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Abstract We propose and analyze an algorithm for the sequential estimation
of a conditional quantile in the context of real stochastic codes with vector-
valued inputs. Our algorithm is based on k-nearest neighbors smoothing within
a Robbins-Monro estimator. We discuss the convergence of the algorithm un-
der some conditions on the stochastic code. We provide non-asymptotic rates
of convergence of the mean squared error and we discuss the tuning of the
algorithm’s parameters.
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1 Introduction

Computer code experiments have encountered, in the last decades, a growing
interest among statisticians in several fields (see [21], [14,20,16,13,2] and ref-
erences therein). In the absence of noise, a numerical black box g : Rd → R
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maps an input vector X to a numerical output Y = g(X) ∈ R. When the
black box does include some randomness, the code is called stochastic and
the model is as follows: a random vector ε ∈ Rm, called random seed, models
the stochasticity of the function, while X is a random vector. The random
seed and the input are assumed to be stochastically independent. The map
g (which satisfies some regularity assumption specified below) is defined on
Rd × Rm and outputs

Y = g(X, ε) , (1)

hence yielding possibly different values for the same input X. One observes a
sample of pairs (X,Y ), without having access to the details of g. In the context
of computer experiments, those observations are often expensive (for example
when g has a high computational complexity) and one aims at learning rapidly
some properties of interest on g.

We focus in this work on the estimation of the conditional quantile of the
output Y given the input X. For a given level α ∈ [1/2, 1) and for every
possible input x ∈ Rd, the target is

θ∗(x) := qα
(
g(x, ε)

)
, x ∈ Rd ,

where qα(Z) := F−1Z (α) is the quantile of level α of the random variable Z
and F−1Z (u) := inf{x : FZ(x) ≥ u} is the generalized inverse of the cumulative
distribution function of Z. Notice that we restrict α ∈ [1/2, 1) as the case
α ∈ (0, 1/2] can be tackled in the same way considering −Z. Our goal is to
estimate the conditional quantile for different values of x at the same time.

The algorithm

For a fixed value of x, there are several well-known procedures to estimate
the quantile θ∗(x). Given a sample (Y xi )i=1...n of Y x := g(x, ε), the empirical
quantile is a solution. For a sequential estimation, one may use a Robbins
Monro [17] estimator. This method permits to iteratively approximate the
zero of a function h : R→ R by a sequence of estimators defined by induction:
θ0 ∈ Rd and for all n ≥ 0,

θn+1 = θn − γn+1H(θn, Zn+1) .

Here, (γn) is the learning rate (a deterministic step-size sequence), (Zn) is an
i.i.d sample of observations, and H is a noisy version of h. Denoting Fn :=
σ(Z1, . . . Zn) the sigma-field induced by the observations, H is such that

E
(
H(θn, Zn+1)|Fn

)
= h(θn) .

Classical conditions for the the choice of the step sizes (γn) are∑
n

γ2n <∞, and
∑
n

γn =∞ .
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These conditions ensure the convergence of the estimates under weak assump-
tions. For example, convergence in mean squared is studied in [17], almost
sure consistency is considered in [4,22], asymptotic rate of convergence are
given in [9,18,19], while large deviations principles are investigated in [25].
There has been a recent interest on non-asymptotic results. Risk bounds un-
der Gaussian concentration assumption (see [10]) and finite time bounds on
the mean squared error under strong convexity assumptions (see [15,22] and
references therein), have been given. Quantile estimation corresponds to the
choice h : t 7→ F (t)−α, where F is the cumulative distribution function of the
target distribution. One can show that the estimator{

θ0 ∈ R

θn+1 = θn − γn+1

(
1Zn+1≤θn − α

) (2)

is consistent and asymptotically Gaussian (see [8] chapters 1 and 2 for proofs
and details). It is important to remind, however, that the lack of strong convex-
ity prevents most non-asymptotic results to be applied directly, except when
the density is lower-bounded. We nevertheless mention that Godichon et al.
prove in [5,12] such non-asymptotic results for the adaptation of algorithm (2)
to the case where Z is a random variable on an Hilbert space of dimension
higher than 2.

Of course, unless x can take a small number of different values, it is not
possible to use this algorithm with a sample of Y x for each possible input value
x. Even more, when the code has a high computational complexity, the overall
number of observations (all values of x included) must remain small, and we
need an algorithm using only one limited sample (Xi, Yi)i=1...n of (X,Y ). Then,
the problem is more difficult. For each value of x, we need to estimate quantile
of the conditional distribution given x using a biased sample. To address this
issue, we propose to embed Algorithm (2) into a non-parametric estimation
procedure. For a fixed input x, the new algorithm only takes into account
the pairs (Xi, Yi) for which the input Xi is close to x, and thus (presumably)
the law of Yi close to that of Y x. To set up this idea, we use the k-nearest
neighbors method, introducing the sequential estimator:

{
θ0(x) ∈ R

θn+1(x) = θn(x)− γn+1

(
1Yn+1≤θn(x) − α

)
1Xn+1∈kNNn+1(x) ,

(3)

where

• kNNn(x) is the subset of {X1, . . . , Xn}made of the kn nearest neighbors of
x for the euclidean norm on Rd. Denoting by ||X−x||(i,n) the i-th statistic

order of a sample
(
||Xi − x||

)
i=1...n

of size n, we have{
Xn+1 ∈ kNNn+1(x)

}
=
{
||Xn+1 − x|| ≤ ||X − x||(kn+1,n)

}
.

In this work, we discuss choices of the form kn = bnβc for 0 < β < 1,
n ∈ N∗.
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• (γn) is the deterministic steps sequence. We focus here on the choice γn =
n−γ with 0 < γ ≤ 1.

The k-nearest neighbors method of localization first appears in [23,24] for
the estimation of conditional expectations. In [3], Bhattacharya et al. apply it
to the (non-recursive) estimation of the conditional quantile function for real-
valued inputs. Regarding the computational cost of the algorithm (3), naive
implementations of the search for nearest neighbors require O(n) operations at
round n, which means that the overall complexity is quadratic. However, the
smart use of quad-trees (a hierarchical partition of space) permits to reduce
the cost of an iteration to O(log(n)), and in practice the algorithm has almost
a linear complexity.

Remark that if the number of neighbors kn is small, then few observations
are used and the estimation is highly noisy; on the other hand, if kn is large,
then values of Yi may be used that have a distribution significantly different
from the target. The challenge is thus to tune kn so as to reach an optimal
balance between bias and variance.

In this work, this tuning is combined with the choice of the learning rate.
The main objective of this work is to optimize the choice of the two parameters
β and γ of Algorithm (3) that monitor the learning rate γn and the number
of neighbors kn. The paper is organized as follows: Section 2 deals with the
stability, and with the almost sure convergence of the algorithm. Furthermore,
it contains the main result of our paper: a non-asymptotic inequality on the
mean squared error from which an optimal choice of parameters is derived. In
Section 3, we present some numerical simulations to illustrate our results. The
technical points of the proofs are deferred to Appendix A, while Appendix B
summarizes the notation and constants used in this paper.

2 Main results

After giving some notation and technical assumptions, we explain in this sec-
tion how to tune the parameters of the algorithm. We also provide conditions
allowing theoretical guarantees of convergence.

2.1 Notation

The constants appearing in the sequel are of three different types:

1) (L,U) denote lower- and upper bounds for the support of random variables.
They are indexed by the names of those variables;

2) (Ni)i∈N∗ are integers denoting the first ranks after which some properties
hold;

3) (Ci)i∈N∗ are positive real numbers used for other purposes.

Without further precision, constants of type 2) and 3) only depend on the
model, that is, on g and on the distribution of (ε,X). Further, we denote
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by Ci(u) or Ni(u), u ∈ P({α, x, d}) (the power set of a {α, x, d}), constants
depending on the model, on the probability level α, on the point x and on the
dimension d. The values of all the constants are summarized in Appendix B.

For any random variable Z, we denote by FZ its cumulative distribution
function. We denote by Bx the set of the balls of Rd centred at x. For B ∈ Bx,
we denote by rB its radius and for rB > 0, we call Y B a random variable with
distribution L(Y |X ∈ B).

Remark 1 If the pair (X,Y ) has a density f(X,Y ) with respect to Lebesgue
measure and if the marginal density fX(x) is positive, then the density of
L(Y |X = x) is

fY |X=x =
f(X,Y )(x, .)

fX(x)
,

and when B = {x},

Y B
L
= Y x = g(x, ε) ∼ L(Y |X = x) .

2.2 Almost sure convergence

In order to prove the convergence of our algorithm, we make two assumptions.
The first one, a continuity assumption on the code, can hardly be avoided
for our k-nearest neighbors to be valid. The second one is convenient for the
simplicity of the analysis.

Assumption A1 For all x in the support of X (that we will denote
Supp(X) in the sequel), there exists a constant M(x) such that the follow-
ing inequality holds :

∀B ∈ Bx, ∀t ∈ R, |FY B (t)− FY x(t)| ≤M(x) rB .

In words, we assume that the stochastic code is sufficiently smooth. The law
of two responses corresponding to two different but close inputs are not com-
pletely different. The assumption is clearly required, since we want to approx-
imate the law L (Y |X = x) by the law L(Y |X ∈ kNNn(x)).

Remark 2 If we consider random vector supported by Rd × R, we can show
that Assumption A1 holds, for example, as soon as (X,Y ) has a regular den-
sity with respect to Lebesgue measure. In all cases, it is easier to prove this
assumption when the couple (X,Y ) has a density: see Subsection 3.1 for an
example.

Assumption A2 The law of X has a density with respect to Lebesgue
measure, and this density is lower-bounded by a constant Cinput > 0 on
Supp(X).
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This hypothesis implies in particular that the law of X has a compact sup-
port of volume at most 1

Cinput
. This kind of assumptions is usual in k-nearest

neighbors context (see for example [11]). The following theorem studies the
almost sure convergence of our algorithm.

Theorem 1 Let x and α be fixed. Under Assumptions A1 and A2, Algorithm
(3) is almost surely convergent whenever 1

2 < γ ≤ β < 1.

Comments on parameters. In the Theorem 1, we assume that 0 < β < 1.
This means that the number of neighbors goes to +∞ and ||X−x||(kn,n) → 0,
as P (X ∈ [x− ξ, x + ξ]) > 0, ∀ξ ≥ 0. Obviously, the ”localization” condition
kn/n → 0 requires β < 1: it is quantitatively exploited in Lemma 5. The
condition β ≥ γ can be informally understood in this way. When considering
Algorithm (2), we deal with the global learning rate γn = n−γ . In Algorithm
(3), since for a fixed input x, there is not an update at each step n, one
may define an effective learning rate γkn as follows. At step k, θk(x) has a
probability of P

(
Xn+1 ∈ kNNn+1(x)

)
≈ kβ/k to be updated (see Lemma 2).

Up to step n, the estimator is thus updated a number of times approximately
equal to

N =
∑
k≤n

kβ−1 = O
(
nβ
)
.

Thus, one has to wait on average up to step O
(
n

1
β ) in order to reach n updates.

Hence, on average, the estimator of the quantile at x evolves with Robbins-
Monro iterations roughly equivalent to

θkn(x) = θkn−1(x) + γkn
(
1Ykn≤θkn (x) − α

)
,

with the learning rate

γkn =
1(

n
1
β

)γ =
1

n
γ
β

.

This is a well-known fact that this algorithm has a good behaviour if, and only
if, the sum ∑

n

γkn =
∑
n

1

n
γ
β

,

is divergent. That is if, and only if β ≥ γ. At last, the condition 1
2 < γ ≤ 1 is

a classical assumption on the Robbins Monro algorithm to be consistent (see
for example in [17]). Here, we restrict the condition to γ < 1 because we need
1 > β ≥ γ. The proof of Theorem 1, in Appendix A, gives rigorous foundations
to this heuristic discussion.
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2.3 Rate of convergence of the mean squared error

We now study the rate of convergence of the mean squared error an(x) :=

E
(

(θn(x)− θ∗(x))
2
)

. Two rather technical assumptions are required.

Assumption A3 The code function g takes its values in a compact interval
[LY , UY ].

Under Assumption A3, Lemma 9 (see Appendix A) explains why if β ≥ γ,
then θn(x) is almost-surely bounded in an fixed interval [Lθn , Uθn ], and that
|θn(x)− θ∗(x)| is upper-bounded by√

C1 := max (UY − LY + (1− α), UY + α− LY ) = UY − LY + α .

Assumption A4 For all x, the law of g(x, ε) has a density with respect
to Lebesgue measure which is lower-bounded by a constant Cg(x) > 0 on its
support.

Lemma 1 Denoting C2(x, α) := min
(
Cg(x), 1−α

UY +α−LY ,
)

, it holds under As-

sumption A3 and A4 that for all n in N∗[
FY x(θn(x))− FY x(θ∗(x))

][
θn(x)− θ∗(x)

]
≥ C2(x, α)

[
θn(x)− θ∗(x)

]2
. (4)

Proof When θn(x) ∈ [LY , UY ], it is obvious that Inequality (4) holds for C2 :=
Cg(x). When θn(x) ∈ [Lθn , LY ], we have

Lθn ≤ θn(x) ≤ LY ≤ θ∗(x) ,

and then FY x(θn(x)) = 0. Thus,

(θn(x)− θ∗(x))(FY x(θn(x))− FY x(θ∗(x))) = (θn(x)− θ∗(x))2
(0− α)

θn(x)− θ∗(x)

= (θn(x)− θ∗(x))2
α

θ∗(x)− θn(x)

≥ (θn(x)− θ∗(x))2
α

UY + α− LY

≥ (θn(x)− θ∗(x))2
1− α

UY + α− LY
≥ C2(x, α)(θn(x)− θ∗(x))2 .

The last case θn(x) ∈ [UY , Uθn ] can be treated similarly, using that C2(x, α) ≤
1−α

UY +α−LY .

This lemma is useful to deal with non-asymptotic inequality for the mean
squared error. It is the substitute of the strong convexity assumption on the
function to minimize, which is often made in the analysis of Robins-Monro
stochastic approximation (see for example in[15]) but which does not hold for
quantile estimation.
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Theorem 2 Under hypothesis A1, A2, A3 and A4, the mean squared error
an(x) of the algorithm (3) satisfies the following inequality : ∀(γ, β, ζ) such

that 0 < γ ≤ β < 1 and 1 > ζ > 1− β, ∀n > N0 := 2
1

ζ−(1−β) ,

an(x) ≤ exp (−2C2(x, α)(κn − κN0
))C1 +

n∑
k=N0+1

exp (−2C2(x, α) (κn − κk)) dk

+ C1 exp

(
−3n1−ζ

8

)
,

where for j ∈ N∗, κj =

j∑
i=1

i−ζ−γ and

dn = C1 exp

(
−3n1−ζ

8

)
+ 2
√
C1M(x)C3(d)γn

(
kn
n

) 1
d+1

+ γ2n
kn
n
.

Here, C3(d) > 0 is a constant depending on the dimension d and on the dis-
tribution of X (as recalled in Apprendix B).

Sketch of proof : Following [15], the idea of the proof is to establish a
recursive inequality on an(x), that is for n ≥ N0,

an+1(x) ≤ an(x)(1− cn+1) + dn+1

where for all n ∈ N∗, 0 < cn < 1 and dn > 0. We use the technical Lemma 8.
In this purpose we begin by expanding the square

(θn+1(x)− θ∗(x))2 = (θn(x)− θ∗(x))2

+ γ2n+1

[
(1− 2α)1Yn+1≤θn(x) + α2

]
1Xn+1∈kNNn+1(x)

− 2γn+1(θn(x)− θ∗(x))
(
1Yn+1≤θn(x) − α

)
1Xn+1∈kNNn+1(x) .

Taking the expectation conditionally to Fn := σ(X1, . . . , Xn, Y1, . . . , Yn), us-
ing (1 − 2α)1Yn+1≤θn(x) +α2 ≤ 1 and α = FY x(θ∗(x)), we obtain thanks to
the Bayes formula that

En
(

(θn+1(x)− θ∗(x))
2
)
≤ En

(
(θn(x)− θ∗(x))

2
)

+ γ2n+1Pn

− 2γn+1 (θn(x)− θ∗(x))

× Pn
[
F
Y B

kn+1
n (x)

(θn(x))− FY x(θ∗(x))
]
,

(5)

where Pn := Pn (Xn+1 ∈ kNNn+1(x)) and B
kn+1
n (x) is the ball of Rd centred

in x and of radius ||X−x||(kn+1,n). We rewrite this inequality so as to highlight
the presence of two different contributions to the risk:



Conditional quantile and stochastic codes 9

1) First, the quantity F
Y B

kn+1
n (x)

(θn(x))−FY x(θn(x)) represents the bias error

(due to the use of a biased sample of FY x). Using Assumption A1, it can
be upper-bounded as

|F
Y B

kn+1
n (x)

(θn(x))− FY x(θn(x))| ≤M(x)||X − x||(kn+1,n) .

Moreover, by Assumption A3, |θn(x)− θ∗(x)| ≤
√
C1. Thus,∣∣∣2γn+1(θn(x)− θ∗(x))Pn

[
F
Y B

kn+1
n (x)

(θn(x))− FY x(θn(x))
]∣∣∣

≤ 2γn+1

√
C1M(x)Pn||X − x||(kn+1,n) .

2) The second quantity, FY x(θn(x))−FY x(θ∗(x)) represents the on-line learn-
ing error (due to the use of a stochastic optimization algorithm). Thanks
to Assumption A4 we obtain

(θn(x)− θ∗(x)) [FY x(θn(x))− FY x(θ∗(x))] ≥ C2(x, α) [θn(x)− θ∗(x)]
2
.

Taking the expectation in Inequality (5) yields

an+1(x) ≤ an(x)− 2γn+1C2(x, α)E
[
(θn(x)− θ∗(x))2Pn

]
+ γ2n+1E(Pn)

+ 2γn+1M(x)
√
C1E(||X − x||(kn+1,n)Pn) .

This inequality reveals a problem : thanks to Lemmas 2 and 7 (and thus
thanks to assumption A2) we can deal with the last two terms, but we are
not able to evaluate directly E

[
(θn(x)− θ∗(x))2Pn

]
. In order to solve this

problem, we use a truncation parameter ζn. Instead of writing a recursive
inequality on an(x) we write such inequality with the quantity bn(x) :=

E
[
(θn(x)− θ∗(x))

2 1Pn>ζn
]
. Choosing ζn = n−ζ , we have to tune another

parameter but thanks to A3 and deviation inequalities recalled in Lemma 5,
we obtain a recursive inequality on an(x) from the one on bn(x), for n ≥ N0.

Comments on the parameters. We choose 0 < β < 1 for the same
reasons as in Theorem 1. Regarding γ, the inequality is true for all 0 < γ ≤ β
(which is unusual, as you can see in [12] for example). We will nevertheless
see in the sequel that this is not because the inequality is true that an(x)
converges to 0. We will discuss later good choices for (γ, β).

Compromise between the two errors. This analysis emphasizes the
necessity of a compromise on β to deal with the two previous errors. Indeed,

• the bias error gives the term

exp

(
−2C2(x, α)(x)

n∑
k=N0+1

1

kζ+γ

)
,

of the inequality. This term decreases to 0 if and only if γ + ζ < 1 which
implies β > γ. It suggests that β should not be chosen too small.
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• the on-line learning error gives the term (kn/n)
1/d+1

= n−(1−β)(1+1/d) in
the remainder. For the remainder to decrease to 0 with the faster rate, we
then need β to be as small as possible compared to 1. It suggests that β
should not be too large.

The rate of convergence of the mean squared error can be deduced from
this theorem. We study the order of the remainder dn in order to exhibit the
dominating terms. It appears that dn is the sum of three terms. The first one,
with a exponential decay, is always neglectible as soon as n is large enough,
since 1 > ζ. The two other are powers of n. Comparing their exponent, we can
find the dominating term in function of γ and β. Actually, there exists a rank
N1(x, d) and some constants C5 and C6(x, d) such that, for n ≥ N0 + 1,

• if β ≤ 1− dγ, then dn ≤ C5n
−2γ+β−1 ,

• if β > 1− dγ, then dn ≤ C6(x, d)n−γ+(1+ 1
d )(β−1) .

Plugging these inequalities into Theorem 2 leads to the following result.

Corollary 1 Under assumptions of Theorem 2, there exist ranks N4(x, α, d)
and constants C7(x, α, d) and C8(x, α) such that for all n ≥ N4(x, α, d),

• when β > 1− dγ and 1− β < ζ < min
(
1− γ,

(
1 + 1

d

)
(1− β)

)
,

an(x) ≤ C7(d, x, α, ζ, γ)

n−ζ+(1+ 1
d )(1−β)

;

• when β ≤ 1− dγ, and ζ > max(β − γ, γ − 1),

an(x) ≤ C8(x, α)

nγ−β+1−ζ .

Remark 3 For other values of γ and β, the derived inequalities do not imply
the convergence to 0 of an(x).

From this corollary, the optimal choices for (β, γ) can be derived, or more
precisely parameters for which our upper-bound on the mean squared error
decreases with the fastest rate.

Corollary 2 Under the same assumptions as in Theorem 2, the optimal choice
is γ = 1

1+d with ζ > β − 1
1+d > 0 as small as possible. With such parameters,

there exists a constant C9(x, α, d) such that ∀n ≥ N4(x, α, d),

an(x) ≤ C9(x, α, d)

n
2

1+d+
1−β−ζ

2 −β
.

Comments on the constant C9(x, α,d). Like all the other constants
of this paper, we know the explicit expression of C9(x, α, d). For a numerical
example, see Subsection 3.1.
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Notice that the constant C9(x, α, d) depends on x only through the lower
bound Cg(x) and the smoothness parameter M(x). Often, Cg(x) and M(x)
do not really depend on x (see for example Subsection 3.1). In these cases (or
when we can easily find a bound of Cg(x) and M(x) which do not depend on
x), our result is uniform in x. Then, it is easy to deal with the integrated mean
squared error and conclude that∫

X

an(x)fX(x)dx ≤ C9(α, d)

n
2

1+d+
1−β−ζ

2 −β
.

When α increases to 1, we try to estimate an extremal quantile. Then, C2(x, α)
becomes smaller and then C9(x, α, d) increases: the bound deteriorates. This
is because when α is large, the probability to sample on the right side of the
quantile is small and the algorithm is less accurate.

Let us now comment on the dependency on the dimension d. The constant
C9(x, d, α) decreases when the dimension d increases. Nevertheless, this ten-
dency to decrease is too small to balance the behavior of the rate of convergence

which is in n
−2
1+d , an illustration of the well-known curse of dimensionality.

Comment on the rank N4(x, α,d). This rank is the maximum of four
ranks. There are two kinds of ranks. The ranks (Ni)i 6=0 depend on constants of
the problem but are reasonably small, because the largest of them is the rank
after which exponential terms are smaller than power of n terms, or smaller
power of n terms are smaller than bigger power of n terms. They often appear
to be much smaller than N0, which tends to be the limiting factor relevant for
identifying optimal parameters (and at this stage the reasoning is no longer
non-asymptotic).

The rank N0 is completely different. It was introduced in the first theorem
because we could not deal with an(x) directly. In fact it is the rank after
which the deviation inequality, allowing us to use bn(x), is guaranteed to hold.
It depends on the gap between ζ and 1− β. The optimal ζ to obtain the rate
of convergence of the previous corollary is ζ = 1 − β + ηζ with ηζ as small
as possible. The constant ηζ appears on the rank N0 and also on the rate of
convergence (under the assumption that N4 = N0 which is the case most of
time)

∀n ≥ N0 = exp
(

2η−1ζ

)
, an(x) = O

(
n
−2
1+d+

ηζ
2 +β

)
.

The smaller ηζ , the faster the rate of convergence, but also the larger the rank
after which the inequalities hold.

Let us give an example. For a budget of N = 1000 calls to the code, one
may choose ηζ = 0.3 for the inequality to be theoretically true for n = N .
Table 1 gives the theoretical precision for different values of d and compares
it with the ideal case where ηζ = 0.

We can observe that, when ηζ > 0, the precision increases with the dimen-
sion faster than when ηζ = 0. Moreover, as soon as 1

1+d < ηζ/2 (d = 6 for our
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Table 1: Expected precision for the MSE when N = 1000

d 1 2 3
ηζ=0.3 0.088 0.28 0.5
ηζ=0 0.031 0.1 0.17

previous example), the result does not allow to conclude that an decreases to
0 with this choice of ηζ .

Nonetheless, our simulation study (see next section) seem to indicate that
this difficulty could be only an artifact of the proof: the introduction of ζn is re-
quired by the difficulty to compute E

[
(θn(x)−θ∗)Pn

]
. In practice, the optimal

rate of convergence for optimal parameters is reached early (see Section 3).

3 Numerical simulations

In this part we present some numerical simulations to illustrate our results.
The following (simplistic) examples are chosen so as to be able to evaluate
clearly the strengths and weaknesses of our algorithm: the constants can be
computed and the results can be interpreted easily. To begin with, we deal with
dimension 1. We study two stochastic codes, differing by their smoothness.

3.1 Dimension 1: square function

The first toy example is the very smooth code

g(X, ε) = X2 + ε

where X ∼ U([0, 1]) and ε ∼ U([−0.5, 0.5]). We try to estimate the quantile
of level α = 0.95 for x = 0.5 and initialize our algorithm to θ1 = 0.3. We
first check that our assumptions are fulfilled in this case. The conditional
distribution of the output given X = x is U

(
[− 1

2 + x2; 1
2 + x2]

)
, and

f(X,Y )(u, v) = 1[− 1
2+u

2, 12+u
2](v) 1[0,1](u) .

Moreover, the code function g takes its values in the compact set [LY , UY ] =
[− 1

2 ; 3
2 ]. Let us study assumption A1. If a, b > 0 and if B = [x− a, x+ b] is an

interval containing x, then

|FY B (t)− FY x(t)| ≤

∣∣∣∣∣
∫ t
−∞

∫
B
f(X,Y )(z, y)dydz∫
B
fX(z)dz

−
∫ t

−∞
f(X,Y )(x, y)dy

∣∣∣∣∣
≤

∫ t
− 1

2

∫ x+b
x−a

∣∣∣1[− 1
2+z

2; 12+z
2] − 1[− 1

2+z
2; 12+z

2]

∣∣∣ (y)dzdy

µ(B)
.

Now, we have to distinguish the cases in function of the localization of t. There
are lots of cases, but computations are nearly the same. That is why we will
develop only one case here. When t ∈ [− 1

2 ;x2 − 1
2 ], we have
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|FY B (t)− FY x(t)| ≤

∫ x+b
x−a

∫ t
− 1

2

∣∣∣1[− 1
2+z

2; 12+z
2] − 1[− 1

2+z
2; 12+z

2]

∣∣∣ (y)

a+ b

=

∫ x+b
x−a

(
1z≥x(0) + 1z≤x(t− z2 + 1

2 )1
z≥
√
t+ 1

2

)
dz

a+ b

=

∫ x
x−a(t+ 1

2 − z
2)dz

b+ a
.

There are again two different cases. Since t ∈ [− 1
2 ;x2 − 1

2 ], we always have

(t+ 1
2 )

1
2 ≤ x. But the position of (t+ 1/2)1/2 relative to (x− a) is not always

the same. If t ∈ [− 1
2 ;− 1

2 (x− a)2], we get

|FY B (t)− FY x(t)| ≤
∫ x+b
x−a (t− z2 + 1

2 )dz

b+ a

≤
(
t+

1

2

)
a− x3

3
+

(x− a)3

3

≤ (x− a)2a− x2a+ a2x− a3

3

≤ −a2x+
2a3

3

≤ 0 + rB × 12 × 2

3
,

as 0 < a < 1. Finally, in this case, A1 is true with M(x) = 2/3. We can
compute exactly in the same way for the other cases and we always find an
M(x) ≤ 2/3. The assumption A2 is also satisfied, taking Cinput = 1. We have
already explained that assumption A3 is true for [LY , UY ] = [−1/2, 3/2].
Finally assumption A4 is also satisfied with Cg(x) = 1 and C2(x, α) = 0.02.

3.1.1 Almost sure convergence

Let us first deal with the almost sure convergence. We plot in Figure 1, for
(β, γ) ∈ [0, 1]2, the relative error of the algorithm. Best parameters are clearly
in the area β > γ ≥ 1/2. We can even observe that for β ≈ 1, β ≤ γ or
γ < 1/2, the algorithm does not converge almost surely (or very slowly). This
is in accordance with our theoretical results. Nevertheless, we can observe a
kind of continuity for γ around 1/2 : in practice, the convergence becomes
really slow only when γ is significantly far away from 1/2.

3.1.2 Mean Square Error (MSE)

Let us study the best choice of β et γ in terms of L2-convergence. We plot in
Figure 2 the mean squared error in function of γ and β (we estimate the MSE
by a Monte Carlo method of 100 iterations).
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Fig. 1: Relative error for n = 5000 dependence on β and γ.

(a) Mean square error, n = 50. (b) Mean square error, n = 200.

Fig. 2: Mean squared error in function of β and γ for the square function.

Simulations confirm that the theoretical optimal area γ = 0.5 and β =
γ + ηβ gives the smallest MSE. Nevertheless, it seems that in practice we can
relax the condition that the gap ηβ between β and γ is as small as possible.
Indeed, when ηβ is reasonably big, simulations show that we are still in the
optimal area.
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Table 2: Constant values

Constant α M(x) Cinput Cg(x) C2(x, α) UY − LY
Value 0.95 2

3
1 1 0.02 2

Constant
√
C1 C3(d) C4(d) C5(x, d) C6(x, d) C9(x, d, α)

Value 2.95 7.39 2 1.95 12 180

In this case, we have at hand all the parameters to compute the theoretical
bound of our theorems. In particular, in corollary 2, we get

an(x) ≤ C9(x, d, α)

n
1

1+d−η
.

Table 2 summarizes the value of the constants needed to compute the theo-
retical bound in this case.

For N = 1000, we obtain the bound aN (x) ≤ 5.8 which is over-pessimistic
compared to the practical results. We can then think to a way to improve
this bound. First of all, the constant C2(x, α) is in fact not so small. Indeed,
we have to take a margin in the proof, for the case where θn(x) goes out of
[LY , UY ]. This happens only with a very small probability. If we do not take
this case into account, we have C2(x, α) = 1. Then C9(x, α, d) ≈ 3.7 and then,
for N = 1000, the bound is 0.11. Practical results are still better (we can
observe that for n = 50, we already have a MSE inferior to 0.05), but the gap
is less important.

3.2 Dimension 1 - absolute value function

Let us see what happens when the function g is less smooth with respect to
the first variable. We study the code

g(X, ε) = |X|+ ε ,

where X ∼ U ([−1, 1]) and ε ∼ U ([−0.5, 0.5]). We want to study the con-
ditional quantile in x = 0 (the point for which the differentiability fails).
Assumptions can be checked as above. Since the almost surely convergence is
true and gives really same kind of plots than the previous case, we only study
the convergence of the MSE. In that purpose, we plot in Figure 3 the MSE
(estimated by 100 iterations of Monte Carlo simulations) in function of γ and
β, for n=300 (the discontinuity constraints us to make more iterations to have
a sufficient precision) and θ1 = 0.3. Conclusions are the same than in the pre-
vious example concerning the best parameters. Nevertheless, we can observe
that the lack of smoothness implies some remarkable behaviour around γ = 1.
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Fig. 3: MSE for n = 300 in function of β and γ for absolute value function.

3.3 Dimensions 2 and 3

In dimension d, we showed that theoretical optimal parameters are γ = 1
1+d

and β = γ + η. To see what happens in practice, we still plot Monte Carlo
estimations (200 iterations) of the MSE in function of γ and β.

3.3.1 Dimension 2

In dimension 2, we study two codes :

g1(X, ε) = ||X||2 + ε and g2(X, ε) = X2
1 +X2 + ε ,

where X = (X1, X2) ∼ U
(
[−1, 1]2

)
and ε ∼ U ([−0.5, 0.5]). In each case, we

choose n = 400 and want to study the quantile in the input point x = (0, 0)
and initialize our algorithm in θ1 = 0.3. In Figure 4, we can see that β = 1 and
γ = 1 are still really bad parameters. As in our theoretical results, γ = 1

1+d = 1
3

seems to be the best choice. Nevertheless, even if it is clear that β < γ is a
bad choice, the experiments seems to show that best parameter β is strictly
superior to γ, more superior than in theoretical case, where we take β as close
as possible of γ. As we said before, in practice, N0 seems not to be the true
limit rank. Indeed, with only n = 400 iterations, in this case, the MSE, in the
optimal parameters case reaches 0.06.
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(a) MSE, n = 400, d = 2, norm function g1. (b) MSE, n = 400, d = 2, function g2.

Fig. 4: Mean square error in function of β and γ.

3.3.2 Dimension 3

In dimension 3, we study the two codes

g1(X, ε) = ||X||2 + ε and g2(X, ε) = X2
1 +X2 +

X3
3

2
+ ε ,

where X = (X1, X2, X3) ∼ U
(
[−1, 1]3

)
and ε ∼ U ([−0.5, 0.5]). In each case,

we choose n = 500 and want to study the quantile in the input point (0, 0, 0).
The interpretation of Figure 5 are the same than in dimension 2. The scale is
not the same, the convergence is slower again but with n = 500 we nevertheless
obtain a MSE of 0.10.

(a) MSE, n = 500, d = 3, norm function g1. (b) MSE, n = 500, d = 3, function g2.

Fig. 5: Mean squared error in function of β and γ.
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4 Conclusion and perspectives

In this paper, we proposed a sequential method for the estimation of a condi-
tional quantile of the output of a stochastic code where inputs lie in Rd. We
introduced a combination of k-nearest neighbors and Robins-Monro estima-
tor. This algorithm has two parameters: the number of neighbors kn = bnβc
and the learning rate γn = n−γ . By deriving a bias-variance decomposition of
the risk, we showed that our algorithm is convergent for 1

2 < γ < β < 1 and
we studied its mean squared error non-asymptotic rate of convergence. More-
over, we proved that the choice γ = 1

1+d and β & γ leads to the best rate of
convergence. Numerical simulations show that the algorithm tuned with those
theoretically optimal parameters is a powerful and accurate estimator of the
conditional quantiles, even in dimension d > 1.

The theoretical guarantees are shown under strong technical assumptions,
but our algorithm is a general methodology to solve the problem. Relaxing
the conditions will be the object of a future work. Moreover, the proof that
we propose constrained us to use an artefact parameter ζ which implies that
the non-asymptotic inequality is theoretically true for large values of n, even
if simulations confirm that this problem does not exist in practice. A second
perspective is then to find a better way to prove this inequality for smaller n.
Finally, it would be of great interest to derive non-asymptotic lower-bounds
for the mean squared error of the algorithm.

A Technical lemmas and proofs

A.1 Technical lemmas and notation

For sake of completeness, we start by recall some well-known facts on order statistics.

Lemma 2 When X has a density with respect to Lebesgue measure, denoting Pn = P(X ∈
kNNn+1(x)|X1, . . . Xn), we have the following properties

1) Pn = F||X−x||

(
||X − x||(kn+1,n)

)
,

2) Pn ∼ Beta(kn+1, n− kn+1 + 1) ,
3) E(Pn) = kn+1/(n+ 1) ,
4) E(P 2

n) =
(
2kn+1n− k2

n+1 + 3kn+1 + kn+1n2
)
/
(
(n+ 1)2(n+ 2)

)
.

where we denote F||X−x|| the cumulative distribution function of the random vector ||X−x||,
||X − x||(kn+1,n) the kn+1 order statistic of the sample (||X1 − x||, . . . , ||Xn − x||) and

Beta(a, b) the beta distribution with parameters a and b.

Proof Conditionally to X1, . . . , Xn, the event {X ∈ kNNn+1(x)} is equivalent to the event
{||X − x|| ≤ ||X − x||(kn+1,n)}. Then,

Pn = P(X ∈ kNNn+1(x)|X1 . . . Xn)

= PX
(
||X − x|| ≤ ||X − x||(kn+1,n)|X1 . . . Xn

)
= F||X−x||

(
||X − x||(kn+1,n)

)
.

Since X has a density, the cumulative distribution function F||X−x|| is continuous. Indeed,
using the sequential characterization we get for a sequence (tn) converging to t
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F||X−x||(tn) = P(X ∈ Bd(x, tn))

=

∫
Rd
f(z)1Bd(x,tn)(z) dz .

Since f is integrable, the Lebesgue theorem allows us to conclude that

lim
n

∫
Rd
f(z)1Bd(x,tn)(z) dz =

∫
Rd

lim
n
f(z)1Bd(x,tn)(z) dz = P(X ∈ Bd(x, t)) ,

so the cumulative distribution function is continuous. Then thanks to classical result on
statistics order and quantile transform (see [6]), we get

Pn = F||X−x||

(
||X − x||(kn+1,n)

)
∼ U(kn+1,n) ∼ β(kn+1, n− kn+1 + 1) ,

where we denoted U(kn+1,n) the kn+1 statistic order of a independent sample of size n

distributed like a uniform law on [0, 1].

Let us now recall some deviation results.

Lemma 3 We denote B(n, p) the binomial distribution of parameters n and p, for n ≥ 1
and p ∈ [0, 1]. Then, if Z ∼ B(n, p), we get

P

(
Z

n
<
p

2

)
≤ exp

(
−

3np

32

)
,

P

(
Z

n
> 2p

)
≤ exp

(
−

3np

8

)
.

Proof Let (Zi) be an independent sample of Bernoulli of parameter p and let

Z =
1

n

n∑
k=1

Zi .

We apply the Bernstein’s inequality (see for example Theorem 8.2 in [7]) to conclude that

P(Z − p < −ζp) ≤ exp

(
−

3npζ2

8

)
,

P(Z − p > ζp) ≤ exp

(
−

3npζ2

8

)
.

The results follow by taking ζ = 1
2

in the first case and ζ = 1 in the second case.

We now give some technical lemma useful to prove our main results.

Lemma 4 Suppose β ≥ γ. Then, for every C > 0, we get

P

(∑
n

γn1Xn∈kNNn(x) ≤ C
)

= 0 .

Proof Let us denote F the cumulative function distribution of ||Xn−x|| and Un = F (||Xn−
x||), we get ∑

n

γn1Xn∈kNNn(x) =
∑
n

γn1Un∈kNNn(0) .

Hence, it is enough to show the desired result for x = 0 and Xj = Uj ∼ U ([0, 1]).
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Let ζ be a positive real number. Let N be an integer such that

∑
n≥N

exp

(
−

3kn

16

)
≤ ζ . (6)

We set

Ω :=

∀n ≥ N,
n∑
j=1

1
Uj≤

kn
2n
≤ kn

 .

On this event, for every n ≥ N , there are at most kn elements Ui such that Ui is inferior
to kn

2n
. Thus, if an element satisfies Uj ≤ kn

2n
, it belongs to the kn-nearest neighbors of 0.

Then, defining Zn :=

n∑
j=1

1
Uj≤

kn
2n
∼ B

(
n,
kn

2n

)
,

P
(
Ω
)
≤
∑
n≥N

P

 n∑
j=1

1
Uj≤

kn
2n

> kn


≤
∑
n≥N

P

(
Zn

n
>
kn

n

)

≤
∑
n≥N

exp

(
−

3kn

16

)
≤ ζ .

(7)

by using the second inequality of Lemma 3 and Equation (6). But, as we noticed above, on
the event Ω, we have 1Un∈kNNn(0) ≥ 1

Un≤ kn2n
; and thus

P

Ω ∩ ∑
n≥N

γn1Un∈kNNn(0) ≤ C

 ≤ P

∑
n≥N

γn1
Un≤ kn2n

≤ C

 . (8)

Let now (Ik)k be a partition of JN,+∞J such that

∀k ≥ 1,
∑
n∈Ik

γn
kn

2n
∈ [2C, 2C + 1] .

Such a partition exists since, as β ≥ γ, the sum
∑
n

γn
kn

n
is divergent. Then,

E

∑
n∈Ik

γn1
Un≤ kn2n

 =
∑
n∈Ik

γnE

(
1
Un≤ kn2n

)
=
∑
n∈Ik

γn
kn

2n
, ≥ 2C .

and by independence, and since the variance of a Bernoulli variable is upper-bounded by its
expectation,

Var

∑
n∈Ik

γn1
Un≤ knn

 ≤ E

∑
n∈Ik

γn1
Un≤ kn2n

 =
∑
n∈Ik

γn
kn

2n
≤ 2C + 1 .

Chebyshev’s inequality yields:

P

∑
n∈Ik

γn1
Un≤ kn2n

≤ C

 ≤ P

E
[ ∑
n∈Ik

γn1
Un≤ kn2n

]
−
∑
n∈Ik

γn1
Un≤ kn2n

≥ 2C − C


≤

2C + 1

C2
≤

7

9
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since C ≥ 3. Thus,

P

⋂
k

∑
n∈Ik

γn1
Un≤ kn2n

≤ C


 = 0 .

and hence

P

∑
n≥N

γn1
Un≤ kn2n

≤ C

 = 0 . (9)

Thanks to (7), (8) and (9), we get

P

(∑
n

γn1Un∈kNNn(0) ≤ C
)
≤ P

∑
n≥N

γn1Un∈kNNn(0) ≤ C

 ≤ P(Ω) + 0 ≤ ζ ,

which holds for all ζ > 0.

Lemma 5 Denoting An the event {X1, . . . , Xn | Pn > ζn} where ζn = 1
nζ

and the param-

eter ζ satisfies 1 > ζ > 1− β, we have for n ≥ 21/(ζ−(1−β)),

P(ACn ) ≤ exp

(
−

3n1−ζ

8

)
.

Proof Thanks to the Lemma 2, we obtain

P(ACn ) = P(β(kn+1, n− kn+1 + 1) ≤ ζn)

= Iζn (kn+1, n− kn+1 + 1) ,

where we denote Iζ the incomplete β function. A classical result (see [1]) allows us to write
this quantity in terms of the binomial distribution

P(ACn ) = P(B(n, ζn) ≥ kn+1) .

Thanks to Lemma 3, we know that

P(B(n, ζn) ≥ kn+1) ≤ exp

(
−

3nζn

8

)
≤ exp

(
−

3n1−ζ

8

)
,

as soon as kn+1/n ≥ 2ζn, which is true as soon as n ≥ 21/(ζ−(1−β)) because ζ > 1− β.

Lemma 6 Under hypothesis of Theorem 1, ||X −x||(kn+1,n) converges almost surely to 0.

Proof Let u be a positive number.

pu : = P(X ∈ B(x, u)) =

∫
B(x,u)

f(t)dt

≥ µX (B(x, u)) = C1
π
d
2

Γ ( d
2

+ 1)

= CinputC4(d)ud =: qu .

(10)

Let Z be a random variable of law B(n, pu). Since ||X − x||(kn+1,n) > u implies that there

are at the most kn+1 elements of the sample which satisfy X ∈ B(x, qu), we get :

P(||X − x||(kn+1,n) > u) = P(Z < kn+1) .

Thanks to equation (10), and denoting Z̃ a random variable of law B(n, qu), we have

P(||X − x||(kn+1) > u) ≤ P(Z̃ < kn+1) .

Lemma 3 implies that P(||X−x||(kn+1) > u) is the general term of a convergent sum. Indeed,

when n is large enough, then kn+1/n < qu/2 because kn+1/n converges to 0 (β < 1). The
Borel-Cantelli Lemma then implies that ||X − x||(kn+1,n) converges almost surely to 0.
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Lemma 7 With the same notation as above,

E(Pn||X − x||(kn+1,n)) ≤ C3(d)

(
kn+1

n+ 1

)1+ 1
d

.

Proof Let us denote F̃ and f̃ the cumulative and density distribution function of the law of
||X − x||.

E(||X − x||(kn+1,n)Pn) = E
(
||X − x||(kn+1,n)F̃

(
||X − x||(kn+1,n)

))
=

∫
yF̃ (y)f||X−x||(kn+1,n)

(y)dy ,

with

f|X−x|(kn+1,n)
(y) =

n!

(kn+1 − 1)!(n− kn+1)!
F̃ (y)kn+1−1

(
1− F̃ (y)

)n−kn+1
f̃(y) .

Then we get

E(||X − x||(kn+1,n)Pn) =

∫
yF̃ (y)kn+1 (1− F̃ (y))n−kn+1 f̃(y)

n!

(kn+1 − 1)!(n− kn+1)!

=
kn+1

n+ 1
E
(
||X − x||(kn+1+1,n+1)

)
.

We denote U|.| the upper bound of the support of ||X − x||, and write

E(||X − x||(kn+1+1,n+1)) =

∫ U|.|

0
P(||X − x||(kn+1+1,n+1) > u)du .

Using same arguments that in Lemma 1, denoting C10(d) = d

√
2(kn+1+1)

(n+1)CinputC4(d)
,we get

I :=

∫ U|.|

0
P(||X − x||(kn+1+1,n+1) > u)du =

∫ C10(d)

0
P(B(n+ 1, qu) < kn+1 + 1)du

+

∫ U|.|

C10(d)
P(B(n+ 1, qu) < kn+1 + 1)du

≤
∫ C10(d)

0
1du

+

∫ U|.|

C10(d)
exp

(
−

3(n+ 1)CinputC4(d)ud

32

)
du ,

where we use Lemma 3 in the second integral because u > C10(d) implies
kn+1+1

n+1
< qu

2
.

Then, we obtain
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I ≤ C10(d) +

∫ +∞

C11(d)
exp

(
−

3(n+ 1)CinputC4(d)ud

32

)
du

≤ C10(d) +

∫ +∞

0

ud−1

C10(d)d−1
exp

(
−

3(n+ 1)CinputC4(d)ud

32

)
du

= C10(d) +
C11(d)

C10(d)d
32

3(n+ 1)dCinputC4(d)

[
− exp

(
−

3(n+ 1)CinputC4(d)ud

32

)]+∞

0

= C10(d)

(
1 +

3(n+ 1)dCinputC4(d)

32C10(d)d

)

= d

√
2(kn+1 + 1)

(n+ 1)CinputC4(d)

(
1 +

16

3d(kn+1 + 1)

)

= d

√
kn+1

n+ 1

[
d

√
2

CinputC4(d)
d

√
kn+1 + 1

kn+1

(
1 +

16

3d(kn+1 + 1)

)]

≤ d

√
kn+1

n
d

√
4

CinputC4(d)

(
1 +

8

3d

)

=: C3(d) d

√
kn+1

n+ 1
,

because for n ≥ 1, we get kn ≥ 1.

Lemma 8 Let (bn) be a a real sequence. If there exist sequences (cn)n≥1 ∈ [0, 1]N and

(dn)n≥1 ∈]0,+∞[N such that

∀n ≥ N0, bn+1 ≤ bn(1− cn+1) + dn+1 ,

then for all n ≥ N0 + 1,

∀n, bn ≤ exp

(
−

n∑
k=1

N0 + 1ck

)
bN0

+
n∑

k=N0+1

exp

−
 n∑
j=1

cj −
k∑
j=1

cj

 dk .

Proof This inequality appears in [15] and references therein. It can be proved by induction
using that ∀x ∈]0,+∞[, exp(x) ≥ 1 + x.

Let us first prove the following consequence of Assumption A3.

Lemma 9 Under assumption A3, if β ≥ γ, then for all x and for all n ≥ 1,

θn(x) ∈ [LY − (1− α), UY + α], a.s.

Proof Suppose that θn(x) leaves the compact set [LY , UY ] by the right at step N0. By
definition, θN0−1 ≤ UY and consequently θN0 ≤ UY +αγN0 . At next step, since θN0 > UY ,
we have YN0+1 ≤ θN0

and then

θN0+1 ≤ UY + αγN0
− (1− α)γN0+11XN0+1∈kNNN0+1(x) .

Then, the algorithm either does not move (if XN0+1 /∈ kNNN0+1(x)) or comes back in
direction of [LY , UY ] with a step of (1− α)γN0+1. Then, if∑

n≥0

γn1Xn∈kNNn(x) = +∞ a.s ,
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the algorithm almost surely comes back to the compact set [LY , UY ]. Thanks to Lemma 4,
we know that, since β ≥ γ, the previous sum diverges almost surely. A similar result holds
when the algorithm leaves the compact set by the left and finally we have shown that almost
surely as γn ≤ 1,

θn(x) ∈ [LY − (1− α), UY + α] =: [Lθn , Uθn ] .

A.2 Proof of Theorem 1 : almost sure convergence

To prove this theorem, we adapt the classical analysis of the Robbins-Monro algorithm (see
[4]). In the sequel we do not write θn(x) but θn to make the notation less cluttered.

A.2.1 Martingale decomposition

In this sequel, we still denote H(θn, Xn+1, Yn+1) :=
(

1Yn+1≤θn − α
)

1Xn+1∈kNNn+1(x),

Fn = σ(X1, . . . , Xn, Y1, . . . , Yn) and Pn and En the probability and expectation condition-
ally to Fn. We introduce

h(θn) : = E(H(θn, Xn+1, Yn+1)|Fn)

= Pn(Yn+1 ≤ θn ∩Xn+1 ∈ kNNn+1(x))− αPn(Xn+1 ∈ kNNn+1(x))

= Pn
[(
F
Y
kNNn+1(x) (θn

)
− FY x (θ∗(x))

]
.

Then,

Tn = θn +

n∑
j=1

γjhj−1(θj−1) = θ0(x)−
n∑
j=1

γjξj ,

with ξj = H(θj−1, Xj , Yj)− hj−1(θj−1) is a martingale. It is bounded in L2(R). Since

sup
n
|ξn| ≤ α+ (1 + α) = 1 + 2α,

the Burkholder inequality gives the existence of a constant C such that

E(|Tn|2) ≤ E

 n∑
j=1

γjξj

2 ≤ CE

∣∣∣∣∣∣
n∑
j=1

(γjξj)
2

∣∣∣∣∣∣
2 ≤ C(1 + 2α)

n∑
j=1

γ2
j <∞ .

A.2.2 The sequence (θn) converges almost surely

First, let us prove that

P(θn →∞) + P(θn → −∞) = 0. (11)

Let us suppose that this probability is positive (we name Ω1 the non-negligeable set where
θn(ω) diverges to +∞ and the same arguments would show the result when the limit is
−∞). Let ω be in Ω1. We have θn(ω) ≤ θ∗ for only a finite number of n.

Let us show that on an event Ω ⊂ Ω1 with positive measure, for n large enough,
h(θn(ω)) > 0. First, we know that Pn follows a Beta distribution. This is why ∀n, P(Pn =
0) = 0. Then, the Borel-Cantelli Lemma gives that

P(∃N ∀n ≥ N Pn > 0) = 1 .

As Ω1 has a positive measure, we know that there exists Ω2 ⊂ Ω1 with positive measure
such that ∀ω ∈ Ω2, θn(ω)→ +∞ and for all n large enough, Pn(ω) > 0. Since

h(θn(ω)) = Pn

(
F
Y B

kn+1
n (x)

(θn(ω))− α
)
,
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we have now to show that on Ω ⊂ Ω2 of positive measure,

F
Y B

kn+1
n (x)

(θn(ω))− α > 0 .

As θn(ω) diverges to +∞, we can find D such that for n large enough, θn(ω) > D > θ∗.
Then,

F
Y B

kn+1
n (x)

(θn(ω))− α = F
YB

kn+1
n (x)

(θn(ω))− FY x (θ∗(x))

= F
YB

kn+1
n (x)

(θn(ω))− F
Y B

kn+1
n (x)

(D)

+ F
Y B

kn+1
n (x)

(D)− FY x (D) + FY x (D)− FY x (θ∗(x)) .

First, F
Y B

kn+1
n (x)

(θn(ω))−F
YB

kn+1
n (x)

(D) ≥ 0 because a cumulative distribution function

is non-decreasing. Then, we set η = FY x (D) − FY x (θ∗(x)) which is a finite value. To deal
with the last term, we use our assumption A1.

F
Y B

kn+1
n (x)

(D)− FY x (D) ≥ −M(x)||X − x||(kn+1,n) .

We know, thanks to Lemma 6, that ||X − x||(kn+1,n) converges almost surely to 0. Then,
there exists a set Ω3 ⊂ Ω1 of probability strictly non-negative such that forall ω in Ω3, the
previous reasoning is true. And for ζ < η

L
, there exists rank N(ω) such that if n ≥ N ,

F
Y B

kn+1
n (x)

(D)− FY x (D) ≥ 0− Lζ + η > 0 . (12)

Finally, for ω ∈ Ω3 (set of strictly non-negative measure), we have shown that after a certain
rank, h(θn(ω)) > 0. This implies that on Ω3 of positive measure,

lim
n

θn(ω) +

n∑
j=1

γj−1hj−1(θj−1(ω))

 = +∞ ,

which is absurd because in the previous part we proved that Tn is almost surely convergent.
Then θn does not diverge to +∞ or −∞.

Now, we will show that (θn) converges almost surely. In all the sequel of the proof, we
reason ω by ω like in the previous part. To make the reading more easy, we do not write ω
and Ω any more. Thanks to Equation (11) and to the previous subsection, we know that,
with probability positive, there exists a sequence (θn) such that

(a) θn +

n∑
j=1

γj−1h(θj−1) converges to a finite limit

(b) lim inf θn < lim sup θn .

Let us suppose that lim sup θn > θ∗ (we will find a contradiction, the same argument
would allow us to conclude in the other case). Let us choose c and d satisfying c > θ∗ and
lim inf θn < c < d < lim sup θn. Since the sequence (γn) converges to 0, and since (Tn) is a
Cauchy sequence, we can find a deterministic rank N and two integers n and m such that
N ≤ n < m implies 

(a) γn ≤
(d− c)

3(1− α)

(b)

∣∣∣∣∣∣θm − θn −
m−1∑
j=n

γjh(θj−1)

∣∣∣∣∣∣ ≤ d− c
3

.

We choose m and n so that 
(a) N ≤ n < m

(b) θn < c, θm > d

(c) n < j < m⇒ c ≤ θj ≤ d .
(13)
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This is possible since beyond N , the distance between two iterations will be either

αγn ≤
α(d− c)
3(1− α)

< (d− c) ,

because α < 3
5

or

(1− α)γn ≤
1

3
(d− c) < (d− c) .

Moreover, since c and d are chosen to have an iteration inferior to c and an iteration superior
to b, the algorithm will necessarily go through the segment [c, d]. We then take n and m the
times of enter and exit of the segment. Now,

θm − θn ≤
d− c

3
+

m−1∑
j=n

γj+1hj(θj)

≤
d− c

3
+ γn+1h(θn) ,

because n < j < m, we get θ∗ < c < θj and we have already shown that in this case,
hj(θj) > 0. We then only have to deal with θn. If θn > θ∗, we can apply the same result
and then

θm − θn ≤
d− c

3
,

which is in contradiction with (b) of equation (13). When θ < θ∗,

θm − θn ≤
d− c

3
+ γnhn−1(θn−1)

≤
d− c

3
+ γn(1− α)

≤
d− c

3
+
d− c

3
< (d− c) ,

which is still a contradiction with (b) of (13). We have shown that the algorithm converges
almost surely.

A.2.3 The algorithm converges almost surely to θ∗

Again we reason by contradiction. Let us name θ the limit such that P(θ 6= θ∗) > 0. With
positive probability, we can find a sequence (θn) which converges to θ such that{

(a) θ∗ < ζ1 < ζ2 <∞
(b) ζ1 < θ < ζ2 ,

(or −∞ < ζ1 < ζ2 < θ∗ but arguments are the same in this case). Then, for n large enough,
we get

ζ1 < θn < ζ2 .

Finally, on the one hand, (Tn) and (θn) are convergent, and we also know that the sum∑
γj+1hj(θj) converges almost surely. Let us then show that on the other hand, h(θn) =

Pn(F
Y B

kn+1
n (x)

(θn) − α) is lower bounded. First we know thanks to Lemma 5, that for

1 > ζ > 1− β and ζn = 1
nζ

,

P(Pn ≤ ζn) ≤ exp

(
−

3n1−ζ

8

)
.

This is the general term of a convergent sum. Therefore, the Borel-Cantelli Lemma gives

P(∃N ∀n ≥ N Pn > ζn) = 1 .
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Moreover, as we have already seen in Equation (12), since θn > ζ1 > θ∗,

F
Y B

kn+1
n (x)

(θn)− α ≥ 0−M(x)||X − x||(kn+1,n) + FY x (ζ1)− FY x (θ∗(x)) .

Then, when n is large enough so that

||X − x||(kn+1,n) ≤
FY x (ζ1)− FY x (θ∗(x))

2M(x)

holds, we have

F
Y B

kn+1
n (x)

(θn)− α ≥
FY x (ζ1)− FY x (θ∗(x))

2
.

Finally there exists a set Ω of positive probability such that, ∀ω ∈ Ω

n∑
k=1

γk+1hk(θk) ≥
FY x (ζ1)− FY x (θ∗(x))

2

n∑
k=1

γk+1Pk ≥
n∑
k=1

1

(k + 1)γ+ζ
,

which is a contradiction (with the one hand point) because the sum is divergent (γ+ζ < 1).

A.3 Proof of Theorem 2 : Non-asymptotic inequality on the mean squared
error.

Let x be fixed in [0, 1]. We want to find an upper-bound for the mean squared error an(x)
using Lemma 8. In the sequel, we will need to study θn(x) on the event An of the Lemma
5. Then, we begin to find a link between an(x) and the mean squared error on this event.

an(x) = E
[
(θn(x)− θ∗(x))2 1An

]
+ E

[
(θn(x)− θ∗(x))2 1ACn

]
≤ E

[
(θn − θ∗(x))2 1An

]
+ C1P(ACn )

≤ E
[
(θn(x)− θ∗(x))2 1An

]
+ C1 exp

(
−

3n1−ζ

8

)
,

(14)

thanks to Lemma 5 and for n ≥ N0.

Let us now study the sequence bn(x) := E
[
(θn(x)− θ∗(x))2 1An

]
. First, for n ≥ 0,

bn+1(x) ≤ E
[
(θn+1(x)− θ∗(x))2

]
.

But,

(θn+1(x)− θ∗(x))2 = (θn(x)− θ∗(x))2

+ γ2
n+1

[
(1− 2α)1Yn+1≤θn(x) + α2

]
1Xn+1∈kNNn+1(x)

− 2γn+1(θn(x)− θ∗(x))
(

1Yn+1≤θn(x) − α
)

1Xn+1∈kNNn+1(x) .

Taking the expectation conditional to Fn, as [(1− 2α)1Yn+1≤θn(x) + α2] ≤ 1, we get

En
(
(θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))2

)
+ γ2

n+1Pn (Xn+1 ∈ kNNn+1(x))

− 2γn+1 (θn(x)− θ∗(x)) [Pn (Yn+1 ≤ θn(x) ∩Xn+1 ∈ kNNn+1(x))

− αPn (Xn+1 ∈ kNNn+1(x))] .

Using the Bayes formula, we get
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En
(
θn+1(x)− θ∗(x))2

)
≤ En

(
(θn(x)− θ∗(x))2

)
+ γ2

n+1Pn

− 2γn+1 (θn(x)− θ∗(x))Pn

[
F
YB

kn+1
n (x)

(θn(x))− FY x (θ∗(x))

]
,

Let us split the double product into two terms representing the two errors we made by
iterating our algorithm.

En
(
θn+1(x)− θ∗(x))2

)
≤ (θn(x)− θ∗(x))2 + γ2

n+1Pn+1

− 2γn+1 (θn(x)− θ∗(x))Pn+1

[
F
Y B

kn+1
n (x)

(θn(x))− FY x (θn(x))

]
− 2γn+1 (θn(x)− θ∗(x))Pn [FY x (θn(x))− FY x (θ∗(x))] .

(15)
We now use our hypothesis. By A1,

|F
Y B

kn+1
n (x)

(θn(x))− FY x (θn(x))| ≥M(x)||X − x||(kn+1,n) ,

and by A3,

|θn(x)− θ∗(x)| ≤
√
C1 .

Thus,

−2γn+1(θn(x)− θ∗(x))Pn

[
F
Y B

kn+1
n (x)

(θn(x))− FY x (θn(x))

]
≤ 2γn+1

√
C1M(x)Pn||X − x||(kn+1,n) .

On the other hand, thanks to A4 we know that,

(θn − θ∗(x)) [FY x (θn(x))− FY x (θ∗(x))] ≥ C2(x, α) [θn(x)− θ∗(x)]2 .

Coming back to Equation (15), we get

En
(
θn+1(x)− θ∗(x))2

)
≤ (θn(x)− θ∗(x))2 (1An + 1Ān) + γ2

n+1Pn

− 2γn+1 (θn(x)− θ∗(x))2 C2(x, α)Pn

+ 2γn+1M(x)
√
C1||X − x||(kn+1,n)Pn .

To conclude, we take the expectation

bn+1(x) ≤ C1P(ACn ) + bn(x)− 2γn+1C2(x, α)E
[
Pn (θn(x)− θ∗(x))2

]
+ γ2

n+1E(Pn) + 2γn+1

√
C1M(x)E

[
Pn||X − x||(kn+1,n)

]
.

But, by definition of An,we get

−2γn+1C2(x, α)E
[
Pn+1 (θn(x)− θ∗(x))2

]
≤ −γn+1ζnC2(x, α)E

[
(θn(x)− θ∗(x))2 1An

]
= −2γn+1ζnC2(x, α)bn(x); .

Finally,
bn+1(x) ≤ bn(x) (1− 2C2(x, α)γn+1ζn) + en+1 ,

with

en+1 := C1P(ACn ) + γ2
n+1E(Pn) + 2γn+1

√
C1M(x)E

[
Pn||X − x||(kn+1,n)

]
.

Now using Lemmas 7, 5 and 2 we get for n ≥ N0 with

en ≤ dn := C1 exp

(
−

3n1−ζ

8

)
+ 2
√
C1M(x)C3(d)γn

(
kn

n

) 1
d

+1

+ γ2
n

kn

n
.
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The conclusion holds thanks to Lemma 8, for n ≥ N0 + 1,

bn(x) ≤ exp
(
−2C2(x, α)(κn − κN0 )

)
bN0 (x) +

n∑
k=N0+1

exp (−2C2(x, α) (κn − κk)) dk .

(16)
But thanks to Assumption A3, we have already shown that bN0 (x) ≤ aN0 (x) ≤ C1. To
conclude, we re-inject Equation (16) in Equation (14) and obtain for n ≥ N0 + 1,

an(x) ≤ exp
(
−2C2(x, α)(κn − κN0

)
)
C1 +

n∑
k=N0+1

exp (−2C2(x, α) (κn − κk)) dk

+ C1 exp

(
−

3n1−ζ

8

)
.

A.4 Proof of Corollary 1 : Rate of convergence

In this part, we will denote

T 0
n := C1 exp

(
−3n1−ζ

8

)
, T 1

n := exp
(
−2C2(x, α)(κn − κN0 )

)
and

T 2
n :=

n∑
k=N0+1

exp (−2C2(x, α) (κn − κk)) dk .

We want to find a simpler expression for those terms to better see their order in n. First,
considering T 1

n we see that an(x) can converge to 0 only when the sum∑
k≥1

1

kγ+ζ
= +∞.

This is why we must first consider ζ ≤ 1− γ. As ζ < 1− β, we have to take β > γ.

Remark 4 The frontier case ζ = 1 − γ is possible but the analysis shows that it is a less
interesting choice than ζ < 1 − γ (there is a dependency in the value of C2(x, α) but the
optimal rate is the same as the one in the case we study). In the sequel, we only consider
ζ < 1− γ.

Let us upper-bound T 1
n . As x 7→ 1/xζ+γ is decreasing, we get

T 1
n = exp

−2C2(x, α)
n∑

k=N0+1

1

kζ+γ


≤ exp

(
−2C2(x, α)

∫ n+1

N0+1

1

tζ+γ
dt

)
≤ exp

(
−2C2(x, α)

(n+ 1)1−ζ−γ − (N0 + 1)1−ζ−γ

(1− ζ − γ)

)
.

Then, T 1
n (just like T 0

n) is exponentially small when n grows up. To deal with the second
term T 2

n we first study the order in n of dn. dn is composed of three terms :

dn ≤ C1 exp

(
−

3n1−ζ

8

)
+ 2
√
C1M(x)C3(d)n−γ+(β−1)(1+ 1

d
) + n−2γ+β−1 .

The first one is negligeable (exponentially decreasing). Let us compare the two others
which are powers of n. Comparing their exponents, we get that there exists constants C5

and C6(d) (their explicit form is given in the Appendix) such that
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if β ≤ 1− dγ, then for n ≥ N0 + 1,

dn ≤ C5(x, d)n−2γ+β−1 ,

if β > 1− dγ, then for n ≥ N0 + 1,

dn ≤ C6(x, d)n−γ+(1+ 1
d

)(β−1) .

Remark 5 Let us detail how one can find C5 (it is the same reasoning for C6). If β ≤ 1−dγ,
we know that when n will be big enough, the dominating term of dn will be the one in
n−2γ+β−1. Then, it is logical to search a constant C5(x, d) such that ∀n ≥ N0 + 1,

dn ≤
C5(x, d)

n2γ−β+1
.

Such a constant has to satisfy, for all n ≥ N0 + 1,

C5(x, d) ≥ C1 exp

(
−

3

8
n1−ζ

)
n2γ−β+1 +

2
√
C1M(x)C3(d)

n−γ+(1−β)/d
+ 1 .

Since β ≤ 1−dγ, the map x 7→ 2
√
C1M(x)C3(d)

n−γ+(1−β)/d is positive and decreasing. Then its maximum

is reached for n = N0+1. Moreover, the map x 7→ C1 exp
(
− 3

8
n1−ζ)n2γ−β+1 is also positive

and is decreasing on an [A,+∞[. It also has a maximum. The previous inequality is then
true for

C5(x, d) := max
n≥N0+1

C1 exp

(
−

3

8
n1−ζ

)
n2γ−β+1 +

2
√
C1M(x)C3(d)

(N0 + 1)−γ+(1−β)/d
+ 1 .

Let us study the two previous cases.

Study of T 2
n when β > 1− dγ :

To upper-bound these sums, we use arguments from [5], which studies the stochastic
algorithm to estimate the median on an Hilbert space. The main arguments are comparisons
between sums and integrals. Indeed, for n ≥ N0 + 2 and n ≥ N3 where N3 is such that

∀n ≥ N3, b
n

2
c ≥ N0 + 1 ,

T 2
n = C6(x, d)

n−1∑
k=N0+1

exp

−2C2(x, α)

n∑
j=k+1

a

jζ+γ

 1

kγ+(1+ 1
d )(1−β)

+
C6(x, d)

nγ+(1+ 1
d

)(1−β)

= C6(x, d)

bn
2
c∑

k=N0+1

exp

−2C2(x, α)

n∑
j=k+1

a

jζ+γ

 1

kγ+(1+ 1
d )(1−β)

+ C6(x, d)

n−1∑
k=bn

2
c+1

exp

−2C2(x, α)
n∑

j=k+1

a

jζ+γ

 1

kγ+(1+ 1
d )(1−β)

+
C6(x, d)

nγ+(1+ 1
d

)(1−β)

=: S1 + S2 + S3 .

First, the function x 7→ x−ζ−γ is decreasing on ]0,+∞[ then
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S2 ≤ C6(x, d)

n−1∑
k=bn

2
c+1

exp

(
−2C2(x, α)

∫ n+1

k+1

1

xζ+γ
dx

)
1

kγ+(1+ 1
d

)(1−β)

= C6(x, d) exp

(
−2C2(x, α)

(n+ 1)1−γ−ζ

1− γ − ζ

)
n−1∑

k=bn
2
c+1

exp

(
−2C2(x, α)

(k + 1)1−γ−ζ

1− γ − ζ

)
1

kγ+(1+ 1
d

)(1−β)
.

Then, taking, 1− β < ζ < min((1− dγ),
(
1 + 1

d

)
(1− β)), we have since k ≥ bn

2
c+ 1

S2 ≤ C6(x, d) exp

(
−2C2(x, α)

(n+ 1)1−γ−ζ

1− γ − ζ

)(
2

n

)(1+ 1
d

)(1−β)−ζ

n−1∑
k=bn

2
c+1

exp

(
−2C2(x, α)

(k + 1)1−γ−ζ

1− γ − ζ

)
1

kγ+ζ
.

Now, since for k ≥ 1, (
1

k

)ζ+γ
≤
(

2

k + 1

)ζ+γ
,

we get

S2 ≤ C6(x, d) exp

(
−2C2(x, α)

(n+ 1)1−γ−ζ

1− γ − ζ

)(
2

n

)(1+ 1
d

)(1−β)−ζ
2ζ+γ

n−1∑
k=bn

2
c+1

exp

(
−2C2(x, α)

(k + 1)1−γ−ζ

1− γ − ζ

)
1

(k + 1)γ+ζ)
.

Since the function x 7→ exp
(

2C2(x, α)n
1−ζ−γ

1−ζ−γ

)
is decreasing on

[
2C2(x,α)
γ+ζ

,+∞
[
, we also

define the integer N1(x, α) the rank such that

∀n ≥ N1(x, α), b
n

2
c+ 1 ≥

2C2(x, α)

ζ + γ
.

For n ≥ N1(x, α) we get

S2 ≤ C6(x, d) exp

(
−2C2(x, α)

(n+ 1)1−γ−ζ

1− γ − ζ

)
2(1+ 1

d
)(1−β)+γ

n(1+ 1
d

)(1−β)−ζ

×
n−1∑

k=bn
2
c+1

∫ n

bn
2
c+2

exp

(
−2C2(x, α)

x1−γ−ζ

1− γ − ζ

)
1

xγ+ζ
dx

≤
C6(x, d)

2C2(x, α)
exp

(
−2C2(x, α)

(n+ 1)1−γ−ζ

1− γ − ζ

)
2(1+ 1

d
)(1−β)+γ

n(1+ 1
d

)(1−β)−ζ

×
[

exp

(
2C2(x, α)

n1−ζ−γ

1− ζ − γ

)
− exp

(
2C2(x, α)

(bn
2
c+ 2)1−ζ−γ

1− ζ − γ

)]

≤
C6(x, d)

2C2(x, α)

2(1+ 1
d

)(1−β)+γ

n(1+ 1
d

)(1−β)−ζ
=:

C7(x, d, α)

2

1

n−ζ+(1+ 1
d

)(1−β)
.

Let us now deal with the term S1. As k ≤ bn
2
c, we have
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n∑
j=k+1

1

jζ+γ
≥
n

2

1

nζ+γ
.

Then,

S1 = C6(x, d)

bn
2
c∑

k=N0+1

exp

−2C2(x, α)
n∑

j=k+1

a

jζ+γ

 1

kγ+(1−β)(1+ 1
d )

≤ C6(x, d)

bn
2
c∑

k=1

exp
(
−C2(x, α)n1−ζ−γ

) 1

kγ+(1−β)(1+ 1
d )

≤ C6(x, d) exp
(
−C2(x, α)n1−ζ−γ

) bn2 c∑
k=1

1

kγ+(1−β)(1+ 1
d )

.

Thanks to the exponential term, S1 is insignificant compared to S2 whatever is the be-

haviour of the sum
∑
k

k−γ−(1−β)(1+ 1
d ), and so is Tn1 . Then, denoting N2(d, x) the rank

after which we have

S3 + S1 + T 1
n + T 0

n ≤
C7(x, α, d)

2n(1+ 1
d

)(1−β)−ζ
,

we get, in the case where β > 1 − γ and 1 − β < ζ < min((1 − γ),
(
1 + 1

d

)
(1 − β)), for

n ≥ max (N0, N1(x, α), N2(d, x))

an(x) ≤
C7(x, α, d)

n−ζ+(1+ 1
d )(1−β)

.

Study of T 2
n when β ≤ 1− dγ :

Using the same arguments, we conclude that for 1− β < ζ < min(1− β + γ, 1− γ) and
n ≥ max(N0, N1(x, α), N2(d, x)) (see Appendix for precise definitions of these ranks), there
exists a constant C8(x, α, d) such that the mean squared error satisfies

an(x) ≤
C8(x, α, d)

nγ−β+1−ζ .

A.5 Proof of Corollary 2 : choice of best parameters β and γ

Let us now optimize the rate of convergence obtained in previous theorem. When β ≥ γ
and β ≤ 1 − dγ, the rate of convergence is of order n−γ+β−1+ζ . To optimize it, we have
to choose ζ as small as possible. Then, we take ζ = 1− β + ηζ . The rate becomes n−γ+ηζ .
Then, we have also to choose γ as small as possible. In this area, there is only one point in
which γ is the smallest, this is the point (γ, β) = ( 1

1+d
, 1

1+d
). Since we have to take β > γ,

the best couple of parameters, in this area, is ( 1
1+d

, 1
1+d

+ ηβ). These parameters follow a

rate of convergence of n
−1
1+d

+η
.

When we are in the second area, the same kind of arguments allows us to conclude to
the same optimal point with the same rate of convergence.

In Figure 6, we use the numerical simulations of Section 3 to illustrate the previous
discussion.

We have finally shown that

an(x) ≤
C9(x, α, d)

n
1

1+d
−η

,
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Fig. 6: Theoretical behaviour of the MSE in function of β and γ, n = 200.

where the constant is the minimal constant between C7(x, α, d) and C8(x, α, d) computed
with optimal parameters (γ, β, ζ).
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B Recap of the constants

Let us sum up all the constants we need in this paper.

B.1 Constants of the model

We denote :

• M(x) the constant of continuity of the model, that is

∀B ∈ Bx, ∀t ∈ R, |FY B (t)− FY x t)| ≤M(x)rB .

• Cinput is the positive lower bound of the density of the inputs law fX .
• Cg(x) is the positive lower bound of the density of the law of g(x, ε).

B.2 Compact support

We denote :

• [LY , UY ] the compact in which are included the values of g.
• [LX , UX ] the compact in which is included the support of the distribution of X.
• [Lθn , Uθn ] := [LY − (1− α), UY + α] the segment in which θn can take its values (∀x).
• U|.| the upper bound of the compact support of the distribution of ||X − x|| (∀x).

B.3 Real constants

We denote :

•
√
C1 := UY + α− LY . C1 is the uniform in ω and x bound of (θn(x)− θ∗(x))2.

• C2(x, α) := min
(
Cg(x), 1−α

UY +α−LY

)
is the constant such that

[FY x (θn(x))− FY x (θ∗(x))] [θn(x)− θ∗(x)] ≥ C2(x, α) (θn(x)− θ∗(x))2 .

• C3(d) := d
√

2

(
1 + 8

3d
+ 1

d
√
CinputC4(d)

)
.

• C4(d) := π
d
2

Γ( d2 )+1
.

• C5(x, d) := max
n≥N0+1

C1 exp

(
−

3

8
n1−ζ

)
n2γ−β+1 +

2
√
C1M(x)C3(d)

(N0 + 1)−γ+(1−β)/d
+ 1.

•
C6(x, d) := max

n≥N0+1
C1 exp

(
−

3

8
n1−ζ

)
nγ+(1+ 1

d
)(1−β)

+ 2
√
C1M(x)C3(d) +

1

(N0 + 1)γ−
1
d

(1−β)
.

•
Coptim5 := max

n≥N0+1
C1 exp

(
−

3

8
n

(
1

1+d
+ηβ

)
−ηζ

)
(N0 + 1)

1
1+d
−ηβ+1

+ 1 +
1

(N0 + 1)
− 1

1+d
+ 1
d

(1− 1
1+d
−ηβ)

.

•

Coptim6 (x, d) := max
n≥N0+1

C1 exp

(
−

3

8
n

(
1

1+d
+ηβ

)
−ηζ

)
n

(1+ 1
d )− 1

d(1+d)
−ηβ(1+ 1

d )

+ 2
√
C1M(x)C3(d) +

1

(N0 + 1)
− 1
d

+ 1
d(1+d)

+ 1
1+d

+
ηβ
d

.
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• C7(x, α, d) :=
2
(1+ 1

d
)(1−β)+γ

C6(x,d)
C2(x,α)

.

• C8(x, α) :=
22γ−β+1C5(x,d)

C2(x,α)
.

• C9(x, α, d) := min

(
2
1+ 1

d
− 1
d(1+d)

−ηβ(1+ 1
d
)
C
optim
5 (x,d)

C2(x,α)
,

2
1

1+d
−ηβ+1

C
optim
6 (x,d)

C2(x,α)

)
.

• C10(d) := d

√
2(kn+1)

(n+1)CinputC4(d)
.

B.4 Integer constants

We denote :

• N0 := 2
1

ζ−(1−β) .
• N1(x, α) is the rank such that n ≥ N1(x, α) implies

b
n

2
c+ 1 ≥

2C2(x, α)

ζ + γ
.

• N2(x, α, d) is the integer such that ∀n ≥ N2(x, α, d),

a) If β ≤ 1− dγ,

S3 + S1 + T 1
n + T 0

n ≤
C7(x, α, d)

2n(1+ 1
d )(1−β)−ζ

,

where T 1
n := exp

−2C2(x, α)

n∑
k=N0+1

k−γ−ζ

, T 0
n := C1 exp

(
−3n1−ζ

8

)
,

S3 :=
C6(x,d)

n
γ+(1+ 1

d
)(1−β)

and

S1 := C6(x, d) exp(−2C2(x, α)n1−ζ−γ)

bn
2
c∑

k=1

k−γ−(1−β)(1+1/d).

b) If β > 1− dγ,

S3 + S1 + T 1
n + T 0

n ≤
C8(x, α, d)

2nγ−β+1−ζ ,

where T 1
n := exp

−2C2(x, α)
n∑

k=N0+1

k−γ−ζ

, T 0
n := C1 exp

(
−3n1−ζ

8

)
,

S3 := C5

n2γ−β+1) and S1 := C5 exp(−2C2(x, α)n1−ζ−γ)

bn
2
c∑

k=1

k−γ−(1−β)(1+1/d).

• N3 is the rank such that ∀n ≥ N3, bn2 c ≥ N0 + 1.
• N4(x, α, d) := max (N0 + 2, N1(x, α), N2(x, α, d), N3).
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