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CONDITIONAL QUANTILE SEQUENTIAL ESTIMATION FOR

STOCHASTIC CODES

T. LABOPIN-RICHARD, F. GAMBOA, AND A. GARIVIER

Abstract. This paper is devoted to the estimation of conditional quantile, more
precisely the quantile of the output of a real stochastic code whose inputs are in
Rd. In this purpose, we introduce a stochastic algorithm based on Robbins-Monro
algorithm and on k-nearest neighbors theory. We propose conditions on the code for
that algorithm to be convergent and study the non-asymptotic rate of convergence of
the means square error. Finally, we give optimal parameters of the algorithm to obtain
the best rate of convergence.

1. Introduction

1.1. Stochastic code. A stochastic code is a numerical black box with randomness
inside. We can model it in this way. Let X, the inputs vector, be a random vector of
Rd, let ε, the random seed, be a random vector of Rm and let g be a map of Rd×Rm to
R ; the output of the stochastic code g is

Y = g(X, ε).

This black box is said to be stochastic because of the random seed ε. Indeed, contrary
to numerical black box, this one does not necessarily return the same output when we
provide it the same input at two different times. We note that ε and g are both unknown
but we can observe the output when we provide the code an input. Nevertheless, each
computation is very costly

The goal of this work is to find and study an algorithm which estimates the following
conditional quantile : for a level α ∈ [1

2 , 1] fixed, the target of our algorithm is

θx(x) := qα (L (g(X, ε)|X = x))

where we denote qα(Z) the upper quantile of level α of the law Z that is

qα(X) = F−1
Z (α),

where F−1
Z := inf{x : FZ(x) ≥ u} is the generalized inverse of the cumulative distri-

bution function of a law Z.
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1.2. The algorithm. When each call to the code is not very expensive, several methods
are well known to estimate quantiles. Indeed, if we have at hand a sample (Y x

i )i where
each Y x

i is distributed like g(X, ε)|X = x, we can estimate the quantile with the empirical
quantile or with the classical stochastic algorithm for a quantile (see next paragraphe).
Here, we are looking for a recursive method which allows us to estimate the conditional
quantile for different x at the same time. In this purpose we begin by creating an
observation sample (of a size limited by our budget) : we chose a sample of inputs
(X1, . . . Xn) that we provide to the code. We then observe a sample of outputs (Y1 =
g(X1, ε), . . . , Yn = g(Xn, ε)). Thanks to this sample (X1, Y1, . . . Xn, Yn) we iterate a
stochastic algorithm which allows us to estimate the conditional quantile of several x
in the same time (at each iteration, several estimator of conditional quantile are up-
dated). This algorithm is based on the classical Robbins Monro algorithm to estimate the
quantile and use k-nearest neighbors theory. Let us see how this algorithm is constructed.

Robbins and Monro introduced in [17] stochastic algorithms to approximate the root
of a function h : Rd −→ Rd. These algorithms are in the form

(1)

{
θ0 ∈ R

θn+1(x) = θn(x)− γn+1H(θn(x), Xn+1)

where (θn) is a Rd-valued sequence, (γn) is a deterministic step-size sequence and
(Xn) an i.i.d sample of observations. The function H is relied to the function h by the
formula

E(H(θn, Xn+1)|Fn) = h(θn).

This kind of algorithms have been studied by several authors. In an asymptotic
point of view, Robbins and Monro showed convergence of the mean square in [17]; the
almost sure convergence is proved with differents methods and under different hypothesis
by Blum in [5] and Schreck and al. in [20]; Fabian, Ruppert and then Sacks study
the asymptotic rate of convergence in [11], [18] and [19]; in [23] Woodroofe investigate
the probability of large deviations. From a non-asymptotic point of view, there are
several recent results under different assumptions. Frikha and Menozzi give in [12]
non-asymptotic concentration bounds under Gaussian concentration assumption and
Moulines et al. propose in [16] non-asymptotic inequality on the mean square error
under strictly convex hypothesis.

The quantile is a classical example of target for these algorithms because the quantile
is the root of the function h(θ∗) = FX(θ)−α for FX the cumulative distribution function
and α the level of the quantile. To estimate the quantile (in the simple case where we
have at hand a sample of a law X) the algorithm is then the following

(2)

{
θ0 ∈ R

θn+1(x) = θn(x)− γn+1

(
1Xn+1≤θn+1 − α

)
This algorithm satisfies hypothesis of Robbins Monro algorithm to be consistent and

normality gaussian (see [10] for a sum up of the asymptotic theory on Robbins-Monro
algorithm). Moreover, Cardot and al. studies in [6] this algorithm for the median (α = 1

2)
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when γn = 1
nγ with 1

2 < γ < 1. They propose non-asymptotic confidence balls and then
non-asymptotic inequality on the mean square error.

This algorithm would then be useful if we would like to estimate the conditional
quantile for only an x . To construct an algorithm which converges for every x, we then
use in addition the k-nearest neighbors theory. Let us fix an input x. To estimate the
conditional quantile in x with the previous algorithm, we need to have at hand a sample
of the output corresponding to the input x. But, as we said before, we can’t afford to
obtain a sample of the output for each input we are interested in. We only have at hand
the previous observation sample. Then, for our x, we will use the classical algorithm to
estimate the quantile with the sample (Yn) but in up-dating only when Yi is not too far
from the theorical response (if we would have provided x as input) : in other word, we
update the algorithm only when the input Xi we provided to the code is close to x, that
is to say when Xi belongs to the k-nearest neighborhood of x :

||Xi − x|| ≤ ||X − x||(kn,n)

where we denote Z(i,n) the i-th order statistics of a sample (Zi) of size n. Finally
when we fixed an input x , the algorithm proposed to estimate the α-quantile of the law
L(Y |X = x) is the following

(3)

{
θ0(x) ∈ R

θn+1(x) = θn(x)− γn+1H(θn(x), Yn+1)1Xn+1∈kNNn(x)

where we denote :

• (γn) the deterministic sequel of steps of our stochastic algorithm. We study the
case where γn = 1

nγ for 0 < γ ≤ 1.
• kNNn(x) the set of the kn nearest neighborhood of x whithin the meaning of

the euclidiean norm on Rd that is

kNNn(x) = {Xi, ||Xi − x|| ≤ ||X − x||(kn,n)}
We study the case where kn = bnβc for 0 < β < 1.

• The function H (inspired from the classical Robbins Monro theorem),

H(θn(x), Yn+1) = 1Yn+1≤θn(x) − α.
This idea of considering neighbors of x is not new. It first appeared in the literature

to estimate the conditional mean of the same model that the one we consider. Stone in
[21] and [22] study this regression problem and propose an estimator based on k-nearest
neighbors : the mean of the kn responses coming from the kn inputs nearest to X. He
also gives conditions on kn for this estimator to converge (these classical conditions are

kn −→ +∞ and kn
n −→ 0). Bhattacharya and al. then use in [4] this idea to introduce

estimator of the conditional quantile (non-recursive) in the case where inputs are on
dimension 1, as the generalized inverse of the empirical cumulative distribution function
computed on the kn responses corresponding to the kn nearest inputs of X. They study
how to tune kn to achieve optimum balance between bias and random error and show

the weak convergence of their algorithm (at rate O
(
n

2
5

)
).
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In our problem we have to find conditions on kn for our algorithm to converge but
we also have to tune an other parameter which is the step of the deterministic sequence
γ of our gradient-descent algorithm. The paper is organized this way. In Section 2 we
are interested in the a.s convergence of the algorithm. We show that if 1

2 < γ < β < 1,
the algorithm is strongly consistent. We also propose a non-asymptotic inequality on
the mean square error for the algorithm, and then obtain the rate of convergence. This
allows us to exhibit best parameters (γ = 1

1+d and β = 1
1+d + η where η is as small as

possible). Finally, in Section 3, we present some numerical simulations to illustrate our
results. The technical points of the proofs are differed in Section 5.

2. Main results

In the previous section, we propose a general methode to solve our problem, by in-
troducing a stochastic algorithm. In this section, we propose to explain how to tune
parameters of this algorithm. We also give theoretical garantees under technical hypo-
hesis.

2.1. Notations and assumptions. For the following theorems we need to suppose two
kinf of assumptions. The first one is inevitable, since we deal with k-nearest neighbors.
The three others are technical hypothesis. Their necessity is debatable but relaxing them
constrain to developpe very technical proofs, which is not our focus in this paper.

Let us first introduce the function

C :

{
(E, dH) −→ (M1(µ), dV T )

A 7−→ L(Y |X ∈ A)

where E is the set of the sets on the metric space
(
Rd, ||.||

)
(where ||.|| is the euclidean

norm), dH is the Hausdorff distance defined by

dH(X,Y ) = max{sup
y∈Y

inf
x∈X
||x− y||, sup

x∈X
inf
y∈Y
||x− y||},

M1(µ) is the set of the probability measures and dV is the totale variation distance

dV T (P,Q) = sup
A
|P (A)−Q(A)|.

In the sequel we will denote Y A a random variable which is distributed like g(X,Y )|X ∈
A. When A = {x} we only denote Y x to reduce the amount of notations. Then FY A
denotes the cumulative distribution function of the law g(X,Y )|X ∈ A. We also denote
θ∗(x) the quantile we want to estimate.

Following assumptions will be useful for our main theorems :

Assumption A1 The function C is M -Lipschitz in terms of :

(4) ∀x ∈ Supp(X),∀A ∈ Ex, ∀t ∈ R, |FY A(t)− FY x(t)| ≤Mmax
a∈A
||x− a||.
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where we denote Supp(Z) the support of the law of Z and Ex the subset of E of sets
containing the point x.

In other words we assume that our stochastic code is continuous enough : the law
of two responses corresponding to two different but close inputs are not completely
different. The assumption is clearly required, since we want approximate L(Y kNN(x))
by L(Y x).

Remark 2.1. When we do not consider compact support law, we can show that this
hypothesis is true as soon as the density function on the input law fX has a bounded
derivative and the density of the couple f(X,Y ) has a derivative with respect to the first
variable which is bounded.

Assumption A2 The law of inputs had a density function and this density is lower-
bounded by a constante Cinputs > 0.

This hypothesis is very strong. It implies in particular that the law of inputs has
compact support but this kind of hypothesis are usual in k-nearest neighbors theory
when you do not want to make technical development, as we can see for example in [13].

Assumption A3 The code function g is at values in a compact [A,B].

Remark 2.2. This assumptions implies, when β > γ that for all x, θn(x) is bounded
a.s uniformly in ω.

Indeed, let N0 be the first step for which θN0 goes out of [A,B], by the right. At step
N0 − 1, the algorithm is, in the worst case in B. Then, at step N0, we get θN0(x) =
B+αγN0+1. At the next step, since YN0+2 ≤ θN0+1, the algorithm do not move or comes
back in direction of [A,B] by a step of −γN0+2(1− α)α. A classical results of Robbins-
Monro is that, in this case, the algorithm comes back to [A,B] because the sum of the
deterministic stepwises γ is divergent. Here, we also have to take account of 1X∈kNN(x).

Imagine we fixe a point x. At step n, this point has a probability to be concerned by
the new data of nβ/n = nβ−1. Then, until step n and at time t, the points has updated∑
k≤n

kβ−1 ≈ nβ times (and so n ≈ t
1
β ). Then, the stepwise γn = 1

nγ = 1

(t
1
β )γ

= 1

n
γ
β

satisfies
∑

n γn = +∞ because γ < β.
Finally, the algorithm comes back to the compact and if it goes out later, it will not

goes further than B + αγN0+1 because the sequence γ is decreasing.
Then, we have shown that

∀x,∀n, θn(x) ∈ [A− (1− α);B + α] := [A′, B′].

Denoting Ax the minimum of the support of X and Bx its maximum, we then have√
R := max(B + α−Ax, Bx −A+ (1− α)) is the uniform bound of θn(x)− θ∗(x).

Assumption A4 For each x, the law g(X, ε)|X = x has a density which is lower-
bounded by a constante D(x) > 0.

Then, denoting Dcode(x) := min(D(x), 1−α
B′−A′ ,

α
B′−A′ ) (with notations of previous para-

graph), we have
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(5) ∀θn, [FY x(θn)− FY x(θ∗(x))] [θn − θ∗(x)] ≥ Dcode(x) [θn − θ∗(x)] .

Indeed, it is obvious when θn ∈ Supp(Y x). When, it is not the case, we know that
θn ∈ [A′, B′]. Imagine, that A′ ≤ Ax ≤ θ∗ ≤ Bx ≤ θn ≤ B′. Then, we have F (θn) = 1,
F (θ∗) = α and

Dcode(x) ≤ 1− α
B′ −A′

≤ 1− α
B′ −Ax

≤ 1− α
θn − θ∗

this is why

(θn − θ∗)(F (θn)− F (θ∗)) = (θn − θx)(1− α) ≥ (θn − θ∗)Dcode(x)(θn − θ∗) = Dcode(x)(θn − θ∗)2.

The same proof allow to study other cases.

This assumption is useful to deal with non-asymptotic inequality for the mean square
error. It is the substitute of the convex assumption made in [16] which is not true in the
case of the quantile.

2.2. A.s convergence. The following theorem studies the a.s convergence of our algo-
rithm.

Theorem 2.1. Let x be a fixed input. Under assumptions A1 and A2, if 1
2 < γ < β < 1,

then the algorithm 3 at x is a.s convergent.

Sketch of proof : To prove this theorem, we adapt the proof of Blum in [5] of a.s
convergence of the Robbins Monro algorithm to estimate a quantile. We decompose the
reasoning into 3 parts.

1) We decompose H into a a martingale term and a remainder term by setting

hn(θn) = E(H(θn, Xn+1, Yn+1)|Fn) and ξn+1 = H(θn, Xn+1, Yn+1)− hn(θn).

Then

Tn = θn(x) +
n∑
j=1

γjhj−1(θj−1(x))

is bounded in L2 martingale and so converges a.s.
2) We show the almost sure convergence of (θn)n.

a) (θn) does not diverges to +∞ or −∞.
b) (θn) converges a.s to a finite limit.

3) The limit is θ∗(x) the conditionnal quantile we want to estimate.

Steps 2a), 2b) et 3) are shown by contradiction. The key point is that almost surely,
after a certain rank, hn(θn) > 0. This property is true thanks to assumptions A1 and
A2 as you can see in section 5.
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Comments on parameters. In this theorem, we have 1
2 < γ < 1 which is a classical

assumption for Robbins Monro algorithm to be consistent as you can see in [17] because
we need a stepwise sequence γn such that∑

n

γn =∞ and
∑
n

γ2
n < +∞.

The number of neighbors is bnβc with 0 < β < 1. β > 0 means that we consider at
least one neighbor. β < 1 means that we want a number a neighbors that goes to +∞
which implies the crucial following property (see Lemma 6.4)

||X − x||(kn,n) −→
n→+∞

0.

Finally we need to choose β > γ as we have seen before.

2.3. Non-asymptotic inequality. We want to study the rate of converge of the mean

square error that we denote an(x) := E
(

(θn(x)− θ∗(x))2
)

where θ∗(x) is our target, in

other words the quantile of the law L(Y |X = x).

Theorem 2.2. Let x be an fixed input. Under hypothesis A1, A2, A3 and A4, the
mean square error an(x) of the algorithm 3 at x satisfies the following inequality : for

all 0 < γ < 1, 0 < β < 1 and 1 > ε > 1− β, for n ≥ 2
1

ε−(1−β) := N0,

an(x) ≤R exp

(
−3n1−ε

8

)
+ a0(x) exp

(
−2Dcode(x)

n∑
k=1

1

kγ+ε

)
+

n∑
k=1

exp

(
−2Dcode(x)

n∑
i=k

1

iγ+ε

)
βk

where βn = R exp
(
−3n1−ε

8

)
+ 2
√
RMD(d)γn+1

(
kn
n+1

) 1
d

+1
+ γ2

n+1
kn
n+1 , R is defined in

remark 2.2, D(d) = d
√

2

(
1 + 8

3d + 1
d
√
CinputH(d)

)
and H(d) = π

5
2

Γ( d2 )+1
.

Sketch of proof : The idea of the proof is to establish a recursive inequality on
an(x) (an idea from [16]) of the form

an+1(x) ≤ an(x)(1− αn) + βn
and to conclude with Lemma 6.6. In this purpose we begin by developing the square

(θn+1(x)− θ∗(x))2 = (θn(x)− θ∗(x))2 + γ2
n+1

[
(1− 2α)1Yn+1≤θn(x) + α2

]
1Xn+1∈kNNn(x)

− 2γn+1(θn(x)− θ∗(x))
(
1Yn+1≤θn(x) − α

)
1Xn+1∈kNNn(x)

Taking the expectation conditionally to Fn, and using the Baye’s formula, we get

En
(
θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))

2
)

+ γ2n+1Pn

− 2γn+1 (θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θ∗(x))
]

where Pn = Pn (Xn+1 ∈ kNNn(x)) as in lemma 6.1. Then we make appear the two
errors we need to deal with.
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1) The first, F
Y B

kn
n (x)

(θn(x)) − FY x(θn(x)), is the error we make by using the re-

sponse corresponding to an input close to x instead of x. This is the variance
error. By A1,

|F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))| ≥M sup{||y − x||, y ∈ Bkn
n (x)} = M ||X − x||(kn,n)

and by A3,

|θn(x)− θ∗(x)| ≤
√
R

thus,

−2γn+1(θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))
]
≤ 2γn+1

√
RMPn||X − x||(kn,n)

2) The second term, FY x(θn(x))− FY x(θ∗) is the error we make by approximating
θ∗ by θn. This is the bias error. Thanks to Assumption A4 we get

(θn − θ∗) [FY x(θn(x))− FY x(θ∗(x))] ≥ Dcode(x) [θn(x)− θ∗(x)]2 .

Taking now the expectation of our inequality we get (by using remark 2.2)

an+1(x) ≤ an(x)− 2γn+1Dcode(x)E
[
(θn(x)− θ∗(x))2Pn

]
+ γ2

n+1E(Pn) + 2γn+1M
√
RE(||X − x||(kn,n)Pn).

This equation reveals a problem : thanks to Lemmas 6.1 and 6.5 (and so thanks to
assumption A2) we can deal with the two last terms but we are not able to compute
E
[
(θn(x)− θ∗(x))2Pn

]
. To solve this problem, we use a truncature parameter εn : in-

stead of writing a recursive inequality on an(x) we write such inequality with bn(x),
which is easier. Chosing εn = 1

nε , we have to tune an other parameter but thanks to A3)
and concentration inequalities (see lemma 6.3), it is easy to deduce a recursive inequality
on an(x) from the one on bn(x).

In fact, simulations (see Section 3) seem to show that in practice, the inequality is
true relatively soon.

Comments on the parameters. We chose 0 < β < 1 for the same reasons as in
Theorem 2.1. For γ, we have 0 < γ < 1 and then we can explore what happens when
γ ≤ 1

2 which is unusual (for exampl, this case is not studied in [14]). It can be explains
by the fact that our second parameter β can compensate a small choice of γ. Finally,
we have to take β > γ for the same reason than in previous theorem.

Compromise between bias and variance. We can easily see the compromise we
have to do on β to deal with the two errors. Indeed

• The bias error gives the term exp

(
−2Dcode(x)

n∑
k=1

1

kε+γ

)
of the inequality. This

term decreases to 0 if and only if γ + ε < 1 which implies β > γ. Then β must
not be too small.
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• The variance error gives the term
(
kn
n+1

) 1
d

+1
in the remainder. For the remainder

to decrease to 0, we then need that β < 1 and then we can not choose β too big.

From this theorem, we can get the rate of convergence of the mean square error. In
that purpose, we have to study the order of the remainder βn in n to exhibit dominating
terms. It is sum of three terms. The exponential one is always negligeable as soon as n
is big enough because 1 > ε. Let us sudy the two others. They are power of n, then we
have to compare their exposant, to exhibit the dominating one. First, we denote N1 the
rank after which when β ≤ 1− dγ,

max

(
2
√
RMD(d)γn+1

(
kn
n+ 1

)1+ 1
d

, R exp

(
−3

8
n1−ε

))
≤ n−2γ+β−1, and

and when β > 1− dγ,

max

(
2n−2γ+β−1, R exp

(
−3

8
n1−ε

))
≤
√
RMD(d)γn+1

(
kn
n+ 1

)1+ 1
d

.

Finally, when n ≥ max(N0, N1) and β ≤ 1− dγ we get

βn ≤ 3n−2γ+β−1

and when n ≥ max(N0, N2) and β > 1− dγ, we get

βn ≤ 4
√
RMD(d)n−γ+(1+ 1

d
)(β−1).

We notice that N0 and N1 are not the same kind of rank. In fact, N1 is reasonably
small whatever the parametersare , because it is only the rank after which an exponen-
tial term is smaller than a power term. In fact, it depends on the problem constants
(Dcode(x), M , . . . ). N0 is not so nice, because, it increase exponentially when ε is close
to 1−β (and we will see in Corollary 2.2 that optimal parameters isε = 1−β+η1 with η1

small). We then understand that ranks like N1 don’t make any problem : if an equality
is true after N1, it is nevertheless a non-asymptotic inequality, because the inequality is
true when n is reasonably small. The difficulty will mostly be in N0. For this reason
and to simplify notations, in the sequel, we still denote N1 ranks which are not huge but
allows us to exhibit dominating terms. In fact, N1 is simply the maximum of all these
ranks which are reasonably small compared to N0.

Corollary 2.1. an(x) decreases to 0 with the following rate : ∀n ≥ max(N0, N1), when
β > 1− dγ and 1− β < ε < min

(
1− γ,

(
1 + 1

d

)
(1− β)

)
,

an(x) ≤ C1

n−ε+(1+ 1
d)(1−β)

where C1 = 2γ+3
√
RMD(d)

Dcode(x) , and when β ≤ 1− dγ and 1− η < min (1− β + γ, 1− γ)

an(x) ≤ C2

nγ−β+1−ε ,
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where C2 = 3×22+γ

Dcode(x) .

In the other cases, the inequality of Theorem 2.2, does not allow to show that an(x)
decreases to 0.

Sketch of proof : The proof consists in studying each term with comparison between
sums and integrales and to exhibit dominating terms and their order in n.

Corollary 2.2. Under the same hypothesis than in Theorem 2.2, when γ is fixed, the
choice of β giving the best rate of convergence of the mean square error is β = γ + η
where η > 0 is as small as possible. In this case, we get for n ≥ max(N0, N1), when
γ ≥ 1

1+d

an(x) ≤ C1

n
1
d

(1−γ)−η′
,

and when γ < 1
1+d

an(x) ≤ C2

nγ−η′

where in the two cases η′ = η
d − η1 and η1 = ε− (1− β).

Comparison with others results. When they study the MSE for the classical
stochastic algorithm to estimate the quantile, Godichon et al. show in [14] that non-
asymptotic rate of convergence is in O (n−γ) for 1

2 < γ < 1. Our study shows a rate of

convergence of O
(
n−γ+1+η

)
for these γ. Our rate is lower but it is logical because we

have a second level of approximation since we only have at hand a sample of bias laws.
Moreover, we are able to give the rate of convergence for 0 < γ ≤ 1

2 also.
To compare our results to classical result on k-nearest neighbors, Bhattacharya and

al. in [4] show that, to estimate conditional quantile with the generalized inverse of
empirical cumulative function, the best number of neighbors is for β = 4

5 when inputs are
in R. With this parameter, they show the weak convergence of their estimator at speed

O
(
n

2
5

)
. Our result gives for optimal β = 1

2 + η in dimension 1, a rate of convergence of

the MSE in n
1
2 which is then a slower. Nevertheless, our result is non-asymptotic and

our algorithm is easier to compute that their estimator which necessitate to calculate a
generalized inverse. Moreover, our inequality is true whatever the dimension d of the
input space.

Corollary 2.3. Under the same assumptions than in Theorem 2.2, the mean square
error decreases more rapidly when parameters are γ = 1

1+d and β = γ + η where η > 0

is as small as possible. We indeed obtain with these parameters, for n ≥ max(N0, N1)

an(x) ≤ C1

n
1

1+d
−η′

where η′ is the the same than in corollary 2.1 and C1 = 23+ 1
1+d

√
RMD(d)
Dcode(x) .
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Sketch of proof : It is easy optimization.

Comment on the rank N0. As we saw before the rank N1 depends on constants of
the problem but is reasonably small. This is not the case of the rank N0 which depends
on the gap between ε and 1 − β. The problem comes from the fact that optimal ε to
obtain rate of convergence of the two previous corollaries is ε = 1 − β + η1 with η1

as small as possible. But, η1 = ε − (1 − β) appears on the rank N0 but also on the
rate of convergence : after the rank N0 = exp

(
2η−1

1

)
the rate of convergence is on

O
(
n
−1
1+d

+ η
d

+η1
)

. Then the more η1 si small, the more the rate of convergence is fast but

the more the rate is true for big n. Our results are non-asymptotic but nevertheless true
when n is large.

Imagine, you have a budget of 10000 calls to the code. Then if you want your inequality
to be theoretically true for N = 10000, we have to take η1 = 2(ln(10000))−1 ≈ 0.217.

In this case, we can theoretically obtain a risk of N
−1
1+d

+ 2
ln(N) (where we forgot the term

dη−1 which is very small compared to the two others terms). It means that in dimension
1, the MSE decreases theoretically to 6%, which is acceptable. But in dimension d > 1
is not very good : we obtain 30% in dimension 2 and 63% in dimension 3.

Nonetheless, simulations (see next part) seems to show that this difficulty is only
an artifice of our proof (we needed to introduce εn because we do not know how to
compute E((θn − θ∗)Pn), but it does not really exists when we compute the algorithm).
Our simulations show that the optimal rate of convergence when we choose optimal
parameters is fast reached (see Section 3).

3. Numerical simulations

In this part we present some numerical simulations to illustrate our theorems. To
begin with, we deal with dimension 1. We study two stochastic codes.

3.1. Dimension 1- square function. The first example, very regular is the code car-
acterized by the function

g(X, ε) = X2 + ε

where X ∼ U([0, 1]) and ε ∼ U([−0.5, 0.5]). We try to estimate the quantile for
x = 0.5 and initialize our algorithm to θ1 = 0.3. Let us show that our assumptions are
fullfilled in this case. We know that L(Y |X = x) = U([−1

2 + x2; 1
2 + x2]). Then we have

f(X,Y )(u, v) = 1[− 1
2

+u2, 1
2

+u2](v).

Moreover, the code function g is at values in the compact set [A,B] = [−1
2 ; 3

2 ]. Let us
study assumption A1). Let A be an intervalle containing x, denoted A = [x− a, x+ b]
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(a > 0, b > 0), then

|FY A(t)− FY x(t)| ≤

∣∣∣∣∣
∫ t
−∞

∫
A f(X,Y )(z, y)dydz∫
A fX(z)dz

−
∫ t

−∞
f(X,Y )(x, y)dy

∣∣∣∣∣
≤

∫ t
− 1

2

∫ x+b
x−a

∣∣∣1[− 1
2

+z2; 1
2

+z2] − 1[− 1
2

+z2; 1
2

+z2]

∣∣∣ (y)dzdy

µ(A)

Now, we have to distinguish the cases in function of the localization of t. There are
lots of cases, but computations are nearly the same. That is why we will develop only
one case here.

If t ∈ [−1
2 ;x2 − 1

2 ], we have :

|FY A(t)− FY x(t)| ≤

∫ x+b
x−a

∫ t
− 1

2

∣∣∣1[− 1
2

+z2; 1
2

+z2] − 1[− 1
2

+z2; 1
2

+z2]

∣∣∣ (y)

a+ b

=

≤
∫ x+b
x−a

(
1z≥x(0) + 1z≤x(t− z2 + 1

2)1
z≥

√
t+ 1

2

)
dz

a+ b

=
≤
∫ x
x−a(t+ 1

2 − z
2)dz

b+ a

From now, there are again two cases. We always have (t+ 1
2)

1
2 ≤ x since t ∈ [−1

2 ;x2−
1
2 ]. But the position of

√
t+ 1

2 in relation to (x − a) is not always the same. Then, if

t ∈ [−1
2 ;−1

2(x− a)2], we get

(6)

|FY A(t)− FY x(t)| ≤
∫ x+b
x−a (t− z2 + 1

2)dz

b+ a

≤ (t+
1

2
)a− x3

3
+

(x− a)3

3

≤ (x− a)2a− x2a+ a2x− a3

3

≤ −a2x+
2a

3

≤ 0 + max
a∈A
||x− a|| × 1× 2

3

where we use that 0 < a < 1.
Finally, in this case A1 is true with M = 2

3 . We can compute exactly in the same

way for the other cases and we always find an M ≤ 2
3 . The assumption A2) is also

satisfies, taking Cinput = 1. We have already explained that assumption A3) is true for
[A,B] = [−1

2 ,
3
2 ]. Finally assumption A4) is also satisfies with Dcode(x) = 1−α

1+2α .

3.1.1. a.s convergence. Let us first deal with the almost sure convergence.
To check the coNvergence when 0 < γ < β < 1, we plot in Figure 1 the relative

error of the algorithm in function of γ and β when n = 50000. Best parameters are
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clearly β > γ = 1
2 . We can even observe that for β ≈ 1 or β ≤ γ, the algorithm does

not converge almost surely (or very slowly). This is in accordance with our theoretical
results. Since we also have plotted the relative error fo γ < 1

2 , we can check that the
behaviour of our algorithm in this area is not good. Nevertheless, we can observe a
kind of ocntinuity : in practice, the convergence becomes really slow only when γ is
significally far from 1

2 .

Figure 1. Relative error in fonction of β and γ

To complete this observations, we plot in Figure 2 evolution of iterations of the re-
centered algorithm (θn − θ∗) for different parameters. Conclusions are the same.

3.1.2. Mean Square Error (MSE). Let us study the best choice of β when γ is fixed
(illustrations of corollary 2.2). For this simulations (Figure 3), we estimate the MSE by
Monte Carlo with 100 realisations, when γ is fixed, for β between 0 and 1 and n = 200.
We plot the risk in function of β to check that the risk is smaller when β is just superior
to γ. Simulations are good illustrations of the corollary except when γ is too close to 1.

Let us now illustrate the choice of γ when β is optimal (illustrations of corollary 3.1.2).
In this part (Figure 4) , we study the influence of γ when β is ”optimal”, that is for β
just superior to γ. First, we plot the risk estimated by a Monte Carlo method with 100
iterations in function of γ. We can see that the best choice of γ is then 1

2 .

Then in Figure 5, we plot in logarithmical scale the convergence of the mean square
error (still with Monte Carlo of 100 realisations) for different values of γ. It appears that
the more close to 1

2 we are, the more the decreasing is fast.

Finally, let us sum up all and find the optimal parameters. We plot in Figures 6,
the mean square error in function of γ and β (still estimate by Monte Carlo of 100
iterations).

We can see that best parameters are γ = 1
2 and β superior to γ.
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Figure 2. Convergence a.s of the algorithm

3.1.3. Theorical bound. In this case, we have at hand all the parameters, to compute
the theoretical bound, obtained in our theorems. In particular, in corollary 2.3, we get :

an(x) ≤ C1

n
1

1+d
−η′

.

Since R = 4, d = 1, Cinput = 1, Dcode(x) = 0.017, M = 2
3 , we get H(d) ≈ 6 and

D(d) ≈ 7.5. Finally, C1 ≈ 6000. Then we obtain a bound of 420 for n = 200 which
is very far away from the practical results we got. Our bounds are clearly not optimal,
but they allow us to find optimal parameters. We can think to a way to improve this
bound. First of all, the constant Dcode(x) is in fact not so small. Indeed, we have to
take a margin in the proof, for the case where θn goes out of [A,B]. This clearly can
happen with a very small probability. If we do not take account of this case, we have
Dcode(x) = 2. Then C1 ≈ 110 and then, for n = 200, the bound is 7.7. Practical results
are still better (we can observe that for =n=50only, wehaveaMSEinferiorto0.5% !),
but the gap is less important.

3.2. Dimension 1 - absolute value function. Let us see what happens when the
function g is not continuous with respect to the first variable. We study the code

g(X, ε) = |X|+ ε

where X ∼ U ([−1, 1]) and ε ∼ U ([−0.5, 0.5]). We want to study the conditional
quantile in x = 0 (the point in which the continuity fails).



CONDITIONAL QUANTILE SEQUENTIAL ESTIMATION FOR STOCHASTIC CODES 15

Figure 3. Choice of β when γ is fixed

We do not try to check our assumptions, because computations are nearly the same
than in previous case, but they are true. Since the a.s convergence is true and gives
really same kind of plots than previous case, we only study the convergence of the MSE.
To deal with the MSE, we also check that best parameters are the theoretical one in
practice. In that purpose, we plot in Figure 7 the MSE (estimated by 100 iterations of
Monte Carlo simulations) in function of γ and β, for n=300 (the discontinuity constrains
us to make more iterations to have a sufficient precision) and θ1 = 0.3. Conclusions are
the same than in previous example concerning the best parameters. Nevertheless, we
can observe that the lack of continuity implies some strange behaviour around γ = 1.

3.3. Dimensions 2 and 3. In dimension d > 1, our theorems give that theoretical
optimal parameters are γ = 1

1+d and β = γ + η. To see what happens in practice, we

still plot Monte Carlo estimations (200 iterations) of the MSE in function of γ and β.

3.4. Dimension 2. In dimension 2, we study two code :

g1(X, ε) = ||X||2 + ε and g2(X, ε) = x2
1 + x2 + ε,
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Figure 4. Choice of γ when β is optimal

where X = (x1, x2) ∼ U
(
[−1, 1]2

)
and ε ∼ U ([−0.5, 0.5]). In each case, we chose

n = 400 and want to study the quantile in the input point x = (0, 0) and initialize our
algorithm in θ1 = 0.3. In Figure 8, we can see that β = 1 and γ = 1 are still really bad
parameters. As in theoretical point of view, γ = 1

1+d = 1
3 seems to be the best choice.

Nevertheless, even if it is clear that β < γ is a bad choice, the experiments seems to
show that best parameter β is strictly superior to γ, more superior than in theoretical
case, where we take β as close as possible of γ. As we said before, in practice, N0 seems
not to be the true limit rank. Indeed, with only ,= 400 iterations, in this case, the MSE,
in the opitmal parameters case reach 6% !

4. Dimension 3

In dimension 3, we study the two codes :

g1(X, ε) = ||X||2 + ε and g2(X, ε) = x2
1 + x2 +

x3
3

2
+ ε,

where X = (x1, x2, x3) ∼ U
(
[−1, 1]3

)
and ε ∼ U ([−0.5, 0.5]). In each case, we choose

n = 500 and want to study the quantile in the input point (0, 0, 0). The interpretation of
Figure 9 are the same than in dimension 2. The scale is still not the same, the decrease
is again more slow but with n = 500 we nevertheless obtain a MSE of 10%.

5. Conclusion and perspectives

In this paper we aimed at estimating a conditional quantile of the output of a sto-
chastic code where inputs are in Rd. In this purpose we introduced a new stochastic
algorithm using k-nearest neighbors theory. Dealing with the two erros made by this ap-
proximation, we show that our algorithm is convergent for 1

2 < γ < β < 1 and study the
non-asymptotic rate of convergence of the mean square error. Moreover, we show that
to get the best rate of convergence, we have to chose β = γ + η and γ = 1

2 . Numerical
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Figure 5. Convergence of the mean square error in logarithm scale

simulations that we made show that our algorithm with theoretical optimal parameters
is really powerful to estimate a conditional quantile, even in dimension d > 1.
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Figure 6. Mean square error in function of β and γ for the square function

Figure 7. MSE in function of β and γ for absolut value function

Even if the theoretical guarantees are shown under strong technical assumptions, our
algorithm is a general methodology to solve the problem. A futur work can consist in
trying to relax this technical assumptions. Moreover, the proof we propose constrained
us to use an artifact parameter ε which implies that the non-asymptotic inequality is
theoretically true for big n, even if simulations confirm that this problem do not exists
in practice. A second perspective is then to find a better way to prove this inequality
for smaller n. Finally, it could be interesting to find a way to chose the new input at
each step. Maybe we could build a criteria which allows us to chose the best new input
to provide to the code, to reduce the error made by our algorithm.

6. Annexes : technical lemmas and proofs

6.1. Technical lemmas and notations.
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Figure 8. Mean square error in function of β and γ

Figure 9. Mean square error in function of β and γ

Lemma 6.1. Denoting Pn = P(X ∈ kNNn(x)|X1, . . . Xn), we have the following prop-
erties

1) Pn = F||X−x||
(
||X − x||(kn,n)

)
2) Pn ∼ β(kn, n− kn + 1)

3) E(Pn) = kn
n+1 .

where you denote F||X−x|| the cumulative distribution function of the law ||X − x||
where X is the input law, ||X − x||(kn,n) the kn order statistic of the sample (||X1 −
x||, . . . ||Xn − x||) of size n and β(kn, n− kn + 1) the beta distribution of parameters kn
and n− kn + 1.

Proof. Conditionnally to X1, . . . Xn, ”X is in the set kNNn(x)” is equivalent to ”X
satisfies ||X − x|| ≤ ||X − x||(kn,n)”. Then
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Pn = P(X ∈ kNNn(x))

= PX
(
||X − x|| ≤ ||X − x||(kn,n)

)
= F||X−x||

(
||X − x||(kn,n)

)
Since X is at density, the cumulative distribution function F||X−x|| is continuous.

Indeed, using the sequential caracterization we get for a sequence (tn) converging to t

F||X−x||(tn) = P(X ∈ Bd(x, tn))

=

∫
Rd
f(z)1Bd(x,tn)(z).

Since f is integrable, the Lebesgue theorem allows us to conclude that

lim
n

∫
Rd
f(z)1Bd(x,tn)(z) =

∫
Rd

lim
n
f(z)1Bd(x,tn)(z) = P(X ∈ Bd(x, t)),

so the cumulative distribution function is continuous.
Then thanks to classical result on statistics order and quantile transform (see [7]), we

get

Pn = F||X−x||
(
||X − x||(kn,n)

)
∼ U(kn)

∼ β(kn, n− kn + 1)

where we denoted U(kn) the kn statistic order of a independant sample distributed like
a uniform law on [0, 1].

�

Lemma 6.2. Denoting B(n, p) the Binomiale law of parameters n and p, we have

P
(
B(n, p)

n
<
p

2

)
≤ exp

(
−3np

32

)
P
(
B(n, p)

n
> 2p

)
≤ exp

(
−3np

8

)
Proof. Let us prove the first inequality. By noticing that

Z =
L

1

n

n∑
k=1

Zi

where (Zn)n is an independant sample of B(p) (Bernoulli law of paramater p), we apply
the Bernstein’s inequality (see Theorem 8.2 of [9]) to conclude that

P(Z − p < −εp) ≤ exp

(
−3npε2

8

)
P(Z − p > εp) ≤ exp

(
−3npε2

8

)
The results follow by taking ε = 1

2 in the first case and ε = 1 in the second case. �
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Lemma 6.3. Denoting An the event {X1, . . . Xn | Pn > εn} where εn = 1
nε and 1 > ε >

1− β, we have for n ≥ 1,

P(ACn ) ≤ exp

(
−3n1−ε

8

)
Proof. Thanks to the Lemma 6.1, we obtain

P(ACn ) = P(β(kn, n− kn + 1) ≥ εn)

= Iεn(kn, n− kn + 1)

where we denote Iε the incomplet β function. A classical result (see [1]) allow us to
exprim this quantity in function avec the Binomiale distribution. Then

P(ACn ) = P(B(n, εn) ≥ kn)

Thanks to Lemma 6.2, we know that

P(B(n, εn) ≥ kn) ≤ exp

(
−3nεn

8

)
as soon as

kn
n
≥ 2εn

which is true as soon as n ≥ 2
1

ε−(1−β) because ε > 1 − β. We now use the Cramer’s
method to study the deviation of the Binomial distribution (see [8])

P
(
B(n, εn)

n
≥ kn

n

)
≤ exp

(
−n

(
kn
n

log

(
kn
nεn

)
+

(
1− kn

n

)
log

(
1− kn

n

1− εn

)))

=

(
nεn
kn

)kn ( 1− ε
1− kn

n

)n−kn
Then, since εn = n−ε and kn ∼ nβ, computations give us

log
(
P(ACn )

)
= nβ (1− ε+ β) log(n) + (n− nβ log

(
1− nβ−1 − n−ε

1− nβ−1

)
≤ nβ (1− ε+ β) log(n) + nβ − n−ε+1

= O
(
−nβ log(n)

)
and the result follows.

�

Definition 6.1. Let Bkn
n (x) be the set such that

P(X ∈ kNNn(x)|X1 . . . Xn) = P(X ∈ Bkn
n (x)),

in fact
Bkn
n (x) = B||.||d(x, ||X − x||(kn,n)).

Lemma 6.4. Under hypothesis of theorem 2.1, ||X − x||(k,n) converges to 0 a.s.
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Proof. Let u be a strictly non-negative number.

(7)

pu : = P(X ∈ B(x, u)) =

∫
B(x,u)

f(t)dt

≥ µX (B(x, u)) = Cinput
π
d
2

Γ(d2 + 1)

= CinputH(d)ud := qu

Since {||X−x||(kn,n) > u} ⊂ {there are at the most kn elements of the sample which satisfy X ∈
B(x, u)}, we get, by denoting Z ∼ B(n, pu),

P(||X − x||(kn,n) > u) = P(Z < kn)

Thanks to equation (7), we get, by denoting Z̃ ∼ B(n, qu),

P(||X − x||(kn,n) > u) ≤ P(Z̃ < kn)

Thanks to Lemma 6.2, we then know that P(||X − x||(kn,n) > u) is the general term

of a convergent sum. Indeed, for n large enough, kn
n < qu

2 because kn
n converges to

0 (β < 1). The Borel-Cantelli Lemma (see for example Proposition 5.1.2 of [3]) then
implies that ||X − x||(kn,n) converges to 0 a.s. �

Lemma 6.5. With de forcoming notations,

E(||X − x||(kn,n)Pn) ≤ D(d)

(
kn
n+ 1

)1+ 1
d

where D(d) = d

√
4

CinputH(d)

(
1 + 8

3d

)
, H(d) = π

d
2

Γ( d
2

+1)
, and Cinput is defined by assump-

tion A2 .

Proof. Let us denote F̃ and f̃ the cumulative and density distribution function of the
law of ||X − x||.

E(||X − x||(kn,n)Pn) = E
(
||X − x||(kn,n)F̃

(
||X − x||(kn,n)

))
=

∫
yF̃ (y)f||X−x||(kn,n)(y)dy

with

f|X−x|(kn,n)(y) =
n!

(kn − 1)!(n− kn)!
F̃ (y)kn−1

(
1− F̃ (y)

)n−kn
f̃(y)

Then we get

E(||X − x||(kn,n)Pn) =

∫
yF̃ (y)kn(1− F̃ (y))n−kn f̃(y)

n!

(kn − 1)!(n− kn)!

=
kn
n+ 1

E
(
||X − x||(kn+1,n+1)

)
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Let us now use a classical inequality between expectancy and probability (see for
example Proposition 3.4.8 of [3]), denoting A the upper-bound of the support of the
denisty of the inputs law :

E(||X − x||(kn+1,n+1)) ≤
∫ A

0
P(||X − x||(kn+1,n+1) > u)du.

Using same arguments that in Lemma 2.1, we get

I :=

∫ A

0

P(||X − x||(kn+1,n+1) > u)du =

∫ d

√
2(kn+1)

(n+1)CinputH(d)

0

P(B(n+ 1, qu) < kn + 1)du

+

∫ A

d

√
2(kn+1)

(n+1)CinputH(d)

P(B(n+ 1, qu) < kn + 1)du

≤
∫ d

√
2(kn+1)

(n+1)CinputH(d)

0

1du+

∫ A

d

√
2(kn+1)

(n+1)CinputH(d)

exp

(
−3(n+ 1)CinputH(d)ud

32

)
du

where we use Lemma 6.2 in the second integrale because u > d

√
2(kn+1)

(n+1)CH(d) implies

kn+1
n+1 < qu

2 . Then, denoting B = d

√
2(kn+1)

(n+1)CinputH(d) we get

I = ≤ B +

∫ +∞

B

exp

(
−3(n+ 1)CinputH(d)ud

32

)
du

≤ B +

∫ +∞

0

ud−1

Bd−1
exp

(
−3(n+ 1)CinputH(d)ud

32

)
du

= B +
B

Bd
32

3(n+ 1)dCinputH(d)

∫ +∞

0

3(n+ 1)dCinputH(d)ud−1

32
exp

(
−3(n+ 1)CinputH(d)ud

32

)
du

= B +
B

Bd
32

3(n+ 1)dCinputH(d)

[
− exp

(
−3(n+ 1)CinputH(d)ud

32

)]+∞
0

= B

(
1 +

3(n+ 1)dCinputH(d)

32Bd

)
= d

√
2(kn + 1)

(n+ 1)CinputH(d)

(
1 +

16

3d(kn + 1)

)

= d

√
kn
n+ 1

[
d

√
2

CinputH(d)
d

√
kn + 1

kn

(
1 +

16

3d(kn + 1)

)]

= d

√
kn
n+ 1

d

√
4

CinputH(d)

(
1 +

8

3d

)

:= D(d) d

√
kn
n+ 1

where we use in the last inqequality that for n ≥ 1, kn ≥ 1.
�
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Lemma 6.6. Let (bn) be a deterministic sequel such that there exists a constant C and
a sequence (αn)n such that

∀n, bn+1 ≤ bn(1− 2Cαn) + βn

then

∀n, bn ≤ exp

(
−2C

n∑
k=1

αk

)
b0 +

n∑
k=1

exp

−2C
n∑
j=k

αj

βk.

Proof. Proof by induction. �

6.2. Proof of Theorem 2.1 : a.s convergence of the algorithm. To proove this
theorem, we adapt the proof of Robbins-Monro in the classical case (see [5]). In the
sequel we don’t write θn(x) but θn to make the notation less cluttered.

6.2.1. Creation of a martingale. Let us denoteH(θn, Xn+1, Yn+1) :=
(
1Yn+1≤θn−α

)
1Xn+1∈kNNn(x)

and Fn = σ(X1, . . . Xn, Y1, . . . Yn). In the sequel we still denote Pn ad En the probability
and expectancy conditionnaly to Fn. Let us denote

hn(θn) := E(H(θn, Xn+1, Yn+1)|Fn)

= Pn(Yn+1 ≤ θn ∩Xn+1 ∈ kNNn(x))− αPn(Xn+1 ∈ kNNn(x))

= Pn [(FY kNNn(x)(θn)− FY x(θ∗)]

where we use the notations Pn := P(X ∈ kNNn(x)|X1, . . . Xn) as in Lemma 6.1.
We then have exhibited a martingale Tn

Tn = θn +
n∑
j=1

γjhj−1(θj−1)

= θ0(x)−
n∑
j=1

γjξj

with ξj = H(θj−1, Xj , Yj)−hj−1(θj−1). This martingale is bounded in L2. Indeed, as

sup
n
|ξn| ≤ α+ (1 + α) = 1 + 2α

the Burkholder inequality gives the existence of a constant C such that

E(|Tn|2) ≤ E

 n∑
j=1

γjξj

2
≤ CE

| n∑
j=1

(γjξj)
2 |2


≤ C(1 + 2α)
n∑
j=1

γ2
j
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which allows us to conclude because
∑
n≥0

γ2
n < +∞.

6.2.2. The sequel (θn) converges a.s. First, let us show that

(8) P(θn = +∞) + P(θn = −∞) = 0.

Let us suppose that this probability is positive (we name Ω1 the non-negligeable set
where θn(ω) diverges to +∞ and the same arguments would show the result when the
limit is −∞). Let ω be in Ω1. We have θn(ω) ≤ θ∗ for only a finit number of n. Let
us then show that for n large enough, hn(θn(ω)) > 0. First, we know that Pn follows a
Beta distribution. This is why

P(Pn = 0) = 0 ∀n

and then the Borel-Cantelli Lemma gives that

P(∃N ∀n ≥ N Pn > 0) = 1.

As we suppose Ω1 has a strictly non-negativ measure, we know that there exists Ω2

of strictly non-negative measure such that ∀ω ∈ Ω2, θn(ω) → +∞ and for all n large
enough, Pn(ω) > 0. Since

hn(θn(ω)) = Pn

(
F
Y B

kn
n (x)

(θn(ω))− α
)
,

we have now to show that

F
Y B

kn
n (x)

(θn(ω))− α > 0.

As θn(ω) diverges to +∞, we can find A such that for n large enough, θn(ω) > A > θ∗.
Then

F
Y B

kn
n (x)

(θn(ω))− α = F
Y B

kn
n (x)

(θn(ω))− FY x(θ∗)

= F
Y B

kn
n (x)

(θn(ω))− F
Y B

kn
n (x)

(A) + F
Y B

kn
n (x)

(A)− FY x(A)

+ FY x(A)− FY x(θ∗)

First, F
Y B

kn
n (x)

(θn(ω)) − F
Y B

kn
n (x)

(A) ≥ 0 because a cumulative distribution function

is non-decreasing. Then, we set η = FY x(A) − FY x(θ∗) which is a finite value. To deal
with the last term, we use our assumption A1.

F
Y B

kn
n (x)

(A)− FY x(A) ≥ −M max
a∈Bknn (x)

||x− a|| = −M ||X − x||(kn,n).

but we know, thanks to lemma 6.4 that ||X − x||(kn,n) converges to 0 p.s. Like so
there exists a set Ω3 of probability strictly non-negative such that ∀ω ∈ Ω3, the previous
reasonning is true and for ε < η

L , there exists rank N(ω) such that if n ≥ N

(9) F
Y B

kn
n (x)

(A)− FY x(A) ≥ 0 +−Lε+ η > 0.

Finally for ω ∈ Ω3 (set of strictly non-negative measure), we have shown that
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lim
n

θn(ω) +

n∑
j=1

γj−1h(θj−1(ω))

 = +∞

which is a absurde because of the previous part : Tn is almost surely convergent.
Then θn does not diverges to +∞ or −∞.

Now, we will show that (θn) converges a.s. In all the sequel of the proof we will make
reasonning ω by ω like in previous part. To make the reading more easy, we do not write
ω and Ω any more. Thanks to equation 8 and previous subsection, we know that, with
probability strictly non-negative, there exists a sequel (θn) such that (a) θn +

n∑
j=1

γj−1h(θj−1)converges to a finite limit

(b) lim inf θn < lim sup θn

Let us suppose that lim sup θn > θ∗ (we will find a contradiction and the same argu-
ment would allow us to conclude in the other case). Let us choose a and b satisfying

a > θ∗, lim inf θn < a < b < lim sup θn.

As the sequel (γn) converges to 0, and (Tn) is a Cauchy sequence , we can find a
deterministic rank N and two entires n and m such that N ≤ n < m implies

(a) γn ≤
(b− a)

3(1− α)

(b)

∣∣∣∣∣∣θm − θn −
m−1∑
j=n

γjh(θj−1)

∣∣∣∣∣∣ ≤ b− a
3

We the choose m and n so that

(10)


(a) N ≤ n < m

(b) θn < a, θm > b

(c) n < j < m⇒ a ≤ θj ≤ b

This is possible since beyond N , the distance between two iterations will be either

αγn ≤
α(b− a)

3(1− α)
< (b− a)

because α < 3
5 or

(1− α)γn ≤
1

3
(b− a) < (b− a).

Moreover, since a and b are chosen to have an iteration inferior to a and an iteration
superior to b, the algorithm will necessarely go through the segment [a, b]. We the take
n and m the times of enter and exit of the segment. Now,
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θm − θn ≤
b− a

3
+

m−1∑
j=n

γj+1hj(θj)

≤ b− a
3

+ γn+1hn(θn)

because n < j < m, we get θ∗ < a < θj and we have already shown that in this case,
hj(θj) > 0. We then only have to deal with the terme θn. If θn > θ∗, we can apply the
same result and then

θn − θn ≤
b− a

3
which is in contradiction with (b) of equation (10). When θ < θ∗,

θm − θn ≤
b− a

3
+ γnh(θn−1)

≤ b− a
3

+ γn(1− α)

≤ b− a
3

+
b− a

3
< (b− a)

which is still a contradiction with (b) of (10).
We have shown that the algorithm converges a.s.

6.2.3. The algorithm converges a.s to θ∗. Again we reason by contradiction. Let us name
θ the limit such that P(θ 6= θ∗) > 0. With probability strictly non-negative, we can find
a sequel (θn) which converges to θ such that{

(a) θ∗ < ε1 < ε2 <∞
(b) ε1 < θ < ε2

(or −∞ < ε1 < ε2 < θ∗ but arguments are the same). Then, for n large enough, we
get

ε1 < θn < ε2.

In the first hand, (Tn) and (θn) are convergent, we also know that

n∑
j=1

γj+1h(θj)

converges a.s.

But, in the second hand, let us show that hn(θn) = Pn

(
F
Y B

kn
n (x)

(θn)− α
)

is lower

bounded. First we know thanks to Lemma 6.3, that for 1 < ε < 1− β and εn = 1
nε

P(Pn ≤ εn) exp

(
−3nεn

8

)
.

This the general term of a convergent sum, the Borel-Cantelli Lemma gives

P(∃N ∀n ≥ N Pn > εn) = 1.

Moreover, as we have already seen in equation (9), since θn > ε1 > θ∗,
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F
Y B

kn
n (x)

(θn)− α ≥ 0− L||X − x||(kn,n) + FY x(ε1)− FY x(θ∗)

Then, when n is large enough to have

||X − x||(kn,n) ≤
FY x(ε1)− FY x(θ∗)

2L
,

F
Y B

kn
n (x)

(θn)− α ≥ FY x(ε1)− FY x(θ∗)

2
.

Finally there exists a set Ω of probability strictly non-negative such that, ∀ω ∈ Ω

n∑
k=1

γk+1hk(θk) ≥
FY x(ε1)− FY x(θ∗)

2

n∑
k=1

γkPk ≥
n∑
k=1

1

nγ+ε

which is a contradiction (with the first hand point) because the sum is divergent
(γ + ε < 1).

6.3. Proof of Theorem 2.2 : Non-asymptotic inequality on the mean square
error. Let x be fixed in [0, 1]. We want to study the quadratic risk E((θn(x)−θ∗(x))2) :=
an(x). In that purpose, let us establish an inductive inequality to conclude with Lemma
6.6. In the sequel, we will need to study θn(x) on the event An of the Lemma 6.3. Then,
we begin to find a link between the quadratic risk and the quadratic risk on this event.

an(x) = E
[
(θn(x)− θ∗(x))2 1An

]
+ E

[
(θn(x)− θ∗(x))2 1ACn

]
≤ E

[
(θn − θ∗)2 1An

]
+RP(ACn )

where R is the constant of the Remark 2.2. Lemma 6.3 gives the quantity P(ACn ). We
finally obtain

(11) E
[
(θn(x)− θ∗(x))2

]
≤ E

[
(θn(x)− θ∗(x))2 1An

]
+R exp

(
−3n1−ε

8

)
Let us now study the sequence bn(x) := E

[
(θn(x)− θ∗)2 1An

]
.

First,

bn+1(x) ≤ E
[
(θn+1(x)− θ∗(x))2

]
.

But

(θn+1(x)− θ∗(x))2 = (θn(x)− θ∗(x))2 + γ2n+1

[
(1− 2α)1Yn+1≤θn(x) + α2

]
1Xn+1∈kNNn(x)

− 2γn+1(θn(x)− θ∗(x))
(
1Yn+1≤θn(x) − α

)
1Xn+1∈kNNn(x)

Taking the expectation conditionnaly to Fn, we get then

En
(
(θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))

2
)

+ γ2n+1Pn (Xn+1 ∈ kNNn(x))

− 2γn+1 (θn(x)− θ∗(x)) [Pn (Yn+1 ≤ θn(x) ∩Xn+1 ∈ kNNn(x))Pn (Xn+1 ∈ kNNn(x))FY x(θ∗)]
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Using the Baye’s formula, we get

En
(
θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))

2
)

+ γ2n+1Pn −2γn+1 (θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θ∗(x))
]

where Pn = Pn (Xn+1 ∈ kNNn(x)) as in lemma 6.1. Let us split the double product
term into two terms representing the two errors we made by iterating our algorithm.
We still denote FY x and F

Y B
kn
n (x)

the cumulative functions of the laws L(Y |X = x) and

L(Y |X ∈ kNNn(x)).

(12)

En
(
θn+1(x)− θ∗(x))2

)
≤ (θn(x)− θ∗(x))

2
+ γ2n+1Pn

− 2γn+1 (θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))
]

− 2γn+1 (θn(x)− θ∗(x))Pn [FY x(θn(x))− FY x(θ∗(x))]

We now use our hypothesis. By A1,

|F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))| ≥M sup{||y − x||, y ∈ Bkn
n (x)} = M ||X − x||(kn,n)

and by A3

|θn(x)− θ∗(x)| ≤
√
R

thus,

−2γn+1(θn(x)− θ∗(x))Pn

[
F
Y B

kn
n (x)

(θn(x))− FY x(θn(x))
]
≤ 2γn+1

√
RMPn||X − x||(kn,n)

On the other hand, thanks to A4 we know that,

(θn − θ∗) [FY x(θn(x))− FY x(θ∗(x))] ≥ Dcode(x) [θn(x)− θ∗(x)]2 .

Let us come back to equation (12).

En
(
θn+1(x)− θ∗(x))2

)
≤ (θn(x)− θ∗(x))2 (1An + 1Ān

)
+ γ2

n+1Pn

− 2γn+1 (θn(x)− θ∗(x))2Dcode(x)Pn + 2γn+1M
√
R||X − x||(kn,n)Pn

where we used again Remark 2.2. To conclude, we take the expectation

bn+1(x) ≤ RP(ACn ) + bn(x)− 2γn+1Dcode(x)E
[
Pn (θn(x)− θ∗)2

]
+ γ2

n+1E(Pn) + 2γn+1

√
RME

[
Pn||X − x||(kn,n)

]
We have to compute the two expectancies. Thanks to Lemma 6.5, we first know that

for n large enough,

E(||X − x||(kn,n)Pn) ≤
(

kn
n+ 1

)1+ 1
d

D(d),
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The second one is more difficult to compute. This is why we need the event An. By
definition of An

−2γn+1Dcode(x)E
[
Pn (θn(x)− θ∗)2

]
≤ −γn+1εnDcode(x)E

[
(θn(x)− θ∗(x))2 1An

]
= −2γn+1εnDcode(x)bn(x)

We obtain for n ≥ 1

bn+1(x) ≤ bn(x)
(
1− 2Dcode(x)n−γ−ε

)
+ βn

with

βn = R exp

(
−3n1−ε

8

)
+ 2RMD(d)γn+1

(
kn
n+ 1

) 1
d

+1

+ γ2
n+1

kn
n+ 1

,

Let us now use Lemma 6.6,

bn(x) ≤ exp

(
−2Dcode(x)

n∑
k=1

k−γ−ε

)
b0(x) +

n∑
k=1

exp

−2Dcode(x)

n∑
j=k

j−ε−γ

βk

To conclude, we reinject equation 6.3 in Equation 11 and obtain

an(x) ≤ exp

(
−2Dcode(x)

n∑
k=1

k−γ−ε

)
b0(x) +

n∑
k=1

exp

−2Dcode(x)

n∑
j=k

j−ε−γ

βk +R exp

(
−3n1−ε

8

)
.

6.4. Proof of Corollary 2.2 : Choice of β when γ is fixed. In this part, we will
denote

T 1
n := exp

(
−2Dcode(x)

n∑
k=1

k−γ−ε

)
and

T 2
n :=

n∑
k=1

exp

− n∑
j=k

j−ε−γ

βk.

We will find their order in n to conclude. When γ is fixed, our inequality shows thanks
to T 1

n that an(x) can converges to 0 only when the sum∑
k≥1

1

kγ+ε
= +∞.

This is why we must first consider ε ≤ 1− γ. As ε < 1− β, we have to take β > γ.

Remark 6.1. The case where ε = 1 − γ is possible but its study shows that it is a less
interessant case than for ε < 1−γ (there is a dependency in the value of Dcode(x) but the
optimal rate is the same as the one in the case we study). The case ε > 1− γ show that
an(x) is bounded, but we already know it. In the sequel, we then only consider ε < 1−γ.
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T 1
n = exp

(
−2Dcode(x)

n∑
k=1

1

kε

)
≤ exp

(
−2D

∫ n+1

1

1

tε+γ
dt

)
≤ exp

(
−2D

(n+ 1)1−ε−γ − 1

(1− ε− γ)

)

To deal with the second term T 2
n we fisrt study the order in n of βn. There are two

cases. When β ≤ 1− dγ, we have for n large enough,

βn ≤ 2n−2γ+β−1,

and when β > 1− dγ,

βn ≤ 4RMD(d)n−γ+(1+ 1
d

)(β−1)

.
We have to distinguish the two cases in the sequel.

Study of T 2
n when β > 1− dγ :

To deal with these terms, we will use arguments from [6].

T 2
n = 4RMD(d)

n∑
k=1

exp

−2Dcode(x)

n∑
j=k+1

a

jε+γ

 1

kγ+(1+ 1
d )(1−β)

= 4RMD(d)

bn2 c−1∑
k=1

exp

−2Dcode(x)

n∑
j=k+1

a

jε+γ

 1

kγ+(1+ 1
d )(1−β)

+ 4RMD(d)

n∑
k=bn2 c

exp

−2Dcode(x)

n∑
j=k+1

a

jε+γ

 1

kγ+(1+ 1
d )(1−β)

:= S1 + S2

If we take 1− β < ε < min((1− dγ),
(

1 + 1
1+d

)
(1− β)), we have

S2 ≤
(

1

bn2 c

)(1+ 1
d )(1−β)−ε

4RMD(d)

n∑
k=bn2 c

exp

−2Dcode(x)

n∑
j=k+1

1

jε+γ

 1

kε+γ

≤ 4RMD(d)

n(1+ 1
d )(1−β)−ε

n∑
k=bn2 c

exp

(
−2Dcode(x)

(n+ 1)1−ε−γ − (k + 1)1−ε−γ

1− ε− γ

)
1

kε+γ

≤ 4RMD(d)

n(1+ 1
d )(1−β)−ε

exp

(
−2Dcode(x)

(n+ 1)1−ε−γ

1− ε− γ

) n∑
k=bn2 c

exp

(
2Dcode(x)

(k + 1)1−ε−γ

1− ε− γ

)
1

kε+γ

Now, for n large enough, we have 1
k1−ε−γ ≤

2
(k+1)1−ε−γ and then
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S2 ≤
4RMD(d)

n(1+ 1
d )(1−β)−ε

exp

(
−2Dcode(x)

(n+ 1)1−ε−γ

1− ε− γ

)
2ε+γ

n∑
k=bn2 c

exp

(
2Dcode(x)

(k + 1)1−ε−γ

1− ε− γ

)
1

(k + 1)ε+γ

≤ 4RMD(d)

n(1+ 1
d )(1−β)−ε

exp

(
−2Dcode(x)

(n+ 1)1−ε−γ

1− ε− γ

)
2ε+γ

∫ n+1

bn2 c
exp

(
2Dcode(x)

(t+ 1)1−ε−γ

1− ε− γ

)
1

(t+ 1)ε+γ
dt

≤ 4RMD(d)

2Dcode(x)n
(1+ 1

d )(1−β)−ε
exp

(
−2Dcode(x)

(n+ 1)1−ε−γ

1− ε− γ

)
2ε+γ exp

(
2Dcode(x)

1− ε− γ
(n+ 1)1−ε−γ

)

then for n large enough, there exists a constant C := 2ε+γ+1RMD(d)
Dcode(x) such that

S2 ≤
C

n(1+ 1
d)(1−β)−ε

Let us now deal with the term S1. As k ≤ bn2 c, we have

n∑
j=k+1

1

jε+γ
≥ n

2

1

nε+γ

then

S1 = 4RMD(d)

bn2 c∑
k=1

exp

−2Dcode(x)

n∑
j=k+1

a

jε+γ

 1

kγ+(1−β)(1+ 1
d )

≤ 4RMD(d)

bn2 c∑
k=1

exp
(
−Dcode(x)n1−ε−γ

) 1

kγ+(1−β)(1+ 1
d )

≤ 4RMD(d) exp
(
−Dn1−ε−γ

) bn2 c∑
k=1

1

kγ+(1−β)(1+ 1
d )

thanks to the exponentiel, S1 is insignificant compared to S2 whatever the behaviour

of
∑

k−γ−(1−β)(1+ 1
d), and so is Tn1 . Let N1 denote the rank after which we get,

max(S1, T
1
n) ≤ C

2n(1+ 1
d (1− β)− ε

.

Finally, in the case where β > 1 − γ and 1 − β < ε < min((1 − γ),
(

1 + 1
1+d

)
(1 − β)),

for n ≥ max(N0, N1,M1), we get

an(x) ≤ C ′

n−ε+(1+ 1
d)(1−β)

for C ′ = 2ε+γ+2RMD(d)
Dcode(x) ≤ C1 because ε < 1.

Study of T 2
n when β ≤ 1− dγ :

It is the same arguments and we conclude that for 1− β < ε < min(1− β + γ, 1− γ)
and n large enough,
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S2 ≤
c

nγ−β+1−ε

with C = 3× 21+ε+γ

Dcode(x) ≤ C2 since ε < 1 and this is the slowest term.

Let us now optimize the rate of convergence by choosing the best parameters. When
γ ≥ 1

1+d then γ ≥ 1 − dγ. So the condition β > γ implies, β > 1 − dγ and we

are in the first case. The rate of convergence is then nε−(1+ 1
d)(1−β) for 1 − β < ε <

min(1 − dγ,
(
1 + 1

d

)
(1 − β)). To have the greatest rate of convergence, the best choice

is then to take β and ε the smallest as possible : β = γ + η and ε = 1 − γ − η + η1

with η and η1 strictly non-negative. We obtain the rate of convergence n−
1
d

(1−γ)+η′ with
η′ = η1 + η

d which conclude the corollary.

When γ < 1
1+d , the two cases are possible. If we take β > 1 − dγ, we are in case

1 and in the same way than before, the rate of convergence is in nε−(1+ 1
d)(1−β). We

take β and ε the smallest as possible. But the constraints β > 1 − dγ implies that the
smallest β is 1 − dγ + η. Then, we choose ε = dγ − η + η1 and we obtain the rate
of convergence n−γ+η′ . In the second case, if we take γ < β < 1 − dγ, we have, for
1− β < ε < min(1− γ, 1− β + γ), the rate of convergence n−γ+β−1+ε. In the same way,
we take β and ε as small as possible : β = γ + η and ε = 1 − γ − η + η′. This leads to
the rate n−γ+η′ . The two sub-cases given the same result, we choose the first which is
the same that first result and the corollary is proved.

6.5. Proof of corollary 2.3 : choice of parameters γ and β. When gamma γ ≥ 1
1+d

we obtained the rate n−
1
d

(1−γ)+η, this is why we have to chose γ as small as possible
which means γ = 1

1+d ; to have the faster convergence. The rate of convergence is then

n−
1

1+d
+η. When γ < 1

1+d , the rate of convergence is n−γ+η and the best choice is to

take γ near 1
1+d and the rate is then n−

1
1+d

+η . To conclude, best choices are γ = 1
1+d ,

β = γ + η.



34 T. LABOPIN-RICHARD, F. GAMBOA, AND A. GARIVIER

References

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover Publications, 1965.
[2] Andrieu, Moulines, and Priouret. Stability of stochastic approximation under verifiable conditions.

The Annals of Applied Probability, 16(3):1462–1505, 2006.
[3] Philippe Barbe and Michel Ledoux. Probabilit. Collection Enseignement sup. EDP Sciences, Les

Ulis, 2007. dition corrige de l’ouvrage paru en 1998 chez Belin.
[4] PK Bhattacharya and Ashis K Gangopadhyay. Kernel and nearest-neighbor estimation of a condi-

tional quantile. The Annals of Statistics, pages 1400–1415, 1990.
[5] Julius R Blum. Approximation methods which converge with probability one. The Annals of Math-

ematical Statistics, pages 382–386, 1954.
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