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CONDITIONAL QUANTILE SEQUENTIAL ESTIMATION FOR

STOCHASTIC CODES

T. LABOPIN-RICHARD, F. GAMBOA, AND A. GARIVIER

Abstract. This paper is devoted to the sequential estimation of a conditional quan-
tile. More precisely the quantile of the output of a real stochastic code with inputs in
Rd. We introduce a stochastic algorithm based on the Robbins-Monro algorithm with
data tailored by the k-nearest neighbours theory. We give conditions on the model in
order that the algorithm is convergent. Further, we provide non-asymptotic rate of
convergence of the means square error. We also focus on the best tuning parameters
of the algorithm.

1. Introduction

In the last decades, computer code experiment problems have been widely studied by
statisticians (for example [15], [22], [21], . . . ).

1.1. Stochastic code. In the cumputer code experiment, a stochastic code is a numeri-
cal black box model with a random seed inside. Mathematically speaking, we can model
it in the following way. Let X (the inputs vector of the code) be a random vector of
Rd. Let ε (the random seed)be the random vector of Rm. We assume that ε and X are
independent random vectors. Further let g be a regular map from Rd × Rm to R ; the
output of the stochastic code g is

(1) Y = g(X, ε).

This black box is said to be stochastic because of the unobserved random seed ε.
Indeed, contrary to deterministic numerical black box, the code (1) does not, in general,
return the same output when we feed with the same input at two different times. Notice
that ε and g are both unknown but realisations of (X,Y ) may be observed. Generally,
one run of the code may be very expensive.

In this work, we will propose and study an algorithm to estimate a conditional quan-
tile. For a fixed level α ∈ [1

2 , 1], the target of our algorithm is

θ∗(x) := qα (g(x, ε)) (x ∈ Rd)
Here, we denote by qα(Z) the upper quantile of level α of a random variable Z. In

other words

qα(Z) = F−1
Z (α),
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where F−1
Z := inf{x : FZ(x) ≥ u} is the generalized inverse of the cumulative distri-

bution function of a law Z.

1.2. The algorithm. If a call to the code is not too expensive then classical methods
may be performed to estimate a quantile. Indeed, having at hand a sample (Y x

i )i where
each Y x

i is distributed as g(x, ε), we can estimate the quantile with the empirical quantile
or with some classical stochastic algorithm (see next paragraph). Here, we are looking
for a recursive method which allows to estimate the conditional quantile for different
values of x at the same time. We begin by drawing a sample. We first draw a sample
of inputs (X1, . . . Xn) that will feed the code. We then observe a sample of outputs
(Y1 = g(X1, ε), . . . , Yn = g(Xn, ε)). Using the sample (X1, Y1), . . . , (Xn, Yn) we will
iterate a stochastic algorithm allowing the estimation of the conditional quantile on
several x at the same time. This algorithm is based both on the classical Robbins
Monro algorithm to estimate a quantile and on the k-nearest neighbors methodology.
Let us see how the algorithm works.

Robbins and Monro introduced in [18] a general stochastic algorithm to approximate
the root of a function h : Rd −→ Rd. This algorithms is

(2)

{
θ0 ∈ Rd

θn+1 = θn − γn+1H(θn, Zn+1)

where (θn) is a Rd-valued sequence, (γn) is a deterministic step-size sequence and
(Zn) an i.i.d sample of observations. The function H is related to the function h by the
formula

E(H(θn, Zn+1)|Fn) = h(θn),

where Fn := σ(Z1, . . . Zn) is the past sigma field. This kind of algorithms has been
widely studied by many authors. In an asymptotic point of view, Robbins and Monro
showed convergence of the mean square error in [18]. The almost sure convergence
is proved with differents methods and under different hypothesis by Blum in [5] and
Schreck and al. in [23]. Fabian, Ruppert and then Sacks study the asymptotic rate
of convergence respectively in [11], [19] and [20]. In [26], Woodroofe investigate the
probability of large deviations for (θn). From a non-asymptotic point of view, there are
several recent results under different assumptions. Frikha and Menozzi give in [12] non-
asymptotic concentration bounds under Gaussian concentration assumption. Further
Moulines et al. propose in [17] non-asymptotic inequality on the mean square error
under convex assumptions.

The quantile is a classical example of target for this algorithm. Indeed the quantile of
order α (0 < α < 1) of Z is the root of the function h(θ∗) = FZ(θ)− α where FZ is the
cumulative distribution function of teh distribution Z. So that, to estimate the quantile
(in the simple case where we have at hand a sample (Zn) of independent and identically
ditributed copies of Z) the algorithm is then the following
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(3)

{
θ0 ∈ R

θn+1 = θn − γn+1

(
1Zn+1≤θn+1 − α

)
This algorithm is consistent and leads to an estimate having Gaussian asymptotic

distribution (we refer to [10] for a sum up of the asymptotic theory on Robbins-Monro
algorithm). In [6], Cardot et al. study this algorithm in the median case (α = 1

2). In

this paper, they took γn = 1
nγ with 1

2 < γ < 1. Further, they provide non-asymptotic
confidence balls and non-asymptotic inequality for the mean square error.

The algorithm would then be useful if we would like to estimate the conditional
quantile for only one fixed x. To construct an algorithm converging for every x, we will
use in addition the k-nearest neighbors theory. Let us fix an input x. To estimate the
conditional quantile at x with the previous algorithm, we need to observe a sample of the
output corresponding to the input x. As discused before, we can not afford to obtain
a sample of the output for each input we are interested in. We only have at hand a
global sample. At time n+ 1, we will use a variation of the classical quantile algorithm
in up-dating only when the input falls in a neighborhood of x :

||Xn+1 − x|| ≤ ||X − x||(kn,n)

where denotes Z(i,n) the i-th order statistic of a sample (Zi)i=1...n. Finally for a fixed
x, our algorithm to estimate the α-quantile of the law g(x, ε) is the following

(4)

{
θ0(x) ∈ R

θn+1(x) = θn(x)− γn+1H(θn(x), Yn+1)1Xn+1∈kNNn(x)

where we denote :

• (γn) is a deterministic sequence of steps. We will mainly study the case where
γn = 1

nγ for 0 < γ ≤ 1, (n ∈ N∗.
• kNNn(x) is the set of the kn nearest neighborhood of x fot the Euclidean norm

on Rd that is

kNNn(x) := {Xi : ||Xi − x|| ≤ ||X − x||(kn,n), i = 1 . . . n}

We study the case where kn = bnβc for 0 < β < 1.
• The function H, (inspired from the classical Robbins Monro theorem) is

H(θn(x), Yn+1) = 1Yn+1≤θn(x) − α.
The idea of considering neighbors of x is classical. It appears for example in the

estimation of the conditional mean. Stone in [24] and [25] study this regression problem
and propose an estimator of the conditional mean based on k-nearest neighbors. He also
gives conditions on kn for this estimator to converge. Bhattacharya and al. Then use
in [4] this idea to introduce estimator of the conditional quantile (non-recursive) in the
case where the inputs ly in R. This estimator is built on the generalized inverse of the
empirical cumulative distribution function computed on the kn responses corresponding
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to the kn nearest inputs of X. They study how to tune kn to achieve optimum balance
between bias and random error and show the weak convergence of their algorithm.

Notice that in our problem we have to find conditions both on kn and γn. The paper
is organized as follows. In Section 2 we are interested in the a.s convergence of the
algorithm. We show that if 1

2 < γ < β < 1, then the algorithm is strongly consistent.
We also prove a non-asymptotic inequality on the mean square error. This leads to the
rate of convergence of the alorithm. We discuss the best parameters. Finally, in Section
3, we present some numerical simulations to illustrate our results. The technical points
of the proofs are differed to Section 5.

2. Main results

In the previous section, we discuss a general method to build a sequential conditionnal
quantile stochastic algorithm. In this section, we explain how to tune the parameters
of this algorithm. We also give theoretical garantees of convergenceunder technical
hypohesis.

2.1. Notations and assumptions. In this paper, there are lots of constants. For sake
of simplicity in the notations, we will split them in three types.

1) Constants denoted (L,U) are lower and upper bound of compact support of
random variables. We put as an index something which make understand the
support of which random variable we are dealing with.

2) Constants (Ni)i∈N∗ are integer constants which are ranks after which some prop-
erties are true.

3) Constants (Ci)i∈N∗ are all other constants.

In the case 2) et 3), when we do not precise any thing else, these constants only
depends on the model, that is on g and on the distribution of (ε,X). Further, we will
denote Ci(u) or Ni(u) for u ∈ P({α, x, d}) a constant depending of the model, on the
probability level α, on the point x and on the dimension d.

We recap on appendix the values of all the constants.

In the sequel, we denote Y x a random variable with distribution g(x, ε). Moreover, Bx
is the set of the balls of Rd centered in the point x. For B ∈ Bx we denote rB its radius
and when rB > 0, Y B is a random variable of conditional distribution L(Y |X ∈ B).

Remark 2.1. When the couple (X,Y ) has a density f(X,Y ), when the random vector
X has a density fX which is positive, we can define the law L(Y |X = x) thanks to its
density function

fY |X=x =
f(X,Y )(x, .)

fX
.

In this case, we have when B = {x},

Y B ∼ Y x ∼ g(x, ε) ∼ L(Y |X = x).

In the sequel, we still denote FZ the cumulative distribution function of a random
variable Z.
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We will need to suppose two kind of assumptions. The first one is unavoidable, since
we deal with k-nearest neighbors. The three others are more technical.

Assumption A1 For all x in the support of X (that we will denote Supp(X) in the
sequel), there exists a constant M(x) such that the following inequality holds

∀B ∈ Bx, ∀t ∈ R, |FY B (t)− FY x(t)| ≤M(x)rB.

In other words we assume that our stochastic code is continuous enough : the law
of two responses corresponding to two different but close inputs are not completely
different. The assumption is clearly required, since we want approximate the law of
g(x, ε) by L(Y |x ∈ kNNn(x)).

Remark 2.2. When we do not consider compact support law, we can show that the last
assumption holds for example as soon as (X,Y ) had a regular density. In all case, it is
easier to show this assumption, that the couple (X,Y ) has a density. See Subsection 3.1
for an example.

Assumption A2 The law of inputs has a density and this density is lower-bounded
by a constante Cinput > 0 on its support.

This hypothesis is strong. It implies that the law of X has a compact support. Notice
that this kind of assumptions are usual in k-nearest neighbors context, (see for example
[13]).

Assumption A3 The code function g takes its values in a compact [Lg, Ug].

Lemma 2.1. Under assumption A3 and if β ≥ γ, for all x, θn(x) ∈ [Lg−(1−α), Ug+α]
a.s. .

Proof. Imagine θn(x) leaves the compact set [Lg, Ug] by the right at step N0. At worst,
it was in Ug at step N0 − 1. This situation can be resumed in this way :

θN0−1 = Ug

θN0 = Ug + αγN0 .

Then, in the next step, since θN0 > Ug, we have YN0+1 ≤ θN0 and then

θN0+1 = Ug + αγN0 − (1− α)γN0+11XN0+1∈kNNN0
(x).

Finally, since θn > Ug the algorithm either does not move (if Xn+1 /∈ kNNn(x)) or
comes back in direction of [Lu, Ug] with a step of (1− α)γn+1. Then, if∑

n≥0

γn1Xn+1∈kNNn(x) = +∞ a.s

the algorithm comes back to the compact set [Lg, Ug]. Let us then show that if β ≥ γ,
the previous sum diverges a.s. Let us denote Sn the partial sum. First, the (Xi) are
independent and the occurrence or non-occurrence of the events {Xn+1 ∈ kNNn(x)}
are unchanged by finite permutations of the indices. Then, since Sn is at non negative
terms, we know by the Hewit-Savage zero-one law that it converges to a constant or it
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diverges to +∞. The same argument gives that Vn also converges to a constant or it
diverges to +∞ where

Vn =
E(Sn)

Sn
.

But,

E(Sn) =
n∑
k=1

γnP(Xk+1 ∈ kNNk(x))

=
n∑
k=1

γnkn
(n+ 1)

where we used Lemma 6.1 to compute the probability. So, when β ≥ γ the sum E(Sn)
diverges to +∞. Finally, either Vn converges to a constant and then Sn diverges to +∞.
Or Vn diverges to +∞ and then Vn diverges to +∞ in probability. It implies that for all
ε > 0, P(Vn > ε) −→ 1 (because Vn ≥ 0). Then there is a contradiction with E(Vn) = 1.
Finally, Vn almost surely converges to a constant and so Sn diverges to +∞ a.s.

Finally, we have shown that if β ≥ γ and if the algorithm leaves the compact set
[Lg, Rg] by the right, its goes to Ug + α as a maximum and then comes back to the
compact. A similar results holds when the algorithm leave the compact set by the left
and finally we have shown that

θn(x) ∈ [Lg − (1− α), Rg + α] a.s.

�

Denoting Lx the minimum of the support of X and Rx its maximum, we then have
unde A3 and if β ≥ γ,

√
C1 := |max(Lg + α− LX , UX − Ug + (1− α))| is a bound of

|θn(x)− θ∗(x)|.

Assumption A4 For each x, the law g(x, ε) has a density which is lower-bounded by
a constante Cg(x) > 0 on its support.

Lemma 2.2. Denoting C2(x, α) := min
(
Cg(x), 1−α

Uθn−Lθn
,
)

, we have thanks to assump-

tion A4,

(5) ∀θn(x), [FY x(θn(x))− FY x(θ∗(x))] [θn(x)− θ∗(x)] ≥ C2(x) [θn(x)− θ∗(x)]2 .

Proof. It is obvious when θn ∈ Supp(Y x). When, it is not the case, we know that
θn ∈ [Lθn , Uθn ]. Suppose Lθn ≤ LX ≤ θ∗ ≤ UX ≤ θn ≤ Uθn . Then, we have F (θn) = 1,
F (θ∗) = α and

C2(x) ≤ 1− α
Uθn − Lθn

≤ 1− α
Uθn − LX

≤ 1− α
θn − θ∗

so that
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(θn(x)− θ∗(x))(FY x(θn(x))− FY x(θ∗(x))) = (θn(x)− θ∗(x))(1− α)

≥ (θn(x)− θ∗(x))C2(x, α)(θn(x)− θ∗(x))

= C2(x, α)(θn(x)− θ∗(x))2.

The proof of the other cases follows similarly. �

This assumption is useful to deal with non-asymptotic inequality for the mean square
error. It is the substitute of the convex assumption made in [17] which is not true in the
frame of the quantile.

2.2. A.s convergence. The following theorem studies the a.s convergence of our algo-
rithm.

Theorem 2.1. Let x be a fixed input. Under assumptions A1 and A2, the algorithm 4
is a.s convergent if, and only if, 1

2 < γ < β < 1.

Sketch of proof : To prove this theorem, we adapt the proof of Blum in [5] of a.s
convergence of the Robbins Monro algorithm to estimate a quantile. We decompose
the reasoning into 3 parts and use martingale arguments. In the sequel, we still denote
Fn := σ (X1, . . . Xn, Y1, . . . , Yn) the past sigma field and En and Pn the conditional
expectation and probability on Fn. For sake of simplicity we denote

H(θn(x), Xn+1, Yn+1) := H(θn(x), Yn+1)1Xn+1∈kNNn(x).

1) We decompose H(θn(x), Xn+1, Yn+1) in two terms : a martingale one and a
remainder one :

hn(θn) = E(H(θn, Xn+1, Yn+1)|Fn) and H(θn, Xn+1, Yn+1) = hn(θn) + ξn+1.

Then

Tn = θn(x) +

n∑
j=1

γjhj−1(θj−1(x))

is a martingale bounded in L2. So it converges a.s.
2) We show the almost sure convergence of (θn)n.

a) (θn) does not diverges to +∞ or −∞.
b) (θn) converges a.s to a finite limit.

3) The limit is θ∗(x) the conditional quantile.

Steps 2a), 2b) et 3) are shown by contradiction. The key point is that almost surely,
after a certain rank, hn(θn) > 0. This property is true thanks to assumptions A1 and
A2 it is shown in Section 5.

Comments on parameters. In the Theorem 2.1, we assume 1
2 < γ < 1 which is a

classical assumption on the Robbins Monro algorithm to be consistent (see for example
in [18]). Indeed, a stepwise sequence (γn) such that
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∑
n

γn =∞ and
∑
n

γ2
n < +∞

is needed. The number of neighbors is bnβc with 0 < β < 1. β < 1 means that the
number a neighbors goes to +∞.This implies the crucial following property (see Lemma
6.4) :

||X − x||(kn,n) −→
n→+∞

0.

2.3. Non-asymptotic inequality. Here, we study the rate of converge of the mean

square error that denoted by an(x) := E
(

(θn(x)− θ∗(x))2
)

.

Theorem 2.2. Let x a fixed input. Under hypothesis A1, A2, A3 and A4, the mean
square error an(x) of the algorithm 4 at x satisfies the following inequality : for all

0 < γ ≤ β < 1, 1 > ε > 1− β, for n ≥ 2
1

ε−(1−β) := N0,

an(x) ≤C1 exp

(
−3n1−ε

8

)
+ a0(x) exp

(
−2C2(x)

n∑
k=1

1

kγ+ε

)

+

n∑
k=1

exp

(
−2C2(x)

n∑
i=k

1

iγ+ε

)
βk

where there exists a constant C3(d) such that

βn = C1 exp

(
−3n1−ε

8

)
+ 2
√
C1M(x)C3(d)γn+1

(
kn
n+ 1

) 1
d

+1

+ γ2
n+1

kn
n+ 1

.

Sketch of proof : The idea of the proof is to establish the recursive inequality on
an(x) (following [17]) :

an+1(x) ≤ an(x)(1− αn) + βn

where 0 < αn < 1 and βn > 0 and to conclude using Lemma 6.6. In this purpose we
begin by expanding the square

(θn+1(x)− θ∗(x))2 = (θn(x)− θ∗(x))2 + γ2
n+1

[
(1− 2α)1Yn+1≤θn(x) + α2

]
1Xn+1∈kNNn(x)

− 2γn+1(θn(x)− θ∗(x))
(
1Yn+1≤θn(x) − α

)
1Xn+1∈kNNn(x)

Taking the expectation conditionally on Fn, and using the Baye’s formula, we get

En
(
θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))

2
)

+ γ2n+1Pn

− 2γn+1 (θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θ∗(x))
]

where Pn = Pn (Xn+1 ∈ kNNn(x)) as in Lemma 6.1. Then may rewrite this inequality
by the way of two different errors.
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1) The first error is F
Y B

kn
n (x)

(θn(x))−FY x(θn(x)). It is the error we make by using

the response corresponding to an input close to x instead of x. This is the
variance error. Using A1,

|F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))| ≤M(x)||X − x||(kn,n)

and by A3,

|θn(x)− θ∗(x)| ≤
√
C1

thus,

−2γn+1(θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))
]
≤ 2γn+1

√
C1M(x)Pn||X − x||(kn,n)

2) The second term, FY x(θn(x))− FY x(θ∗) is the error we make by approximating
θ∗ by θn. This is a bias error. Thanks to Assumption A4 we get

(θn − θ∗) [FY x(θn(x))− FY x(θ∗(x))] ≥ C2(x, α) [θn(x)− θ∗(x)]2 .

Taking now the expectation of our inequality we get (by using Remark 2.1)

an+1(x) ≤ an(x)− 2γn+1C2(x, α)E
[
(θn(x)− θ∗(x))2Pn

]
+ γ2n+1E(Pn)

+ 2γn+1M(x)
√
C1E(||X − x||(kn,n)Pn).

This equation inequality a problem : thanks to Lemmas 6.1 and 6.5 (and so thanks
to assumption A2) we can deal with the two last terms but we are not able to com-
pute E

[
(θn(x)− θ∗(x))2Pn

]
. To solve this problem, we use a truncature parameter εn :

instead of writing a recursive inequality on an(x) we write such inequality with bn(x),
which is easier. Chosing εn = 1

nε , we have to tune an other parameter but thanks to A3)
and concentration inequalities (see lemma 6.3), it is easy to deduce a recursive inequality
on an(x) from the one on bn(x).

In fact, simulations (see Section 3) seem to show that in practice, the inequality is
true relatively soon.

Comments on the parameters. We chose 0 < β < 1 for the same reasons as in
Theorem 2.1. About γ, the inequality (2.2) is true on the entier area 0 < γ < 1 as soon
as γ ≤ β (which is unusual, as you can see in [14] for example). We will nevertheless
see in the sequel that this is not because the inequality is true that it implies a fast
convergence to 0 of the mean square error.

Compromise between bias and variance. We can easily see the compromise we
have to do on β to deal with the two previous errors. Indeed

• The bias error gives the term exp

(
−2C2(x, α)(x)

n∑
k=1

1

kε+γ

)
of the inequality.

This term decreases to 0 if and only if γ + ε < 1 which implies β > γ. Then β
must not be too small.
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• The variance error gives the term
(
kn
n+1

) 1
d

+1
in the remainder. For the remainder

to decrease to 0, we then need that β < 1 and then we can not choose β too big.

From this theorem, we can get the rate of convergence of the mean square error. In
that purpose, we have to study the order of the remainder βn in n to exhibit dominating
terms. It is sum of three terms. The exponential one is always negligeable as soon as n
is big enough because 1 > ε. the two other are power of n. Comparing their exponent,
we can exhibit the dominating term. Indeed, there exists a rank N1(x, d) such that, for
n ≥ N1(x, d),

If β ≤ 1− dγ, we get

βn ≤ C5n
−2γ+β−1

If β > 1− dγ, we get

βn ≤ C6(x, d)n−γ+(1+ 1
d

)(β−1).

We notice that N0 and N1(x, d) are not the same kind of rank. In fact, N1(x, d) is
reasonably small whatever the model parameters are, because it is only the rank after
which exponential term and power of n term with big exponent are bigger than a power
term with small exponent. Even if the constants in front of the terms can increase
N1(x, d), it stays reasonably small. N0 is not so nice, because, it increases exponentially
when ε is close to 1 − β (and we will see in Corollary 2.2 that optimal parameters is
ε = 1− β + η1 with η1 small).

Corollary 2.1. an(x) decreases to 0 with the following rate
∀n ≥ max (N0, N1(x, d), N2, N3(x, α, d)), when β > 1− dγ and
1− β < ε < min

(
1− γ,

(
1 + 1

d

)
(1− β)

)
, there exists a constant C7(x, α, d) such that

an(x) ≤ C7(d, x, α, ε, γ)

n−ε+(1+ 1
d)(1−β)

and when β ≤ 1 − dγ and 1 − η < min (1− β + γ, 1− γ) there exists a constant
C8(x, α, ε, γ) such that

an(x) ≤ C8(x, α, ε, γ)

nγ−β+1−ε ,

where we make appears dependence in ε and γ in the constants, just like the dependence
on x, α and x. In the other cases, the inequality of Theorem 2.2, does not allow to show
that an(x) decreases to 0.

Sketch of proof : The proof consists in studying each term with comparison between
sums and integrales and to exhibit dominating terms and their order in n.

Corollary 2.2. Under the same hypothesis than in Theorem 2.2, when γ is fixed, the
choice of β giving the best rate of convergence of the mean square error is β = γ+ηβ where
ηβ > 0 is as small as possible. In this case, we get for n ≥ max (N0, N1(x, d), N2, N3(x, α, d)),

when γ ≥ 1
1+d
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an(x) ≤ C7(x, α, d, ε, γ)

n
1
d

(1−γ)−η
,

and when γ < 1
1+d

an(x) ≤ C8(x, α, ε, γ)

nγ−η

where in the two cases η =
ηβ
d − ηε and ηε = ε− (1− β).

Comparison with others results. When they study the mean square error for the
classical stochastic algorithm to estimate the quantile, Godichon et al. show in [14] that
non-asymptotic rate of convergence is in O (n−γ) for 1

2 < γ < 1. Our study shows a rate

of convergence of O
(
n−γ+1+η

)
for these γ. Our rate is lower but it is logical because we

have a second level of approximation since we only have at hand a sample of bias laws.
Moreover, we are able to give the rate of convergence for 0 < γ ≤ 1

2 also.
Let us compare our results to classical result on k-nearest neighbors. Bhattacharya

and al. in [4] show that, to estimate conditional quantile with the generalized inverse of
empirical cumulative function, the best number of neighbors is for β = 4

5 when inputs are
in R. With this parameter, they show the weak convergence of their estimator at speed

O
(
n

2
5

)
. Our result gives for optimal β = 1

2 + ηβ in dimension 1, a rate of convergence

of the mean square error in n
1
2 which is then slower. Nevertheless, our result is non-

asymptotic and our algorithm is easier to compute that their estimator which require to
calculate a generalized inverse. Moreover, our inequality is true whatever the dimension
d of the input space.

Corollary 2.3. Under the same assumptions than in Theorem 2.2, the mean square er-
ror decreases faster when parameters are γ = 1

1+d and β = γ+ηβ where ηβ > 0 is as small

as possible. We indeed obtain with these parameters, for n ≥ max(N0, N1(x, d), N2, N3(x, α, d))
there exists a constant C9(x, α, d) such that

an(x) ≤ C9(x, α, d)

n
1

1+d
−η

where η is the the same than in corollary 2.1.

Comments on the constant C9 : As you can see in Appendix, the constant
C9(x, α, d) is the minimum between C7(x, α, d, 1, 1

1+d) and C8(x, α, d, 1, 1
1+d). The ex-

plicit form of these two constants show that this minimum is often C8(x, α, d, 1, 1
1+d).

Indeed, it is true as soon as 0.5 ≤
√
C5M(x)C3(d) where C3(d) decrease when d increases

but is always biger than 1. Then, the minimum is C8 as soon as M(x)
√
C1 is biger than

0.5. You can see an example of values of these constants in Subsection 3.1.

We also can notice that the constant C9(x, α, d) depends on x only by the dependancy
on x of Cg(x) and M(x). In practice, there are lots of case where these two constants
does not depends on x (see for example Subsection 3.1). In these cases (or when we
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can easily find a bound of Cg(x) and M(x) which does not depend on x), our result is
uniform in x and we can consider the integrated mean square error and conclude that∫

X
an(x)fX(x)dx ≤ C9(α, d)

n
1

1+d
−η

.

When α increases to 1, we try to estimate extremal quantile. C2(x, α) becomes smaller
and then C9(x, α, d) increases. Finally the bound gets worst. We can easily understand
this phenomonon because when α is big, we have a small probability to sample on the
right of the quantile, and the algorithm is less powerfull.

Let us now comment the dependancy in the dimension d. As we saw before, it is
more usual that C9 = C8. In this case, C9 derease when the dimension d increases in

2
1

1+d . Nevertheless, this dereasing is smaller to balance the lost caused in the rate of

convergence which is in n
−1
1+d . This is by the way why we chose best parameter γ by

optimizing the rate of convergence and not the constant in front of it.

Sketch of proof : It is easy optimization.

Comment on the rank N0. As we saw before the rank (Ni)i 6=0 depends on constants
of the problem but is reasonably small. This is not the case of the rank N0 which depends
on the gap between ε and 1 − β. The problem comes from the fact that optimal ε to
obtain rate of convergence of the two previous corollaries is ε = 1 − β + ηε with η1 as
small as possible. But, η1 = ε− (1− β) appears on the rank N0 but also on the rate of

convergence : after the rank N0 = exp
(
2η−1
ε

)
the rate of convergence is on O

(
n
−1
1+d

+η
)

.

Then the more η si small, the more the rate of convergence is fast but the more the rate
is true for big n. Our results are non-asymptotic but nevertheless true when n is large.

Imagine, you have a budget of 10000 calls to the code. Then if you want your inequality
to be theoretically true for N = 10000, we have to take ηε = 2(ln(10000))−1 ≈ 0.217.

In this case, we can theoretically obtain a risk of N
−1
1+d

+ 2
ln(N) (where we forgot the term

dη−1
β which is very small compared to the two others terms). It means that in dimension

1, the mean square error decreases theoretically to 6%, which is acceptable. But in
dimension d > 1 is not very good : we obtain 30% in dimension 2 and 63% in dimension
3.

Nonetheless, simulations (see next part) seems to show that this difficulty is only
an artifice of our proof (we needed to introduce εn because we do not know how to
compute E((θn − θ∗)Pn), but it does not really exists when we compute the algorithm).
Our simulations show that the optimal rate of convergence when we choose optimal
parameters is fast reached (see Section 3).

3. Numerical simulations

In this part we present some numerical simulations to illustrate our theorems. To
begin with, we deal with dimension 1. We study two stochastic codes.
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3.1. Dimension 1- square function. The first example, is the very regular code car-
acterized by the function

g(X, ε) = X2 + ε

where X ∼ U([0, 1]) and ε ∼ U([−0.5, 0.5]). We try to estimate the quantile for
x = 0.5 and initialize our algorithm to θ1 = 0.3. Let us show that our assumptions are
fullfilled in this case. We have L(g(x, ε)) = U([−1

2 + x2; 1
2 + x2]). Then e

f(X,Y )(u, v) = 1[− 1
2

+u2, 1
2

+u2](v).

Moreover, the code function g is at values in the compact set [Lg, Ug] = [−1
2 ; 3

2 ]. Let
us study assumption A1. Let A be an interval containing x, denoted B = [x− a, x+ b]
(a > 0, b > 0), then

|FY B (t)− FY x(t)| ≤

∣∣∣∣∣
∫ t
−∞

∫
B f(X,Y )(z, y)dydz∫
B fX(z)dz

−
∫ t

−∞
f(X,Y )(x, y)dy

∣∣∣∣∣
≤

∫ t
− 1

2

∫ x+b
x−a

∣∣∣1[− 1
2

+z2; 1
2

+z2] − 1[− 1
2

+z2; 1
2

+z2]

∣∣∣ (y)dzdy

µ(B)

Now, we have to distinguish the cases in function of the localization of t. There are
lots of cases, but computations are nearly the same. That is why we will develop only
one case here.

If t ∈ [−1
2 ;x2 − 1

2 ], we have :

|FY B (t)− FY x(t)| ≤

∫ x+b
x−a

∫ t
− 1

2

∣∣∣1[− 1
2

+z2; 1
2

+z2] − 1[− 1
2

+z2; 1
2

+z2]

∣∣∣ (y)

a+ b

=

≤
∫ x+b
x−a

(
1z≥x(0) + 1z≤x(t− z2 + 1

2)1
z≥

√
t+ 1

2

)
dz

a+ b

=
≤
∫ x
x−a(t+ 1

2 − z
2)dz

b+ a

From now, there are again two cases.

Since t ∈ [−1
2 ;x2 − 1

2 ], we always have (t + 1
2)

1
2 ≤ x. But the position of

√
t+ 1

2 in

relation to (x− a) is not always the same. Then, if t ∈ [−1
2 ;−1

2(x− a)2], we get
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(6)

|FY B (t)− FY x(t)| ≤
∫ x+b
x−a (t− z2 + 1

2)dz

b+ a

≤ (t+
1

2
)a− x3

3
+

(x− a)3

3

≤ (x− a)2a− x2a+ a2x− a3

3

≤ −a2x+
2a3

3

≤ 0 + rB × 12 × 2

3

where we use that 0 < a < 1.
Finally, in this case A1 is true with M(x) = 2

3 . We can compute exactly in the

same way for the other cases and we always find an M(x) ≤ 2
3 . The assumption A2

is also satisfies, taking Cinput = 1. We have already explained that assumption A3 is
true for [Lg, Ug] = [−1

2 ,
3
2 ]. Finally assumption A4 is also satisfies with Cg(x) = 1 and

C2(x, α) = 1−α
3 .

3.1.1. a.s convergence. Let us first deal with the almost sure convergence.
To check the convergence when 0 < γ < β < 1, we plot in Figure 1 the relative

error of the algorithm in function of γ and β when n = 5000. Best parameters are
clearly β > γ = 1

2 . We can even observe that for β ≈ 1 or β ≤ γ, the algorithm does
not converge almost surely (or very slowly). This is in accordance with our theoretical
results. Since we also have plotted the relative error fo γ < 1

2 , we can check that the
behaviour of our algorithm in this area is not good. Nevertheless, we can observe a
kind of ocntinuity : in practice, the convergence becomes really slow only when γ is
significally far from 1

2 .

Figure 1. Relative error in fonction of β and γ
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To complete this observations, we plot in Figure 2 evolution of iterations of the re-
centered algorithm (θn − θ∗) for different parameters. Conclusions are the same.

Figure 2. Convergence a.s of the algorithm

3.1.2. Mean Square Error (MSE). Let us study the best choice of β when γ is fixed
(illustrations of corollary 2.2). For this simulations (Figure 3), we estimate the MSE by
Monte Carlo with 100 realisations, when γ is fixed, for β between 0 and 1 and n = 200.
We plot the MSE in function of β to check that it is smaller when β is just superior to
γ. Simulations are good illustrations of the corollary except when γ is too close to 1.

Let us now illustrate the choice of γ when β is optimal (illustrations of corollary 3.1.2).
In this part (Figure 4) , we study the influence of γ when β is ”optimal”, that is for β
just superior to γ. First, we plot the MSE estimated by a Monte Carlo method with 100
iterations in function of γ. We can see that the best choice of γ is then 1

2 .

Then in Figure 5, we plot in logarithmical scale the convergence of the MSE (still
with Monte Carlo of 100 realisations) for different values of γ. It appears that the more
close to 1

2 we are, the faster is the decreasing.

Finally, let us sum up all and find the optimal parameters. We plot in Figures 6,
the mean square error in function of γ and β (still estimate by Monte Carlo of 100
iterations).

We can see that best parameters are γ = 1
2 and β superior to γ.
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Figure 3. Choice of β when γ is fixed

3.1.3. Theorical bound. In this case, we have at hand all the parameters, to compute
the theoretical bound, obtained in our theorems. In particular, in corollary 2.3, we get :

an(x) ≤ C9(x, d, α)

n
1

1+d
−η

.

Since α = 0.95, C1 = 6, d = 1, Cinput = 1, C2(x, α) = 0.017, M(x) = 2
3 , we get

C3(d) = 7.39 because C4(d) = 2. Then C5 = 2 and C6(x, d) = 48. So C9(x, α, d) = 330
and we obtain a bound of 23 for n = 200 which is very far away from the practical
results we got. Our bounds are clearly not optimal, but they allow us to find optimal
parameters. We can think to a way to improve this bound. First of all, the constant
C2(x, α) is in fact not so small. Indeed, we have to take a margin in the proof, for the
case where θn goes out of [Lg, Ug]. This clearly can happen with a very small probability.
If we do not take account of this case, we have C2(x, α) = 1. Then C9(x, α, d) ≈ 5.65 and
then, for n = 200, the bound is 0.39. Practical results are still better (we can observe
that for n = 50 only, we have a MSE inferior to 0.5% !), but the gap is less important.
Theorically, we need a budget of 12770 calls to the code to get the precision of 5%.
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Figure 4. Choice of γ when β is optimal

3.2. Dimension 1 - absolute value function. Let us see what happens when the
function g is less smooth with respect to the first variable. We study the code

g(X, ε) = |X|+ ε

where X ∼ U ([−1, 1]) and ε ∼ U ([−0.5, 0.5]). We want to study the conditional
quantile in x = 0 (the point in which the continuity fails).

We do not try to check our assumptions, because computations are nearly the same
than in previous case, but they are true. Since the a.s convergence is true and gives
really same kind of plots than previous case, we only study the convergence of the MSE.
To deal with the MSE, we also check that best parameters are the theoretical one in
practice. In that purpose, we plot in Figure 7 the MSE (estimated by 100 iterations of
Monte Carlo simulations) in function of γ and β, for n=300 (the discontinuity constrains
us to make more iterations to have a sufficient precision) and θ1 = 0.3. Conclusions are
the same than in previous example concerning the best parameters. Nevertheless, we
can observe that the lack of continuity implies some strange behaviour around γ = 1.

3.3. Dimensions 2 and 3. In dimension d > 1, our theorems give that theoretical
optimal parameters are γ = 1

1+d and β = γ + η. To see what happens in practice, we

still plot Monte Carlo estimations (200 iterations) of the MSE in function of γ and β.

3.4. Dimension 2. In dimension 2, we study two codes :

g1(X, ε) = ||X||2 + ε and g2(X, ε) = X2
1 +X2 + ε,

where X = (X1, X2) ∼ U
(
[−1, 1]2

)
and ε ∼ U ([−0.5, 0.5]). In each case, we chose

n = 400 and want to study the quantile in the input point x = (0, 0) and initialize our
algorithm in θ1 = 0.3. In Figure 8, we can see that β = 1 and γ = 1 are still really bad
parameters. As in theoretical point of view, γ = 1

1+d = 1
3 seems to be the best choice.

Nevertheless, even if it is clear that β < γ is a bad choice, the experiments seems to
show that best parameter β is strictly superior to γ, more superior than in theoretical
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Figure 5. Convergence of the mean square error in logarithm scale

case, where we take β as close as possible of γ. As we said before, in practice, N0 seems
not to be the true limit rank. Indeed, with only ,= 400 iterations, in this case, the MSE,
in the opitmal parameters case reach 6% !
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Figure 6. Mean square error in function of β and γ for the square function

Figure 7. MSE in function of β and γ for absolut value function

4. Dimension 3

In dimension 3, we study the two codes :

g1(X, ε) = ||X||2 + ε and g2(X, ε) = X2
1 +X2 +

X3
3

2
+ ε,

whereX = (X1, X2, X3) ∼ U
(
[−1, 1]3

)
and ε ∼ U ([−0.5, 0.5]). In each case, we choose

n = 500 and want to study the quantile in the input point (0, 0, 0). The interpretation of
Figure 9 are the same than in dimension 2. The scale is still not the same, the decrease
is again more slow but with n = 500 we nevertheless obtain a MSE of 10%.
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Figure 8. Mean square error in function of β and γ

Figure 9. Mean square error in function of β and γ

5. Conclusion and perspectives

In this paper we aimed at estimating a conditional quantile of the output of a sto-
chastic code where inputs ly in Rd. In this purpose we introduced a new stochastic
algorithm using k-nearest neighbors theory. Dealing with the two erros made by this
approximation, we show that our algorithm is convergent for 1

2 < γ < β < 1 and study
its non-asymptotic rate of convergence of the mean square error. Moreover, we show
that to get the best rate of convergence, we have to chose β = γ + ηβ and γ = 1

2 .
Numerical simulations show that our algorithm with theoretical optimal parameters is
really powerful to estimate a conditional quantile, even in dimension d > 1.

The theoretical guarantees are shown under strong technical assumptions, but our
algorithm is a general methodology to solve the problem. A futur work can consist in
trying to relax this technical assumptions. Moreover, the proof we propose constrained
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us to use an artifact parameter ε which implies that the non-asymptotic inequality is
theoretically true for big n, even if simulations confirm that this problem do not exists
in practice. A second perspective is then to find a better way to prove this inequality
for smaller n. Finally, it could be interesting to find a way to chose the new input at
each step. Maybe we could build a criteria which allows us to chose the best new input
to provide to the code, to reduce the error made by our algorithm.

6. Annexes : technical lemmas and proofs

6.1. Technical lemmas and notations.

Lemma 6.1. Denoting Pn = P(X ∈ kNNn(x)|X1, . . . Xn), we have the following prop-
erties

1) Pn = F||X−x||
(
||X − x||(kn,n)

)
2) Pn ∼ β(kn, n− kn + 1)

3) E(Pn) = kn
n+1 .

where you denote F||X−x|| the cumulative distribution function of the law ||X − x||,
||X−x||(kn,n) the kn order statistic of the sample (||X1−x||, . . . ||Xn−x||) and β(kn, n−
kn + 1) the beta distribution of parameters kn and n− kn + 1.

Proof. Conditionnally to X1, . . . Xn, ”X is in the set kNNn(x)” is equivalent to ”X
satisfies ||X − x|| ≤ ||X − x||(kn,n)”. Then

Pn = P(X ∈ kNNn(x)|X1 . . . Xn)

= PX
(
||X − x|| ≤ ||X − x||(kn,n)|X1 . . . Xn

)
= F||X−x||

(
||X − x||(kn,n)

)
Since X is at density, the cumulative distribution function F||X−x|| is continuous.

Indeed, using the sequential caracterization we get for a sequence (tn) converging to t

F||X−x||(tn) = P(X ∈ Bd(x, tn))

=

∫
Rd
f(z)1Bd(x,tn)(z).

Since f is integrable, the Lebesgue theorem allows us to conclude that

lim
n

∫
Rd
f(z)1Bd(x,tn)(z) =

∫
Rd

lim
n
f(z)1Bd(x,tn)(z) = P(X ∈ Bd(x, t)),

so the cumulative distribution function is continuous.
Then thanks to classical result on statistics order and quantile transform (see [7]), we

get

Pn = F||X−x||
(
||X − x||(kn,n)

)
∼ U(kn,n)

∼ β(kn, n− kn + 1)

where we denoted U(kn,n) the kn statistic order of a independant sample of size n
distributed like a uniform law on [0, 1].
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�

Lemma 6.2. Denoting B(n, p) the binomial distribution of parameters n and p, we have

P
(
B(n, p)

n
<
p

2

)
≤ exp

(
−3np

32

)
P
(
B(n, p)

n
> 2p

)
≤ exp

(
−3np

8

)
Proof. Let us prove the first inequality. By noticing that

Z =
L

1

n

n∑
k=1

Zi

where (Zn)n is an independant sample of B(p) (Bernoulli law of paramater p), we apply
the Bernstein’s inequality (see Theorem 8.2 of [9]) to conclude that

P(Z − p < −εp) ≤ exp

(
−3npε2

8

)
P(Z − p > εp) ≤ exp

(
−3npε2

8

)
The results follow by taking ε = 1

2 in the first case and ε = 1 in the second case. �

Lemma 6.3. Denoting An the event {X1, . . . Xn | Pn > εn} where εn = 1
nε and 1 > ε >

1− β, we have for n ≥ 1,

P(ACn ) ≤ exp

(
−3n1−ε

8

)
Proof. Thanks to the Lemma 6.1, we obtain

P(ACn ) = P(β(kn, n− kn + 1) ≥ εn)

= Iεn(kn, n− kn + 1)

where we denote Iε the incomplet β function. A classical result (see [1]) allow us to
exprim this quantity in function avec the binomial distribution. Then

P(ACn ) = P(B(n, εn) ≥ kn)

Thanks to Lemma 6.2, we know that

P(B(n, εn) ≥ kn) ≤ exp

(
−3nεn

8

)
as soon as

kn
n
≥ 2εn

which is true as soon as n ≥ 2
1

ε−(1−β) because ε > 1 − β. We now use the Cramer’s
method to study the deviation of the Binomial distribution (see [8])
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P
(
B(n, εn)

n
≥ kn

n

)
≤ exp

(
−n

(
kn
n

log

(
kn
nεn

)
+

(
1− kn

n

)
log

(
1− kn

n

1− εn

)))

=

(
nεn
kn

)kn ( 1− ε
1− kn

n

)n−kn
Then, since εn = n−ε and kn ∼ nβ, computations give us

log
(
P(ACn )

)
= nβ (1− ε+ β) log(n) + (n− nβ log

(
1− nβ−1 − n−ε

1− nβ−1

)
≤ nβ (1− ε+ β) log(n) + nβ − n−ε+1

= O
(
−nβ log(n)

)
and the result follows.

�

Definition 6.1. Let Bkn
n (x) be the ball centered in x such that

P(X ∈ kNNn(x)|X1 . . . Xn) = P(X ∈ Bkn
n (x)),

in fact

Bkn
n (x) = B||.||d(x, ||X − x||(kn,n)).

Lemma 6.4. Under hypothesis of theorem 2.1, ||X − x||(k,n) converges to 0 a.s.

Proof. Let u be a strictly non-negative number.

(7)

pu : = P(X ∈ B(x, u)) =

∫
B(x,u)

f(t)dt

≥ µX (B(x, u)) = C1
π
d
2

Γ(d2 + 1)

= CinputC4(d)ud := qu

Since {||X−x||(kn,n) > u} ⊂ {there are at the most kn elements of the sample which satisfy X ∈
B(x, u)}, we get, by denoting Z ∼ B(n, pu),

P(||X − x||(kn,n) > u) = P(Z < kn)

Thanks to equation (7), we get, by denoting Z̃ ∼ B(n, qu),

P(||X − x||(kn,n) > u) ≤ P(Z̃ < kn)

Thanks to Lemma 6.2, we then know that P(||X − x||(kn,n) > u) is the general term

of a convergent sum. Indeed, for n large enough, kn
n < qu

2 because kn
n converges to

0 (β < 1). The Borel-Cantelli Lemma (see for example Proposition 5.1.2 of [3]) then
implies that ||X − x||(kn,n) converges to 0 a.s. �
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Lemma 6.5. With de forcoming notations,

E(||X − x||(kn,n)Pn) ≤ C3(d)

(
kn
n+ 1

)1+ 1
d

Proof. Let us denote F̃ and f̃ the cumulative and density distribution function of the
law of ||X − x||.

E(||X − x||(kn,n)Pn) = E
(
||X − x||(kn,n)F̃

(
||X − x||(kn,n)

))
=

∫
yF̃ (y)f||X−x||(kn,n)(y)dy

with

f|X−x|(kn,n)(y) =
n!

(kn − 1)!(n− kn)!
F̃ (y)kn−1

(
1− F̃ (y)

)n−kn
f̃(y)

Then we get

E(||X − x||(kn,n)Pn) =

∫
yF̃ (y)kn(1− F̃ (y))n−kn f̃(y)

n!

(kn − 1)!(n− kn)!

=
kn
n+ 1

E
(
||X − x||(kn+1,n+1)

)
Let us now use a classical inequality between expectancy and probability (see for

example Proposition 3.4.8 of [3]). Let us denote U|.| the upper bound of the support of
||X − x||,

E(||X − x||(kn+1,n+1)) ≤
∫ U|.|

0
P(||X − x||(kn+1,n+1) > u)du.

Using same arguments that in Lemma 2.1, we get denoting C11(d) = d

√
2(kn+1)

(n+1)CinputC4(d)

I :=

∫ U|.|

0

P(||X − x||(kn+1,n+1) > u)du =

∫ C10(d)

0

P(B(n+ 1, qu) < kn + 1)du

+

∫ U|.|

C10(d)

P(B(n+ 1, qu) < kn + 1)du

≤
∫ C10(d)

0

1du+

∫ U|.|

C10(d)

exp

(
−3(n+ 1)CinputC4(d)ud

32

)
du

where we use Lemma 6.2 in the second integrale because u > C10(d) implies kn+1
n+1 < qu

2 .
Then, we get
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I = ≤ C10(d) +

∫ +∞

C11(d)

exp

(
−3(n+ 1)CinputC4(d)ud

32

)
du

≤ C10(d) +

∫ +∞

0

ud−1

C10(d)
d−1 exp

(
−3(n+ 1)CinputC4(d)ud

32

)
du

= C10(d) +
C10(d)

C10(d)
d

32

3(n+ 1)dCinputC4(d)

∫ +∞

0

3(n+ 1)dCinputC4(d)ud−1

32
exp

(
−3(n+ 1)CinputC4(d)ud

32

)
du

= C10(d) +
C11(d)

C10(d)
d

32

3(n+ 1)dCinputC4(d)

[
− exp

(
−3(n+ 1)CinputC4(d)ud

32

)]+∞
0

= C10(d)

(
1 +

3(n+ 1)dCinputC4(d)

32C10(d)d

)
= d

√
2(kn + 1)

(n+ 1)CinputC4(d)

(
1 +

16

3d(kn + 1)

)

= d

√
kn
n+ 1

[
d

√
2

CinputC4(d)
d

√
kn + 1

kn

(
1 +

16

3d(kn + 1)

)]

= d

√
kn
n+ 1

d

√
4

CinputC4(d)

(
1 +

8

3d

)

:= C3(d) d

√
kn
n+ 1

where we use in the last inqequality that for n ≥ 1, kn ≥ 1.
�

Lemma 6.6. Let (bn) be a deterministic sequel such that there exists a constant C and
a sequence (αn)n such that

∀n, bn+1 ≤ bn(1− 2Cαn) + βn

then

∀n, bn ≤ exp

(
−2C

n∑
k=1

αk

)
b0 +

n∑
k=1

exp

−2C

n∑
j=k

αj

βk.

Proof. Proof by induction. �

6.2. Proof of Theorem 2.1 : a.s convergence of the algorithm. To proove this
theorem, we adapt the proof of Robbins-Monro in the classical case (see [5]). In the
sequel we don’t write θn(x) but θn to make the notation less cluttered.

6.2.1. Introduction of a martingale. Let us recall that we denote H(θn, Xn+1, Yn+1) :=(
1Yn+1≤θn−α

)
1Xn+1∈kNNn(x) and Fn = σ(X1, . . . Xn, Y1, . . . Yn) and Pn and En the prob-

ability and expectancy conditionnaly to Fn. Let us denote
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hn(θn) := E(H(θn, Xn+1, Yn+1)|Fn)

= Pn(Yn+1 ≤ θn ∩Xn+1 ∈ kNNn(x))− αPn(Xn+1 ∈ kNNn(x))

= Pn [(FY kNNn(x)(θn)− FY x(θ∗)]

where we use the notations Pn := P(X ∈ kNNn(x)|X1, . . . Xn) as in Lemma 6.1.
We then have exhibited a martingale Tn

Tn = θn +
n∑
j=1

γjhj−1(θj−1)

= θ0(x)−
n∑
j=1

γjξj

with ξj = H(θj−1, Xj , Yj)−hj−1(θj−1). This martingale is bounded in L2. Indeed, as

sup
n
|ξn| ≤ α+ (1 + α) = 1 + 2α

the Burkholder inequality gives the existence of a constant C such that

E(|Tn|2) ≤ E

 n∑
j=1

γjξj

2
≤ CE

| n∑
j=1

(γjξj)
2 |2


≤ C(1 + 2α)
n∑
j=1

γ2
j

which allows us to conclude because
∑
n≥0

γ2
n < +∞.

6.2.2. The sequel (θn) converges a.s. First, let us show that

(8) P(θn = +∞) + P(θn = −∞) = 0.

Let us suppose that this probability is positive (we name Ω1 the non-negligeable set
where θn(ω) diverges to +∞ and the same arguments would show the result when the
limit is −∞). Let ω be in Ω1. We have θn(ω) ≤ θ∗ for only a finit number of n. Let
us then show that for n large enough, hn(θn(ω)) > 0. First, we know that Pn follows a
Beta distribution. This is why

P(Pn = 0) = 0 ∀n

and then the Borel-Cantelli Lemma gives that

P(∃N ∀n ≥ N Pn > 0) = 1.
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As we suppose Ω1 has a strictly non-negativ measure, we know that there exists Ω2

of strictly non-negative measure such that ∀ω ∈ Ω2, θn(ω) → +∞ and for all n large
enough, Pn(ω) > 0. Since

hn(θn(ω)) = Pn

(
F
Y B

kn
n (x)

(θn(ω))− α
)
,

we have now to show that

F
Y B

kn
n (x)

(θn(ω))− α > 0.

As θn(ω) diverges to +∞, we can find D such that for n large enough, θn(ω) > D > θ∗.
Then

F
Y B

kn
n (x)

(θn(ω))− α = F
Y B

kn
n (x)

(θn(ω))− FY x(θ∗)

= F
Y B

kn
n (x)

(θn(ω))− F
Y B

kn
n (x)

(D) + F
Y B

kn
n (x)

(D)− FY x(D)

+ FY x(D)− FY x(θ∗)

First, F
Y B

kn
n (x)

(θn(ω))− F
Y B

kn
n (x)

(D) ≥ 0 because a cumulative distribution function

is non-decreasing. Then, we set η = FY x(D) − FY x(θ∗) which is a finite value. To deal
with the last term, we use our assumption A1.

F
Y B

kn
n (x)

(D)− FY x(D) ≥ −M(x)||X − x||(kn,n).

but we know, thanks to lemma 6.4 that ||X − x||(kn,n) converges to 0 p.s. Like so
there exists a set Ω3 of probability strictly non-negative such that ∀ω ∈ Ω3, the previous
reasonning is true and for ε < η

L , there exists rank N(ω) such that if n ≥ N

(9) F
Y B

kn
n (x)

(D)− FY x(D) ≥ 0 +−Lε+ η > 0.

Finally for ω ∈ Ω3 (set of strictly non-negative measure), we have shown that

lim
n

θn(ω) +
n∑
j=1

γj−1h(θj−1(ω))

 = +∞

which is a absurde because of the previous part : Tn is almost surely convergent.
Then θn does not diverges to +∞ or −∞.

Now, we will show that (θn) converges a.s. In all the sequel of the proof we will make
reasonning ω by ω like in previous part. To make the reading more easy, we do not write
ω and Ω any more. Thanks to equation 8 and previous subsection, we know that, with
probability strictly non-negative, there exists a sequel (θn) such that (a) θn +

n∑
j=1

γj−1h(θj−1)converges to a finite limit

(b) lim inf θn < lim sup θn

Let us suppose that lim sup θn > θ∗ (we will find a contradiction and the same argu-
ment would allow us to conclude in the other case). Let us choose c and d satisfying
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c > θ∗, lim inf θn < c < d < lim sup θn.

As the sequel (γn) converges to 0, and (Tn) is a Cauchy sequence , we can find a
deterministic rank N and two entires n and m such that N ≤ n < m implies

(a) γn ≤
(d− c)

3(1− α)

(b)

∣∣∣∣∣∣θm − θn −
m−1∑
j=n

γjh(θj−1)

∣∣∣∣∣∣ ≤ d− c
3

We the choose m and n so that

(10)


(a) N ≤ n < m

(b) θn < c, θm > d

(c) n < j < m⇒ c ≤ θj ≤ d
This is possible since beyond N , the distance between two iterations will be either

αγn ≤
α(d− c)
3(1− α)

< (d− c)

because α < 3
5 or

(1− α)γn ≤
1

3
(d− c) < (d− c).

Moreover, since c and d are chosen to have an iteration inferior to c and an iteration
superior to b, the algorithm will necessarely go through the segment [c, d]. We the take
n and m the times of enter and exit of the segment. Now,

θm − θn ≤
d− c

3
+

m−1∑
j=n

γj+1hj(θj)

≤ d− c
3

+ γn+1hn(θn)

because n < j < m, we get θ∗ < c < θj and we have already shown that in this case,
hj(θj) > 0. We then only have to deal with the terme θn. If θn > θ∗, we can apply the
same result and then

θn − θn ≤
d− c

3
which is in contradiction with (b) of equation (10). When θ < θ∗,

θm − θn ≤
d− c

3
+ γnh(θn−1)

≤ d− c
3

+ γn(1− α)

≤ d− c
3

+
d− c

3
< (d− c)
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which is still a contradiction with (b) of (10).
We have shown that the algorithm converges a.s.

6.2.3. The algorithm converges a.s to θ∗. Again we reason by contradiction. Let us name
θ the limit such that P(θ 6= θ∗) > 0. With probability strictly non-negative, we can find
a sequel (θn) which converges to θ such that{

(a) θ∗ < ε1 < ε2 <∞
(b) ε1 < θ < ε2

(or −∞ < ε1 < ε2 < θ∗ but arguments are the same). Then, for n large enough, we
get

ε1 < θn < ε2.

In the first hand, (Tn) and (θn) are convergent, we also know that

n∑
j=1

γj+1h(θj)

converges a.s.

But, in the second hand, let us show that hn(θn) = Pn

(
F
Y B

kn
n (x)

(θn)− α
)

is lower

bounded. First we know thanks to Lemma 6.3, that for 1 < ε < 1− β and εn = 1
nε

P(Pn ≤ εn) exp

(
−3nεn

8

)
.

This the general term of a convergent sum, the Borel-Cantelli Lemma gives

P(∃N ∀n ≥ N Pn > εn) = 1.

Moreover, as we have already seen in equation (9), since θn > ε1 > θ∗,

F
Y B

kn
n (x)

(θn)− α ≥ 0−M(x)||X − x||(kn,n) + FY x(ε1)− FY x(θ∗)

Then, when n is large enough to have

||X − x||(kn,n) ≤
FY x(ε1)− FY x(θ∗)

2M(x)
,

F
Y B

kn
n (x)

(θn)− α ≥ FY x(ε1)− FY x(θ∗)

2
.

Finally there exists a set Ω of probability strictly non-negative such that, ∀ω ∈ Ω

n∑
k=1

γk+1hk(θk) ≥
FY x(ε1)− FY x(θ∗)

2

n∑
k=1

γkPk ≥
n∑
k=1

1

nγ+ε

which is a contradiction (with the first hand point) because the sum is divergent
(γ + ε < 1).
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6.3. Proof of Theorem 2.2 : Non-asymptotic inequality on the mean square
error. Let x be fixed in [0, 1]. We want to study the means square error an(x). In that
purpose, let us establish an inductive inequality to conclude with Lemma 6.6. In the
sequel, we will need to study θn(x) on the event An of the Lemma 6.3. Then, we begin
to find a link between the quadratic risk and the mean square error on this event.

an(x) = E
[
(θn(x)− θ∗(x))2 1An

]
+ E

[
(θn(x)− θ∗(x))2 1ACn

]
≤ E

[
(θn − θ∗)2 1An

]
+ C1P(ACn )

where R is the constant of the Remark 2.1. Lemma 6.3 gives the quantity P(ACn ). We
finally obtain

(11) E
[
(θn(x)− θ∗(x))2

]
≤ E

[
(θn(x)− θ∗(x))2 1An

]
+ C1 exp

(
−3n1−ε

8

)
Let us now study the sequence bn(x) := E

[
(θn(x)− θ∗)2 1An

]
.

First,

bn+1(x) ≤ E
[
(θn+1(x)− θ∗(x))2

]
.

But

(θn+1(x)− θ∗(x))2 = (θn(x)− θ∗(x))2 + γ2n+1

[
(1− 2α)1Yn+1≤θn(x) + α2

]
1Xn+1∈kNNn(x)

− 2γn+1(θn(x)− θ∗(x))
(
1Yn+1≤θn(x) − α

)
1Xn+1∈kNNn(x)

Taking the expectation conditionaly to Fn, we get then

En
(
(θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))

2
)

+ γ2n+1Pn (Xn+1 ∈ kNNn(x))

− 2γn+1 (θn(x)− θ∗(x)) [Pn (Yn+1 ≤ θn(x) ∩Xn+1 ∈ kNNn(x))

× Pn (Xn+1 ∈ kNNn(x))FY x(θ∗)]

Using the Baye’s formula, we get

En
(
θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))

2
)

+ γ2n+1Pn

− 2γn+1 (θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θ∗(x))
]

where Pn = Pn (Xn+1 ∈ kNNn(x)) as in lemma 6.1. Let us split the double product
term into two terms representing the two errors we made by iterating our algorithm. We
still denote FY x and F

Y B
kn
n (x)

the cumulative functions of the laws g(x, ε) and L(Y |X ∈
kNNn(x)).
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(12)

En
(
θn+1(x)− θ∗(x))2

)
≤ (θn(x)− θ∗(x))

2
+ γ2n+1Pn

− 2γn+1 (θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))
]

− 2γn+1 (θn(x)− θ∗(x))Pn [FY x(θn(x))− FY x(θ∗(x))]

We now use our hypothesis. By A1,

|F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))| ≥M(x)||X − x||(kn,n)

and by A3

|θn(x)− θ∗(x)| ≤
√
C1

thus,

−2γn+1(θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))
]
≤ 2γn+1

√
C1M(x)Pn||X − x||(kn,n)

On the other hand, thanks to A4 we know that,

(θn − θ∗) [FY x(θn(x))− FY x(θ∗(x))] ≥ C2(x, α) [θn(x)− θ∗(x)]2 .

Let us come back to equation (12).

En
(
θn+1(x)− θ∗(x))2

)
≤ (θn(x)− θ∗(x))2 (1An + 1Ān

)
+ γ2

n+1Pn

− 2γn+1 (θn(x)− θ∗(x))2C2(x, α)Pn + 2γn+1M(x)
√
C1||X − x||(kn,n)Pn

where we used again Remark 2.1. To conclude, we take the expectation

bn+1(x) ≤ C1P(ACn ) + bn(x)− 2γn+1C2(x, α)E
[
Pn (θn(x)− θ∗)2

]
+ γ2

n+1E(Pn) + 2γn+1

√
C1M(x)E

[
Pn||X − x||(kn,n)

]
We have to compute the two expectancies. Thanks to Lemma 6.5, we first know that

for n large enough,

E(||X − x||(kn,n)Pn) ≤
(

kn
n+ 1

)1+ 1
d

C3(d),

The second one is more difficult to compute. This is why we need the event An. By
definition of An

−2γn+1C2(x, α)E
[
Pn (θn(x)− θ∗)2

]
≤ −γn+1εnC2(x, α)E

[
(θn(x)− θ∗(x))2 1An

]
= −2γn+1εnC2(x, α)bn(x)

We obtain for n ≥ 1

bn+1(x) ≤ bn(x)
(
1− 2C2(x, α)n−γ−ε

)
+ βn
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with

βn = C1 exp

(
−3n1−ε

8

)
+ 2C2(x, α)M(x)C3(d)γn+1

(
kn
n+ 1

) 1
d

+1

+ γ2
n+1

kn
n+ 1

,

Let us now use Lemma 6.6,

bn(x) ≤ exp

(
−2C2(x, α)

n∑
k=1

k−γ−ε

)
b0(x) +

n∑
k=1

exp

−2C2(x, α)
n∑
j=k

j−ε−γ

βk

To conclude, we reinject equation 6.3 in Equation 11 and obtain

an(x) ≤ exp

(
−2C2(x, α)

n∑
k=1

k−γ−ε

)
b0(x) +

n∑
k=1

exp

−2C2(x, α)

n∑
j=k

j−ε−γ

βk + C1 exp

(
−3n1−ε

8

)
.

6.4. Proof of Corollary 2.1 : Rate of convergence. In this part, we will denote

T 1
n := exp

(
−2C2(x, α)

n∑
k=1

k−γ−ε

)
and

T 2
n :=

n∑
k=1

exp

− n∑
j=k

j−ε−γ

βk.

We will find their order in n to conclude. When γ is fixed, our inequality shows thanks
to T 1

n that an(x) can converges to 0 only when the sum∑
k≥1

1

kγ+ε
= +∞.

This is why we must first consider ε ≤ 1− γ. As ε < 1− β, we have to take β > γ.

Remark 6.1. The case where ε = 1 − γ is possible but its study shows that it is a less
interessant case than for ε < 1−γ (there is a dependency in the value of C2(x, α) but the
optimal rate is the same as the one in the case we study). The case ε > 1− γ show that
an(x) is bounded, but we already know it. In the sequel, we then only consider ε < 1−γ.

T 1
n = exp

(
−2C2(x, α)

n∑
k=1

1

kε

)

≤ exp

(
−2C2(x, α)

∫ n+1

1

1

tε+γ
dt

)
≤ exp

(
−2C2(x, α)

(n+ 1)1−ε−γ − 1

(1− ε− γ)

)
To deal with the second term T 2

n we fisrt study the order in n of βn. Comparing
exponant we get that there exists a rank N1(x, d) and constants C5 and C6(d) (see
appendix for explicit forms) such that if β ≤ 1− dγ
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βn ≤ C5n
−2γ+β−1,

and if β > 1− dγ,

βn ≤ C6(x, d)n−γ+(1+ 1
d

)(β−1)

.
We have to distinguish the two cases in the sequel.

Study of T 2
n when β > 1− dγ :

To deal with these terms, we will use arguments from [6].

T 2
n = C6(x, d)

n∑
k=1

exp

−2C2(x, α)

n∑
j=k+1

a

jε+γ

 1

kγ+(1+ 1
d )(1−β)

= C6(x, d)

bn2 c−1∑
k=1

exp

−2C2(x, α)

n∑
j=k+1

a

jε+γ

 1

kγ+(1+ 1
d )(1−β)

+ C6(x, d)

n∑
k=bn2 c

exp

−2C2(x, α)

n∑
j=k+1

a

jε+γ

 1

kγ+(1+ 1
d )(1−β)

:= S1 + S2

If we take 1− β < ε < min((1− dγ),
(

1 + 1
1+d

)
(1− β)), we have

S2 ≤
(

1

bn2 c

)(1+ 1
d )(1−β)−ε

C6(x, d)

n∑
k=bn2 c

exp

−2C2(x, α)

n∑
j=k+1

1

jε+γ

 1

kε+γ

≤ C6(x, d)

n(1+ 1
d )(1−β)−ε

n∑
k=bn2 c

exp

(
−2C2(x, α)(x)

(n+ 1)1−ε−γ − (k + 1)1−ε−γ

1− ε− γ

)
1

kε+γ

≤ C6(x, d)

n(1+ 1
d )(1−β)−ε

exp

(
−2C2(x, α)

(n+ 1)1−ε−γ

1− ε− γ

) n∑
k=bn2 c

exp

(
2C2(x, α)

(k + 1)1−ε−γ

1− ε− γ

)
1

kε+γ

Let us introduce N2 the rank after which ∀k ≥ bn2 c,

1

kε+γ
≤
(

2

k + 1

)ε+γ
.

For n ≥ N2,
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S2 ≤
C6(x, d)

n(1+ 1
d )(1−β)−ε

exp

(
−2C2(x, α)

(n+ 1)1−ε−γ

1− ε− γ

)
2ε+γ

n∑
k=bn2 c

exp

(
2C2(x, α)(x)

(k + 1)1−ε−γ

1− ε− γ

)
1

(k + 1)ε+γ

≤ C6(x, d)

n(1+ 1
d )(1−β)−ε

exp

(
−2C2(x, α)

(n+ 1)1−ε−γ

1− ε− γ

)
2ε+γ

∫ n+1

bn2 c
exp

(
2C2(x, α)

(t+ 1)1−ε−γ

1− ε− γ

)
1

(t+ 1)ε+γ
dt

≤ C6(x, d)

2C2(x, α)n(1+ 1
d )(1−β)−ε

exp

(
−2C2(x, α)

(n+ 1)1−ε−γ

1− ε− γ

)
2ε+γ exp

(
2C2(x, α)

1− ε− γ
(n+ 1)1−ε−γ

)
then for n large enough, there exists a constant C7(x, d, α) such that

S2 ≤
C7(x, d, α)

2n(1+ 1
d)(1−β)−ε

Let us now deal with the term S1. As k ≤ bn2 c, we have

n∑
j=k+1

1

jε+γ
≥ n

2

1

nε+γ

then

S1 = C6(x, d)

bn2 c∑
k=1

exp

−2C2(x, α)

n∑
j=k+1

a

jε+γ

 1

kγ+(1−β)(1+ 1
d )

≤ C6(x, d)

bn2 c∑
k=1

exp
(
−C2(x, α)n1−ε−γ

) 1

kγ+(1−β)(1+ 1
d )

≤ C6(x, d) exp
(
−C2(x, α)n1−ε−γ

) bn2 c∑
k=1

1

kγ+(1−β)(1+ 1
d )

thanks to the exponentiel, S1 is insignificant compared to S2 whatever the behaviour

of
∑

k−γ−(1−β)(1+ 1
d), and so is Tn1 . Then, denoting N3(d, x) the rank after which we

have

max(S1, T
1
n) ≤ C7(x, α, d)

4n(1+ 1
d

)(1−β)−ε

we get, in the case where β > 1− γ and 1− β < ε < min((1− γ),
(

1 + 1
1+d

)
(1− β)),

for n ≥ max (N0, N1(x, d), N3, N3(d, x))

an(x) ≤ C7(x, α, d)

n−ε+(1+ 1
d)(1−β)

Study of T 2
n when β ≤ 1− dγ :

It is the same arguments and we conclude that for 1− β < ε < min(1− β + γ, 1− γ)
and n large enough (n ≥ max(N0, N1(x, d), N2, N3(x, α, d))),
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an(x) ≤ C8(x, α, d)

nγ−β+1−ε

6.5. Proof of Corollary 2.2 : choice of parameter β when γ is fixed. Let us now
optimize the rate of convergence by choosing the best parameters. When γ ≥ 1

1+d then
γ ≥ 1− dγ. So the condition β > γ implies, β > 1− dγ and we are in the first case. The

rate of convergence is then nε−(1+ 1
d)(1−β) for 1 − β < ε < min(1 − dγ,

(
1 + 1

d

)
(1 − β)).

To have the greatest rate of convergence, the best choice is then to take ε the smallest

as possible : ε = 1− γ − η + ηε with ηε > 0. The rate is then in n−(1−β) 1
d

+ηε . We then
chose β the smallest as possible, that is to say β = γ + ηβ where ηβ > 0. We obtain the

rate of convergence n−
1
d

(1−γ)+η with η = ηε +
ηβ
d which conclude the corollary.

When γ < 1
1+d , the two cases are possible. If we take β > 1 − dγ, we are in case 1

and in the same way than before, the rate of convergence is in nε−(1+ 1
d)(1−β). We take

β and ε the smallest as possible as in the previous part. But the constraints β > 1− dγ
implies that the smallest β is 1 − dγ + ηβ. Then, we choose ε = dγ − ηβ + ηε and we
obtain the rate of convergence n−γ+η. In the second case, if we take γ < β < 1− dγ, we
have, for 1− β < ε < min(1− γ, 1− β + γ), the rate of convergence n−γ+β−1+ε. In the
same way, we take ε as small as possible : ε = 1− β − ηε. This leads to the rate n−γ+η.
The choice of β does not matter. When then chose abitrary β = γ + ηβ to find back the
result of the previous part. The two sub-cases given the same result, we choose the first
which is the same that first result and the corollary is proved.

6.6. Proof of corollary 2.3 : choice of parameters γ and β. When gamma γ ≥ 1
1+d

we obtained the rate n−
1
d

(1−γ)+η, this is why we have to chose γ as small as possible
which means γ = 1

1+d ; to have the faster convergence. The rate of convergence is then

n−
1

1+d
+η. When γ < 1

1+d , the rate of convergence is n−γ+η and the best choice is to

take γ near 1
1+d and the rate is then n−

1
1+d

+η. To conclude, best choices are γ = 1
1+d ,

β = γ + ηβ and with these parameters we have shown that

an(x) ≤ C9(x, α, d)

n
1

1+d
−η

where the constant is the minimal constante between C7(x, α, d, 1, 1
1+d) and C8(x, α, d, 1, 1

1+d)

(because ε < 1 and optimal γ = 1
1+d).
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7. Appendix

Let us sum up all the constants we need in this paper.

7.1. Constants of the model. We denote :

• M(x) the constant of continuity of the model, that is

∀B ∈ Bx, ∀t ∈ R, |FY B (t)− FY xt)| ≤M(x)rB.

• Cinput is the positive lower bound of the density of the inputs fX .
• Cg(x) is the positive lower bound of the density of the law g(x, ε).

7.2. Compact support. We denote :

• [Lg, Ug] the compact in which are included the values of g.
• [LX , UX ] the compact in which is included the support of the distribution of X.
• [Lθn , Uθn ] := [Lg − (1 − α), Ug + α] the sement in which θn can take its values

(∀x).
• U|.| the upper bound of the compact support of the distribution of ||X−x|| (∀x).

7.3. Real constants. We denote :

•
√
C1 := max (Lg + α− LX , UX − Ug + (1− α)) . C1 is the uniform in ω bound

of (θn(x)− θ∗(x))2.

• C2(x, α) := min
(
Cg(x), 1−α

Uθn−Lθn

)
. It is the constant such that

[FY x (θn(x))− FY x (θ∗(x))] [θn(x)− θ∗(x)] ≥ C2(x, α) (θn(x)− θ∗(x))2 .

• C3(d) := d
√

2

(
1 + 8

3d + 1
d
√
CinputC4(d)

)
.

• C4(d) := π
d
2

Γ( d2 )+1
.

• C5 := 2.
• C6(x, d) := 4

√
C1M(x)C3(d).

• C7(x, α, d, ε, γ) = 2ε+γC6(d)
C2(x,α) .

• C8(x, α, ε, γ) := 2ε+γC5
C2(x,α) .

• C9(x, α, d) := min

(
2

1
1+d

+1
C6(d)

C2(x,α) , 2
1

1+d
+1
C5)

C2(x,α)

)
.

• C10(d) := d

√
2(kn+1)

(n+1)CinputC4(d) .

7.4. Integer constants. We denote :

• N0 := 2
1

ε−(1−β) .
• N1(d, x) is the interger such that for n ≥ N1(x, d),

a) If β ≤ 1− dγ,

max

(
2
√
C1M(x)C3(d)γn+1

(
kn
n+ 1

)1+ 1
d

, C1 exp

(
−3

8
n1−ε

))
≤ n−2γ+β−1

2
.
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b) If β > 1− dγ,

max

(
n−2γ+β−1, C1 exp

(
−3

8
n1−ε

))
≤
√
C1M(x)C3(d)n−γ+(1+ 1

d)(β−1).

• N2 is the rank such that n ≥ N2 implies

∀k ≥
⌊n

2

⌋
,

1

kε+γ
≤
(

2

k + 1

)ε+γ
.

• N3(x, α, d) is the interger such that ∀n ≥ N3(x, α, d),
a) If β ≤ 1− dγ,

max
(
S1, T

1
n

)
≤ C7(x, α, d)

4n(1+ 1
d)(1−β)−ε

b) If β > 1− dγ,

max
(
S1, T

1
n

)
≤ C8(x, α, d)

4nγ−β+1−ε .
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