) extracting topics
distribution Topic = {topic1, topic2...topick} from T , and
for each topick, defining topick = {pk1, pk2...pkv} where pki
denotes the probability of tag ti to be related to topick; and
then (2) detecting user’s interests. For a user ui ∈ U , we define

1http://www.stackoverflow.com/

Ii = {Ii1, Ii2...Iik} where Iik denotes the probability of ui to
be interested in topick.

B. First-Tag Enrichment

When sorting the tags of a question by their global fre-
quency, we found that normally the first tag of a question is
much more general and indicates the domain of the question.
For example, a question tagged with {c#, iostream, fstream}
is related to c#; A question tagged with {html, css, height} is
related to html. However, there are also some questions which
have less tags and, in this case, the tags are less popular, like
a question tagged with {ant} or a question tagged with {qt,
boost}. For these questions, the main domain is implicit. Our
experiment dataset shows that nearly 12% questions only have
one tag, and nearly 25% questions only have two tags. We
propose an approach to enrich a question with a first tag when
needed. It has two steps, the first one consists in computing
the first-tag distribution. For example, as shown in Figure 1,

Fig. 1: Example of computing a first-tag distribution

let us consider the three tag lists, {html, css, height}, {html,
css, layout}, and {c#, gui, layout}, respectively associated to
questions Q1, Q2, Q3 . The first-tag frequency map for html
is {html:2}, the first-tag frequency map for css is {html:2},
and the first-tag frequency map for layout is {html:1,c#:1}.
Given a tag, the probability of its first-tag is computed by
equation 1, which is the MLE (most likelihood estimation)
of the probability p(first tag|tag), where I(tag) denotes
the occurrence of tag and I(first tag, tag) denotes the co-
occurrence of first tag and tag.

p(first tag|tag) =
p(first tag, tag)

p(tag)
=
I(first tag, tag)

I(tag)
(1)

We compute the probabilities just by normalizing the first-tag
frequency map. In the example, the first-tag frequency map
for css becomes {html:1.0} and the first-tag frequency map
for layout becomes {html:0.5,c#:0.5}. In order to lower the
probabilities of low frequency tags as first-tag, we use the
squashing function 2:

p(first tag|tag) =
I(first tag, tag)

I(tag)
∗ σ(I(first tag))

=
record freq

sum(record freq)
∗

1

(1 + e−k∗freq)

(2)

where, record freq denotes the co-occurrence of first-tag and
tag, sum(record freq) denotes the sum of these recorded
frequencies, freq denotes the global occurrence of the first-tag,
σ(x) is sigmoid function, which is used as a squashing function
for numerical stability. The value of sigmoid function is
between 0 and 1. However, the shape of this function is largely
determined by parameter k. Considering the maximum value

of tag frequency (tag c#:31, 801) in our dataset, we chose k as
0.001 (dotted line), which will lower the probabilities of low
frequency tags as first-tag while maintaining the probabilities
of high frequency tags as first-tag. Figure 2 recalls the shape
of the sigmoid function for different values of k.

Fig. 2: Shape of function 1
(1+e−k∗z)

for different values of k

For example, if the first-tag frequency map for css is
{html:10, jquery:2}, then, when normalizing first-tag html,
record freq = 10, sum(record freq) = 12, p(html) =
5, 552. As a result, p(html|css) = 0.8301. Similarly, for each
tag, we provide a list of enriching first-tags with estimated
probabilities.

The second step of our approach consists in choosing a
first-tag to enrich each question. Given a question’s tag list,
we fetch the top 5 first-tags (with the highest probabilities).
Then we accumulate the corresponding probabilities with a
discount taking into account the position of the tag in the tag
list associated to the question, as shown in equation 3.

pj = p1,j + p2,j ∗ dis+ ...+ pk,j ∗ disk−1
forj ∈ [1, V], k ∈ [1, K] (3)

where pj denotes the probability of the first-tag for a given
question, pk,j denotes the probability for tag k to have the tag
j as its first-tag, V denotes the number of all the first-tags,
K denotes the number of tags in the given question and dis
denotes the discount due to the position.

Then we consider the first-tag with the highest probability
as the enriching first-tag. If this first-tag already exists in the
original tag list, we simply skip the insertion, or else we insert
it at the first position of the question’s tag list. We processed
242, 552 tag lists from the StackOverFlow Q&A site, and our
method enriched 33, 622 of them (13.5%). Table II presents
the results of the enrichment of 8 tag lists (enriched tags are
in bold).

C. Topic Extraction

From the observation of our dataset, we confirmed the
natural intuition that high frequency tags are more generic
and low frequency tags are more specific, and most of the
low frequency tags are related to a more generic tag. Similar
observation was also found in [17]. Besides, [18] shows
that tag frequency in Q&A sites also satisfies power law

TABLE II: Original and enriched tag lists

ant java, ant
qt, boost c++, qt, boost

django, hosting python, django, hosting
xslt, dynamic, xsl xml, xslt, dynamic, xsl

sql-server-2005, sorting sql, sql-server-2005, sorting
tomcat, grails, connection java, tomcat, grails, connection
cocoa, osx, mac, plugins objective-c, cocoa, osx, mac, plugins

spring, j2ee, module, count java, spring, j2ee, module, count

distribution [19]. For example, for a question tagged with
{c++, iostream, fstream} (with tags sorted according to their
frequencies), we could find that it was related to c++ and to the
iostream topic of c++, and more specifically, that it focused
on fstream. This inspired us to build a tag tree to represent it
and compute the probability for a tag to be related to a topic.
Figure 3 illustrates the process of building a tag tree. Figure
4 illustrates an example of html’s tree. Our topic extraction

Fig. 3: Example of a tag tree

method is described in Algorithm 1. In the build trees process

input : enriched tag list of questions,topic number K
output: topic-tag distribution

1 /*build trees process, shown in Fig 3*/
2 trees = null /* initialize */
3 foreach question’s taglist do
4 trees.insert(taglist)
5 end
6 /*build affinity matrix for root tags*/
7 root tags = trees.get root tags()
8 affinities matrix = build affinity(root tags)
9 /*run spectral-clustering on affinity matrix*/

10 groups = spectral clustering(affinities matrix,K)
11 /*combine tree according to groups*/
12 new trees = combine tree(trees,groups)
13 /*compute topic-tag distribution*/
14 topic distributions = compute distribution(new trees)

Algorithm 1: Topic extraction

(lines 1-5), we build a tag tree according to the position of tags
in a question, and record the occurrence of each node. For
example, let us consider again the tag lists of question Q1,
Q2, Q3 in Figure 1. Based on them, we construct two trees.
The root of the first tree is html, the occurrence of this node is
2, it has only one child css, which has 2 occurrences, and this
node has two children, layout and height, and each one occurs
1 time. The root of the second tree is c# with 1 occurrence.
By processing all the tag lists, many trees are generated. We
then construct an affinity matrix of the root nodes (lines 6-8).
Since we applied first-tag enrichment, the number of root tags

is not very large. The similarity of two root nodes is computed
according to equation 4,

Simi(root i, root j) =
I(root i, root j)

(I(root i) + I(root j))
(4)

where I(root i, root j) denotes the co-occurrence of the two
root tags, and I(root i) and I(root j) denote the occurrence
of tag root i and tag root j respectively. Then we perform
a spectral clustering [20] on the affinity matrix to group
these root nodes (line 9-10). Each group form what we will
call a topic. As spectral clustering requires to select the
desired number of topics, we choose the same number 30
as [10], which has proved to be a reasonable setting for the
Stackoverflow dataset. We then combine trees if their root
nodes belong to the same topic (lines 11-12). This process
leads to a forest where each tree represents a topic. Then, in
the compute topic-tag distribution process (lines 13-14), for
each topic tree, we compute p(tag|topic) by using MLE (the
most likelihood estimation), according to equation 5:

p(tag|topic) =
p(tag, topic)

p(topic)
=

I(tag) + 1

I(sum(tag) +N)
(5)

where I(tag) denotes the number of occurrences of tag in the
topic tree, and I(sum(tag)) denotes the total number of occur-
rences of all tag occurrences in the topic tree. Compared with

Fig. 4: html’s tag tree

LDA-based model, our model could have zero-probabilities
problem, which means that there exists some less popular or
new tags that are related to certain topics with 0 probability
due to no evidence of co-occurrence. For example, if tag
zombie-process never occurs in a html-related tag tree, then the
probability of tag zombie-process to be related to html-related
topics is 0, which could lead to some problems when dealing
with young datasets. It is quite easy to fix it just by using
Laplace smoothing, as shown in equation 5. Table III shows
the top tags and their probabilities detected by out method.

We used the spectral clustering implementation of scikit-
learn toolkit2. We only run it on the root nodes, which have
quite a small size (around 1175 nodes with the tag enrichment
process), which means we only need to build affinity matrix
on these root nodes and the overall cost is acceptable.

D. User Interest Detection

In StackOverflow, users answering a question can be con-
sidered as interested in the tags of the question. As a result, a
starting point for user interest detection is to model the initial
situation as follows: a user answering a question acquires
the tags attached to this question and gradually, each user
acquires a list of tags. So we represent a user by a tag list:
U = {Ui|i = 1, ..., n}, Ui = {tagi|i = m,n, ..., k}, and
our goal is, for each user Ui, to find Ii = {Ii1, Ii2...Iik}
where Iik denotes the probability of user Ui to be related to
topick. As we already have a topic-tag distribution we simply
compute user-topic distribution according to equation 6 where
Pt,k denotes the probability of tag t to be related to topic k. We
then normalize the probabilities between 0 and 1 by dividing
the global max value. We use the log function for numerical
stability. Here we do not apply normalization at the level of the
user, because like [14], we believe that each user could have
a high interest in two or more topics simultaneously, while
most of the probabilistic graphical models including LDA and
PLSA require the sum of all the probabilities is 1, which
means that a user cannot have high probabilities to many topics
simultaneously. Our method does not have this limitation. Then
we identify users’ communities of interests based on the user-
topic distribution: a user having a high probability for a topic
should be a member of the community of the topic.

Ii,k = log

{
v∑

t=1

Pt,k + 1

}
(6)

IV. EXPERIMENTS AND EVALUATION ON
STACKOVERFLOW DATA

We conducted experiments on the dataset of the activity
on the popular Q&A site StackOverflow between 2008 and
2009, which is available 3, to evaluate the performance of
our approach compared to three other community detection
algorithms. The total number of users is 103K. Among them,
47K users submitted at least one question, and 54K users
answered at least one question. The total number of tags
attached to questions is 24K, and 20% of them are used more
than 10 times. The frequency of tags follows a power law
distribution. The total number of posts is 1.1M; among them
there are 242K questioners and 870K answers.

A. Performance of Topic Extraction

We use the Perplexity [5] metric to measure the topic
extraction performance. It is a common metric in the topic
modeling area, measuring how well the words in test docu-
ments are represented by the word distribution of extracted
topics. The intuition is that a better model will tend to assign
higher probabilities to the test dataset, corresponding to a lower
perplexity value. We split the dataset (question tag lists), 80%

2Scikit-learn toolkit:
http://scikit-learn.org/stable/modules/clustering.html#spectral-clustering
3https://archive.org/details/stackexchange

as training set, 20% as testing set. We run LDA and our method
on the training set to get the topic distribution. Then for a test
set of M questions’ tag lists (Nd denotes the number of tags
in dth question) the Perplexity score is computed as shown in
equation 7:

Perplexity(Dtest) = exp

{
−

∑M
d=1 log p(tag)∑M

d=1Nd

}
(7)

In our model, p(tag) is computed by p(topic|question) ∗

Fig. 5: Topic extraction performance comparison

p(tag|topic). In order to obtain p(topic|question) distribution,
we just compute it similarly to user interest detection (see
Section III-D), by replacing user tag lists by question tag
lists. The only difference is that we normalize the question
topic distribution to make sure that the sum of a question’s
topic distribution is 1. We show and compare the average
perplexity score in Figure 5. empirical represents our method,
empirical noEnrich represents our method without first-tag
enrichment. We find that our method could outperform the
state-of-the-art topic model LDA. The reason is, compared
with traditional document topic modeling use cases, question
tag lists in Q&A sites are very short, and LDA performs poorly
in this situation. Besides, our first-tag enrichment method can
improve the performance when the topic number is not very
large. Another point is that, benefiting from a tree structure
for topics, we can easily extract sub-topic from a given topic.
Besides, our community detection method is based on a topic
model, so extracting these sub-topics can help us find sub-
communities within a detected community. Table IV shows
the top tags of java’s sub-topic html and of topic html. We
can find that the differences are noticeable for topics: a user
who is interested in topic html is not necessarily interested in
java’s sub-topic html and vice versa.

B. Performance of User Interest Detection

Traditional community detection algorithms are based on
the network structure. As there is no explicit network in
our dataset and in order to compare our work with other
approaches on the same dataset, we extracted a network of
interactions between users: a co-answer network inspired by
the notion of co-view network introduced in [9]. The idea
behind is that if two users answer the same question they

TABLE III: Top tags and their probabilities for some topics
computed by our method

topic4 topic5 topic6
iphone 0.203 git 0.198 sql 0.177
objective-c 0.112 svn 0.096 mysql 0.122
ios 0.109 version-control 0.045 sql-server 0.074
xcode 0.042 github 0.033 database 0.040
cocoa-touch 0.021 tfs 0.033 oracle 0.030
ipad 0.020 maven 0.029 sql-server-2008 0.029
cocoa 0.018 tortoisesvn 0.018 tsql 0.026
uitableview 0.012 msbuild 0.016 query 0.025
ios5 0.010 jenkins 0.015 sql-server-2005 0.019
core-data 0.009 tfs2010 0.014 database-design 0.011

topic12 topic13 topic14
html 0.214 javascript 0.264 machine-learning 0.247
css 0.201 jquery 0.114 artificial-intelligence 0.130
xhtml 0.017 html 0.035 neural-network 0.062
web-development 0.016 ajax 0.031 classification 0.046
ie 0.012 css 0.016 data-mining 0.037
css-layout 0.010 firefox 0.013 svm 0.031
div 0.010 dom 0.011 weka 0.025
layout 0.010 php 0.011 libsvm 0.015
firefox 0.009 ie 0.010 nlp 0.024
ie6 0.009 web-development 0.008 bayesian 0.011

TABLE IV: top tags for java’s sub-topic html and mysql,
denoted by java html, and java mysql respectively, compared
with topics html and mysql

java html jsp swing xml parsing jsf jeditorpane pdf applet dom
html css xhtml web-development table div ie layout css-layout firefox

java mysql jdbc hibernate database tomcat prepared-statement spring connection-pooling connection
security

mysql database query mysql-query ruby-on-rails database-design performance stored-
procedures innodb optimization

share some of their interests. So, the co-answer network, to
some extent, can reflect the common interests between users.
We filtered the co-answer links with a rule stating that a link
is kept if two users answer the same questions more than 10
times (we varied this parameter by 15, 20, 25, the results
are similar, so here we report results with 10). Based on
the noise-less dataset obtained, we implemented three well
known community detection methods in order to compare
our approach with them. In order to evaluate the results of
overlapping community detection, for each user, a method
should output 1 ∼ 3 community labels with corresponding
probabilities to indicate to what extent the user is interested in
the community. Then we define three levels of interests: High,
Medium, Low according to the probabilities. In addition, we set
the community number to 30 for all these methods empirically.

• SLPA [6]: An overlapping community detection
method inspired by a classical Label propagation al-
gorithm (LPA). SLPA algorithm can evaluate to which
extent a user belongs to a community by the received
propagated label (a ’Post-process’ in SLPA algorithm).
So, it can output more than one community label
according to these frequencies.

• LDA: Similar to [18], we run LDA to build a user-
topic-tag model on the given dataset, users are repre-
sented by their tag list. As the output contains a user-
topic distribution, we just sort the distribution for each
user and choose the top 3 topic labels as community
label together with their probabilities.

• Clustering: We used the implementation of hierarchi-
cal clustering from scikit-learn toolkit4. As clustering

4http://scikit-learn.org/stable/modules/clustering.html#
hierarchical-clustering

algorithms are hard-partitioned, it can only generate
one group label for each user.

• Empirical: it is our method. We just sort the results
of user interest detection (section III-D) and choose
the top 3 as community label together with their
probabilities.

Our aim was to evaluate the similarity between users within a
detected community of interest. We mainly used the jaccard
similarity and cosine similarity of two user’s tag lists to
evaluate the similarity of two user’s interests. We used a
modified modularity metric to compute the difference between
the average similarity between the users within a community
(avg inner) and the average similarity between the users in
a community and some user randomly chosen from the whole
dataset (avg rand). This is captured in Equation 8, where N
represents the number of users in a community C, and Simi
denotes the similarity function. Rand U represents users that
are randomly chosen from the whole data set. A higher
value of avg inner denotes that users within a community
are very similar. A lower value of avg rand denotes that
users of a community are not very similar to random users.
So a higher value of modularity means a larger difference
between avg inner and avg rand, which is considered as
a better partition of communities. As the metric has random
variables, we run the experiments 10 times and each time
we used different random users. Besides, we created a center
user in each community by averaging all users’ tag lists and
frequencies, then we computed the average similarity between
each user in a community and this center user as avg center.
As introduced before, each method gives 1 ∼ 3 community
labels for each user to indicate the level of interest. So we
evaluated each level of interest respectively.

Modularity(C) =
Avg inner(

∑N
i=1

∑N
j=1 Simi(U i, U j))

Avg rand(
∑N

i=1

∑50
j=1 Simi(U i,RandU j))

(8)

Experiment results are shown in Table V. We run each method
on the co-answer dataset for 10 times, and listed the average
value. We found that our method is better than the three other
methods in detecting High level communities of interests with
both metrics. The reason why our method is not very good
on Low level interest is that it allows users to belong to
more than one community with high probabilities. This puts
some irrelevant users in Low level communities of interests
which decreases the similarity between users. Table VI shows
some users and their interests detected with our method and
their top 10 tags. The first row contains user ids, the second
row contains their detected communities of interests with their
probabilities. The following ten rows show the top 10 tags for
each user. We replaced community labels by names assigned
according to the tags in each topic interest.

C. Scalability

We also evaluated the scalability of each method. How-
ever, as these methods are written in different programming
languages, it is not fair to consider this as a precise evaluation,
but more as an indication. To increase the stability of the
comparison, we run experiments 10 times, and only listed
the average values. We used a Java implementation of LDA
algorithm. All the other methods were implemented in Python.
For our method, the time of topic detection was also counted

TABLE V: Performances of the compared user interest detection methods
Similarity Jaccard Similarity

Level High Interest Medium Interest Low Interest
Metric avg inner avg rand modularity avg center avg inner avg rand modularity avg center avg inner avg rand modularity avg center

Empirical 0.162 0.033 4.909 0.218 0.135 0.039 3.462 0.171 0.107 0.042 2.548 0.131
LDA 0.147 0.035 4.200 0.178 0.131 0.039 3.359 0.177 0.144 0.041 3.512 0.193
SLPA 0.131 0.040 3.275 0.166 0.129 0.040 3.225 0.159 0.121 0.039 3.103 0.155

Clustering 0.130 0.041 3.171 0.161 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Similarity Cosine Similarity

Level High Interest Medium Interest Low Interest
Metric avg inner avg rand modularity avg center avg inner avg rand modularity avg center avg inner avg rand modularity avg center

Empirical 0.736 0.574 1.282 0.857 0.573 0.602 0.952 0.761 0.475 0.629 0.755 0.695
LDA 0.836 0.660 1.267 0.917 0.900 0.612 1.471 0.948 0.757 0.600 1.262 0.865
SLPA 0.749 0.624 1.200 0.854 0.590 0.621 0.950 0.687 0.702 0.625 1.123 0.844

Clustering 0.763 0.622 1.226 0.875 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE VI: Examples of user interests detected with our
empirical method

user 10224 user 103043 user 113570
database (0.805)
c#-dev (0.081)

java-dev (0.664)
database (0.105)

c#-dev (0.393)
web-dev (0.328)

sql-server (21) java (135) c# (107)
sql (21) swing (28) jquery (89)
tsql (6) oracle (27) javascript (56)
performance (4) sql (23) .net (47)
database (4) subjective (15) asp.net (27)
stored-procedures (3) windows (13) css (23)
sql-server-2005 (3) eclipse (12) regex (20)
.net (3) best-practices (12) html (20)
mysql (2) plsql (10) iphone (12)
sql-server-2000 (2) regex (10) string (10)
user 24181 user 34509 user 30461
web-dev (0.743), database
(0.072)

c-dev (0.663), linux-dev
(0.083)

ios-dev (0.885), linux-dev
(0.020)

php (304) c++ (703) cocoa (333)
javascript (193) c (187) objective-c (184)
mysql (116) templates (62) iphone (47)
html (86) stl (53) cocoa-touch (39)
css (57) linux (48) osx (35)
regex (40) subjective (45) mac (34)
jquery (37) pointers (44) iphone-sdk (20)
sql (27) java (42) xcode (18)
ajax (26) bash (40) cocoa-bindings (18)
apache (23) boost (31) core-graphics (18)

in. For LDA and SLPA, we set the iteration number at 100.
We run the experiments on a computer with 3GHz Intel i7
CPU and 8GB RAM. From the experiment, we could find that
LDA, SLPA and our method are linear in terms of the number
of users. Although LDA algorithm is theoretically O(nm) in
each iteration, with n representing the number of users, and
m representing the number of tags for each user, when we test
it on large datasets, it clearly appears that only n actually has
an impact. m changes very little, so it could be regarded as
linear. Besides, [21] proved that LDA model requires a few
hundreds of iterations to obtain stable topic distribution. Our
model does not have this limitation.

D. Discussion

To sum up, most community detection algorithms work
well on real-life social networks which contain many triangle-
shape structures. The interactions between the users in these
networks are mainly based on their relationships. It is also
noticeable that the relationships which a user in such net-
work can maintain are limited and most likely restricted by
the location (co-author networks in academia is also in this
situation), so the overall structure of the network is flatter,
scattered and with many triangle-shape structures. Compar-
atively, in Q&A sites, such as StackOverflow, there are no
fixed relationships between users. Users interact with each
other based on their own interests. And they are not aware
of whom they are interacting with, so they will not maintain
explicit relationships. Besides, a user can interact with any
other user and mainly interacts with the ”gurus” (most of

Fig. 6: Scalability of the compared user interest detection
methods

questions are answered by a small group of people). So the
overall structure of the network is octopus-shape [22] with
less triangle-shape structures. According to [23], the average
number of triangle-shape structures per user in twitter dataset
is around 35714, while in our co-answer dataset, the number
of triangle-shape structure per user is around 30 which is
far less. So, graph-based community detection methods fail
in such situation. The result of SLPA algorithm shows that
it outputs one or two giant groups, together with many tiny
groups that only contain a small number of users as depicted
in Figure 7, where each color represents a detected community.
We can also see that the network contains less triangle-
shape structures and a high-density core. It also indicates
that the network has huge overlaps. Since clustering methods
normally generate hard-partitions communities, they cannot
detect the overlapping communities which are typical in our
case. Concerning the LDA-based methods, on one hand, in our
dataset, question tag lists are quite short, and the experiment
shows that our topic extraction method gives better results in
this situation. On the other hand, the probabilistic graphical
model requires hundreds of iterations to get stable results [21]
which is more complicated and slower than our method. We
also conducted similar experiments on a Flickr dataset in
order to show our method is not specific to StackOverflow.
Recalling our research questions (Can we detect communities
of interests in Q&A sites? Can we also identify the topics that
attract them?) we believe we propose a topic detection method
which is very suitable for Q&A datasets and an efficient user

Fig. 7: Illustration of co-answer-network

interest detection method to discover overlapping communities
of interests.

V. CONCLUSION

In this paper, we addressed the problem of detecting
overlapping communities of interests in Q&A sites. By study-
ing the Stackoverflow dataset and the LDA algorithm, we
proposed TTD (Topic Trees Distributions) a tag tree based
topic extraction model. We then exploited the extracted topic
information to detect overlapping communities of interests. We
conducted experiments on a dataset from the popular Q&A site
StackOverflow to compare different approaches. The results
indicate that for this kind of web communities our method
can be a good replacement for more complicated methods in
detecting overlapping communities of interests. There are also
limitations in our work, in particular our model requires each
question to have several tags to the question. There are many
potential future directions for this work. An interesting one
is to track the evolution of communities of interests and the
evolution of users’ interests.

ACKNOWLEDGMENT

The authors would like to thank StackOverflow for sharing
their data. We also sincerely thank volunteers for helping us
label the dataset for evaluation. We thank the ANR-12-CORD-
0026 ocktopus project grant for the support of this research.
We also appreciate very helpful advices from anonymous
reviewers.

REFERENCES

[1] A. Anderson, D. P. Huttenlocher, J. M. Kleinberg, and J. Leskovec,
“Discovering value from community activity on focused question an-
swering sites: a case study of stack overflow,” in KDD, 2012, pp. 850–
858.

[2] B. Li and I. King, “Routing questions to appropriate answerers in com-
munity question answering services,” in Proceedings of the 19th ACM
international conference on Information and knowledge management.
ACM, 2010, pp. 1585–1588.

[3] T. C. Zhou, M. R. Lyu, and I. King, “A classification-based approach
to question routing in community question answering,” in Proceedings
of the 21st International Conference Companion on World Wide Web,
ser. WWW ’12 Companion. New York, NY, USA: ACM, 2012, pp.
783–790.

[4] D. Li, B. He, Y. Ding, J. Tang, C. Sugimoto, Z. Qin, E. Yan, J. Li,
and T. Dong, “Community-based topic modeling for social tagging,” in
Proc. of the 19th ACM CIKM, ser. CIKM ’10. New York, NY, USA:
ACM, 2010, pp. 1565–1568.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[6] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state-of-the-art and comparative study,” ACM
Comput. Surv., vol. 45, no. 4, p. 43, 2013.

[7] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, vol. 466, no. 7307, pp.
761–764, 2010.

[8] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, “A model-based
approach to attributed graph clustering,” in SIGMOD Conference, 2012,
pp. 505–516.

[9] U. Gargi, W. Lu, V. S. Mirrokni, and S. Yoon, “Large-scale community
detection on youtube for topic discovery and exploration,” in ICWSM,
2011.

[10] S. Chang and A. Pal, “Routing questions for collaborative answering in
community question answering,” in Proceedings of the 2013 IEEE/ACM
ASONAM. New York, NY, USA: ACM, 2013, pp. 494–501.

[11] H. Zhang, B. Qiu, C. L. Giles, H. C. Foley, and J. Yen, “An lda-
based community structure discovery approach for large-scale social
networks,” in ISI, 2007, pp. 200–207.

[12] X. Sun and H. Lin, “Topical community detection from mining user
tagging behavior and interest.” JASIST, vol. 64, no. 2, pp. 321–333,
2013.

[13] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008, pp. 990–998.

[14] J. Yang, J. McAuley, and J. Leskovec, “Community detection in
networks with node attributes,” in Data Mining (ICDM), 2013 IEEE
13th International Conference on. IEEE, 2013, pp. 1151–1156.

[15] A. McDaid and N. Hurley, “Detecting highly overlapping communities
with model-based overlapping seed expansion,” in Advances in Social
Networks Analysis and Mining (ASONAM), 2010 International Confer-
ence on. IEEE, 2010, pp. 112–119.

[16] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato, “Finding
statistically significant communities in networks,” PloS one, vol. 6,
no. 4, p. e18961, 2011.

[17] P. Mika, “Ontologies are us: A unified model of social networks and
semantics,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 5, no. 1, pp. 5–15, 2007.

[18] L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang, H. Sun, and Z. Chen,
“Cqarank: jointly model topics and expertise in community question
answering,” in Proceedings of the 22nd ACM international conference
on Conference on information & knowledge management. ACM, 2013,
pp. 99–108.

[19] L. A. Adamic and B. A. Huberman, “Power-law distribution of the
world wide web,” Science, vol. 287, no. 5461, pp. 2115–2115, 2000.

[20] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Anal-
ysis and an algorithm,” in ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS. MIT Press, 2001, pp. 849–856.

[21] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National academy of Sciences of the United States of America,
vol. 101, no. Suppl 1, pp. 5228–5235, 2004.

[22] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical
properties of community structure in large social and information
networks,” in Proceedings of the 17th international conference on World
Wide Web. ACM, 2008, pp. 695–704.

[23] H.-M. Park and C.-W. Chung, “An efficient mapreduce algorithm for
counting triangles in a very large graph,” in Proceedings of the 22nd
ACM CIKM13. ACM, 2013, pp. 539–548.

