
HAL Id: hal-01187290
https://hal.science/hal-01187290

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correctly Sizing FIR Filter Architecture in the
Framework of Non-uniform Sampling

Jean Simatic, Laurent Fesquet, Brigitte Bidégaray-Fesquet

To cite this version:
Jean Simatic, Laurent Fesquet, Brigitte Bidégaray-Fesquet. Correctly Sizing FIR Filter Archi-
tecture in the Framework of Non-uniform Sampling. 11th International Conference on Sampling
Theory and Applications (SampTA’15), May 2015, Washington, DC, United States. pp.269-273,
�10.1109/SAMPTA.2015.7148894�. �hal-01187290�

https://hal.science/hal-01187290
https://hal.archives-ouvertes.fr

Correctly Sizing FIR Filter Architecture
in the Framework of Non-uniform Sampling

Jean Simatic
and Laurent Fesquet

Univ. Grenoble Alpes, TIMA,
46 rue Felix Viallet,

38031 Grenoble Cedex, France
Email: Jean.Simatic@imag.fr

Laurent.Fesquet@imag.fr

Brigitte Bidegaray-Fesquet
Univ. Grenoble Alpes, LJK,

BP. 53, 38041 Grenoble Cedex 9, France
Email: Brigitte.Bidegaray@imag.fr

Abstract—Based on non-uniform sampling techniques and
event-driven logic, signal processing is evolving to integrate
new demands such as power consumption. As power is mainly
connected to the processing activity and data volume, the level-
crossing sampling scheme offers a simple way to reduce data
volume and consequently processing activity. Nevertheless, these
good properties could be constraining for the designers because
of the non-predictable sample number that can be involved in
the processing. In this paper, we target a FIR filter architecture
and show how to correctly size its input shift-register. This paper
shows a strategy to choose the shift-register depth but also a way
to dynamically adapt the computation to an heterogeneous data
flow.

I. CONTEXT AND INTRODUCTION

Today, our digital society exchanges data flows as never
it has been the case in the past. The amount of data is
incredibly large and the future promises that not only humans
will exchange digital data but also technological equipments,
robots, etc. We are close to open the door of the Internet
of Things. This data deluge will waste a lot of energy.
There already exists a lot of design solutions to enhance
the energetic performances of the electronic systems and
circuits [5]. Nevertheless, another way to reduce energy is
to rethink the sampling techniques and digital processing
chains [8]. In order to mitigate the power consumption, a
simple idea based on [1] proposes to design digital filters
with a non-uniform level-crossing sampling scheme and
event-driven logic. It has been shown in [7] that this approach
allows to gain up to two orders of magnitude when filtering
sporadic signals, compared to a uniform filtering technique.
When designing the hardware, one of the challenges is
to correctly size the architecture of the filters because of
the non-predictable number of samples produced by the
non-uniform Analog-to-Digital conversion. This paper takes
FIR filters as an example to show how to adapt the FIR
architecture to obtain an optimal behavior of the filters.

Designing FIR filters with a non-uniform sampling scheme
is not a new technique ([4], [6], [9], [10], [11]) but this
implies to carefully choose the variable parameters of the
filter architecture. Indeed, the input samples are stored in a

shift register which, contrarily to the classical sampling, has
not a fixed size when a non-uniform sampling is used. The
consequence on the filter design is obvious: a correct sizing
will guarantee a perfect behavior but an incorrect will show
degraded filtering performances. In the sequel, the impact on
the filtering is shown and a method is proposed to size the
shift register.

II. PRINCIPLES

A. NUS FIR algorithm

The principles presented here refer to the paper of Aeschli-
mann et al. [1]. Let x be the input signal and h be the impulse
response with support [0, Th]. For continuous times, the output
y is the convolution product of x and h:

y(t) =

∫ Th

0

h(s)x(t− s) ds. (1)

If the signals are uniformly sampled with a period Ts =
Th/Nh, we have

yk =
∑
j

Tshjxk−j ,

where yk, hk and xk are the values of the signals sampled
at kTs. This classic formula can be rewritten using piecewise
constant interpolation. Indeed, signals u (h or x) are interpo-
lated to a piecewise constant continuous time functions ũ and
equation (1) reads at times kTs

yk =
∑
j

Tshjxk−j =

∫
h̃(s)x̃(kTs − s) ds. (2)

Figure 1 gives a graphical view of the computation of
Equation (2) where the signal x̃ has been reversed in time,
yielding Rk(x̃), to write the convolution as a scalar product.

For non-uniform sampled signals, we extend the convolu-
tion product using the interpolated versions of the signals.
More precisely, a the non-uniformly sampled input signal
x is described by a sequence of couples (xi, δti) where
xi = x(ti) is the sampled amplitude at time ti of the signal and
δti = ti − ti−1 is the delay between the previous sample and
the current sample. A right piecewise constant interpolation is

t

Rk(x̃)

•

k − j

•

k − (j + 1)

•

k − (j + 2)

•

k − (j + 3)

t

h̃

•

j

•

j + 1

•

j + 2

•

j + 3

Ts Ts

Fig. 1. Computation of an output sample in the uniform-sampling scheme.

t

Rk(x̃)

•

k

•

k − 1

•

k − 2

•

k − 3

• •
•
δtk−3

∆k−1,1

t

h̃

•

0

•

1

•

2

•

3

•

• •

δτ3

Fig. 2. Computation of an output sample in a non-uniform sampling scheme.
Blue bins describe initial input samples. Red bins describe recomputed input
signal to match interpolation times of both signals.

used for the input signal (x̃(t) = xi if ti−1 < t ≤ ti). Simi-
larly the impulse response is described by samples (hj , δτj),
and a left piecewise constant interpolation is used for h,
in order that both signal are interpolated on the same side
once the input signal x is reversed in time to compute the
convolution. Contrarily to uniform sampling, the signal and
the impulse response are not defined at the same times and
Figure 2 presents graphically the convolution computation in
the nonuniform context. For this computation, the integral
occurring in Equation (1) is decomposed on domains of width
∆i,j on which both x and h are constant:

∆i,j
def
= max(0,min(ti−1, τj)−max(ti, τj−1))

Then, the amplitude yk of y at time tk (same as for the
input signal) is

yk =
∑
i,j

∆k−i,j xk−ihj .

In [2] an iterative algorithm is presented to perform this
computation only using delays. Figure 3 describes this algo-
rithm which after the capture of the k-th sample of x, namely
(xk, δtk), returns the k-th sample of y, namely (yk, δtk).
We re-index the x samples: x′0 indicates the latest sample
amplitude (originally xk), x′1 indicates the latest but one and
so on. This transformation, which corresponds to the actual

i← 0, j ← 0
yk ← 0

∆← min(δt′i, δτj)
yk ← yk + ∆x′ihj

∆ = δτj

δτj ← δτj −∆
i← i+ 1

δt′i ← δt′i −∆
j ← j + 1

j > Nh
or i > k

return (yk, δtk)

False True

True

False

Fig. 3. Algorithm to compute an output sample.

x (shift register)

Computation
module

h
(RAM)

(xk, δtk)
. . .

(x′i, δt
′
i)

(hj , δτj)

i
jshift

(yk, δtk)

Fig. 4. High-level view of the filter architecture.

storage in the shift register, allows to remove all reference to
k in the algorithm meaning that the implementation can be
independent of the number of received samples.

We can obtain a more precise computation if the samples
are interpolated at higher order, leading to an algorithm
which structure is very similar to the previous one [2]. It is
implemented in the SPASS toolbox [3], for interpolation up
to order 3.

B. FIR Architecture

We implement this algorithm using event-based logic to
match the event-based nature of the sampling. Figure 4 gives
a high level view of the filter. The signal x is stored in a
shift register and h is stored in a RAM. Control signal i (resp.
j) grants access to (x′i, δti) (resp. (hj , δτj)). When i = 0,
the computation module accesses the left-most element of the
shift register which is the latest sample.

Fig. 5. FIR filtering degradation when the register number is not sufficient.

The designer chooses the function h and its samples accord-
ing to the desired transfer function. In the following sections,
we discuss the impact of the size of the shift register on the
filtering quality.

III. FILTERING DEGRADATION

We first choose a sum of two sinusoids as input signal

x(t) =
1

2
+

1

4
sin(2πt) +

1

4
sin(4 · 2πt). (3)

The A-ADC is setup to sample data in the range 0 to 1 V
with 8 equally spaced thresholds between 0.05 and 0.95 V.
We choose a filter with a cut frequency of 2 Hz and order
5. The horizontal straight line on Figure 5 represents Th, the
temporal expansion of the filter. We started from the algorithm
initially developed by Aeschlimann et al. [1] where all the
necessary samples are kept for the processing. In our case,
we take into account the shift register size M which limits
the number of samples of x that can be used. This amounts
to replace the test “i > k” by “i > min(k,M)” in Figure 3.
Then the computation results are evaluated for different values
of M :
• M is large. The computation is identical to the theoretical

convolution formula because the sample storage is not
limited by the shift register depth (red curve on Figure
5).

• M is sufficient to guarantee in most cases a number
of samples approximately covering the filter temporal
expansion (green curve on Figure 5).

• M is too small. The filter temporal expansion is larger
than that covered by the samples. This is due to a limited
depth of the shift register. In this case, we clearly observe
the output signal degradation (blue curve on Figure 5).

IV. CORRECTLY SIZING THE ARCHITECTURE

The input signal (3) is described by 127 non-uniform
samples stemming from the level crossing sampling of the
signal. The algorithm in [1] has not addressed the problem of

Fig. 6. `1 error between full filtered signal y and yM .

the number of samples really used that need to be stored in
each single convolution computation.

For a periodic input signal such as (3), the delay between
two samples is not varying much. Therefore we can think
that a good approximation of M is the ratio of the length
of the filter (Th = 0.75 s) and the average sampling interval
dtave which is the ratio of the total duration of the signal by
the number of samples: dtave = 4/127 ' 0.03. This leads
to a value of Mave = 24 for signal (3). This is an average
value, which means that the actual needed value to obtain
the accurate filtering computation is larger. An upper bound
would be given by the smallest delay between two samples
(9.2 ms here) which would lead to Mmax = 82.

In fact the values taken in Figure 5 are 12 for the corrupted
result, but only 20 for the fair result given by the green curve,
which is less than Mmax (which we of course awaited) but
also than Mave. Figure 6 displays the error between the filtered
signal y with the asynchronous FIR filter and the filtered signal
yM using M samples of the input signal. The norm used for
the error is a `1 error

1

T

∑
k

δtk|yk − yMk |,

where T is the total duration of the input signal.
In the former example we see that we can do better than

the worst and also the average value of M . We therefore may
ask what is an optimal value of M to obtain fair results. To
do this perform an analysis on a frequency sweeping signal,
keeping the other parameters unchanged:

x(t) =
1

2
+

1

2
sin

(
πt2

2

)
. (4)

This will allow us to increase progressively the number of
samples needed to perform the computation and quantify the
quality degradation and size the shift register accordingly.

Since we have seen in the previous test that we can use
a smaller value of M than Mave, we use M = 0.9Mave for

Fig. 7. FIR filtering of a sliding frequency signal with M = 0.9Mave.

Fig. 8. FIR filtering of a sliding frequency signal with M = 0.5Mave.

the test displayed on Figure 7 and M = 0.5Mave for the test
displayed on Figure 8.

On both figures we display the input signal with a solid
black curve, the filtered signal with a blue curve with square
markers, the reference filtered signal (with all samples) in
red. We also display the duration of the signal used for the
convolution computation (dashed curve) and the length of the
filter (dotted curve). We see in both cases that the filtering
quality is altered when the length of the signal is lower than
the length of the filter, but that we have some margin since
its still works when the signal length is slightly below the
filter length.

This leads to a refinement of the optimization of the memory
size. We indeed want to use as few samples as possible at each
step of the computation for consumption reduction purposes.
We therefore propose an adaptive algorithm.

Instead of using a percentage of an averaged value of M ,
we use a percentage r of an M computed with the length of
the previous computation. In Figures 7 and 8, we can compare
the filter length and the length of the signal which is needed
to yield a fair value of the filtered signal. We therefore choose

Fig. 9. Adaptive FIR filtering of a sliding frequency signal.

Fig. 10. Memory used for the adaptive FIR filtering test of Figure 9.

r = 80%. In order to be able to implement the algorithm on
a hardware architecture, we also impose the number M not
to increase by more than 1 at each step (otherwise we would
have to use samples already out of the shift register). Hence
at step k

M(k) = min

(
r

Th
dtave(k)

,M(k − 1) + 1

)
. (5)

The filtered signal (as well as the input and reference filtered
signals) is displayed on Figure 9. We see that this allow to
recover a good result even for the higher frequencies.

The values of M(k) are displayed on Figure 10. We see
that memory is not always increasing although the frequency
is, and that the constraint of not increasing more than by
a unit at each step does not alter the result. The maximum
value, obtained for the highest frequency, is M = 32. The
average value is 21.38 which is less than if we had to filter a
signal with this highest frequency as done in Section III.

Non-uniform sampling is especially interesting when the
signal is sporadic, with large parts with no or little time
evolution. Therefore the input signals used in this paper are
not the ones for which the situation is the most advantageous.

D Q

en

•

D Q

en

•

D Q

en

•

D Q

en

•

(xk, δtk)

D Q
rst

•

D Q
rst

•

D Q
rst

• shift req

i req•

•

•

•1

Fig. 11. Implementation details of the shift register.

Indeed, very few samples are used in the less active part of
the input signal (4) which is very active compared to quiet
parts of sporadic signals.

V. IMPLEMENTATION

In Equation (5), we compute dtave as the local mean over
the M(k) last samples.

dtave(k) =
1

M(k)

M(k)−1∑
i=0

δtk−i. (6)

Equations (5) and (6) give the following inequality:

M(k)−1∑
i=0

δtk−i ≤ rTh. (7)

It means that the computation can ignore all samples that
are older than rTh compared to the latest sample. In other
words, the signal h can be truncated beyond this point. Thus
we need no additional hardware material to implement the
proposed sizing, it is sufficient to adequately setup h in the
RAM.

However, without additional hardware, the FIR ignores the
unused samples but those samples still propagate along the
shift register and use power. We want to avoid keeping in the
shift register samples that are too old to be useful. After an
output sample is produced, only the input samples that were
used to produce the output may be needed for computing the
next output sample. We add to the shift register that stores the
input samples a new shift register to indicate which samples
are used or not. Figure 11 shows the corresponding circuit.
The added shift register has a small footprint. It is only 1-bit
wide.

On a rising edge on the shift req signal, only the samples
that are marked as used (“1”) are shifted and all the marks are
reset to unused (“0”). Each mark value must be used before
it is reset but some can be reset before others are used. The
shift signal drawing from right to left suggests an ordering.

Then, each time that we fetch a sample (x′i, δt
′
i), there

is a rising edge on i req that shifts the marks so that one
additional sample is marked as used.

This mechanism avoids activity on the unused parts of the
shift register but it adds activity on the used part. The interest
of the system depends on the usual occupation rate of the
register. A rough approximation of the filter consumption is
proportionnal to the algorithm iteration number. The latter is
also approximatively proportionnal to Th [2]. Thus, if r = 0.8
as presented above we can expect a 20% decrease of the power.

VI. CONCLUSION

The non-uniform sampling techniques coupled to event-
driven logic is a key approach when data volume or power
consumption have to be reduced. Nevertheless, the associated
signal processing requires to rethink the processing architec-
ture and to take into account the signal characteristics to
customize the signal processing chain which becomes more
application specific. In this paper, we showed, through a non-
uniform FIR filtering example, that the standard processing
chain can take advantage of a level-crossing sampling scheme.
We are able to size the shift register depth according to the
average number of samples, related to the activity of the
signal. Moreover, we have been able to dynamically adapt
the number of samples used in the shift register in order to
mitigate the data volume. This is useful for reducing the power
because, thanks to event-driven logic, the unused registers are
not activated. Indeed, only the processing part of the event-
driven logic is consuming power.

ACKNOWLEDGMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01).

REFERENCES

[1] F. Aeschlimann, E. Allier, L. Fesquet, and M. Renaudin, Asynchronous
FIR filters: Towards a new digital processing chain, 10th International
Symposium on Asynchronous Circuits and Systems (Async’04) (Herson-
isos, Crete), IEEE, April 2004, pp. 198–206.

[2] F. Aeschlimann, Traitement du signal échantillonné non uniformément :
algorithme et architecture, Ph.D. thesis, INP Grenoble, February 2006.

[3] B. Bidégaray-Fesquet and L. Fesquet, SPASS 2.0: Signal Processing for
ASynchronous Systems, Software, May 2010.
http://ljk.imag.fr/membres/Brigitte.Bidegaray/SPASS/

[4] B. Bidégaray-Fesquet and L. Fesquet, Non-uniform filter interpolation in
the frequency domain, Sampling Theory in Signal and Image Processing
10, 17–35, 2011.

[5] A. Chandrakasan and R.W. Brodersen (eds.), Low-power CMOS design,
Wiley-IEEE Press, 1998.

[6] L. Fesquet and B. Bidégaray-Fesquet, IIR digital filtering of non-
uniformly sampled signals via state representation, Signal Processing 90,
2811–2821, 2010.

[7] Laurent Fesquet, Gilles Sicard, and Brigitte Bidégaray-Fesquet, Targeting
ultra-low power consumption with non-uniform sampling and filtering,
IEEE International Symposium on Circuits and Systems (ISCAS2010)
(Paris, France), IEEE, May 2010, pp. 3585–3588.

[8] F.A. Marvasti, Nonuniform sampling. theory and practice, Information
Technology: Transmission, Processing and Storage, Springer, 2001.

[9] S.M. Qaisar, L. Fesquet, and M. Renaudin, Adaptive rate filtering: a
computationally efficient signal processing approach, Signal Processing,
94, 620–630, 2014.

[10] B. Schell and Y. Tsividis, A clockless ADC/DSP/DAC system with
activity-dependent power dissipation and no aliasing, IEEE International
Solid-State Circuits Conference (ISSCC 2008) (San Francisco), IEEE,
February 2008, pp. 550–551.

[11] C. Vezyrtzis, W. Jiang, S.M. Nowick, and Y. Tsividis, A flexible clockless
digital filter, Proceedings of the ESSCIRC (Bucharest), IEEE, September
2013, pp. 65–68.

