
HAL Id: hal-01187315
https://hal.science/hal-01187315

Submitted on 26 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A Dynamic Visual Simulation Environment for Internet
of Things

Stéphane Lavirotte, Jean-Yves Tigli, Gérald Rocher, Léa El Beze, Adam
Palma

To cite this version:
Stéphane Lavirotte, Jean-Yves Tigli, Gérald Rocher, Léa El Beze, Adam Palma. A Dynamic Visual
Simulation Environment for Internet of Things. 2015. �hal-01187315�

https://hal.science/hal-01187315
https://hal.archives-ouvertes.fr

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS
UMR7271

A Dynamic Visual Simulation Environment for
Internet of Things

Stéphane Lavirotte, Jean-Yves Tigli, Gérald Rocher, Léa El Beze1, Adam Palma

EQUIPE SPARKS

Rapport de Recherche

08-2015

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 -
UNS CNRS 2000, route des Lucioles - Les Algorithmes - bât. Euclide B 06900 Sophia

Antipolis - France http://www.i3s.unice.fr

http://www.i3s.unice.fr/

2

A Dynamic Visual Simulation Environment for
Internet of Things

Stéphane Lavirotte1,2, Jean-Yves Tigli1,2, Gérald Rocher1,2, Léa El Beze1, Adam Palma1,2
(1) Université Nice Sophia Antipolis, Polytech’Nice Sophia

(2) Centre National de la Recherche Scientifique, Laboratoire I3S, CNRS UMR 7271
Sophia Antipolis, France

Stephane.Lavirotte@unice.fr, Jean-Yves.Tigli@unice.fr, Gerald.Rocher@unice.fr

[1] Abstract— The development of living labs or smart
spaces is a complex and challenging task. The choice of suitable
sensors and actuators to deploy in these physical testbeds is
difficult without experimentation. Moreover, several challenges
still remain in improving and testing new fields of application
based on Internet of Things (IoT). In this paper, we present
UbiUnity, a dynamic visual simulator environment which can be
used during the design phase of smart spaces. Our approach
allows to define web services for devices (WSD) associated to 3D
virtual shape in the simulated environment. These WSD are
defined by combining simple actions in the virtual environment
which allow the researcher to focus on the definition of new
algorithms or middleware to manage the smart space. Moreover,
UbiUnity can dynamically create these WSD during the execution
of the simulation with respect to the fluidity of the graphical
rendering.

Keywords—Internet of Things, Ubiquitous Computing,
Simulation, Virtual Environment, Web Services for Devices

 Introduction
Many initiatives aim at implementing smart spaces
(Living Labs1 for instance or the Smart Cities initiatives)
[1]. These smart spaces are composed of Things (entities
of interest, like buildings, rooms…) that can be viewed
as a set of devices providing services and or resources
[2]. But the design, development and deployment of
such smart spaces, which are real physical systems, are
complex engineering tasks. The creation of physical
spaces equipped with sensors and actuators, like Living
Labs or Smart Cities, have drawbacks:

• Huge investments: the financial cost of purchase
and deployment of such equipment is important.

• Limited variety of sensors and actuators: sensors
and actuators deployed in these environments are
limited in number and type of addressable devices.
In any case, they are limited to the products
available on the market; so it is difficult to test

1 http: //openlivinglabs.eu/, http: //livinglabs.mit.edu/

prospective approaches based on non-available
materials.

• Updates and upgrades are complex and limited:
updating or upgrading hardware and software
configurations of the deployed infrastructure is a
procedure that is often impossible or, at best, will
be expensive and very costly in time; moreover,
using equipment outside of their initial purpose is
complicated from an engineering standpoint of
view.

• Limited dynamics of the environment: the
dynamicity in these smart spaces comes from
people who inhabit them via any wearable device
with which they arrive or via interactions they
have with the smart space. Meanwhile, the core
infrastructure once defined and deployed, do not
change at all or with very small variations. But it is
still necessary to test different configurations for
the infrastructure to be deployed in the smart
space.

• Scalability of deployment: if limited smart areas
can be maintained more easily (such as smart
home for instance), the scalability to a building or
a city requires to make larger studies before
deploying the infrastructure.

On the other hand, the definition of new architectures,
new middleware or new algorithms for the management
of smart spaces required for research purposes need a
flexibility of implementation and deployment to allow
easy experimentation. Therefore, there are numerous
advantages at/of having software-based simulators that
overcome the limitations of physically deployed smart
spaces. Simulation-based approaches are widely used in
many fields. For instance, in the field of embedded
systems, hardware components are fully simulated.
Thus, developed systems can be fully tested before their
manufacturing and the simulator facilitates and

3

accelerates the development of software applications.
Moreover, simulation enables researchers to evaluate
scenarios and applications without the difficulties in
dealing with hardware sensors and actuators. It also
offers a greater flexibility since it is easy to run a set of
simulations with a wide range of parameters.
Differences between Simulation, Living Lab and Smart
Space approaches are summarized in the next figure
along with their main advantages and disadvantages.

Fig. 1. Simulation, Living Lab and Smart Space comparaison

In this paper, we propose an environment to simulate
smart spaces of various kinds (house, building, city,
open areas ...). Each device (sensor or actuator) in the
smart space provides services (data like presence,
temperature, humidity, location, luminosity… or action:
acting on the state of a device, moving objects...). It is
possible to add, remove or modify the deployed devices
(and therefore the associated services), easily and
dynamically even at run-time. So this allows to simulate
over long periods of time and provides huge flexibility
and openness to test new algorithms or middleware for
IoT. The update of the infrastructure of services in the
simulation must then verify two points: (a) the ease for
developers to create or modify the simulated
environment and (b) at run-time, new devices
deployment must be done in a timely fashion in order to
preserve the smart spaces simulation quality.
First, we identify the main features that must have such
systems. Then, we study the related works before
presenting the proposed simulator and the associated
performance assessments results aimed at characterizing
the graphic rendering engine fluidity under stress
conditions and at highlighting the limitations. We
conclude by presenting the perspectives of this work.

Motivations and Criteria
The need to simulate sensors and actuators to evaluate
and test mobile and context-aware services [3] first
appeared in 2001. The study of previous works in this
domain and the current challenges in simulating
environments for IoT lead us to define some criteria. We
present them in this section.
 Services in smart spaces are often localized and
contextualized. This implies (a) a need to have a 2D or
3D representation of the surrounding environment where

the devices are located. The realism and the quality of
the simulation are mainly driven by parameters like
graphics quality, real time computing, physics engine
integration, etc… In the context of IoT, the main
requirement of such simulators is their ability to
indifferently simulate indoor environments (apartments,
offices, museums, hospitals, schools, malls, university
campus…) or outdoor areas. It is also crucial that the
task of (b) integrating devices and associated services in
the simulated scene does not require the IoT developers
to learn any 3D engine coding specificities. This is a key
point for them to easily develop, use and share a wide
variety of simulations. Moreover, when a specific 3D
environment is not needed, the use of already developed
3D scenes, for testing purposes, would save time and
energy. It means that a (c) loose coupling approach
between the 3D representation and the simulated
infrastructure will ensure the reusability of 3D
environments and developed services. And, by
considering the continuous evolution of the 3D engines
capabilities, a good simulator architecture should also
allow to easily change or upgrade the 3D rendering
engine used.
Pervasive systems must offer an open, extensible and
evolving set of services corresponding to available
devices providing those services in the surrounding
environment. It means that (d) a smart spaces simulator
must have the capabilities to add, remove and modify the
devices deployed in the simulated environment and/or
the services attached to the devices. Moreover, (e) some
of the services associated to devices must be enabled
depending on the localization of the user; this
correspond to the discovery of new services as the users
get close to the device. And a last functionality would be
to (f) allow services to be added, removed or modified in
the virtual environment, at runtime. This would allow
over long periods of time, to adapt the simulated
environment without restarting the simulation or to
directly observe the consequences of a modification in
the services infrastructure.
We can summarize all the defined criteria as follow:

a. A performant graphic rendering engine with a
physics engine to visualize and interact with the
simulated environment.

b. Ease of adding new devices in the simulated
environment without the need to modify the 3D
engine or develop code.

c. Loose coupling between the rendering engine and
the simulated services.

d. Capability to add, remove or modify the sensors
or actuators deployed in the environment.

4

e. Activating services based on the user location
enabling the discovery of new services as the user
moves in the simulated environment (context-
awareness applications).

f. Modification of simulated devices and services at
runtime while maintaining the rendering process
as fluid as possible.

In the next section, previous works on the subject are
reviewed and challenged based on the aforementioned
criteria.

Related Works
Several projects worked on the simulation of ambient or
ubiquitous applications in the context of Internet of
Things. In this section, we present the main works and
underline their limitations compared to the previously
defined criteria. All the presented works in this section
address the problem of simulating ubiquitous
environments through a rendering engine to visualize it
(a) using 3D for most of them and sometimes 2D
representations [4].
QuakeSim [3] aimed to evaluate, test and demonstrate
context-aware services. It was the first environment for
testing mobile services. Few sensors (altitude,
temperature and position) were hardcoded in the virtual
environment. UbiWize [5] targeted the development of
hardware and embedded software in an ubiquitous
computing context. UbiWize is the union of UbiSim,
which aimed to produce real-time context information in
a semi-realistic environment, and Wise, consisting in
simulating device with a 2D display. UbiWize thus
focused on emulating device being immersed in a 3D
environment rather than developing a simulator for
context-awareness capabilities (focused on services
nearby a character position). Reference [6] presents the
design of a generic simulation tool for many scenarios
for ubiquitous computing. They provide a layered
environment, a kind of middleware between the
simulator API and the application, which is less flexible
than a service oriented approach. These researches did
not focus on the way to publish to third parties the
capabilities of the simulated environment as services.
This leads to pair the rendering and the behavioral code.
The decoupling between the 3D simulation environment
and the behavior of the simulation was introduced by
Tatus. Tatus [7] is an ubiquitous computing simulator
interfaced with a testbed for wireless communication
domain simulation. The authors modified a game engine
(Half-Life) to provide a convenient computing
environment that researchers can use to test ubiquitous
computing applications. But enhancement of the

environment is done inside the game engine even if they
provide an interface to avoid developing game level
code. A system-under-test (SUT) is separated from the
game engine and can communicate with it via network
communication. But it's not possible to interact with
every entities of the simulated environment so it does
not consider device simulation. 3DSim [8], UbiReal [9],
DiaSim [10] and 3D DEIR [11] proposed to associate
services to virtual devices to reach criteria (c). Even if
3DSim, DiaSim and 3D DEIR allow simulated services
to be added dynamically, as the simulation of a
pervasive computing system runs, there is no evaluation
of this criteria to define the number of possible services
regarding the continuity of the simulation quality.
However, these approaches are limited because they
require significant programming effort to address new
pervasive computing challenges. As defined in [12], we
can identify three categories of users with different
points of view: (1) a developer who extends the
simulation, (2) a researcher who configures the
simulation for testing purposes and (3) a user who runs
the simulation. These persona are not necessarily three
different persons but each of them need to exhibit
specific skills. Moreover, the developer profile could be
divided more precisely: developer coding for extending
the virtual environment, and developer dealing with the
addition of new protocols or functionalities. To facilitate
the development of various simulations, the proposed
environment aim at minimizing the needed
developments to create a simulation. All the studied
solutions (QuakeSim, UbiWize, 3DSim, Tatus, UbiReal,
ISS) require to program within the environment of the
visual rendering tool used to simulate the ubiquitous
environment. This implies a great effort of programming
for the developer or the researcher to learn the API and
the specificities of a dedicated framework. Only DiaSim
proposes a dedicated framework to program specific
scenarios, but it requires a specialized developer to
create new simulation and it’s an obstacle to create
different situations.
With a clear separation between the rendering engine, a
way to associate the simulated devices and services and
to specify the services and the interaction with the 3D
world, it would be possible to specialize the work to
dedicated skilled persona. The simulator provides a
graphical representation of a virtual environment. As the
developers of ambient simulation are not often 3D
graphical designers, it is possible to delegate the
manufacturing process of the virtual environments to
specialists. It’s also possible to find prebuild virtual
environments or 3D virtual objects on markets that can
be purchased. The developer can then focus on defining

5

the devices and the provided services to be attached to
the virtual devices. Moreover, if it would be possible to
limit the programming to create a new simulation,
researchers could concentrate on configuring it.
We can summarize the contributions of the studied
works against the defined criteria in the following table.

 a b c d e f

QuakeSim Yes No No No No No

UbiWize Yes No No No No No

3DSim Yes No Yes Yes No Partial

Tatus Yes No Yes No No No

UbiReal Yes No Yes No No No

ISS Yes No Yes No No No

DiaSim Yes Partial Yes Yes No Partial

3D DEIR Yes No Yes Yes No Partial

This study emphasizes that criteria (b: specifying new
service behavior without coding in the virtual
environment framework) and (e: activating services
depending on the user location in the virtual world for
simulating the context-awareness) were not addressed by
the previous contributions. Criteria (f: changing
dynamically the devices and services in the virtual
environment while maintaining the rendering process as
fluid as possible) was introduced in 3DSim, DiaSim and
3D DEIR but without any evaluation. In the next section,
we will present the proposed framework giving answers
to these criteria and all the other defined ones.

Overview of the Proposed Framework
Criteria defined in the previous section allow us to
propose the architecture of a simulator for IoT.

Architecture of UbiUnity
The richness of a simulated smart spaces comes from the
variety and the number of provided devices. So, to add a
device to a virtual object, the quantity of work to be
produced by the developer should be as less as possible
(criteria b and d). This is, for instance, one of the main
drawback of UbiReal2 [9]. To add a service to a device
in the virtual smart environment, the developer must
produce a large amount of code. First of all, a new UPnP
device has to be developed and imported it in the virtual
space of UbiReal. Then the 3D shape has to be designed
and the interaction between the UPnP device and the 3D
shape has to be specified. Finally, the simulation
dependent part, which consists in the implementation of

2 http: //ubireal.org/ (release 1.0, published on Sept 28, 2012)

the Importable class, has to be implemented. To include
all these developments in the UbiReal environment, the
code finally has to be compiled and linked to the
simulator. Finally, some manipulations with the
graphical user interface are needed to register the classes
in the virtual space before using it. All the work needed
to add a new virtual smart device in the environment is
an obstacle with regards to the number of possible
devices.
To tackle the criteria (a), (b), (c) and (d) previously
defined, we propose the following architecture for the
simulator and the definition of services associated to the
virtual devices.

Fig. 2. Architecture of UbiUnity

The use of services associated to virtual devices allows
loose coupling between the entities in the simulated
world and functionalities provided by any kind of client.
This corresponds to the notion of Service on Device or
Web Service for Device [13]. A web service for device
can be defined as a set properties or variables used to
define useful values associated to a device or a specific
service of the device (the state of a light for instance)
and a set of actions to be performed on the device
(switching the light on or off). Events can be generated
each time a variable’s value changes. There is also the
possibility to discover services associated to a device.
With this approach, one or more service descriptions can
be associated to a 3D virtual device which becomes a
web service for device, attached to the 3D shape, and
published outside the simulation environment. Any
client can then access the virtual device to interact with
it and then access and interact with the simulated world.
It permits the loose coupling between the virtual 3D
environment and the services associated to the device.
The benefit of this approach is the ability to externalize
all the functionalities given to the virtual objects. So, the
interconnection of services is not done inside the virtual
framework, but can be done by, for instance,
orchestrating the services externally to the virtual
environment. This is helpful to avoid to code any

6

behavior in the virtual environment and allows to use
any kind of algorithms or technics to manage the
simulated smart space.
But as we mentioned earlier, we do not want to code the
web services associated to devices in the framework
managing the 3D virtual scene. This correspond to
address criteria (d). A researcher could be able to create
or configure a simulated environment without having to
implement any code inside the simulator. As we
mentioned in the related works section, it’s really
important to separate the expertise of each persona.
To define a new service associated to a device, we
propose to create a description of the service using an
XML file. This description must define the variables and
actions of the service and specify the interconnection of
the action or the variable with the virtual device. A
library of generic actions on the 3D virtual world has
been defined. For instance, basic functionalities are to
move, rotate or translate an object or switch on or off a
light in the 3D environment. A set of functionalities used
to manipulate the 3D objects is provided in the library as
well. To be able to create more complex services for
devices, it’s possible to compose these basic
functionalities to create new ones. For instance a traffic
light is composed of a red, a yellow and a green lights.
The XML description of the service associated to the
traffic light will propose actions like switching on or off
each light. Thus a more complex device is a composition
of basic functionalities proposed by the library.
The description of a service is used to generate the
source code corresponding to the functionalities of the
device. The behavior of the device must not be included
in the simulator. The goal is to manage this behavior
outside the 3D simulator engine which is an advantage.
For the traffic light example, the behavior of a traffic
light is very different depending the countries. If the red
light prohibits the traffic, and the green one allows it, the
yellow one provides a warning that the signal will
change from green to red but, in some countries, also for
a change from red to green. Managing this kind of
specific behavior outside the scene allows to use the
same 3D simulation engine for different kind of
simulation for different countries. And it avoids to
change the simulation behavior inside the 3D
environment which is not suitable. So, the service
associated to a traffic light is the definition of actions to
turn on each light. These actions must be linked to the
3D shape; turning on a light will change the texture of a
part of the mesh and turn on a spot light for better
realism. But there is no implementation of any behavior
between the lights.

Dynamicity of Simulated Services
To offer the possibility to modify the infrastructure of
available services in the virtual environment, each of the
web services for device associated to virtual objects can
be started, paused or stopped dynamically. Web services
for devices can be activated at the startup of the
simulation or depending the proximity of the users. It
allows to simulate some geo-localized services that are
only available in a specific area (due to the limit of a
signal strength for instance). So their activation depends
on the location of the virtual user; the proximity of two
entities activates a new web service for device.
On the other hand, as explained in the previous section,
any web service for device is generated by a model
transformation from an XML description to the target
source code used in the simulation framework. This is
possible with the use of a managed language offering the
possibility to byte compile the source code on the fly and
link this new code to the environment or by the use of
scripting interpreted languages. In addition, this
approach also allows to dynamically add some new
services, and create new web services for device during
the execution of the simulation to add new
functionalities on the fly.
This implies to generate, activate and deactivate the web
services for device during the execution of the simulator
in order to adapt the virtual environment to the needs.
But this adaptation must be done with a time controlled
and constrained adaptation loop in order not to affect the
quality of the simulation and, in our case, the fluidity of
the graphics rendering (the number of frames per
second). Moreover it’s not possible to predict the
number of the available services (which depends on the
user’s displacement and on the specified services that
can be dynamically added to the virtual environment).
There is a need to model the type and the number of
modifications that can be supported by the simulator:
how many web services for device can be activated
concurrently without slowing down or freezing the
graphical rendering process.

Implementation of UbiUnity
To implement the web services for device, we used the
UPnP protocol which has been also used in some
previous works: 3DSim [8], UbiReal [9] and 3D DEIR
[11]. Using this protocol is also interesting because
UPnP offers a research and discovery mechanism in
addition to the request-response and eventing
mechanisms. It’s also possible to use more recent
protocols like DPWS3 providing the same type of

3 http: //docs.oasis-open.org/ws-dd/ns/dpws/2009/01 (July 1st, 2009)

7

characteristics.

Fig. 3. Implementation of UbiUnity

The service actions defined in the XML file must be
bound to the 3D shape in order to trigger the
corresponding effect in the virtual environment. To
prevent having to code within the virtual environment
framework, we developed a library providing a set of
basics actions like: moving, scaling any virtual objet (the
shape associated to it); modifying its color, texture;
playing a media (sound and video along with being able
to play, pause, stop and modify the format of loaded
media) to offer audio and video services to virtual
devices; defining light (type, color, characteristics, …);
detect collision between shapes, etc. In the actual release
of the library, three main categories are implemented:
light, audio, video and object-body. Each category is
implemented by a class that implement generic and
common interfaces. For instance, it’s possible to amplify
a sound or the luminosity of a light. This means that the
light and audio implement the IAmplifier interface.
This also allows to create new kind of devices by
composing the available functionalities defined in the
library. Moreover, a service is associated to the camera
to enable its control via a service and give the possibility
to connect to that service any kind of controller (mouse,
joystick, trackpad, tablet…). As the services
orchestration is done outside the virtual environment, a
service can be dynamically bind to the camera to control
it. A connection between a web service for a virtual and
a physical object also allows the possibility to interact
with a physical device from its avatar.

Fig. 4. Coupling virtual and physical world throughout Web Services for
Devices dynamic orchestration

This library depends on the used virtual environment
framework and must be re-implemented in case of
changing it. But, since the services are bound to the 3D
environment thanks to a loose coupling mechanism,
there is no need to redevelop all the specified services.

Experiments
To evaluate the proposed framework, we measured the
graphical rendering fluidity as a function of the amount
of concurrently activated and/or deactivated services. To
have a reference for this evaluation, we first measured
the performances of the library used for implementing
web service for device.

Performances Evaluation of the Web Service for
Device used library

First of all, and since it is used in our library, we first
evaluated the performances of the C# Intel UPnP library.
These tests were made outside any 3D rendering
environment. The total number of devices that can be
instantiated are limited to about 250 devices. This
limitation seems to be the consequence of a problem in
the Intel UPnP library and was encountered on both
.NET frameworks (Mono and Windows) environments.
So our tests were limited to 250 UPnP devices instances.
For testing purposes, we defined a regular UPnP device
with 1 service, 3 variables and 6 methods.
We measured UPnP device class instantiation (Fig. 5)
and start method (Fig. 6) execution times on a device.
We only present here the evaluations made with mono
2.6 which is the one used in Unity (framework used to
implement the proposed solution). For the experiment,
devices were created 1 by 1, 2 by 2 and 5 by 5, and the
rendering process performances degradations measured
for each case.

8

Fig. 5. UPnP Device creation time in milliseconds

The time necessary to create UPnP devices one by one
or five by five are equivalent. UPnP device creation time
mean value is about 15ms and standard deviation is
between 12ms and 17ms. Therefore, there is no
significant difference in creating one or more UPnP
device at the same time (during the same rendering
frame).
We also evaluated the start method execution time. This
method is called as soon as a new web service for device
bound to a 3D shape is discovered.

Fig. 6. UPnP device startup time in milliseconds

We measured that starting up a UPnP device takes about
5ms (with a standard deviation of about 10ms) for single
device, but if we start up five UPnP devices during the
same frame, the time spent grows up to 130ms.
 So, we can conclude that with the library used for
implementing the UPnP web services for device, it’s
more efficient to instantiate several UPnP devices at the
same time (during the same frame) rather than starting
them one by one. The average time to create and start a
new UPnP device is about 20ms. This time grows up to
more than 100ms for the 250th UPnP device.

Fig. 7. Total time for creating (red) and starting (green) up to 250 UPnP
devices

A deeper analysis shows that the total amount of time
spent at creating (red plot) and starting (green plot) a
new UPnP device increases with the total number of
created devices (Fig. 7). These behavior are inherent to
the garbage collector algorithm used in mono 2.6 release
(Boehm-Demers-Weiser GC). At each new allocation,
the garbage collector processes all the allocated memory
to eventually free up space. The more memory will be
allocated, the more time will be necessary to instantiate a
new object. And all the allocations are not necessarily
done during the creation process but also during the start
method execution. We could conclude that it would be
preferable not to use a managed code language, but this
approach allows to introduce the dynamicity wanted for
the services (the possibility to create new ones at
runtime).
We observed the same results when using the graphical
rendering environment with a small overhead due to the
framework itself.

Graphical Rendering Evaluation
As the UPnP devices can be started and stopped during
the simulation, we measured the impact of these actions
on the graphical rendering fluidity by measuring the
framerate (number of frames per second). We evaluated
it (red plot) as a function of the amount of UPnP devices
started (green plot). We started up to 250 UPnP devices
created three by three and the framerate never dropped
down under 30fps (the default framerate of the scene
without any instrumentation was 60fps).

9

Fig. 8. Evaluation of the FPS when starting and stoping UPnP services

We used Unity4 4.5.5 to provide the virtual environment
framework [14]. Unity is a cross-platform game engine
that offers a variety of tools to create and manage virtual
worlds. It proposes to attach “scripts” to virtual objects
to create graphical effects, control the physical behavior
of objects… These scripts can be specified in JavaScript
or C#. We used the Intel C# implementation of UPnP to
enable this feature in the Unity environment.
For evaluation purposes, we used a PC with an Intel
Pentium B970 2.3GHz with 4Gio of RAM and an AMD
Radeon HD 5800 graphical card and one active network
interface. The evaluation was made under Windows 7
SP1.

Dynamicity of Web Services for Device
Modelisation

The time for creating and starting up UPnP devices is
not constant over the time. We measured that, created
three by three, the frame rate never dropped down under
30 fps. But as we can see on Fig. 8, we could start more
devices during for the first hundred ones without
dropping down a give limit. We implemented an
algorithm in the library to maximize the number of
stated UPnP devices based on the model of reactivity.
This allows us to have a minimum framerate for the
simulation even activating UPnP Device.
Moreover, for the tests purposes, we also used WComp
[15] to dynamically orchestrate the exposed services by
the virtual environment. WComp also includes a
temporal model at runtime [16] to ensure that the new
services can be integrated in an application defining the
behavior in a timely fashion. It allowed us to simulate
virtual environments like a house or a city district.

Conclusion
In this article, we argued that simulation still have
advantages compared to physical testbeds: flexibility and
openness. Moreover, we can identify a paradox: living
labs or smart spaces are more realist but it’s more
difficult to equip the real environment with enough

4 http: //unity3d.com/

sensors to get enough user experimental results. By
contrast, it’s easier to simulate devices in virtual
environments and to monitor the way to use them even if
we have less restitution fidelity. We presented UbiUnity,
a 3D environment for simulating devices and provided
services immersed in virtual situations. Each
instrumented virtual device proposes services with the
help of web service for devices approach. The main
contribution of the present work is the identification and
study of two main drawbacks in previous works on that
subject: (1) the possibility for the researcher to define
new devices and test new behaviors without coding in
the graphical engine, (2) to allow the dynamicity of
activating web services for devices at runtime with
respect to the fluidity of the simulation. We measured
the impact of dynamically activating web services in the
3D environment. The use of web services for device
attached to virtual devices offer functionalities outside
the environment that can be used for dynamic
orchestration of these services. It could also allow to
couple the interface of physical and virtual device throw
the services and offer the possibility to interconnect
virtual environment to distant physical site for remote
monitoring or remote interaction for instance.

ACKNOWLEDGMENT
We would like to thanks Fabrice Agagah, Camille
Yacoub, Sergio Baudino and Ely Bezeid Moulaye who
are currently working for a public release of the
simulator.

REFERENCES
[1] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M.
Nilsson, et A. Oliveira, « Smart Cities and the Future Internet:
Towards Cooperation Frameworks for Open Innovation », in
The Future Internet, J. Domingue, A. Galis, A. Gavras, T.
Zahariadis, D. Lambert, F. Cleary, P. Daras, S. Krco, H.
Müller, M.-S. Li, H. Schaffers, V. Lotz, F. Alvarez, B. Stiller,
S. Karnouskos, S. Avessta, et M. Nilsson, Éd. Springer Berlin
Heidelberg, 2011, p. 431‑446.
[2] S. Haller, « The things in the internet of things », in
Poster at the (IoT 2010). Tokyo, Japan, November, Tokyo,
Japan, 2010, vol. 5, p. 26.
[3] M. Bylund et F. Espinoza, « Using quake III arena to
simulate sensors and actuators when evaluating and testing
mobile services », in CHI’01 Extended Abstracts on Human
Factors in Computing Systems, 2001, p. 241–242.
[4] T. Van Nguyen, J. G. Kim, et D. Choi, « ISS: The
Interactive Smart home Simulator », in 11th International
Conference on Advanced Communication Technology, 2009.
ICACT 2009, 2009, vol. 03, p. 1828‑1833.
[5] J. J. Barton et V. Vijayaraghavan, « UBIWISE, a
simulator for ubiquitous computing systems design », Hewlett-

10

Packard Lab. Palo Alto Â AI HPL-2003-93, 2003.
[6] V. Reynolds, V. Cahill, et A. Senart, « Requirements
for an ubiquitous computing simulation and emulation
environment », in Proceedings of the first international
conference on Integrated internet ad hoc and sensor networks,
Nice, France, 2006, p. 1.
[7] E. O’Neill, M. Klepal, D. Lewis, T. O’Donnell, D.
O’Sullivan, et D. Pesch, « A testbed for evaluating human
interaction with ubiquitous computing environments », in
First International Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities, 2005. Tridentcom 2005, 2005, p. 60‑69.
[8] A. A. Nazari Shirehjini et F. Klar, « 3DSim: rapid
prototyping ambient intelligence », in Proceedings of the 2005
joint conference on Smart objects and ambient intelligence:
innovative context-aware services: usages and technologies,
2005, p. 303–307.
[9] H. Nishikawa, S. Yamamoto, M. Tamai, K.
Nishigaki, T. Kitani, N. Shibata, K. Yasumoto, et M. Ito,
« UbiREAL: realistic smartspace simulator for systematic
testing », in UbiComp 2006: Ubiquitous Computing, 2006, p.
459–476.
[10] J. Bruneau, W. Jouve, et C. Consel, « DiaSim: A
parameterized simulator for pervasive computing
applications », in Mobile and Ubiquitous Systems: Networking
& Services, MobiQuitous, 2009. MobiQuitous’ 09. 6th Annual

International, 2009, p. 1–10.
[11] K. I.-K. Wang, I. Y.-H. Chen, W. H. Abdulla, Z.
Salcic, et B. C. Wunsche, « 3D virtual interface for ubiquitous
intelligent environments », 2007, vol. 2007, p. 268‑275.
[12] J. J. Barton et V. Vijayaraghavan, « Ubiwise, a
ubiquitous wireless infrastructure simulation environment »,
HP Labs, 2002.
[13] F. Jammes, A. Mensch, et H. Smit, « Service-
oriented Device Communications Using the Devices Profile
for Web Services », in Proceedings of the 3rd International
Workshop on Middleware for Pervasive and Ad-hoc
Computing, New York, NY, USA, 2005, p. 1–8.
[14] A. Pattrasitidecha, « Comparison and evaluation of
3D mobile game engines », Chalmers University of
Technology, University of Gothenburg, Göteborg, Sweden,
Master Thesis, févr. 2014.
[15] N. Ferry, V. Hourdin, S. Lavirotte, G. Rey, et J.-Y.
Tigli, « WComp, Middleware for Ubiquitous Computing and
System Focused Adaptation », in Computer Science and
Ambient Intelligence, ISTE Ltd and John Wiley and Sons,
2013, p. 89‑120.
[16] J.-Y. Tigli, S. Lavirotte, G. Rey, N. Ferry, V.
Hourdin, S. F. B. Abdenneji, C. Vergoni, et M. Riveill,
« Aspect of Assembly: From Theory to Performance », Trans.
Asp.-Oriented Softw. Dev. IX, p. 53‑91, 2012.

	Introduction
	Motivations and Criteria
	Related Works
	Overview of the Proposed Framework
	Architecture of UbiUnity
	Dynamicity of Simulated Services
	Implementation of UbiUnity

	Experiments
	Performances Evaluation of the Web Service for Device used library
	Graphical Rendering Evaluation
	Dynamicity of Web Services for Device Modelisation

	Conclusion
	Acknowledgment
	References

