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[1] Abstract— The development of living labs or smart 
spaces is a complex and challenging task. The choice of suitable 
sensors and actuators to deploy in these physical testbeds is 
difficult without experimentation. Moreover, several challenges 
still remain in improving and testing new fields of application 
based on Internet of Things (IoT). In this paper, we present 
UbiUnity, a dynamic visual simulator environment which can be 
used during the design phase of smart spaces. Our approach 
allows to define web services for devices (WSD) associated to 3D 
virtual shape in the simulated environment. These WSD are 
defined by combining simple actions in the virtual environment 
which allow the researcher to focus on the definition of new 
algorithms or middleware to manage the smart space. Moreover, 
UbiUnity can dynamically create these WSD during the execution 
of the simulation with respect to the fluidity of the graphical 
rendering. 

Keywords—Internet of Things, Ubiquitous Computing, 
Simulation, Virtual Environment, Web Services for Devices 

 Introduction 
Many initiatives aim at implementing smart spaces 
(Living Labs1 for instance or the Smart Cities initiatives) 
[1]. These smart spaces are composed of Things (entities 
of interest, like buildings, rooms…) that can be viewed 
as a set of devices providing services and or resources 
[2]. But the design, development and deployment of 
such smart spaces, which are real physical systems, are 
complex engineering tasks. The creation of physical 
spaces equipped with sensors and actuators, like Living 
Labs or Smart Cities, have drawbacks: 

• Huge investments: the financial cost of purchase 
and deployment of such equipment is important. 

• Limited variety of sensors and actuators: sensors 
and actuators deployed in these environments are 
limited in number and type of addressable devices. 
In any case, they are limited to the products 
available on the market; so it is difficult to test 

                                                           
1  http: //openlivinglabs.eu/, http: //livinglabs.mit.edu/ 

prospective approaches based on non-available 
materials. 

• Updates and upgrades are complex and limited: 
updating or upgrading hardware and software 
configurations of the deployed infrastructure is a 
procedure that is often impossible or, at best, will 
be expensive and very costly in time; moreover, 
using equipment outside of their initial purpose is 
complicated from an engineering standpoint of 
view. 

• Limited dynamics of the environment: the 
dynamicity in these smart spaces comes from 
people who inhabit them via any wearable device 
with which they arrive or via interactions they 
have with the smart space. Meanwhile, the core 
infrastructure once defined and deployed, do not 
change at all or with very small variations. But it is 
still necessary to test different configurations for 
the infrastructure to be deployed in the smart 
space. 

• Scalability of deployment: if limited smart areas 
can be maintained more easily (such as smart 
home for instance), the scalability to a building or 
a city requires to make larger studies before 
deploying the infrastructure. 

On the other hand, the definition of new architectures, 
new middleware or new algorithms for the management 
of smart spaces required for research purposes need a 
flexibility of implementation and deployment to allow 
easy experimentation. Therefore, there are numerous 
advantages at/of having software-based simulators that 
overcome the limitations of physically deployed smart 
spaces. Simulation-based approaches are widely used in 
many fields. For instance, in the field of embedded 
systems, hardware components are fully simulated. 
Thus, developed systems can be fully tested before their 
manufacturing and the simulator facilitates and 
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accelerates the development of software applications. 
Moreover, simulation enables researchers to evaluate 
scenarios and applications without the difficulties in 
dealing with hardware sensors and actuators. It also 
offers a greater flexibility since it is easy to run a set of 
simulations with a wide range of parameters. 
Differences between Simulation, Living Lab and Smart 
Space approaches are summarized in the next figure 
along with their main advantages and disadvantages.  

 
Fig. 1. Simulation, Living Lab and Smart Space comparaison 

In this paper, we propose an environment to simulate 
smart spaces of various kinds (house, building, city, 
open areas ...).  Each device (sensor or actuator) in the 
smart space provides services (data like presence, 
temperature, humidity, location, luminosity… or action: 
acting on the state of a device, moving objects...). It is 
possible to add, remove or modify the deployed devices 
(and therefore the associated services), easily and 
dynamically even at run-time. So this allows to simulate 
over long periods of time and provides huge flexibility 
and openness to test new algorithms or middleware for 
IoT. The update of the infrastructure of services in the 
simulation must then verify two points: (a) the ease for 
developers to create or modify the simulated 
environment and (b) at run-time, new devices 
deployment must be done in a timely fashion in order to 
preserve the smart spaces simulation quality. 
First, we identify the main features that must have such 
systems. Then, we study the related works before 
presenting the proposed simulator and the associated 
performance assessments results aimed at characterizing 
the graphic rendering engine fluidity under stress 
conditions and at highlighting the limitations. We 
conclude by presenting the perspectives of this work. 

Motivations and Criteria 
The need to simulate sensors and actuators to evaluate 
and test mobile and context-aware services [3] first 
appeared in 2001. The study of previous works in this 
domain and the current challenges in simulating 
environments for IoT lead us to define some criteria. We 
present them in this section. 
 Services in smart spaces are often localized and 
contextualized. This implies (a) a need to have a 2D or 
3D representation of the surrounding environment where 

the devices are located. The realism and the quality of 
the simulation are mainly driven by parameters like 
graphics quality, real time computing, physics engine 
integration, etc… In the context of IoT, the main 
requirement of such simulators is their ability to 
indifferently simulate indoor environments (apartments, 
offices, museums, hospitals, schools, malls, university 
campus…) or outdoor areas. It is also crucial that the 
task of (b) integrating devices and associated services in 
the simulated scene does not require the IoT developers 
to learn any 3D engine coding specificities. This is a key 
point for them to easily develop, use and share a wide 
variety of simulations. Moreover, when a specific 3D 
environment is not needed, the use of already developed 
3D scenes, for testing purposes, would save time and 
energy. It means that a (c) loose coupling approach 
between the 3D representation and the simulated 
infrastructure will ensure the reusability of 3D 
environments and developed services. And, by 
considering the continuous evolution of the 3D engines 
capabilities, a good simulator architecture should also 
allow to easily change or upgrade the 3D rendering 
engine used. 
Pervasive systems must offer an open, extensible and 
evolving set of services corresponding to available 
devices providing those services in the surrounding 
environment. It means that (d) a smart spaces simulator 
must have the capabilities to add, remove and modify the 
devices deployed in the simulated environment and/or 
the services attached to the devices. Moreover, (e) some 
of the services associated to devices must be enabled 
depending on the localization of the user; this 
correspond to the discovery of new services as the users 
get close to the device. And a last functionality would be 
to (f) allow services to be added, removed or modified in 
the virtual environment, at runtime. This would allow 
over long periods of time, to adapt the simulated 
environment without restarting the simulation or to 
directly observe the consequences of a modification in 
the services infrastructure. 
We can summarize all the defined criteria as follow: 

a. A performant graphic rendering engine with a 
physics engine to visualize and interact with the 
simulated environment. 

b. Ease of adding new devices in the simulated 
environment without the need to modify the 3D 
engine or develop code. 

c. Loose coupling between the rendering engine and 
the simulated services. 

d. Capability to add, remove or modify the sensors 
or actuators deployed in the environment. 
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e. Activating services based on the user location 
enabling the discovery of new services as the user 
moves in the simulated environment (context-
awareness applications). 

f. Modification of simulated devices and services at 
runtime while maintaining the rendering process 
as fluid as possible. 

In the next section, previous works on the subject are 
reviewed and challenged based on the aforementioned 
criteria. 

Related Works 
Several projects worked on the simulation of ambient or 
ubiquitous applications in the context of Internet of 
Things. In this section, we present the main works and 
underline their limitations compared to the previously 
defined criteria. All the presented works in this section 
address the problem of simulating ubiquitous 
environments through a rendering engine to visualize it 
(a) using 3D for most of them and sometimes 2D 
representations [4]. 
QuakeSim [3] aimed to evaluate, test and demonstrate 
context-aware services. It was the first environment for 
testing mobile services. Few sensors (altitude, 
temperature and position) were hardcoded in the virtual 
environment. UbiWize [5] targeted the development of 
hardware and embedded software in an ubiquitous 
computing context. UbiWize is the union of UbiSim, 
which aimed to produce real-time context information in 
a semi-realistic environment, and Wise, consisting in 
simulating device with a 2D display. UbiWize thus 
focused on emulating device being immersed in a 3D 
environment rather than developing a simulator for 
context-awareness capabilities (focused on services 
nearby a character position). Reference [6] presents the 
design of a generic simulation tool for many scenarios 
for ubiquitous computing. They provide a layered 
environment, a kind of middleware between the 
simulator API and the application, which is less flexible 
than a service oriented approach. These researches did 
not focus on the way to publish to third parties the 
capabilities of the simulated environment as services. 
This leads to pair the rendering and the behavioral code. 
The decoupling between the 3D simulation environment 
and the behavior of the simulation was introduced by 
Tatus. Tatus [7] is an ubiquitous computing simulator 
interfaced with a testbed for wireless communication 
domain simulation. The authors modified a game engine 
(Half-Life) to provide a convenient computing 
environment that researchers can use to test ubiquitous 
computing applications. But enhancement of the 

environment is done inside the game engine even if they 
provide an interface to avoid developing game level 
code. A system-under-test (SUT) is separated from the 
game engine and can communicate with it via network 
communication. But it's not possible to interact with 
every entities of the simulated environment so it does 
not consider device simulation. 3DSim [8], UbiReal [9], 
DiaSim [10] and 3D DEIR [11] proposed to associate 
services to virtual devices to reach criteria (c). Even if 
3DSim, DiaSim and 3D DEIR allow simulated services 
to be added dynamically, as the simulation of a 
pervasive computing system runs, there is no evaluation 
of this criteria to define the number of possible services 
regarding the continuity of the simulation quality. 
However, these approaches are limited because they 
require significant programming effort to address new 
pervasive computing challenges. As defined in [12], we 
can identify three categories of users with different 
points of view: (1) a developer who extends the 
simulation, (2) a researcher who configures the 
simulation for testing purposes and (3) a user who runs 
the simulation. These persona are not necessarily three 
different persons but each of them need to exhibit 
specific skills. Moreover, the developer profile could be 
divided more precisely: developer coding for extending 
the virtual environment, and developer dealing with the 
addition of new protocols or functionalities. To facilitate 
the development of various simulations, the proposed 
environment aim at minimizing the needed 
developments to create a simulation. All the studied 
solutions (QuakeSim, UbiWize, 3DSim, Tatus, UbiReal, 
ISS) require to program within the environment of the 
visual rendering tool used to simulate the ubiquitous 
environment. This implies a great effort of programming 
for the developer or the researcher to learn the API and 
the specificities of a dedicated framework. Only DiaSim 
proposes a dedicated framework to program specific 
scenarios, but it requires a specialized developer to 
create new simulation and it’s an obstacle to create 
different situations.  
With a clear separation between the rendering engine, a 
way to associate the simulated devices and services and 
to specify the services and the interaction with the 3D 
world, it would be possible to specialize the work to 
dedicated skilled persona. The simulator provides a 
graphical representation of a virtual environment. As the 
developers of ambient simulation are not often 3D 
graphical designers, it is possible to delegate the 
manufacturing process of the virtual environments to 
specialists. It’s also possible to find prebuild virtual 
environments or 3D virtual objects on markets that can 
be purchased. The developer can then focus on defining 
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the devices and the provided services to be attached to 
the virtual devices. Moreover, if it would be possible to 
limit the programming to create a new simulation, 
researchers could concentrate on configuring it. 
We can summarize the contributions of the studied 
works against the defined criteria in the following table. 

 a b c d e f 

QuakeSim Yes No No No No No 

UbiWize Yes No No No No No 

3DSim Yes No Yes Yes No Partial 

Tatus Yes No Yes No No No 

UbiReal Yes No Yes No No No 

ISS Yes No Yes No No No 

DiaSim Yes Partial Yes Yes No Partial 

3D DEIR Yes No Yes Yes No Partial 

 
This study emphasizes that criteria (b: specifying new 
service behavior without coding in the virtual 
environment framework) and (e: activating services 
depending on the user location in the virtual world for 
simulating the context-awareness) were not addressed by 
the previous contributions. Criteria (f: changing 
dynamically the devices and services in the virtual 
environment while maintaining the rendering process as 
fluid as possible) was introduced in 3DSim, DiaSim and 
3D DEIR but without any evaluation. In the next section, 
we will present the proposed framework giving answers 
to these criteria and all the other defined ones. 

Overview of the Proposed Framework 
Criteria defined in the previous section allow us to 
propose the architecture of a simulator for IoT. 

Architecture of UbiUnity 
The richness of a simulated smart spaces comes from the 
variety and the number of provided devices. So, to add a 
device to a virtual object, the quantity of work to be 
produced by the developer should be as less as possible 
(criteria b and d). This is, for instance, one of the main 
drawback of UbiReal2 [9]. To add a service to a device 
in the virtual smart environment, the developer must 
produce a large amount of code. First of all, a new UPnP 
device has to be developed and imported it in the virtual 
space of UbiReal. Then the 3D shape has to be designed 
and the interaction between the UPnP device and the 3D 
shape has to be specified. Finally, the simulation 
dependent part, which consists in the implementation of 

                                                           
2  http: //ubireal.org/ (release 1.0, published on Sept 28, 2012) 

the Importable class, has to be implemented. To include 
all these developments in the UbiReal environment, the 
code finally has to be compiled and linked to the 
simulator. Finally, some manipulations with the 
graphical user interface are needed to register the classes 
in the virtual space before using it. All the work needed 
to add a new virtual smart device in the environment is 
an obstacle with regards to the number of possible 
devices. 
To tackle the criteria (a), (b), (c) and (d) previously 
defined, we propose the following architecture for the 
simulator and the definition of services associated to the 
virtual devices. 

 
Fig. 2. Architecture of UbiUnity 

The use of services associated to virtual devices allows 
loose coupling between the entities in the simulated 
world and functionalities provided by any kind of client. 
This corresponds to the notion of Service on Device or 
Web Service for Device [13]. A web service for device 
can be defined as a set properties or variables used to 
define useful values associated to a device or a specific 
service of the device (the state of a light for instance) 
and a set of actions to be performed on the device 
(switching the light on or off). Events can be generated 
each time a variable’s value changes. There is also the 
possibility to discover services associated to a device. 
With this approach, one or more service descriptions can 
be associated to a 3D virtual device which becomes a 
web service for device, attached to the 3D shape, and 
published outside the simulation environment. Any 
client can then access the virtual device to interact with 
it and then access and interact with the simulated world. 
It permits the loose coupling between the virtual 3D 
environment and the services associated to the device. 
The benefit of this approach is the ability to externalize 
all the functionalities given to the virtual objects. So, the 
interconnection of services is not done inside the virtual 
framework, but can be done by, for instance, 
orchestrating the services externally to the virtual 
environment. This is helpful to avoid to code any 
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behavior in the virtual environment and allows to use 
any kind of algorithms or technics to manage the 
simulated smart space. 
But as we mentioned earlier, we do not want to code the 
web services associated to devices in the framework 
managing the 3D virtual scene. This correspond to 
address criteria (d). A researcher could be able to create 
or configure a simulated environment without having to 
implement any code inside the simulator. As we 
mentioned in the related works section, it’s really 
important to separate the expertise of each persona. 
To define a new service associated to a device, we 
propose to create a description of the service using an 
XML file. This description must define the variables and 
actions of the service and specify the interconnection of 
the action or the variable with the virtual device. A 
library of generic actions on the 3D virtual world has 
been defined. For instance, basic functionalities are to 
move, rotate or translate an object or switch on or off a 
light in the 3D environment. A set of functionalities used 
to manipulate the 3D objects is provided in the library as 
well. To be able to create more complex services for 
devices, it’s possible to compose these basic 
functionalities to create new ones. For instance a traffic 
light is composed of a red, a yellow and a green lights. 
The XML description of the service associated to the 
traffic light will propose actions like switching on or off 
each light. Thus a more complex device is a composition 
of basic functionalities proposed by the library. 
The description of a service is used to generate the 
source code corresponding to the functionalities of the 
device. The behavior of the device must not be included 
in the simulator. The goal is to manage this behavior 
outside the 3D simulator engine which is an advantage. 
For the traffic light example, the behavior of a traffic 
light is very different depending the countries. If the red 
light prohibits the traffic, and the green one allows it, the 
yellow one provides a warning that the signal will 
change from green to red but, in some countries, also for 
a change from red to green. Managing this kind of 
specific behavior outside the scene allows to use the 
same 3D simulation engine for different kind of 
simulation for different countries. And it avoids to 
change the simulation behavior inside the 3D 
environment which is not suitable. So, the service 
associated to a traffic light is the definition of actions to 
turn on each light. These actions must be linked to the 
3D shape; turning on a light will change the texture of a 
part of the mesh and turn on a spot light for better 
realism. But there is no implementation of any behavior 
between the lights. 

Dynamicity of Simulated Services 
To offer the possibility to modify the infrastructure of 
available services in the virtual environment, each of the 
web services for device associated to virtual objects can 
be started, paused or stopped dynamically. Web services 
for devices can be activated at the startup of the 
simulation or depending the proximity of the users. It 
allows to simulate some geo-localized services that are 
only available in a specific area (due to the limit of a 
signal strength for instance). So their activation depends 
on the location of the virtual user; the proximity of two 
entities activates a new web service for device. 
On the other hand, as explained in the previous section, 
any web service for device is generated by a model 
transformation from an XML description to the target 
source code used in the simulation framework. This is 
possible with the use of a managed language offering the 
possibility to byte compile the source code on the fly and 
link this new code to the environment or by the use of 
scripting interpreted languages. In addition, this 
approach also allows to dynamically add some new 
services, and create new web services for device during 
the execution of the simulation to add new 
functionalities on the fly. 
This implies to generate, activate and deactivate the web 
services for device during the execution of the simulator 
in order to adapt the virtual environment to the needs. 
But this adaptation must be done with a time controlled 
and constrained adaptation loop in order not to affect the 
quality of the simulation and, in our case, the fluidity of 
the graphics rendering (the number of frames per 
second). Moreover it’s not possible to predict the 
number of the available services (which depends on the 
user’s displacement and on the specified services that 
can be dynamically added to the virtual environment). 
There is a need to model the type and the number of 
modifications that can be supported by the simulator: 
how many web services for device can be activated 
concurrently without slowing down or freezing the 
graphical rendering process.  

Implementation of UbiUnity 
To implement the web services for device, we used the 
UPnP protocol which has been also used in some 
previous works: 3DSim [8], UbiReal [9] and 3D DEIR 
[11]. Using this protocol is also interesting because 
UPnP offers a research and discovery mechanism in 
addition to the request-response and eventing 
mechanisms. It’s also possible to use more recent 
protocols like DPWS3 providing the same type of 
                                                           

3  http: //docs.oasis-open.org/ws-dd/ns/dpws/2009/01 (July 1st, 2009) 
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characteristics. 

 
Fig. 3. Implementation of UbiUnity 

The service actions defined in the XML file must be 
bound to the 3D shape in order to trigger the 
corresponding effect in the virtual environment. To 
prevent having to code within the virtual environment 
framework, we developed a library providing a set of 
basics actions like: moving, scaling any virtual objet (the 
shape associated to it); modifying its color, texture; 
playing a media (sound and video along with being able 
to play, pause, stop and modify the format of loaded 
media) to offer audio and video services to virtual 
devices; defining light (type, color, characteristics, …); 
detect collision between shapes, etc. In the actual release 
of the library, three main categories are implemented: 
light, audio, video and object-body. Each category is 
implemented by a class that implement generic and 
common interfaces. For instance, it’s possible to amplify 
a sound or the luminosity of a light. This means that the 
light and audio implement the IAmplifier interface.  
This also allows to create new kind of devices by 
composing the available functionalities defined in the 
library. Moreover, a service is associated to the camera 
to enable its control via a service and give the possibility 
to connect to that service any kind of controller (mouse, 
joystick, trackpad, tablet…). As the services 
orchestration is done outside the virtual environment, a 
service can be dynamically bind to the camera to control 
it. A connection between a web service for a virtual and 
a physical object also allows the possibility to interact 
with a physical device from its avatar. 

 
Fig. 4. Coupling virtual and physical world throughout Web Services for 
Devices dynamic orchestration 

This library depends on the used virtual environment 
framework and must be re-implemented in case of 
changing it. But, since the services are bound to the 3D 
environment thanks to a loose coupling mechanism, 
there is no need to redevelop all the specified services. 

Experiments 
To evaluate the proposed framework, we measured the 
graphical rendering fluidity as a function of the amount 
of concurrently activated and/or deactivated services. To 
have a reference for this evaluation, we first measured 
the performances of the library used for implementing 
web service for device. 

Performances Evaluation of the Web Service for 
Device used library 

First of all, and since it is used in our library, we first 
evaluated the performances of the C# Intel UPnP library. 
These tests were made outside any 3D rendering 
environment. The total number of devices that can be 
instantiated are limited to about 250 devices. This 
limitation seems to be the consequence of a problem in 
the Intel UPnP library and was encountered on both 
.NET frameworks (Mono and Windows) environments. 
So our tests were limited to 250 UPnP devices instances. 
For testing purposes, we defined a regular UPnP device 
with 1 service, 3 variables and 6 methods. 
We measured UPnP device class instantiation (Fig. 5) 
and start method (Fig. 6) execution times on a device. 
We only present here the evaluations made with mono 
2.6 which is the one used in Unity (framework used to 
implement the proposed solution). For the experiment, 
devices were created 1 by 1, 2 by 2 and 5 by 5, and the 
rendering process performances degradations measured 
for each case. 
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Fig. 5. UPnP Device creation time in milliseconds 

The time necessary to create UPnP devices one by one 
or five by five are equivalent. UPnP device creation time 
mean value is about 15ms and standard deviation is 
between 12ms and 17ms. Therefore, there is no 
significant difference in creating one or more UPnP 
device at the same time (during the same rendering 
frame). 
We also evaluated the start method execution time. This 
method is called as soon as a new web service for device 
bound to a 3D shape is discovered.  

 
Fig. 6. UPnP device startup time in milliseconds 

We measured that starting up a UPnP device takes about 
5ms (with a standard deviation of about 10ms) for single 
device, but if we start up five UPnP devices during the 
same frame, the time spent grows up to 130ms. 
 So, we can conclude that with the library used for 
implementing the UPnP web services for device, it’s 
more efficient to instantiate several UPnP devices at the 
same time (during the same frame) rather than starting 
them one by one. The average time to create and start a 
new UPnP device is about 20ms. This time grows up to 
more than 100ms for the 250th UPnP device. 

 
Fig. 7. Total time for creating (red) and starting (green) up to 250 UPnP 
devices 

A deeper analysis shows that the total amount of time 
spent at creating (red plot) and starting (green plot) a 
new UPnP device increases with the total number of 
created devices (Fig. 7). These behavior are inherent to 
the garbage collector algorithm used in mono 2.6 release 
(Boehm-Demers-Weiser GC). At each new allocation, 
the garbage collector processes all the allocated memory 
to eventually free up space. The more memory will be 
allocated, the more time will be necessary to instantiate a 
new object. And all the allocations are not necessarily 
done during the creation process but also during the start 
method execution. We could conclude that it would be 
preferable not to use a managed code language, but this 
approach allows to introduce the dynamicity wanted for 
the services (the possibility to create new ones at 
runtime). 
We observed the same results when using the graphical 
rendering environment with a small overhead due to the 
framework itself. 

Graphical Rendering Evaluation 
As the UPnP devices can be started and stopped during 
the simulation, we measured the impact of these actions 
on the graphical rendering fluidity by measuring the 
framerate (number of frames per second). We evaluated 
it (red plot) as a function of the amount of UPnP devices 
started (green plot). We started up to 250 UPnP devices 
created three by three and the framerate never dropped 
down under 30fps (the default framerate of the scene 
without any instrumentation was 60fps). 
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Fig. 8. Evaluation of the FPS when starting and stoping UPnP services 

We used Unity4 4.5.5 to provide the virtual environment 
framework [14]. Unity is a cross-platform game engine 
that offers a variety of tools to create and manage virtual 
worlds. It proposes to attach “scripts” to virtual objects 
to create graphical effects, control the physical behavior 
of objects… These scripts can be specified in JavaScript 
or C#. We used the Intel C# implementation of UPnP to 
enable this feature in the Unity environment. 
For evaluation purposes, we used a PC with an Intel 
Pentium B970 2.3GHz with 4Gio of RAM and an AMD 
Radeon HD 5800 graphical card and one active network 
interface. The evaluation was made under Windows 7 
SP1. 

Dynamicity of Web Services for Device 
Modelisation 

The time for creating and starting up UPnP devices is 
not constant over the time. We measured that, created 
three by three, the frame rate never dropped down under 
30 fps. But as we can see on Fig. 8, we could start more 
devices during for the first hundred ones without 
dropping down a give limit. We implemented an 
algorithm in the library to maximize the number of 
stated UPnP devices based on the model of reactivity. 
This allows us to have a minimum framerate for the 
simulation even activating UPnP Device. 
Moreover, for the tests purposes, we also used WComp 
[15] to dynamically orchestrate the exposed services by 
the virtual environment. WComp also includes a 
temporal model at runtime [16] to ensure that the new 
services can be integrated in an application defining the 
behavior in a timely fashion. It allowed us to simulate 
virtual environments like a house or a city district. 

Conclusion 
In this article, we argued that simulation still have 
advantages compared to physical testbeds: flexibility and 
openness. Moreover, we can identify a paradox: living 
labs or smart spaces are more realist but it’s more 
difficult to equip the real environment with enough 

                                                           
4  http: //unity3d.com/ 

sensors to get enough user experimental results. By 
contrast, it’s easier to simulate devices in virtual 
environments and to monitor the way to use them even if 
we have less restitution fidelity. We presented UbiUnity, 
a 3D environment for simulating devices and provided 
services immersed in virtual situations. Each 
instrumented virtual device proposes services with the 
help of web service for devices approach. The main 
contribution of the present work is the identification and 
study of two main drawbacks in previous works on that 
subject: (1) the possibility for the researcher to define 
new devices and test new behaviors without coding in 
the graphical engine, (2) to allow the dynamicity of 
activating web services for devices at runtime with 
respect to the fluidity of the simulation. We measured 
the impact of dynamically activating web services in the 
3D environment. The use of web services for device 
attached to virtual devices offer functionalities outside 
the environment that can be used for dynamic 
orchestration of these services. It could also allow to 
couple the interface of physical and virtual device throw 
the services and offer the possibility to interconnect 
virtual environment to distant physical site for remote 
monitoring or remote interaction for instance. 
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