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Bayesian Fusion of Multi-Band Images
Qi Wei, Student Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE, and

Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper presents a Bayesian fusion technique for
remotely sensed multi-band images. The observed images are re-
lated to the high spectral and high spatial resolution image to be
recovered through physical degradations, e.g., spatial and spectral
blurring and/or subsampling defined by the sensor characteris-
tics. The fusion problem is formulated within a Bayesian estima-
tion framework. An appropriate prior distribution exploiting ge-
ometrical considerations is introduced. To compute the Bayesian
estimator of the scene of interest from its posterior distribution, a
Markov chainMonte Carlo algorithm is designed to generate sam-
ples asymptotically distributed according to the target distribu-
tion. To efficiently sample from this high-dimension distribution, a
Hamiltonian Monte Carlo step is introduced within a Gibbs sam-
pling strategy. The efficiency of the proposed fusionmethod is eval-
uated with respect to several state-of-the-art fusion techniques.

Index Terms—Fusion, super-resolution, multispectral and
hyperspectral images, deconvolution, Bayesian estimation, Hamil-
tonian Monte Carlo algorithm.

I. INTRODUCTION

T HE problem of fusing a high spatial and low spectral reso-
lution imagewith an auxiliary image of higher spectral but

lower spatial resolution, also known as multi-resolution image
fusion, has been explored for many years [2]. When consid-
ering remotely sensed images, an archetypal fusion task is the
pansharpening, which generally consists of fusing a high spa-
tial resolution panchromatic (PAN) image and low spatial res-
olution multispectral (MS) image. Pansharpening has been ad-
dressed in the literature for several decades and still remains an
active topic [2]–[4]. More recently, hyperspectral (HS) imaging,
which consists of acquiring a same scene in several hundreds of
contiguous spectral bands, has opened a new range of relevant
applications, such as target detection, classification and spec-
tral unmixing [5]. The visualization of HS images is also in-
teresting to be explored [6]. Naturally, to take advantage of the
newest benefits offered by HS images, the problem of fusing
HS and PAN images has received some attention in the litera-
ture [7]–[9]. Capitalizing on decades of experience in MS pan-
sharpening, most of the HS pansharpening approaches merely

adapt existing algorithms for PAN and MS fusion [10], [11].
Other methods are specifically designed to the HS pansharp-
ening problem (see, e.g., [8], [12], [13]). Conversely, the fu-
sion of MS and HS images has been considered in fewer re-
search works and is still a challenging problem because of the
high dimensionality of the data to be processed. Indeed, the
fusion of MS and HS differs from traditional MS or HS pan-
sharpening by the fact that more spatial and spectral information
is contained in multi-band images. This additional information
can be exploited to obtain a high spatial and spectral resolu-
tion image. In practice, the spectral bands of panchromatic im-
ages always cover the visible and infra-red spectra. However,
in several practical applications, the spectrum of MS data in-
cludes additional high-frequency spectral bands. For instance
the MS data of WorldView-31 have spectral bands in the inter-
vals [400–1750] nm and [2145–2365] nmwhereas the PAN data
are in the range [450–800] nm. Another interesting example is
the HS+MS suite (called hyperspectral imager suite (HISUI))
that has been developed by the Japanese ministry of economy,
trade, and industry (METI) [14]. HISUI is the Japanese next-
generation Earth-observing sensor composed of HS and MS
imagers and will be launched by the H-IIA rocket in 2015 or
later as one of mission instruments onboard JAXA's ALOS-3
satellite. Some research activities have already been conducted
for this practical multi-band fusion problem [15]. However, a
lot of pansharpening methods, such as component substitution
[2], relative spectral contribution [16] and high-frequency injec-
tion [17] are inapplicable or inefficient for the fusion
problem. To address the challenge raised by the high dimen-
sionality of the data to be fused, innovative methods need to be
developed, which is the main objective of this paper.
As demonstrated in [18], [19], the fusion of HS and MS im-

ages can be conveniently formulated within a Bayesian infer-
ence framework. Bayesian fusion allows an intuitive interpreta-
tion of the fusion process via the posterior distribution. Since the
fusion problem is usually ill-posed, the Bayesian methodology
offers a convenient way to regularize the problem by defining an
appropriate prior distribution for the scene of interest. Following
this strategy, Hardie et al. proposed a Bayesian estimator for
fusing co-registered high spatial-resolution MS and high spec-
tral-resolution HS images [18]. To improve the denoising per-
formance, Zhang et al. implemented the estimator of [18] in the
wavelet domain [19].
In this paper, a prior knowledge accounting for artificial

constraints related to the fusion problem is incorporated within
the model via the prior distribution assigned to the scene to be
estimated. Many strategies related to HS resolution enhance-

1http://www.satimagingcorp.com/satellite-sensors/WorldView3-DS-WV3-
Web.pdf.



ment have been proposed to define this prior distribution. For
instance, in [3], the highly resolved image to be estimated is
a priori modeled by an in-homogeneous Gaussian Markov
random field (IGMRF). The parameters of this IGMRF are
empirically estimated from a PAN image in the first step of the
analysis. In [18] and related works [20], [21], a multivariate
Gaussian distribution is proposed as prior distribution for the
unobserved scene. The resulting conditional mean and covari-
ance matrix can then be inferred using a standard clustering
technique [18] or using a stochastic mixing model [20], [21],
incorporating spectral mixing constraints to improve spectral
accuracy in the estimated high resolution image. In this paper,
we propose to explicitly exploit the acquisition process of
the different images. More precisely, the sensor specifications
(i.e., spectral or spatial responses) are exploited to properly
design the spatial or spectral degradations affecting the image
to be recovered [22]. Moreover, to define the prior distribution
assigned to this image, we resort to geometrical considerations
well admitted in the HS imaging literature devoted to the linear
unmixing problem [23]. In particular, the high spatial resolu-
tion HS image to be estimated is assumed to live in a lower
dimensional subspace, which is a suitable hypothesis when the
observed scene is composed of a finite number of macroscopic
materials.
Within a Bayesian estimation framework, two statistical es-

timators are generally considered. The minimum mean square
error (MMSE) estimator is defined as the mean of the poste-
rior distribution. Its computation requires multidimensional
integrations. Conversely, the maximum a posteriori (MAP)
estimator is defined as the mode of the posterior distribution
and is usually associated with a penalized maximum likelihood
approach. Mainly due to the complexity of the integration re-
quired by the computation of the MMSE estimator (especially
for high-dimension data), most of the Bayesian estimators have
proposed to solve the HS and MS fusion problem using a MAP
formulation [18], [19], [24]. However, optimization algorithms
designed to maximize the posterior distribution may suffer
from the presence of local extrema, that prevents any guarantee
to converge towards the actual maximum of the posterior. In
this paper, we propose to compute the MMSE estimator of the
unknown scene by using samples generated by a Markov chain
Monte Carlo (MCMC) algorithm. The posterior distribution
resulting from the proposed forward model and the a priori
modeling is defined in a high dimensional space, which makes
difficult the use of any conventional MCMC algorithm, e.g.,
the Gibbs sampler or the Metropolis-Hastings sampler [25]. To
overcome this difficulty, a particular MCMC scheme, called
Hamiltonian Monte Carlo (HMC) algorithm, is investigated
[26], [27]. It differs from the standard Metropolis-Hastings
algorithm by exploiting Hamiltonian evolution dynamics to
propose states with higher acceptance ratio, reducing the
correlation between successive samples. Thus, the main con-
tributions of this paper are two-fold. First, the paper presents
a new hierarchical Bayesian fusion model whose parameters
and hyperparameters can be estimated from the observed
images. This model is defined by the likelihood, the priors and
the hyper-priors detailed in the following sections. Second, a
hybrid Gibbs sampler based on a Hamiltonian MCMC method

is introduced to sample the desired posterior distribution. These
samples are subsequently used to approximate the MMSE
estimator of the fused image.
The paper is organized as follows. Section II formulates the

fusion problem in a Bayesian framework, with a particular atten-
tion to the forward model that exploits physical considerations.
Section III derives the hierarchical Bayesian model to obtain the
joint posterior distribution of the unknown image, its parameters
and hyperparameters. In Section IV, the hybrid Gibbs sampler
based on an HMC step is introduced to sample the desired pos-
terior distribution. Simulations are conducted in Section V and
conclusions are finally reported in Section VI.

II. PROBLEM FORMULATION

A. Notations and Observation Model
Let denote a set of multi-band images acquired

by different optical sensors for a same scene . These measure-
ments can be of different natures, e.g., PAN, MS and HS, with
different spatial and/or spectral resolutions. The observed data

, are supposed to be degraded versions of the
high-spectral and high-spatial resolution scene , according to
the following observation model

(1)

In (1), is a linear or nonlinear transformation that models
the degradation operated on . As previously assumed in nu-
merous works (see for instance [3], [19], [24], [28], [29] among
some recent contributions), these degradations may include spa-
tial blurring, spatial decimation and spectral mixing which can
all be modeled by linear transformations. In what follows, the
remotely sensed images and the unobserved scene are as-
sumed to be pixelated images of sizes and

, respectively, where and refer to both spatial
dimensions of the images, and is for the spectral dimension.
Moreover, in the right-hand side of (1), is an additive error
term that reflects the mismodeling and the observation noise.
Classically, the observed image can be lexicographically

ordered to build the vector , where
is the total number of measurements in the observed image .
For writing convenience, but without any loss of generality,
the band interleaved by pixel (BIP) vectorization scheme (see
([30], pp. 103–104) for a more detailed description of these data
format conventions) is adopted in what follows (see paragraph
III-B.1). Considering a linear degradation, the observation equa-
tion (1) can be easily rewritten as follows

(2)

where and are ordered versions of
the scene (with ) and the noise term

, respectively. In this work, the noise vector will be
assumed to be a band-dependent Gaussian sequence, i.e.,

where is an vector made
of zeros and is an ma-
trix where is the identity
matrix, is the Kronecker product and
is a diagonal matrix containing the noise variances, i.e.,

. In (2), is an matrix



that reflects the spatial and/or spectral degradation oper-
ated on . For instance, when applied to a single-band image
(i.e., ) with a decimation factor in both spatial
dimensions, it is easy to show that is an
block diagonal matrix with and [31].
Another example of degradation frequently encountered in the
signal and image processing literature is spatial blurring [19],
where usually represents a 2-dimensional convolution
by a kernel . Similarly, when applied to a single-band image,

is an Toeplitz matrix. The problem addressed
in this paper consists of recovering the high-spectral and
high-spatial resolution scene by fusing the various spatial
and/or spectral information provided by all the observed images

.

B. Bayesian Estimation of
In this work, we propose to estimate the unknown scene
within a Bayesian estimation framework. In this statistical

estimation scheme, the fused highly-resolved image is in-
ferred through its posterior distribution . Given the
observed data, this target distribution can be derived from the
likelihood function and the prior distribution by
using the Bayes formula , where
means “proportional to”. Based on the posterior distribution,
several estimators of the scene can be investigated. For
instance, maximizing leads to the MAP estimator

. This estimator has been widely
exploited for HS image enhancement (see for instance [18],
[20], [21] or more recently [3], [19]). This work proposes to
focus on the first moment of the posterior distribution ,
which is known as the posterior mean estimator or the MMSE
estimator . This estimator is defined as

(3)

In order to compute (3), we propose a flexible and relevant sta-
tistical model to solve the fusion problem. Deriving the corre-
sponding Bayesian estimator defined in (3), requires the
definition of the likelihood function and the prior dis-
tribution . These quantities are detailed in the next section
whereas notations are summarized in Table I.

III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood Function
The statistical properties of the noise vectors

allow one to state that the observed vector is nor-
mally distributed with mean vector and covariance matrix

. Consequently, the likelihood function, that represents a
data fitting term relative to the observed vector , can be easily
derived leading to

where is the determinant of the matrix . As mentioned
in the previous section, the collected measurements may have
been acquired by different (possibly heterogeneous) sensors.

TABLE I
NOTATIONS

Therefore, the observed vectors can be generally as-
sumed to be independent, conditionally upon the unobserved
scene and the noise covariances . As a conse-
quence, the joint likelihood function of the observed data is

(4)

with .

B. Prior Distributions
The unknown parameters of the likelihood (4) are the scene
to be recovered and the noise covariance matrix relative to

each observation. In this section, prior distributions are intro-
duced for these parameters.
1) Scene Prior: Following a BIP strategy, the vectorized

image can be decomposed as ,
where is the vector cor-
responding to the th spatial location (with ).
Since adjacent HS bands are known to be highly correlated, the
HS vector usually lives in a subspace whose dimension is
much smaller than the number of bands [32], i.e.,

(5)

where is the projection of the vector onto the subspace
spanned by the columns of . Note that
is possibly known a priori from the scene or can be learned
from the HS data. In the proposed framework, we exploit the di-
mensionality reduction (DR) as prior information instead of re-
ducing the dimensionality of HS data directly. Another motiva-
tion for DR is that the dimension of the subspace is generally
much smaller than the number of bands, i.e., . As a
consequence, inferring in the subspace greatly decreases
the computational burden of the fusion algorithm. Note that the
DR transformation defined by (5) has been used in some related
HS analysis references, e.g., [23], [32]. More experimental jus-
tifications for the necessity of DR can be found in [33]. Using
the notation , we have ,
where is an block-diagonal matrix whose blocks are
equal to and . Instead of assigning a prior



distribution to the vectors , we propose to define a prior for
the projected vectors

(6)

As is a linear transformation of , the Gaussian prior as-
signed to leads to a Gaussian prior for , which allows the
ill-posed problem (2) to be regularized. The covariance matrix

is designed to explore the correlations between the different
spectral bands after projection in the subspace of interest. Also,
the mean of the whole image as well as its covariance ma-
trix can be constructed from and as follows

The Gaussian prior assigned to implies that the target image
is a priori not too far from the mean vector , whereas the

covariance matrix tells us how much confidence we have
for the prior (the choice of the hyperparameters and will
be discussed later in Section III-C). Choosing a Gaussian prior
for the vectors is also motivated by the fact that this kind of
prior has been used successfully in several works related to the
fusion of multiple degraded images, including [20], [34], [35].
Note finally that the Gaussian prior has the interest of being a
conjugate distribution relative to the statistical model (4). As it
will be shown in Section IV, coupling this Gaussian prior dis-
tribution with the Gaussian likelihood function leads to simpler
estimators constructed from the posterior distribution .
2) Noise Variance Priors: Inverse-gamma distributions are

chosen as prior distributions for the noise variances

(7)

The inverse-gamma distribution is a very flexible distribution
whose shape can be adjusted by its two parameters. For sim-
plicity, we propose to fix the hyperparameter whereas the hy-
perparameter will be estimated from the data. This strategy is
very classical for scale parameters (e.g., see [36]). Note that the
inverse-gamma distribution (7) is conjugate for the statistical
model (4), which will allow closed-form expressions to be ob-
tained for the conditional distributions of the noise
variances. By assuming the variances are a priori
independent, the joint prior distribution of the noise variance
vector is

(8)

C. Hyperparameter Priors
The hyperparameter vector associated with the parameter

priors defined above includes and . The quality of
the fusion algorithm investigated in this paper depends on
the values of the hyperparameters that need to be adjusted
carefully. Instead of fixing all these hyperparameters a priori,
we propose to estimate some of them from the data using a hi-
erarchical Bayesian algorithm ([37], Chap. 8). Specifically, we
propose to fix as the interpolated HS image in the subspace
of interest following the strategy in [18]. Similarly, to reduce
the number of statistical parameters to be estimated, all the

covariance matrices are assumed to equal, i.e., (for
). Thus, the hyperparameter vector to be esti-

mated jointly with the parameters of interest is .
The prior distributions for these two hyperparameters are
defined below.
1) Hyperparameter : Assigning a conjugate a priori

inverse-Wishart distribution to the covariance matrix of a
Gaussian vector has provided interesting results in the signal
and image processing literature [38]. Following these works,
we have chosen the following prior for

(9)

whose density is

Again, the hyper-hyperparameters and will be fixed to pro-
vide a non-informative prior.
2) Hyperparameter : To reflect the absence of prior knowl-

edge regarding the mean noise level, a non-informative Jeffreys
prior is assigned to the hyperparameter

(10)

where is the indicator function defined on

The use of the improper distribution (10) is classical and can be
justified by different means (e.g., see ([37], Chap. 1)), providing
that the corresponding full posterior distribution is statistically
well defined, which is the case for the proposed fusion model.

D. Inferring the Highly-Resolved HS Image From the
Posterior Distribution of Its Projection
Following the parametrization used in (5), the unknown

parameter vector is composed of the projected
scene and the noise variance vector . The joint posterior
distribution of the unknown parameters and hyperparame-
ters can be computed following the hierarchical structure

. By assuming prior in-
dependence between the hyperparameters and and the
parameters and conditionally upon , the following
results can be obtained and

. Note that and
have been defined in (4), (6) and (8).
The posterior distribution of the projected target image ,

required to compute the Bayesian estimators (3), is obtained by
marginalizing out the hyperparameter vector and the noise
variances from the joint posterior distribution

(11)

The posterior distribution (11) is too complex to obtain closed-
form expressions of the MMSE and MAP estimators
and . As an alternative, this paper proposes to use an
MCMC algorithm to generate a collection of samples

that are asymptotically distributed ac-
cording to the posterior of interest . These samples will



be used to compute the Bayesian estimators of . More pre-
cisely, the MMSE estimator of will be approximated by an
empirical average of the generated samples

(12)

where is the number of burn-in iterations. Once the MMSE
estimate has been computed, the highly-resolved HS
image can be computed as . Sampling
directly according to the marginal posterior distribution
is not straightforward. Instead, we propose to sample according
to the joint posterior (note that has been
marginalized) by using a Metropolis-within-Gibbs sampler,
which can be easily implemented since all the conditional
distributions associated with are relatively
simple. The resulting hybrid Gibbs sampler is detailed in the
following section.

IV. HYBRID GIBBS SAMPLER

The Gibbs sampler has received a considerable attention in
the statistical community to solve Bayesian estimation problems
[25]. The interesting property of this Monte Carlo algorithm is
that it only requires to determine the conditional distributions
associated with the distribution of interest. These conditional
distributions are generally easier to sample than the joint target
distribution. The block Gibbs sampler that we have considered
to sample according to is defined by a 3-step
procedure reported in Algorithm 1. The distribution involved in
this algorithm are detailed below.

Algorithm 1: Hybrid Gibbs sampler

for to do
% -
Sample from the conditional distribution (13)
% - -
Sample using an HMC algorithm detailed in
Algorithm 2
% - -
for to do

for to do
Sample from the conditional distribution (18)

end for
end for

end for

A. Sampling According to
Standard computations yield the following inverse-Wishart

distribution as conditional distribution for the covariance matrix
of the scene to be recovered

(13)

B. Sampling According to
Choosing the conjugate distribution (6) as prior distribution

for the projected unknown image leads to the following con-
ditional posterior distribution for

(14)

with

Sampling directly according to this multivariate Gaussian dis-
tribution requires the inversion of an matrix, which is
impossible in most fusion problems. An alternative would be to
sample each element of conditionally upon
the others according to , where is the
vector whose th component has been removed. However, this
alternative would require to sample by using Gibbs moves,
which is time demanding and leads to poor mixing properties.
The efficient strategy adopted in this work relies on a partic-

ular MCMC method, called Hamiltonian Monte Carlo (HMC)
method (sometimes referred to as hybrid Monte Carlo method),
which is considered to generate vectors directly. More pre-
cisely, we consider the HMC algorithm initially proposed by
Duane et al. for simulating the lattice field theory in [26]. As de-
tailed in [39], this technique allows mixing property of the sam-
pler to be improved, especially for a high-dimensional problem.
It exploits the gradient of the distribution to be sampled by in-
troducing auxiliary “momentum” variables . The joint
distribution of the unknown parameter vector and the mo-
mentum is defined as

where is the normal probability density function (pdf)
with zero mean and identity covariance matrix. The Hamil-
tonian of the considered system is defined by taking the negative
logarithm of the posterior distribution
to be sampled, i.e.,

(15)

where is the potential energy function defined by the
negative logarithm of and is the corre-
sponding kinetic energy

(16)

The parameter space where lives is explored following
the scheme detailed in Algorithm 2. At iteration of the Gibbs
sampler, a so-called leap-frogging procedure composed of

iterations is achieved to propose a move from the cur-
rent state to the state with stepsize



. This move is operated in in a direction given by
the gradient of the energy function

The new state is accepted with probability
where

This accept/reject procedure ensures that the simulated vectors
( ) are asymptotically distributed according to the distri-
bution of interest. The way the parameters and have been
adjusted will be detailed in Section V.

Algorithm 2: Hybrid Monte Carlo algorithm

%
Sample
Set
%
for to do

Set
Set
Set

end for
% -
Sample
if then

else

end if
Set
Run Algorithm 3 to update stepsize

To sample according to a high-dimension Gaussian distribu-
tion such as , one might think of using other
simulation techniques such as the method proposed in [40] to
solve super resolution problems. Similarly, Orieux et al. have
proposed a perturbation approach to sample high-dimensional
Gaussian distributions for general linear inverse problems [41].
However, these techniques rely on additional optimization
schemes included within the Monte Carlo algorithm, which
implies that the generated samples are only approximately
distributed according to the target distribution. Conversely, the
HMC strategy proposed here ensures asymptotic convergence
of the generated samples to the posterior distribution. Moreover,
the HMC method is very flexible and can be easily extended
to handle non-Gaussian posterior distributions contrary to the
methods investigated in [40], [41].

C. Sampling According to
The conditional pdf of the noise variance

is

(17)

where contains the elements of the th
band. Generating samples distributed according to

is classically achieved by drawing samples
from the following inverse-gamma distribution

(18)

In practice, if the noise variances are known a priori, we
simply replace the noise variances by their known values and
forget their sampling.

D. Complexity Analysis
TheMCMCmethod can be computationally costly compared

with optimization methods. The complexity of the proposed
Gibbs sampler is mainly due to the HMC method whose com-
plexity is , which is highly ex-
pensive as increases. Generally the number of pixels
cannot be reduced significantly. Thus, projecting the high-di-
mensional vectors to a low-dimension space to form

vectors decreases the complexity while keeping the most
important information.

V. SIMULATION RESULTS
This section studies the performance of the proposed

Bayesian fusion algorithm. The reference image, considered
here as the high spatial and high spectral image, is an hyper-
spectral image acquired over Moffett field, CA, in 1994 by
the JPL/NASA airborne visible/infrared imaging spectrometer
(AVIRIS)2. This image was initially composed of 224 bands
that have been reduced to 177 bands after
removing the water vapor absorption bands.

A. Fusion of HS and MS Images
We propose to reconstruct the reference HS image from

two lower resolved images. First, a high-spectral low-spatial
resolution image , denoted as HS image, has been gen-
erated by applying a 5 5 averaging filter on each band of
the reference image. Besides, an MS image is obtained
by successively averaging the adjacent bands according to
realistic spectral responses. More precisely, the reference
image is filtered using the LANDSAT-like spectral responses
depicted in the top of Fig. 1, to obtain a 7-band
MS image3. Note here that the observation models and

corresponding to the HS and MS images are perfectly
known. In addition to the blurring and spectral mixing, the HS

2http://aviris.jpl.nasa.gov/.
3Complementary results obtained on another dataset with an alternative mul-

tispectral sensor are available in [33].



Fig. 1. LANDSAT spectral responses. (Top) without noise. (Bottom) with an
additive Gaussian noise with dB.

Fig. 2. AVIRIS dataset: (Top left) HS Image. (Top right) MS Image. (Middle
left) MAP [18]. (Middle right) Wavelet MAP [19]. (Bottom left) Hamiltonian
MCMC. (Bottom right) Reference.

and MS images have been both contaminated by zero-mean
additive Gaussian noises. The noise power depends on
the signal to noise ratio
defined by , where is
the Frobenius norm. Our simulations have been conducted with

dB for the first 127 bands and dB
for the remaining 50 bands of the HS image. For the MS image,

is 30 dB for all bands. A composite color image, formed
by selecting the red, green and blue bands of the high-spatial
resolution HS image (the reference image) is shown in the
bottom right of Fig. 2. The noise-contaminated HS and MS
images are depicted in the top left and top right of Fig. 2.
1) Subspace Learning: Learning the matrix in (5) is a

preprocessing step, which can be solved by different strategies.
A lot of DR methods might be exploited, such as locally
linear embedding (LLE) [42], independent component analysis
(ICA) [43], hyperspectral signal subspace identification by
minimum error (HySime) [32], minimum change rate deviation
(MCRD) [44] and so on. In this work, we propose to use
the principal component analysis (PCA), which is a classical
DR technique used in HS imagery. It maps the original data

Fig. 3. Eigenvalues of for the HS image.

into a lower dimensional subspace while preserving most
information about the original data. Note that the bases of
this subspace are the columns of the transformation matrix

, which are exactly the same for all pixels (or spectral
vectors). As in paragraph III-B.1, the vectorized HS image
can be written as , where

. The sample covariance
matrix of the HS image is diagonalized leading to

(19)

where is an orthogonal matrix and
is a diagonal matrix whose diagonal elements are the ordered

eigenvalues of denoted as . The dimen-
sion of the projection subspace is defined as the minimum
integer satisfying the condition . The
matrix is then constructed as the eigenvectors associated with
the largest eigenvalues of . As an illustration, the eigen-
values of the sample covariance matrix for the Moffett field
image are displayed in Fig. 3. For this example, the
eigenvectors contain 99.93% of the information. To conclude
this part, we invite the readers to consult the technical report
[33] containing additional results obtained for this image with
and without PCA (illustrating the importance of DR).
2) Hyper-Hyperparameter Selection: In our experiments,

fixed hyper-hyperparameters have been chosen as follows:
. These choices can be motivated by the

following arguments
• The identity matrix assigned to ensures a non-informa-
tive prior.

• Setting the inverse gamma parameters to also
leads to a non-informative prior [36].

• The parameter disappears when the joint posterior is in-
tegrated out with respect to parameter .

B. Stepsize and Leapfrog Steps

The performance of the HMC method is mainly governed by
the stepsize and the number of leapfrog steps . As pointed
out in [27], a too large stepsize will result in a very low accep-
tance rate and a too small stepsize yields high computational
complexity. In order to adjust the stepsize parameter , we pro-
pose to monitor the statistical acceptance ratio defined as

where is the length of the counting window (in
our experiment, the counting window at time contains the vec-
tors with ) and is
the number of accepted samples in this window at time . As
explained in [45], the adaptive tuning should adapt less and less



as the algorithm proceeds to guarantee that the generated sam-
ples form a stationary Markov chain. In the proposed imple-
mentation, the parameter is adjusted as in Algorithm 3. The
thresholds have been fixed to and the
scale parameters are (these parameters
were adjusted by cross-validation). Note that the initial value of
should not be too large to ‘blow up’ the leapfrog trajectory

[27]. Generally, the stepsize converges after some iterations of
Algorithm 3.

Algorithm 3: Adjusting Stepsize

Update with :
% - :
if then

Set
else if then

Set
end if
% :
if then

Set ,
else if then

Set ,
end if

Regarding the number of leapfrogs, setting the trajectory
length by trial and error is necessary [27]. To avoid the
potential resonance, is randomly chosen from a uniform
distribution from to . After some preliminary runs
and tests, and have been selected.

C. Evaluation of the Fusion Quality

To evaluate the quality of the proposed fusion strategy, dif-
ferent image quality measures can be investigated. Referring to
[19], we propose to use RSNR, SAM, UIQI, ERGAS and DD
as defined below. These measures have been widely used in the
HS image processing community and are appropriate for eval-
uating the quality of the fusion in terms of spectral and spatial
resolutions [18], [46], [47].
1) RSNR: The reconstruction SNR (RSNR) is related

to the difference between the actual and fused images
. The larger RSNR, the

better the fusion quality and vice versa.
2) SAM: The spectral angle mapper (SAM) measures the

spectral distortion between the actual and estimated images.
The SAM of two spectral vectors and is defined as

. The average SAM is
finally obtained by averaging the SAMs of all image pixels.
Note that SAM value is expressed in radians and thus belongs
to . The smaller the absolute value of SAM, the less
important the spectral distortion.
3) UIQI: The universal image quality index (UIQI) was pro-

posed in [48] for evaluating the similarity between two single

TABLE II
PERFORMANCE OF FUSION METHODS IN TERMS OF: RSNR (DB),

UIQI, SAM (DEG), ERGAS AND (AVIRIS DATASET)

band images. It is related to the correlation, luminance distor-
tion and contrast distortion of the estimated image to the refer-
ence image. The UIQI between and

is defined as ,
where are the sample means and variances of
and , and is the sample covariance of . The range

of UIQI is and when . For multi-band
image, the UIQI is obtained band-by-band and averaged over
all the bands.
4) ERGAS: The relative dimensionless global error in syn-

thesis (ERGAS) calculates the amount of spectral distortion in
the image [49]. This measure of fusion quality is defined as

, where is
the ratio between the pixel sizes of the MS and HS images, is
the mean of the th HS image band, and is the number of HS
bands. The smaller ERGAS, the smaller the spectral distortion.
5) DD: The degree of distortion (DD) between two images
and is defined as .

The smaller DD, the better the fusion.

D. Comparison With Other Bayesian Models

The Bayesian model proposed here differs from previous
Bayesian models [18], [19] in three aspects. First, in addition to
the target image , the hierarchical Bayesian model allows the
distributions of the noise variances and the hyperparameter

to be inferred. The hierarchical inference structure makes
this Bayesian model more general and flexible. Second, the
covariance matrix is assumed to be block diagonal, which
allows us to exploit the correlations between spectral bands.
Third, the proposed method takes advantage of the relation
between the MS image and the target image by introducing
a forward model . This paragraph compares the proposed
Bayesian fusion method with the two state-of-the-art fusion
algorithms of [18], [19] for fusion. The MMSE
estimator of the image using the proposed Bayesian method
is obtained from (12). In this simulation, and

. The fusion results obtained with different algo-
rithms are depicted in Fig. 2. Graphically, the proposed algo-
rithm performs competitively with the state-of-the-art methods.
This result is confirmed quantitatively in Table II which shows
the RSNR, UIQI, SAM, ERGAS and DD for the three methods.
Note that the HMC method provides slightly better results in
terms of image restoration than the other methods. However,
the proposed method allows the image covariance matrix and
the noise variances to be estimated. The samples generated by
the MCMC method can also be used to compute confidence
intervals for the estimators (e.g., see error bars in Fig. 4).



Fig. 4. Noise variances and their MMSE estimates. (Top) HS image. (Bottom)
MS image.

E. Estimation of the Noise Variances
The proposed Bayesian method allows the noise variances

to be estimated from the
samples generated by the Gibbs sampler. TheMMSE estimators
of and are illustrated in Fig. 4. Graphically, the
estimations can track the variations of the noise powers within
tolerable discrepancy.

F. Robustness With Respect to the Knowledge of
The sampling algorithm summarized in Algorithm 2 requires

the knowledge of the spectral response . However, this
knowledge can be partially known in some practical appli-
cations. As the spectral response is the same for each vector

is a block diagonal matrix whose
blocks are of size , i.e., .
This paragraph is devoted to testing the robustness of the pro-
posed algorithm to the imperfect knowledge of . In order to
analyze this robustness, a zero-mean white Gaussian error has
been added to any non-zero component of as shown in the
bottom of Fig. 1. Of course, the level of uncertainty regarding
is controlled by the variance of the error denoted as . The cor-
responding FSNR is defined as
and adjusts the knowledge regarding . The larger FSNR, the
more knowledge we have about . The RSNRs between the
reference and estimated images are displayed in Fig. 5 as a
function of FSNR. Obviously, the performance of the proposed
Bayesian fusion algorithm decreases as the uncertainty about

increases. However, as long as the FSNR is above 8 dB,
the performance of the proposed method outperforms the MAP
and wavelet-based MAP methods. Thus, the proposed method
is quite robust with respect to the imperfect knowledge of .

G. Application to Pansharpening
The proposed algorithm can also be used for pansharpening,

which is an important and popular application in the area of
remote sensing. In this section, we focus on fusing panchro-
matic and hyperspectral images , which is the ex-
tension of conventional pansharpening . The ref-
erence image considered in this section (the high spatial and

Fig. 5. Reconstruction errors of the different fusion methods versus FSNR.

Fig. 6. ROSIS dataset: (Top left) Reference. (Top right) PAN Image. (Middle
left) Adaptive IHS [51]. (Middle right) MAP [18]. (Bottom left) Wavelet MAP
[19]. (Bottom right) Hamiltonian MCMC.

TABLE III
PERFORMANCE OF FUSION METHODS IN TERMS OF: RSNR (DB),

UIQI, SAM (DEG), ERGAS AND (ROSIS DATASET)

high spectral image) is a 128 64 93 HS image with very
high spatial resolution of 1.3 m/pixel) acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) optical sensor
over the urban area of the University of Pavia, Italy. The flight
was operated by the Deutsches Zentrum für Luft- und Raum-
fahrt (DLR, the German Aerospace Agency) in the framework
of the HySens project, managed and sponsored by the European
Union. This image was initially composed of 115 bands that
have been reduced to 93 bands after removing the water vapor
absorption bands (with spectral range from 0.43 to 0.86 m).
This image has received a lot of attention in the remote sensing
literature [50]. The HS blurring kernel is the same as in para-
graph V-A whereas the PAN image was obtained by averaging
all the high resolution HS bands. The SNR of the PAN image is
30 dB. Apart from [18], [19], we also compare the results with
the method of [51], which proposes a popular pansharpening
method. The results are displayed in Fig. 6 and the quantitative
results are reported in Table III. The proposed Bayesian method
still provides interesting results.



VI. CONCLUSION
This paper proposed a hierarchical Bayesian model to fuse

multiple multi-band images with various spectral and spatial
resolutions. The image to be recovered was assumed to be de-
graded according to physical transformations included within a
forward model. An appropriate prior distribution that exploited
geometrical concepts encountered in spectral unmixing prob-
lems was defined. The resulting posterior distribution was ef-
ficiently sampled thanks to a Hamiltonian Monte Carlo algo-
rithm. Simulations conducted on pseudo-real data showed that
the proposed method competed with some state-of-the-art tech-
niques to fuse MS and HS images. These experiments also il-
lustrated the robustness of the proposed method with respect to
the misspecification of the forward model. Future work includes
the estimation of the parameters involved in the forward model
(e.g., the spatial and spectral responses of the sensors) to ob-
tain a fully unsupervised fusion algorithm. The incorporation of
spectral mixing constraints for a possible improved spectral ac-
curacy and the generalization to nonlinear degradations would
also deserve some attention. Finally, a comparison with very re-
cent fusion methods [47], [52] would be clearly interesting.

ACKNOWLEDGMENT

The authors thank Dr. Paul Scheunders and Dr. Yifan Zhang
for sharing the codes of [19] and Jordi Inglada, from Centre Na-
tional d'Études Spatiales (CNES), for providing the LANDSAT
spectral responses used in the experiments. The authors also ac-
knowledge Prof. José M. Bioucas Dias for valuable discussions
about this work that were handled during his visit in Toulouse
within the CIMI Labex.

REFERENCES
[1] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Bayesian fusion of hyper-

spectral and multispectral images,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Florence, Italy, May 2014, vol. V,
pp. 69–72.

[2] I. Amro, J. Mateos, M. Vega, R. Molina, and A. K. Katsaggelos, “A
survey of classical methods and new trends in pansharpening of mul-
tispectral images,” EURASIP J. Adv. Signal Process., vol. 2011, no. 1,
pp. 1–22, 2011.

[3] M. Joshi and A. Jalobeanu, “MAP estimation formultiresolution fusion
in remotely sensed images using an IGMRF prior model,” IEEE Trans.
Geosci. Remote Sens., vol. 48, no. 3, pp. 1245–1255, Mar. 2010.

[4] X. Ding, Y. Jiang, Y. Huang, and J. Paisley, “Pan-sharpening with a
Bayesian nonparametric dictionary learning model,” in Proc. Int. Conf.
Artif. Intell. Statist. (AISTATS), Reykjavik, Iceland, 2014, pp. 176–184.

[5] C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detec-
tion and Classification. New York, NY, USA: Kluwer, 2003.

[6] K. Kotwal and S. Chaudhuri, “A Bayesian approach to visualization-
oriented hyperspectral image fusion,” Inf. Fusion, vol. 14, no. 4, pp.
349–360, 2013.

[7] M. Cetin and N. Musaoglu, “Merging hyperspectral and panchromatic
image data: Qualitative and quantitative analysis,” Int. J. Remote Sens.,
vol. 30, no. 7, pp. 1779–1804, 2009.

[8] G. A. Licciardi, M. M. Khan, J. Chanussot, A. Montanvert, L. Condat,
and C. Jutten, “Fusion of hyperspectral and panchromatic images
using multiresolution analysis and nonlinear PCA band reduction,”
EURASIP J. Adv. Signal Process., vol. 2012, no. 1, pp. 1–17, 2012.

[9] L. Loncan et al., “Introducing hyperspectral pansharpening,” IEEE
Geosci. Remote Sens. Mag., 2015, submitted for publication.

[10] M. Moeller, T. Wittman, and A. L. Bertozzi, “A variational approach
to hyperspectral image fusion,” in Proc. SPIE Defense, Security, and
Sensing, 2009, p. 73341E, International Society for Optics and Pho-
tonics.

[11] Z. Chen, H. Pu, B. Wang, and G.-M. Jiang, “Fusion of hyperspectral
and multispectral images: A novel framework based on generalization
of pan-sharpening methods,” IEEE Geosci. Remote Sensing Lett., vol.
11, no. 8, pp. 1418–1422, Aug. 2014.

[12] M. E.Winter and E.Winter, “Resolution enhancement of hyperspectral
data,” in Proc. IEEE Aerosp. Conf., 2002, pp. 3–1523.

[13] G. Chen, S.-E. Qian, J.-P. Ardouin, and W. Xie, “Super-resolution
of hyperspectral imagery using complex ridgelet transform,” Int. J.
Wavelets, Multiresolution Inf. Process., vol. 10, no. 03, pp. 1–22, May
2012.

[14] N. Ohgi, A. Iwasaki, T. Kawashima, and H. Inada, “Japanese hyper-
multi spectral mission,” in Proc. IEEE Int. Conf. Geosci. Remote Sens.
(IGARSS), Honolulu, HI, USA, Jul. 2010, pp. 3756–3759.

[15] N. Yokoya and A. Iwasaki, “Hyperspectral and multispectral data fu-
sion mission on hyperspectral imager suite (HISUI),” in Proc. IEEE
Int. Conf. Geosci. Remote Sens. (IGARSS), Melbourne, Australia, Jul.
2013, pp. 4086–4089.

[16] J. Zhou, D. Civco, and J. Silander, “A wavelet transform method to
merge Landsat TM and SPOT panchromatic data,” Int. J. Remote Sens.,
vol. 19, no. 4, pp. 743–757, 1998.

[17] M. González-Audı́cana, J. L. Saleta, R. G. Catalán, and R. Garcı́a, “Fu-
sion ofmultispectral and panchromatic images using improved IHS and
PCA mergers based on wavelet decomposition,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 6, pp. 1291–1299, Jun. 2004.

[18] R. C. Hardie, M. T. Eismann, and G. L. Wilson, “MAP estimation
for hyperspectral image resolution enhancement using an auxiliary
sensor,” IEEE Trans. Image Process., vol. 13, no. 9, pp. 1174–1184,
Sep. 2004.

[19] Y. Zhang, S. De Backer, and P. Scheunders, “Noise-resistant
wavelet-based Bayesian fusion of multispectral and hyperspectral
images,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp.
3834–3843, Nov. 2009.

[20] M. T. Eismann and R. C. Hardie, “Application of the stochastic mixing
model to hyperspectral resolution enhancement,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 9, pp. 1924–1933, Sep. 2004.

[21] M. T. Eismann and R. C. Hardie, “Hyperspectral resolution enhance-
ment using high-resolution multispectral imagery with arbitrary re-
sponse functions,” IEEE Trans. Image Process., vol. 43, no. 3, pp.
455–465, Mar. 2005.

[22] X. Otazu, M. Gonzalez-Audicana, O. Fors, and J. Nunez, “Introduction
of sensor spectral response into image fusion methods. Application to
wavelet-based methods,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 10, pp. 2376–2385, Oct. 2005.

[23] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O.
Hero, “Joint Bayesian endmember extraction and linear unmixing for
hyperspectral imagery,” IEEE Trans. Signal Process., vol. 57, no. 11,
pp. 4355–4368, Nov. 2009.

[24] M. V. Joshi, L. Bruzzone, and S. Chaudhuri, “A model-based approach
to multiresolution fusion in remotely sensed images,” IEEE Trans.
Geosci. Remote Sens., vol. 44, no. 9, pp. 2549–2562, Sep. 2006.

[25] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. New
York, NY, USA: Springer-Verlag, 2004.

[26] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
Monte Carlo,” Phys. Lett. B, vol. 195, no. 2, pp. 216–222, Sep. 1987.

[27] R. M. Neal, “MCMC using Hamiltonian dynamics,” Handbook of
Markov Chain Monte Carlo, vol. 54, pp. 113–162, 2010.

[28] D. Fasbender, D. Tuia, P. Bogaert, and M. Kanevski, “Support-based
implementation of Bayesian data fusion for spatial enhancement: Ap-
plications to ASTER thermal images,” IEEE Geosci. Remote Sens.
Lett., vol. 5, no. 4, pp. 598–602, Oct. 2008.

[29] M. Elbakary and M. Alam, “Superresolution construction of multi-
spectral imagery based on local enhancement,” IEEE Geosci. Remote
Sensing Lett., vol. 5, no. 2, pp. 276–279, Apr. 2008.

[30] J. B. Campbell, Introduction to Remote Sensing, 3rd ed. New-York,
NY, USA: Taylor & Francis, 2002.

[31] R. Schultz and R. Stevenson, “A Bayesian approach to image expan-
sion for improved definition,” IEEE Trans. Image Process., vol. 3, no.
3, pp. 233–242, May 1994.

[32] J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral subspace
identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp.
2435–2445, Aug. 2008.

[33] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, Bayesian Fusion of
Multi-Band Images—Complementary Results and Supporting Mate-
rials Univ. of Toulouse, IRIT/INP-ENSEEIHT, Tech. Rep., 2014.



[34] R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP regis-
tration and high-resolution image estimation using a sequence of un-
dersampled images,” IEEE Trans. Image Process., vol. 6, no. 12, pp.
1621–1633, Dec. 1997.

[35] N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic
methods for joint registration, restoration, and interpolation of multiple
undersampled images,” IEEE Trans. Image Process., vol. 15, no. 1, pp.
201–213, Jan. 2006.

[36] E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald, “Bayesian
curve fitting using MCMC with applications to signal segmentation,”
IEEE Trans. Signal Process., vol. 50, no. 3, pp. 747–758, Mar.
2002.

[37] C. P. Robert, The Bayesian Choice: From Decision-Theoretic Motiva-
tions to Computational Implementation, ser. Springer Texts in Statis-
tics, 2nd ed. New York, NY, USA: Springer-Verlag, 2007.

[38] M. Bouriga and O. Féron, “Estimation of covariance matrices based on
hierarchical inverse-Wishart priors,” J. Statist. Plan. Infer., vol. 143,
no. 4, pp. 795–808, Apr. 2013.

[39] R. M. Neal, “Probabilistic inference using Markov chain Monte Carlo
methods,” Dept. of Comput. Sci., Univ. of Toronto, Toronto, ON,
Canada, Tech. Rep. CRG-TR-93-1, Sep. 1993.

[40] H. Zhang, Y. Zhang, H. Li, and T. S. Huang, “Generative Bayesian
image super resolution with natural image prior,” IEEE Trans. Image
Process., vol. 21, no. 9, pp. 4054–4067, Sep. 2012.

[41] F. Orieux, O. Féron, and J.-F. Giovannelli, “Sampling high-
dimensional Gaussian distributions for general linear inverse prob-
lems,” IEEE Signal Process. Lett., vol. 19, no. 5, pp. 251–254,
May 2012.

[42] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[43] J. Wang and C.-I. Chang, “Independent component analysis-based di-
mensionality reduction with applications in hyperspectral image anal-
ysis,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1586–1600,
2006.

[44] R. Dianat and S. Kasaei, “Dimension reduction of optical remote
sensing images via minimum change rate deviation method,” IEEE
Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 198–206, Jan.
2010.

[45] G. O. Roberts and J. S. Rosenthal, “EnglishCoupling and ergodicity
of adaptive Markov Chain Monte Carlo algorithms,” J. Appl. Probab.,
vol. 44, no. 2, pp. 458–475, 2007.

[46] Y. Zhang, A. Duijster, and P. Scheunders, “A Bayesian restoration ap-
proach for hyperspectral images,” IEEE Trans. Geosci. Remote Sens.,
vol. 50, no. 9, pp. 3453–3462, Sep. 2012.

[47] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix fac-
torization unmixing for hyperspectral and multispectral data fusion,”
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528–537, Feb.
2012.

[48] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.

[49] L. Wald, “Quality of high resolution synthesised images: Is there a
simple criterion?,” in Proc. Int. Conf. Fusion of Earth Data, Nice,
France, Jan. 2000, pp. 99–103.

[50] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. Benediktsson, “SVM-
andMRF-based method for accurate classification of hyperspectral im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 7, no. 4, pp. 736–740,
Apr. 2010.

[51] S. Rahmani, M. Strait, D. Merkurjev, M. Moeller, and T. Wittman, “An
adaptive IHS pan-sharpening method,” IEEE Geosci. Remote Sens.
Lett., vol. 7, no. 4, pp. 746–750, Apr. 2010.

[52] Q. Wei, J. M. Bioucas-Dias, N. Dobigeon, and J.-Y. Tourneret, “Hy-
perspectral and multispectral image fusion based on a sparse represen-
tation,” IEEE Trans. Geosci. Remote Sens., 2015, to be published.

Qi Wei (S’13) was born in Shanxi, China, in
1989. He received the B.Sc. degree in electrical
engineering from Beihang University (BUAA),
Beijing, China, in 2010. From February to August
of 2012, he was an exchange master student with the
Signal Processing and Communications Group in the
Department of Signal Theory and Communications
(TSC), Universitat Politècnica de Catalunya (UPC).
Since September of 2012, he has been a Ph.D.
student with the National Polytechnic Institute of
Toulouse (University of Toulouse, INP-ENSEEIHT).

He is also with the Signal and Communications Group of the IRIT Laboratory.
His research has been focused on statistical signal processing, especially on
inverse problems in image processing.

Nicolas Dobigeon (S’05–M’08–SM’13) was born
in Angoulême, France, in 1981. He received the
Engineering degree in electrical engineering from
ENSEEIHT, Toulouse, France, and the M.Sc. degree
in signal processing from the INP Toulouse, both in
2004, and the Ph.D. degree and Habilitation Diriger
des Recherches in signal processing from INP
Toulouse in 2007 and 2012, respectively. From 2007
to 2008, he was a Post-Doctoral Research Associate
with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann

Arbor.
Since 2008, he has been at INP Toulouse, University of Toulouse, where he

is currently an Associate Professor. He conducts his research within the Signal
and Communications Group, IRIT Laboratory, and he is also an Affiliated Fac-
ulty Member of the TeSA Laboratory. His recent research activities have been
focused on statistical signal and image processing, with a particular interest
in Bayesian inverse problems with applications to remote sensing, biomedical
imaging, and genomics.

Jean-Yves Tourneret (SM’08) received the in-
génieur degree in electrical engineering from
ENSEEIHT, Toulouse in 1989 and the Ph.D. degree
from the INP Toulouse in 1992. He is currently a Pro-
fessor in the University of Toulouse (ENSEEIHT)
and a member of the IRIT laboratory (UMR 5505
of the CNRS). His research activities are centered
around statistical signal and image processing with
a particular interest to Bayesian and Markov chain
Monte Carlo (MCMC) methods.
He has been involved in the organization of

several conferences including the European conference on signal processing
EUSIPCO’02 (program chair), the international conference ICASSP’06
(plenaries), the statistical signal processing workshop SSP’12 (interna-
tional liaisons), the International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing CAMSAP 2013 (local arrangements), the
statistical signal processing workshop SSP’2014 (special sessions), the work-
shop on machine learning for signal processing MLSP’2014 (special sessions).
He has been the general chair of the CIMI workshop on optimization and
statistics in image processing hold in Toulouse in 2013 (with F. Malgouyres and
D. Kouamé) and of the International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing CAMSAP 2015 (with P. Djuric). He has
been a member of different technical committees including the Signal Pro-
cessing Theory and Methods (SPTM) committee of the IEEE Signal Processing
Society (2001–2007, 2010–present). He has been serving as an associate editor
for the IEEE TRANSACTIONS ON SIGNAL PROCESSING (2008–2011) and for the
EURASIP journal on Signal Processing (since July 2013).


