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Central limit theorem and bootstrap procedure for Wasserstein’s variations
with an application to structural relationships between distributions

Eustasio del Barrio?, Paula Gordaliza®, Héléne Lescornel? and Jean-Michel Loubes?!
aIMUVA, Universidad de Valladolid and ®Institut de mathématiques de Toulouse

Abstract

Wasserstein barycenters and variance-like criteria based on the Wasserstein distance are used in many problems to
analyze the homogeneity of collections of distributions and structural relationships between the observations. We
propose the estimation of the quantiles of the empirical process of Wasserstein’s variation using a bootstrap procedure.
We then use these results for statistical inference on a distribution registration model for general deformation functions.
The tests are based on the variance of the distributions with respect to their Wasserstein’s barycenters for which we
prove central limit theorems, including bootstrap versions.

Keywords: Central Limit Theorem, Goodness-of-fit, Wasserstein distance

1. Introduction

Analyzing the variability of large data sets is a difficult task when the inner geometry of the information conveyed
by the observations is far from being Euclidean. Indeed, deformations on the data such as location-scale transfor-
mations or more general warping procedures preclude the use of common statistical methods. Looking for a way to
measure structural relationships within data is of high importance. Such issues arise when considering the estimation
of probability measures observed with deformations; it is common, e.g., when considering gene expression.

Over the last decade, there has been a large amount of work dealing with registrations issues. We refer, e.g., to
[B, 9, ] and references therein. However, when dealing with the registration of warped distributions, the literature
is scarce. We mention here the method provided for biological computational issues known as quantile normalization
in [@, ] and references therein. Recently, using optimal transport methodologies, comparisons of distributions have
been studied using a notion of Fréchet mean for distributions as in [|I|] or a notion of depth as in [IE].

As a natural frame for applications of a deformation model, consider J independent random samples of size n,
where for each j € {1, ..., J}, the real-valued random variable X; has distribution u; and, for each i € {1,...,n}, the
ith observation of X is such that

Xij = gi(&i ),
where the &; ;s are iid random variables with unknown distribution p. Assume that the functions g1, ..., g; belong to
a class G of deformation functions, which model how the distributions u;, ..., u; are warped one to another.

This model is the natural extension of the functional deformation models studied in the statistical literature for
which estimation procedures are provided in [@] and testing issues are tackled in ]. Note that at the era of
parallelized inference where a large amount of data is processed in the same way but at different locations or by
different computers, this framework appears also natural since this parallelization may lead to small changes with
respect to the law of the observations that should be eliminated.

In the framework of warped distributions, a central goal is the estimation of the warping functions, possibly as a
first step towards registration or alignment of the (estimated) distributions. Of course, without some constraints on
the class G, the deformation model is meaningless. We can, for instance, obtain any distribution on R as a warped
version of a fixed probability having a density if we take the optimal transportation map as the warping function; see
[@]. One has to consider smaller classes of deformation functions to perform a reasonable registration.
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In cases where G is a parametric class, estimation of the warping functions is studied in [B]. However, estima-
tion/registration procedures may lead to inconsistent conclusions if the chosen deformation class G is too small. It
is, therefore, important to be able to assess the fit to the deformation model given by a particular choice of G. This
is the main goal of this paper. We note that within this framework, statistical inference on deformation models for
distributions has been studied first in [Iﬁ]. Here we provide a different approach which allows to deal with more
general deformation classes.

The pioneering works [IE ] study the existence of relationships between distributions F' and G by using a
discrepancy measure A(F, G) between them which is built using the Wasserstein distance. The authors consider the
assumption Hy : A(F,G) > Ag versus H, : A(F,G) < A for a chosen threshold Ay. Thus when the null hypothesis
is rejected, there is statistical evidence that the two distributions are similar with respect to the chosen criterion. In
this same vein, we define a notion of variation of distributions using the Wasserstein distance, W,, in the set W, (RY)
of probability measures with finite 7th moments, where r > 1. This notion generalizes the concept of variance for
random distributions over R?. This quantity can be defined as

1/r

J
1
Ve(is. .oy = inf = > Wi(u,, ,
(1 M) neW, (R4) J]Z:; (ujsm)

which measures the spread of the distributions. Then, to measure closeness to a deformation model, we take a look
at the minimal variation among warped distributions, a quantity that we could consider as a minimal alignment cost.
Under some mild conditions, a deformation model holds if and only if this minimal alignment cost is null and we can
base our assessment of a deformation model on this quantity.

As in [IE, ], we provide results (a Central Limit Theorem and bootstrap versions) that enable to reject that the
minimal alignment cost exceeds some threshold, and hence to conclude that it is below that threshold. Our results
are given in a setup of general, nonparametric classes of warping functions. We also provide results in the somewhat
more restrictive setup where one is interested in the more classical goodness-of-fit problem for the deformation model.
Note that a general Central Limit Theorem is available for the Wasserstein distance in [IE].

The paper is organized as follows. The main facts about Wasserstein variation are presented in Section 2 to-
gether with the key idea that fit to a deformation model can be recast in terms of the minimal Wasserstein variation
among warped versions of the distributions. In Section Bl we prove some Lipschitz bounds for the law of empirical
Wasserstein variations as well as of minimal alignment costs on R?. As a consequence of these results, the quantiles
of the minimal warped variation criterion can be consistently estimated by some suitable bootstrap quantiles, which
can be approximated by simulation, yielding consistent tests of fit to deformation models, provided that the empirical
criterion has a regular limiting distribution.

Central Limit Theorems for empirical minimal Wasserstein variation are further explored for univariate distri-
butions in Section [ which covers nonparametric deformation models, and in Section Bl which presents a sharper
analysis for the case of semiparametric deformation models. These sections describe consistent tests for deforma-
tion models in the corresponding setups. Section [6f reports some simulations assessing the quality of the bootstrap
procedure. Finally, proofs are gathered in the Appendix.

2. Wasserstein variation and deformation models for distributions

Much recent work has been conducted to measure the spread or the inner structure of a collection of distributions.
In this paper, we define a notion of variability which relies on the notion of Fréchet mean for the space of probabilities
endowed with the Wasserstein metrics, of which we will recall the definition hereafter. First, for any integer d > 1,
consider the set ‘W,(RY) of probabilities with finite 7th moment. For u and v in ‘W,(R?), we denote by IT(x, v) the set
of all probability measures 7 over the product set R? x R? with first (respectively second) marginal i (respectively v).
The L, transportation cost between these two measures is defined as

Wi(u,v)" = KE}TH(EV) fllx —yII"dnr(x, y).

This transportation cost makes it possible to endow the set W,.(R?) with the metric W,(u, v). More details on Wasser-
stein distances and their links with optimal transport problems can be found, e.g., in ,@].
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Within this framework, we can define a global measure of separation of a collection of probability measures as
follows. Given uy, ...,y € W,(RY), let

1/r

J
. 1 .
Ve(ui,...,uy) = inf 7;Wr(ﬂj»’7)

neWw,(RY)

be the Wasserstein r-variation of yy, .. ., uy or the variance of the u;s
The special case r = 2 has been studied in the literature. The existence of a minimizer of the map n — {W (1, m+
-+ Wz(p J,M}/J is proved in [I] as well as its uniqueness under some smoothness assumptions. Such a minimizer,
Mg, is called a barycenter or Fréchet mean of y;, ..., 1. Hence,

12

J
1
Vo (ui, ..o ) = 7 jz; sz(lljn“B)

Empirical versions of the barycenter are analyzed in [|§, @]. Similar ideas have also been developed in [Ia @].

This quantity, which is an extension of the variance for probability distributions is a good candidate to evaluate the
concentration of a collection of measures around their Fréchet mean. In particular, it can be used to measure the fit to a
distribution deformation model. More precisely, assume as in the Introduction that we observe J independent random
samples with sample j € {1,...,J} consisting of iid observations X ;,..., X, ; with common distribution u;. We
assume that G; is a family (parametric or nonparametric) of invertible warping functions and denote G = G X+ - - X G;.
Then, the deformation model assumes that

there exists (¢}, ..., ¢}) € G and iid (&; j)1<i<n1<j<s such that forall j e {1,...,J}, X;; = (go_”]‘.)*l(si,j). (1)

Equivalently, the deformation model () means that there exists (¢],...,¢;) € G such that the collection of go}‘.(Xi, 7)s
taken over all j € {1,...,J} and i € {1,...,n} is iid or, if we write u;(¢;) for the distribution of ¢;(X; ;), that there

exists (¢7,...,¢)) € G such that ui(¢]) = -+ = p;(¢}).
We propose to use the Wasserstein variation to measure the fit of model (1) through the minimal alignment cost
AG) = inf  Vi{m(en, ...} (2)
(@1,-0)€G

Let us assume that u;(¢1), ..., u5(@y), (¢1,...,¢5) € G are in W,(R?). If the deformation model (1) holds, then
A (@) = 0. Under the additional mild assumption that the minimum in @) is attained, we have that the deformation
model can be equivalently formulated as A,(G) = 0 and a goodness-of-fit test to the deformation model becomes,
formally, a test of

A(G) =0 vs. H,: A(G) >0. 3)
A testing procedure can be based on the empirical version of A,(G), namely,
An,r(g) = inf Vrr {,un,l (‘Pl )7 e ’,Un,J(‘PJ)} 5 (4)
(P15eees ©1)EG
where 1, (¢ ;) denotes the empirical measure on ¢ (X)), . . ., ¢ (X, ;). We would reject the deformation model (I for

large values of A, (G).

As noted in [|I§ . the testing problem (3)) can be considered as a mere sanity check for the deformation model,
since lack of rejection of the null does not provide statistical evidence that the deformation model holds. Consequently,
as in the cited references, we will also consider the alternative testing problem

AG) 2N vs. Hy: ANG) < Ao, &)

where Ay > 0 is a fixed threshold. With this formulation the test decision of rejecting the null hypothesis implies that
there is statistical evidence that the deformation model is approximately true. In this case, rejection would correspond
to small observed values of A, .(G). In subsequent sections, we provide theoretical results that allow the computation
of approximate critical values and p-values for the testing problems (3) and () under suitable assumptions.
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3. Bootstraping Wasserstein’s variations

We present now some general results on Wasserstein distances that will be applied to estimate the asymptotic
distribution of the minimal alignment cost statistic, A, -(G), defined in @). In this section, we write £(Z) for the law
of any random variable Z. We note the abuse of notation in the following, in which W, is used both for the Wasserstein
distance on R and on R?, but this should not cause much confusion.

Our first result shows that the laws of empirical transportation costs are continuous (and even Lipschitz) functions
of the underlying distributions.

Theorem 1. Setv, V', n probability measures in W,.(RY), Yi,..., Y, iid random vectors with common law v, Y,,....Y,
iid with law v’ and write vy, v,, for the corresponding empirical measures. Then

W LW, (v, )}, LW, (v, M < We(v,Y).

The deformation assessment criterion introduced in Section [2]is based on the Wasserstein r-variation of distribu-

tions, V,. It is convenient to note that V/(vy,...,v;) can also be expressed as
Vivi,...,vy) = _inf fT(YI,.-.,YJ)dﬂ()m.-.,)’J), (6)
nell(vy,...,vy)
where IT(vy, . . ., v;) denotes the set of probability measures on RY with marginals vy, ..., v; and

J
1
TOHn,..., = min — —zl".
01 ys) ZERdJ§j=]4||yJ 2l

Here we are interested in empirical Wasserstein r-variations, namely, the r-variations computed from the empirical
measures v, ; coming from independent samples Y j, ..., ¥y, ; of iid random variables with distribution v;. Note that
in this case, problem (@) is a linear optimization problem for which a minimizer always exists.

As before, we consider the continuity of the law of empirical Wasserstein r-variations with respect to the underly-
ing probabilities. This is covered in the next result.

Theorem 2. With the above notation,
J
r ’ ’ 1 r ’
WLV, Ot Y Db LUV, oV, DU S 5 D WiV,
j=1

A useful consequence of the above results is that empirical Wasserstein distances or r-variations can be boot-
strapped under rather general conditions. To be more precise, in Theorem[Il we take v/ = v, the empirical measure
on Yy,...,Y,, and consider a bootstrap sample Y7,..., Y,’;,}x of iid (conditionally given Y1, ..., Y,) observations with

common law v,. We will assume that the resampling size m,, satisfies m, — oo, m, = o(n) and write v, for the
empirical measure on Y7, ..., Y, and £*(Z) for the conditional law of Z given Y1, ..., ¥,. Theorem [l now reads

W LLAW, (v, Y LWy, , W} < WV, v).

Hence, if W,.(v,,v) = Op(1/r,) for some sequence r, > 0 such that r,,,/r, — 0 as n — oo, then, using the fact that
WAL(aX), L(aY)} = aW {L(X), L(Y)} for a > 0, we see that

rm
WL LA i, W vy oY LT, We (Vi T < — 1, W (v, v) = 0
n rn
in probability.
Assume that, in addition, r, W,(v,,, v) ~» y (v) for a smooth distribution y (v). If ¢,(«) denotes the ath quantile of
the conditional distribution L*{r,,, W,(v;, ,v)}, then

my?

lim Pr{r,W,(v,,v) < éu(@)} = ; )

n—oo
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see, e.2., Lemma 1 in [Iﬂ]. We conclude in this case that the quantiles of r, W,.(v,,, v) can be consistently estimated by
the bootstrap quantiles, ¢,(a), which, in turn, can be approximated through Monte Carlo simulation.
As an example, if d = 1 and r = 2, under integrability and smoothness assumptions on v, we have

Bon "
VA Wa(vi,v) [ f ] dr} :

as n — oo, where f and F~! are the density and the quantile function of v, respectively; see [Iﬁ]). Therefore, Eq. (@)
holds. Bootstrap results have also been provided in ﬁg].

For the deformation model (D), statistical inference is based on A, (G), introduced in @). Now consider A, (G),
the corresponding version obtained from samples with underlying distributions p;. Then, a version of Theorem 2lis
valid for these minimal alignment costs, provided that the deformation classes are uniformly Lipschitz, namely, under
the assumption that, forall j € {1,..., J},

lli(x) — @)l

X£Y.0i€G; “x - J’||

L;=

®)

is finite.

Theorem 3. If L = max(Ly,...,L;) < oo, with L; as in (8), then

W, [ LUAL @)1 LA, (@)1 Zwrw,, 1),

Hence, the Wasserstein distance of the variance of two collections of distributions can be controlled using the
distance between the distributions. The main consequence of this fact is that the minimal alignment cost can also be
bootstrapped as soon as a distributional limit theorem exists for A, ,(G), as in the discussion above. In Sections £
and [3] below, we present distributional results of this type in the one-dimensional case. We note that, while general
Central Limit Theorems for the empirical transportation cost are not available in dimension d > 1, some recent
progress has been made in this direction; see, e.g., [@] for Gaussian distributions and ], which gives such results
for distributions on R with finite support. Further advances along these lines would make it possible to extend the
results in the following section to higher dimensions.

4. Assessing the fit of nonparametric deformation models

In this section and subsequent ones, we focus on the case d = 1 and r = 2. Thus we will simply write A(G)
and A, (G) (instead of A>(G) and A, ,(G)) for the minimal alignment cost and its empirical version, defined in @) and
@). Otherwise we keep the notation from Section 2] with Xi,j, ..., Xy, 1id random variables with law u; being one
of the J independent samples. Now G; is a class of invertible warping functions from R to R, which we assume to
be increasing. We note that in this case the barycenter of a set of probability measures yj, ..., u,; with distribution
functions F, ..., F; is the probability having quantile function Fl;l = (Fl’1 +- 4+ F}l)/J; see, e.g., [|I|]. We observe
further that u;(¢;) is determined by the quantile function ¢; o F jTl. We will write

J
] I ]
Fyltp)=5 D @i F}'
j=1

for the quantile function of the barycenter of 1, (¢1), . .., 1s(¢), while ~~ will denote convergence in distribution.

In order to prove a Central Limit Theorem for A,(G), we need to make assumptions on the integrability and
regularity of the distributions y;,...,u; as well as on the smoothness of the warping functions. We consider first
the assumptions on the distributions. For each j € {1,..., J}, the distribution function associated with y; is denoted



F;. We will assume that y; is supported on a (possibly unbounded) interval in the interior of which F; is C? and
= fj > 0 and satisfies

Fi0l1 = F, 0l

T ©
and, further, that for some ¢ > 1, 1 ,
f Mm <o (10)
o [fHF 1(t)
and for some r > 4,
E(IX;|") < co. (11)

Assumption (9) is a classical regularity requirement for the use of strong approximations for the quantile process,
as in [IE, ]. Our proof relies on the use of these techniques. As for (I0) and (II)), they are mild integrability
conditions. If F; has regularly varying tails of order —r (e.g., Pareto tails) then both conditions hold — and also (9)
—solongasr >4and 1 < g < 2r/(r + 2). Of course the conditions are fulfilled by distributions with lighter tails
such as exponential or Gaussian laws for any g € (1, 2).

Turning to the assumptions on the classes of warping functions, we recall that a uniform Lipschitz condition was
needed for the approximation bound in Theorem Bl For the Central Limit Theorem in this section, we need some
refinement of that condition, the extent of which will depend on the integrability exponent ¢ in (I0), as follows. We
set po = max{g/(q — 1), 2} and define on H; = C'(R)N L (X ;) the norm

A jllgs, = sup |30l + Eflh(X )Py /P,

and on the product space H X - - - X Hy, ||hllgr = hillg, + - - - + lAyller,. We further assume that

Gj C ‘H is compact for || - ||7L(,- and sup Ih’(xZ) -1 (%) — 0, (12)
' ' heG; SUPjeg [¥i-21—0
and, finally, that for some r > max(4, po),
E sup |A(X))|" < co. (13)
hegGj

We note that (I3) is a slight strengthening of the uniform moment bound already contained in (I2); we could
take po > max{q/(q — 1),4} in (I2) and (I3) would follow.

Our next result gives a Central Limit Theorem for A,(G) under the assumptions on the distributions and deforma-
tion classes described above. The limit can be simply described in terms of a centered Gaussian process indexed by
the set of minimizers of the variation functional, namely, U(y) = sz{pl (¢1), - - 1y(@s)}. An elementary computation
shows that

J
U - U"@)) Z Elp (X)) = /X)),

J=

&I'—‘

from which we conclude continuity of U with respect to || - ||ly. In particular, the set
F'=jpeG: U(p) =inf U
lpeG: U =intU©)

is a nonempty compact subset of G.

Theorem 4. Assume that By, ..., B; are mutually independent Brownian bridges. Set

1
cja,o):zfo oo oo B~ Fy' o) Fl

and C(p) = {c1(¢) + -+ c;()}/J, ¢ € G. Then, under assumptions (D—(I3), C is a centered Gaussian process on G
with trajectories that are almost surely continuous with respect to || - ||¢r. Furthermore,

Vi {A4(G) = A@)) ~ min C(9).
6



A proof of TheoremMlis given in the Appendix. The random variables

1
B
f¢;op_f1 —leie il = Fil ()
0

are centered Gaussian, with variance

GAF () ¢IF(5))

in(s, 1) — st}——L— [;{F7' (1)} - F' L
fw B = |eiF; ) - F3 ()0)] HF o)

In particular, if U has a unique minimizer the limiting distribution in Theorem [l is Gaussian. However, our result
works in more generality, even without uniqueness assumptions.

We remark also that although we have focused for simplicity on the case of samples of equal size, the case
of different sample sizes ny,...,n; can also be handled with straightforward changes. More precisely, let us write
A,,..n,(G) for the minimal alignment cost computed from the empirical distribution of the samples and assume that
nj— oo and

|6F5 ()} = Fi'()(s)] dsdr

L_)()/])2>09
n+---+ny ’

then with straightforward changes in our proof we can see that

\/ M A () - AG)) ~ min Clp),
(my+---+ny) el
where C(p) = (¢1(p) + -+ + E,(9)}/J and Ej(¢) = (T ¥ )c ().

If we try, as argued in Section[2] to base on A, (G) our assessment of fit to the deformation model (1), we should
note that the limiting distribution in Theorem M] depends on the unknown distributions x; and cannot be used for the
computation of approximate critical values or p-values without further adjustments. We show now how this can be
done in the case of the testing problem (), namely, the test of

Ho: AG) 2 Ao vs. H,: ALG) < Ao,

for some fixed threshold Ag > 0, through the use of a bootstrap procedure.

Let us consider bootstrap samples X} e X ; of iid observations sampled from y, ;, the empirical distribution
on Xj j,...,Xn ;. Wewrite u . for the empirical measure on X; .,..., X" . and introduce
» 2 my,j L My, j

A, (G) = inf V3{uy, (o1, .. pt, (@)
veG

Now, we base our testing procedure on the conditional a-quantiles (given the X; js) of v/m, {A;, (G) — Ao}, which we
denote &,(a; Ag). Our next result, which follows from Theorems[Bland [l shows that the test that rejects H, when

Vi {A(G) = Ao} < &q(a; Ag)

is a consistent test of approximate level o for (3). We note that the bootstrap quantiles &,(a; Ag) can be computed
using Monte Carlo simulation.

Corollary 5. If m, — oo, and m, = O(+/n), then under assumptions (9)—(I3)

0 fAG) > Ao,
Pr[Vn{A,(G) — Ao} < Eu(@; Ag)] = Ja if A(G) = Ao,
1 ifAG) < Ao.

Rejection in the testing problem (3) would result, as noted in Section 2] in statistical evidence supporting that
the deformation model holds approximately, and hence that related registration methods can be safely applied. If,
nevertheless, we were interested in gathering statistical evidence against the deformation model, then we should
consider the classical goodness-of-fit problem (3). Some technical difficulties arise then. Note that if the deformation
model holds, that is, if A(G) = 0, then we have ¢; o Fj‘,' = F3'(¢) for each ¢ € I, which implies that the result of
Theorem @ becomes vn A,(G) ~ 0. Hence, a nondegenerate limit law for A,(G) in this case requires a more refined
analysis, that we handle in the next section.



5. Goodness-of-fit in semiparametric deformation models

In many cases, deformation functions can be made more specific in the sense that they follow a known shape
depending on parameters that may differ for sample to sample. In our approach to the classical goodness-of-fit problem
@), we consider a parametric model in which ¢; = = @y, for some finite-dimensional parameter 6; that describes the
warping effect within a fixed shape. Now, that the deformation model holds means that there exist 8" = (6],...,6))
such that foralli € {1,...,n}and j€{l,...,J}, X;; = ¢, (s,,j). Hence, from now on, we will consider the following

family of deformations, indexed by a parameter 1 € A C R”:
¢: AXR->R: (1, x) - @ (x).

The classes G; become now {gg, : 6; € A}. We denote © = A’ and write A,(®) and A(®) instead of A,(&) and
A(G). We also use the simplified notation p;(6;) instead of u;(¢p,), F5(0) for Fg (4,5 - - -»p,) and similarly for the
empirical versions. Our main goal is to identify a weak limit theorem for A,(®) under the null in @). Therefore,
throughout this section, we assume that model (I) holds. This means, in particular, that the quantile functions of the
samples satisfy F j‘.' = go;j_' o G~!, with G the distribution function of the &;, ;8. As before, we assume that the warping

functions are invertible and increasing, which now means that, for each 1 € A, ¢, is an invertible, increasing function.
It is convenient at this point to introduce the notation

Y, %) = galgy (9)

forall j€{l,...,J} and & for a random variable with the same distribution as the ¢; ;. Note that %(9;, X) = X.
Now, under smoothness assumptions on the functions ¢ ; that we present in detail below, if the parameter space is
compact then the function

Un(61,...,07) = V{1 (01, ., 1, 1(0))}

admits a minimizer that we will denote by 0,,i.e.,

0, € argmin U, (6).
6cO®

Of course, since we are assuming that the deformation model holds, we know that 6* is a minimizer of

Ur,...,0;) = Vi (61, .... 1m0}

For a closer analysis of the asymptotic behavior of A, (®) under the deformation model, we need to make the following
identifiability assumption

6" belongs to the interior of A and is the unique minimizer of U. (14)

Note that, equivalently, this means that * is the unique zero of U.

As in the case of nonparametric deformation models, we need to impose some conditions on the class of warping
functions and on the distribution of the errors, the g; ;s. For the former, we write D or D, for derivative operators
with respect to parameters. Hence, for instance, Dy j(4, x) = (D1 (4, x), ..., Dy (A4, x))7 is the vector consisting of
partial derivatives of i; with respect to its first p arguments evaluated at (4, x); th,bj(/l, X) = (Dyrj(4, X))y, 1s the
hessian matrix for fixed x and so on. In what follows, 1//}(/1, x) and similar notation will stand for derivatives with

respect to x. Then we will assume that for each j € {1,...,J},u,v e {l,..., p}, and some r > 4
W), is C?, (15)
E{suply;(4, &)} < o, EfsupIDy;(d &)} < oo, Efsup|Dythj(d, &)} < oo, (16)
AeA AeA AeA
and
, . , , SUP jep \x —x|—0
¥/(-,-) is bounded on A X R and sup [/(4, x}) — ¢/(4, x)] ———— 0. (17)
AeA
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Turning to the distribution of the errors, we will assume that G is C? with G'(x) = g(x) > 0 on some interval and

G {l -GWlg'™l _

sup (18)
x g(x)?
Additionally (but see the comments after Theorem[@ below), we make the assumption that
1
H(1-1)
—————dt < c0. (19)
fo g {G 0}
Finally, before stating the asymptotic result for A,(®), we introduce the p X p matrices
20-1 [ - -
T Diyil6;, G~ (OWit6;, G~ (1)) dt,
0
2 1
%j==75 | D6, G OWile, G @ dr, i+ ]
0 :
and the pJ x pJ matrix
o Zug
T=| :
oo Xy
This matrix is symmetric and positive semidefinite. To see this, consider x,...,x; € R? and x" = [xlT, R x;]. Note

that

1
Iy = % fo [Z(] — D) |x x Dt} G*l(t)}]2 -2 Z |xi x Dl G~ )] [x; x Dy {67, G 0)}] ]dt

i<j
2 1
== fo Zj [l % Dl G~ ] = [x; x D65, G~ @] dr = 0.

In fact, X is positive definite, hence invertible, apart from some degenerate cases, For instance, if p = 1, X is invertible
unless all the functions Dji{67, G~'(1)} are proportional.
We are ready now for the announced distributional limit theorem.

Theorem 6. Assume that the deformation model holds. Under assumptions (I@)-(I8) 6, — 6" in probability. If. in
addition, ® is invertible, then \n (6, — 0°) ~» X7'Y, where Y = (Y7, ..., Y7)T with

Bj(1)
glG (1))

Ej =B;—(Bi+---+By)/J and By, ..., B; mutually independent Brownian bridges. Furthermore, if (I9) also holds,
then

2 1
Yj:ifo Dy {65, G™ (1)} dt,

J 1 R 2

1 B; 1
Ap(©) ~ — ) —~y'sly
nAx(©) J;fo(goGl) 2

We make a number of comments here. First, we note that, while, for simplicity, we have formulated Theorem
assuming that the deformation model holds, the Central Limit Theorem for 0, still holds (with some additional as-
sumptions and changes in @) in the case when the model is false and 6" is not the true parameter, but the one that gives
the best (but imperfect) alignment. Given that our focus here is the assessment of the deformation models, we refrain
from pursuing this issue.

Our second comment is about the identifiability condition (I4). At first sight it can seem to be too strong to be
realistic. Actually, for some deformation models it could happen that ¢y o ¢, = @g., for some 6 * 7 € @. In this case,

9



if X;; = <p;;1 (&,;) with g; ; iid, then, for any 6, X; ; = 905*197 (&;,j) with &; ; = @4(g; ;) which are also iid; consequently,
(@ 67,...,0%6))is also a zero of U. This applies, for instance, to location and scale models.

A simple fix to this issue is to select one of the signals as the reference, say the Jth signal, and assume that
@, is known since it can be, in fact, chosen arbitrarily. The criterion function becomes then Ue,...,0,_) =
U0, ...,0;-1,0;). One could then make the (more realistic) assumption that 6" = (67, ..., 8;_,) is the unique zero of

U and base the analysis on U,(61,...,0;-1) = Uy(6),...,0,-1,6;) and 8, = argmin; U, (6). The results in this section
can be adapted almost verbatim to this setup. In particular,

\/’;(én - é*) s 27

with Y7 = (v7,... 1) and £ = (Zi)1<i,j<s-1. Again, the invertibility of 3 is almost granted. In fact, arguing as
above, we see that and Sis positive definite if the function Dyi{6;, G ~1(#)}isnot null forall i € {1,...,J — 1}.

Next, we discuss about the smoothness and integrability conditions on the errors. As before, (]]EI) is a regularity
condition that enables to use strong approximations for the quantile process. One might be surprised that the moment
condition (II) does not show up here, but in fact it is contained in (I6); recall that v/ 1(0* x) = x. The integrability
condition (T9) is necessary and sufficient for ensuring

1 B(l)z
fo 2GS

from which we see that the limiting random variable in the last claim in Theorem[Glis an almost surely finite random
variable. This implies that, as n — oo,

1 B t2
nW2(G,, G) ~ fo ﬁdu

with G,, the empirical distribution function on a sample of size n and distribution function G. We refer to [Iﬁ @] for
details. Condition (II) is a strong assumption on the tails of G and does not include, e.g., Gaussian distributions. In
contrast, under the less stringent condition

At — st)?
f f (Sl S) ———dsdt < oo, (20)
o gHG(9))g 0}
which is satisfied for Gaussian laws, it can be shown that the limitas d — 0
1-6 2
Bt —t(1 -t
f ( )2 _]( ) .
s gHG (0}

exists in probability and can be expressed as a weighted sum of independent, centered )(% random variables; see [Iﬁ]
for details. Then, denoting that kind of limit as
1 2
Bt — (1 -t
f ( )2 _]( )4 :
o &G}

under some additional tail conditions — still satisfied by Gaussian distributions; these are conditions (2.10) and (2.22)
to (2.24) in the cited reference — we have that, as n — oo,

lB 2 _ 1—
NW2(Gp, G) = ¢y ~» fo %dt,

~ 1-1/n EB(t)2
o= fl I

10
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A simple look at the proof of Theorem 5.1 shows that under these conditions, instead of (I9), we can conclude
that, as n — oo,

1BX (- - Dl —0/J
nAn(G)—(J—l)cn/sz—Zf - ({ 1)(;} i dt—%YTZ’lY. (1)

Our last comment about the assumptions for Theorem [6] concerns the compactness assumption on the parameter
space. This may lead in some examples to artificial constraints on the parameter space. However, under some con-
ditions (see, e.g., Corollary 3.2.3 in [@]) it is possible to prove that the global minimizer of the empirical criterion
lies in a compact neighborhood of the true minimizer. In such cases the conclusion of Theorem[6] would extend to the
unconstrained deformation model.

As a toy example consider the case of deformations by changes in scale, with J = 2. As above we fix the
parameters of, say, the first sample, and consider the family of deformations ¢,(x) = ox. We assume that the
deformation model holds, with the first sample having distribution function G and the second (c)~'G™!; hence, o is
the unique minimizer of U(o). We find that

1
Un(o) = f (F,y—0F, 57 /4,
0

from which we see that almost surely,

o= ([ EdE) { [} o

and thus the conclusion of Theorem [@] remains valid if we take ® = (0, o). To avoid further technicalities, we prefer
to think of this as a different problem that should be handled in an ad hoc way for each particular example.

Turning back to our goal of assessment of the deformation model (1) based on the observed value of A,(®),
Theorem [f] gives some insight into the threshold levels for rejection of the null in the testing problem (@). However,
the limiting distribution still depends on unknown objects and designing a tractable test requires to estimate the
quantiles of this distribution. This is the goal of our next result.

We consider bootstrap samples X} e X, ’ " of iid observations sampled from 7 write u for the empirical
measure on X l’; ;and A} (©) for the mlmmal alignment cost computed from the bootstrap samples. We also
write ¢, (@) for the condltlonal a quantlle of m,A;, (©) given the X; ;.

Corollary 7. Assume that the semiparametric deformation models holds. If m, — oo, and m,/n — 0, then under
assumptions (I4)—(19), we have that
Pr{nA,(®) > ¢,(1 — @)} - a. (22)

Corollary [/l show that the test that rejects Hy : A(®) = 0 (which, as disussed in section 2, is true if and only if the
deformation model holds) when nA,(®) > ¢,(1 — a) is asymptotically of level @. It is easy to check that the test is
consistent against alternatives that satisfy regularity and integrability assumptions as in Theorem|[6]

The key to Corollary [7]is that under the assumptions a bootstrap Central Limit Theorem holds for m,A;, (©). As
with Theorem 6] the integrability conditions on the errors can be relaxed and still have a bootstrap Central Limit
Theorem. That would be the case if we replace (22)) by (20) and the additional conditions mentioned above under
which 1) holds. Then, the further assumption that the errors have a log-concave distribution and m, = O(n”) for
some p € (0, 1) would be enough to prove a bootstrap Central Limit Theorem, see the comments after the proof of
Corollary[7lin the Appendix. In particular, a bootstrap Central Limit Theorem holds for Gaussian tails.

6. Simulations

We present in this section different simulations in order to study the goodness of fit test we propose in this paper.
In this framework, we consider the scale-location family of deformations, i.e., 8 = (¢*, ™) and observations such
that X; ; = u; + o€, for different distributions of €; ;.

11



6.1. Construction of an a-level test

First, we aim at studying the bootstrap procedure which enables to build the test. For this we choose a level
a = 0.05 and aim at estimating the quantile of the asymptotic distribution using a bootstrap method.

Let B be the number of bootstrap samples, we proceed as follows to design a bootstrapped goodness of fit test.

1. Forallbe{l,...,B},

1.1. For j € {l1,...,J}, create a bootstrap sample Xi‘bj,...,X:i/, with fixed size m € {1,...,n} of the first
observation sample X1 j, ..., X, j, '

1.2. Compute (u:?)> = inf U:b(o).

2. Sort the values () for b € {1,...,B}, viz. (u)")?* < --- < (u,®)?, then take §,(1 — @) = uj "™, the
quantile of order 1 — « of the bootstrap distribution of the statistic ‘iQn(‘Ef) U,(6).
€l

3. The test rejects the null hypothesis if nu? > m[u,®" 12,

Once the test is built, we first ensure that the level of the test has been correctly achieved. For this we repeat the
test for large K (here K = 1000) to estimate the probability of rejection of the test as

Z

k

l’ll/tnk >m *{i(] a))] ]7

where 1 denotes an indicator function. We present in Table [I] these results for different J and several choices for
m = m, depending on the size of the initial sample.

As expected, the bootstrap method makes it possible to build a test of level a provided the bootstrap sample is
large enough. The required size of the sample increases with the number of different distributions J to be tested.

6.2. Power of the test procedure

Then we compute the power of previous test for several situations. In particular we must compute the probability
of rejection of the null hypothesis under H,. Hence for several distributions, we test the assumption that the model
comes from a warping frame, when observations from a different distribution called y are observed. The simulations
are conducted for the following choices of sample size and for the different distributions:

J=2: N, 1)andvy;

J =3:N(O, 1), N(5,2%) and y;

J=5:N(O,1), N(5,2%), N3, 1), N(1.5,3%) and y;

J =10: N1(0, 1), N(5,2% ), N(3,1), N(1.5,3%), N(7,4%), N(2.5,0.5%), N(1,1.5%), N(4,3%), N(6,5%) and v;
and also for different choices of 7.

Exponential distribution with parameter 1, &(1);

Double exponential (or Laplace) with parameter 1;

Student’s ¢ distribution #(3y and #4) with 3 and 4 degrees of freedom.

All simulations were done for different sample sizes and different bootstrap samples, n and m,,. The results are
presented in Tables 21 Bl Eland [l respectively.

We observe that the power of the test is very high in most cases. For the Exponential distribution, the power is close
to 1. Indeed this distribution is very different from the Gaussian distribution since it is asymmetric, making it easy to
discard the null assumption. The three other distributions do share with the Gaussian the property of symmetry, and
yet the power of the test is also close to 1; it also increases with the sample size. Finally, for Student’s ¢ distribution,
the higher the number of degrees of freedom, the more similar it becomes to a Gaussian distribution. This explains
why it becomes more difficult for the test to reject the null hypothesis when using a Student #(4) rather than a #3).

12



Appendix
A. Proofs of the results in Section[3]
Proof of Theorem[Il We set T,, = W,(v,,, ), T, = W,.(v,,n), and let IL,(n) be the set of probabilities on {1, ..., n} x R4

with first marginal equal to the discrete uniform distribution on {1,...,n} and second marginal equal to . We note
that T, = infycp, ;) a(rr) if we denote

,,,,,

We define similarly a’(7) from the Y] sample to get T, = inf e, @’(;r). But then, using the inequality | ||al| — [|6]]] <

lla — bl|, we get
1/r

.....

This implies that
1 \r 1 < 1\
T, - T)|" < ;Znn— Y/l

If we take now (Y, Y”) to be an optimal coupling of v and V', so that E(|[Y=Y’|") = W[ (v,v) and (Y1, Y]), ..., (¥,, Y})
to be iid copies of (¥, Y’), we see that for the corresponding realizations of 7, and 7', we have

rnr ] S 0\ INT
BT, — T, < ~ Y E(IYi = Y/II) = Wo(n Y.
ni:l

But this shows that W, {L(T},), L(T;)} < W.(v,V"), as claimed. O
Proof of Theorem 2l We write V,,, = V,(vyy, 1,..., Vs, s) and V], = ViV, 155V, ). We note that
Vr,n = ngl‘[(gllf,,Uj) f T(ll, ceey lj)dﬂ(ll, erey lj),

where U is the discrete uniform distribution on {1, ..., n;} and
1<
T(ir,...ip) = min > 1Yy =2l
z =
We write 77(iy, . . ., iy) for the equivalent function computed from the Y, 4 S Hence we have
1 <
. N . N
TGy, i) =T G,V < 7 Z 1Y = Yi I
J=1

which implies

r

1/r 1r
’{fml,...,z'])dnm,...,i,)} —{fT(il,...,i])dn(il,...,i])}
1 J
f = D Wiy =¥ ldntin ..,
Jj=1

1 < o . . 1 !
- 7;f|m,,,~—nj,jn dntin,- i) =5

J=1

IA

i)

1 <
— Wi —Y; ~||r]~
(nf i=1 e
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Therefore,
J

Vi = Vi }Z[n]ZuY,, Y,{,n’].

If we take (Y, Y}) to be an optimal coupling of v; and vj and (Y1}, Y] ) s Yo Y ) to be iid copies of (Y, Y') for
all j € {1,...,J}, then we obtain

! r 1 :
E (IVyu = V,I') < v >

J=1

{nl, Z E (v, - Y, ,-||’)} = ; > Wiy,
=1

i=1

The conclusion follows. (]

Proof of Theorem[3l We argue as in the proof of TheoremPland write

0eG | nell(Uy...,

nr(g) - lnf { lnf U )fT(‘p’ il’ LECEUN] i])dﬂ(il’ ) l])} )
J
where
1
T(gsin,..,iy) = min Z] 12,65 = I
=
We write 77 (¢; i1, ..., 1 ) for the same function computed on the Zi”].(t,oj)’s. Now, from the fact ||Z; j(¢;) — Zl{yj(‘pj)”r <

L'|X; ; — X! |I" we see that
5J i,]

T @itV = Tt i) < L7 Zux,,, X
J=

and, as a consequence,

J nj
’ r L o
VAlttn 1 (1) - @D} = VA, (00t s ) < = D0 — 11X, = X
= ey 7
which implies
HALGN = {4, @' < Z[ Z IX:,j - X; ,-||’].
If, as in the proof of Theorem 2] we assume that (X; ;, X ) with i € {1,...,n;} are iid copies of an optimal coupling
for y; and /1 with different samples independent from each other we obtaln that
E[14,@)" ~ @01 < 3w
n,r n,r J O"j’ ,Llj
Jj=1
This concludes the argument. O

6.3. Proofs for results from SectionsH and[3
We provide here proofs of the main results in Sections @ and Bl Our approach relies on the consideration the

processes defined, for all ¢ € G, by

J

1
Calp) = VnlUs(g) = U(p)) and Clg) = 5 > cs(e).

J=1
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where Un(¢) = V3 {un1(@1), - - - tins (@)} U@) = Vi (@), . . .. ps(es)),

1
Cj(<p)=2f0 ¢ioFi'{pjo F;' = F5l(p)} f,

and Bj, ..., By are independent standard Brownian bridges on (0, 1). We prove below that the empirical deformation
cost process C,, converges weakly to C as random elements in L*(G), the space of bounded, real-valued functions on
G. Theorem[ will follow as a corollary of this result.

We will make frequent use in this section of the following technical lemma, which follows easily from the triangle
and Holder’s inequalities. We omit the proof.

Lemma 8. Under Assumption (I3)),

i

( ) 1/n 5 1 2
sup Vi | (o F) =0, sup Vi [ (g0 F") 0.
0i€G, 0 vi€Gj 1=1/n

ii

(ii) 1/n N2 ! 1)\2
sup \/— (%. o F;_/) —0, sup Vn (90_/ oF n_,j) -0
$j€Gj #10i o

in probability.

(iii) If moreover (IO) holds, then for all jk € {1,...,J},

NTT=D
f Al F; (;) w;egz "P/ {F;' @) ’dt<oo

Theorem 9. Under assumptions @Q)—(13), C, and C have almost surely trajectories in L*(G). Furthermore, C is a
tight Gaussian random elemnt and C, converges weakly to C in L™ (G).

Proof. We start by noting that

J 1
Un(g) = Z f Jo = Fhe) U“"):%Z fo e;0F' - F3'@)
j=1

with
1< 1< ,
- 1 -1 _
Fop@) =5 > o F,l Fy @) =5 > g0 ;.
J=1 J=1

Now, (I3) implies that
1 e
sup (cpjon ) < 0o,
¥i€G; JO

Similarly, assumption ([2) implies K; = Sup, g «c(c,.4,) 1¢/(¥)] < co. Noting that

xe(c;

1 5 1 b 1 2
fo (90].01:;,1/_) ngo (gpjonfl) +2Kj2.f0 (F;,}—Fj—.') ,

sup fl (QOJ-OF,;})Z < 00, a.s.
0

vi€G;

we see that
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and, with little additional effort, conclude that C,, has almost surely bounded trajectories. Furthermore, writing

1 ~ B .
diuly) = f o F! oo [,
0

we see that for p,p € G
|d k(@) — djx(p)l

< 1g; = Pl

1 1
By . 1 Bk -1 -1
fOWQOkOFk +f0.0}°Fj JTF,I(WOFJC —pro Fy')
k

1 By 1/q 1 1/po
——— @ o F'[+ sup Ipl(f’ - ] (f ‘PkOF_]_PkOF_]po)
jo‘kaFk' 1 e fio Fi! 0| ¢ k|

But using (iii) of Lemmal[8] we deduce that
| [
(‘PkEQk fio F !

sup
veG

<1l = Pilleo sup
YkEGK

(1-1) .
(Hdt < 0.
] fko 0] %egjl%{ F (n}dt <

f] B, F-l
%ol
o fjon] J J

Furthermore, from assumption (I0), we get that, almost surely,

1 B]‘ q
- < 00,
fo[fjoF;‘)

and thus, for some almost surely finite random variable 7', |d;i(¢) — d,;1(p)| < Tll¢ — pllg for ¢, p € G. From this
conclude that the trajectories of C are a.s. bounded, uniformly continuous functions on G, endowed with the norm
|I'llg introduced in (@2). In particular, C is a tight random element in L*(G); see, e.g., pp. 39-41 in [@].

From this point on, we pay attention to the quantile processes defined, for all j € {1,...,J}and ¢ € (0, 1), by

Hence, almost surely,

pnj(t) = N f; {F7 o} {F b0 - F7 o).

A trivial adaptation of Theorem 2.1 on p. 381 of [IE] shows that, under (@), there exist, on a rich enough probability

space, independent versions of p, ; and independent families of Brownian bridges {B, ;},>, for all j € {1,...,J},
satisfying
22 sup lon, j(1) = Bn,vj(t)| _ O,(Inn) ?fv =0, AD
Unst<i—tn  AH1 = 1)} 0,(1) if0<v<1/2.
We work, without loss of generality, with these versions of p, ; and B, ;. We show now that
sup |Cp(p) — C‘n(tp)| — 0 in probability (A.2)
veG
with
R 1< ! | B,;
Ci@)= 5 D enile) and () =2 fo @0 Fi' g0 F7' - F5'(p)} 7
j=1

To check this, we note that some simple algebra yields

2 1 <
Cu(p) = 7 Z Cn,j + 7 Z Tnj



with |
&= Vn fo (gjoFyl =00 F;') (g0 F}' = F5'(p),
1
= 1 [ llero 520 7)o - o)

From the elementary inequality (a; + - - - + ay)> < Ja% +-o Ja%, we get that

J
§ 2= S [ o rmeror Y < Sk [ (- ri)

J=1

with K; = SUP,, G, xe(c;d,) |¢p (x)| < o0, as above. Now we can use (I and argue as in the proof of Theorem 2 in [@]

xe(c;

to conclude that \/—fo (F;J. - F; 2 — 0 in probability and, as a consequence, that

J
1
sup |C, () — 7 Z Cnj (@) ' — 0 in probability. (A3)
=1

eG

Furthermore, the Cauchy—Schwarz inequality implies that

1/
o| [ oo mid oo F) o 7 - il
1/n 2 1/n 2
i [ erord-eo Y N [ oo r - Filo)

and using (i) and (i) of Lemmal[8] the two factors converge to zero uniformly in ¢. A similar argument works for the
upper tail and allows to conclude that we can replace &, j(¢) in (A3) with

2

1-1/n
Eri(g) =2 fl / (9o Frj=¢io Fi'){eio F' - F5'(0)}.
n

1/n
0

Moreover,
B, ;
f] o F!
J

sup

1
I 1 an -1 -1

¢io Fj {‘PJ'OF_/ -~ Fl (0| <

0 veG

and by (iii) of Lemmal§]and Cauchy—Schwarz’s inequality,

N

{pjo Fi' = F3' @)

@0 Fi' = F; (lp)} f—v'_(t) sup o {(F;' (0} = F5'(@)(0)| dt — 0.
J

sup
veG

Hence,
1

n B, ;

1 n.Jj -1 -1
Supf ¢ o F7 pioF. = Fg (¢)i| =
eglJo T fio F'{j )

in probability and similarly for the right tail. Now, for every ¢ € (0, 1) we have
;o F i) = gjo F;'(1) = ¢’~{Kn,¢,<t>}{F,;‘.<t> - F;' () (Ad)

for some K, , (1) between F, (t) and F~'(7). Therefore, recall (A.4), to prove (A.2) it suffices to show that

sup

= —1 By, (1) 1 -1
p f SF O —2L (o F7 ) - F3 (010 di
S

im0 FitF; @)

e P j(1) -1 -1
- fl 1 Kne O S [ AF7' (1)) - Fp (go)(r)]dt‘ao (A.5)
n J
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in probability. To check it, we take v € (0, 1/2) in (A.I)) to get

108 |p, S0 = B0 i e
J P sl o1 Koo

U -y
im SilF 1( N} ¢

in probability using dominated convergence and (iii) of Lemma[8l We observe next that, for each € (0, 1),

< w1 20p(1) sup {7} (0 = F (@XD}d = 0 (A6)

sup [Kyg,(1) = F;' ()] - 0
¥i€G; ’

a.s., since K, ,,.(¢) lies between F;'].(t) and F]T'(t). Therefore, using (I2) we see that

sup l¢/{ K, (0} = ¢{F7 (O} = 0
W/Eg/

a.s. while, on the other hand, SUP, cg, |¢;{Kn,¢j(t)} - t,o}{FjTl(t)}I < 2K;. But then, by dominated convergence we get
that

E] sup |¢51Ke 01 517 @1 ] = 0

¥j€G|
Since by (iii) of Lemma [§] we have that t — (1 - D/fAF 1(z‘) ]sup‘peg |¢pj{ 1(t)} gl(tp)(t)l is integrable we
conclude that

1-1/n
E sup f |/ Ko, (0} = & AF (0} | ”’f ) lsD]F 0} = F'(9)(0)]dt
weG Jl1/n fj ()

tends to 0 as n — oo and, consequently,

1-1/n
sup f |/ A Ko, (0} = @HAF (O === 15,0 leAF; () = F5'(@)(0)|dt

veG J1/n ! JAF 1( n}
vanishes in probability. Combining this fact with (A.6) we prove (A.3) and, as a consequence, (AZ). Finally, observe
that for every integer n > 1, C has the same law as C,,. This completes the proof. (]

Proof of Theorem[d From Skohorod Theorem; see, e.g., Theorem 1.10.4 in [IE], we know that there exists on some
probability space versions of C,, and C for which convergence of C,, to C holds almost surely. From now on, we place
us on this space and observe that

Vn{A,(G) - AG)} < \/ﬁi?f Un - \/Ei?fU = inf Cu(p). (A7)
ve

Furthermore, if we consider the (a.s.) compactset T, = {¢ € G : U (p) < infg U + 2||Cplle/ Vn}, then, if ¢ ¢ T,
U, (p) > infg U + ||Cylle / V1, while if ¢ € T, then, U, (¢) < infg U + ||Cyllo/ V1. Thus, necessarily, infg U, =
infr, U, = infr, (U, — U + U) > infr, (U, — U) + infr, U = infr,(U, — U) + infr U. Together with (A7), this entails

inf C,(¢) < Vn{A,(G) - AG)} < inf C,(p)
el gel’
Note that for the versions that we are considering ||C, — Cllo — 0 almost surely. In particular, this implies that
infr C,, — infr C almost surely. Hence, the proof will be complete if we show that almost surely,
inf C,, — inf C. (A.8)
T, r
To check this last point, consider a sequence ¢, € I', such that C,,(¢,) < infr, C,, + 1/n. By compactness of G, taking

subsequences if necessary, ¢, — ¢ for some ¢y € G. Continuity of U yields U(¢,) — U(ypp) and as a consequence,
that U(go) < infg U, i.e., ¢9 € I" almost surely, Furthermore,

|Cu@n) = Cle0)| < ICs = Cllw +1C (@) — C (0)] — 0.
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This shows that
lim infipf C, > C(pp) = irrlfC

and yields (A.8). This completes the proof. O

Proof of Corollary[5l In Theorem[3] take H'; = pin ;. Then, writing L* for the conditional law given the X; ;, the result
of Theorem[3reads

1 J
W3 [LUAR GNP L7145, @) P1] < L5 5 Wi s pn,).
j=1

with L = sup g ll¢/lleo < c0. Since W,{L(aX + b), L(aY + b)} = aW{L(X), LY)} fora > 0, b € R, the latter bound
gives

RN
W3 | LIV 1A, @} — {AGN2]], L' VimliA;, @} — 1AG) ] < Lz%j > NIWEj. o).
j=1

As noted in the proof of Theorem[d] the assumptions imply that y/n W22(,u i»Mn,j) vanishes in probability. Also, Theo-
remMl and the delta method yield that

1
V[ (A, @V~ AGN'? |~ Sy,

with y the limiting law there, which, combined to the above bound, shows that

* 1
Vi, ({45, GN? —{AGHY | ~~ 246077

in probability. A further use of the delta method yields
Vi (A5, (G) - A@)| ~ ¥
in probability. The result follows now from Lemma 1 in [Iﬂ]. O

Proof of Theorem[6l We assume for simplicity that p = 1. The general case follows with straightforward changes.

Let us observe that ,
1 ! -1 1 -1
Un®) = 5 ,Z* fo {vior6: - Zwk(ek, G}

k=

2
bl

with G, ; the empirical distribution function on the &; ;s, which are iid G. A similar expression, replacing G, ; with G
is valid for U(6). Then (I7) implies that sup, |U,(0) — U(8)| — 0, from which, recall (I4), it follows that 6, — 0" in
probability. Note that the second part in Assumption (I7)) is a technical condition which ensures that, when considering
a Taylor expansion in the integral of U, (6), the remainder term in z//j(/l, H;,}) - z//j(/l, Gj‘.]) for any H;; lying between
G;’lj and G;l (obtained through a Taylor expansion) goes uniformly to zero.

From (I3) we have that U, is a C? function whose derivatives can be computed by differentiation under the integral
sign. This implies that

2 (! -1 -1 1 -1
DU (6) = 5 fo Dy,(9;,G,, j){wj<9j, G -5 ;wkwk, Gn,,g},
2 : -1 -1
D, ,U,(6) = —— Dlpp(ﬁp,Gn’p)Dqu(Hq, G,,yq), pP#*q (A.9)
0

e
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and
2 (! 1Y 20-1) (!
Do Un® =5 [ 020,00 G006 - 5 Y wner G} + X2 [ {puye,. 6
0 — 0

Using also (I6) we obtain similar expressions for the derivatives of U(6), replacing everywhere G nj with G~ We
write DU, (0) = {D;U,(0)}1<j<s, DU(O) = {D;U(0)}i<j<s for the gradients and X,(0) = {D,,U, (9)}1<pq<1, 2(9)
(D 4U(O)}1<p,g<sfor the Hessians of U, and U. Note that X* = X(6") is assumed to be invertible.

We write now p, ; for the quantile process based on the &;;s. Observe that (I8) ensures that we can assume,
without loss of generality, that there exist independent Brownian bridges, B, j, satisfying (AJ). Now, recalling that
(0}, x) = x, we see that

Pnj(0) = Sy pui(]] p
t
glG1(n)

Now, using (I6) and arguing as in the proof of TheoremH] we conclude that

2 1
Vi D;Un(6) = 5 fo Dy {6}, G, (0}

1 1
| pur() e Bu®)
'j(; Dy {67, G, ; L)} Ate ]()}dt j(;Dz,b_,{H_].,G (t)}—g{G—l(t)}dt -0
in probability and, consequently,
2 ! 1 B = i B
) — 7]0‘ Dy {6, G~ (1)} 2160 dt) - 0 (A.10)

in probability.
A further Taylor expansion of D;U, around 6" shows that for some é;’ between 6, and 6* we have

D;Uy(,) = D;U(6) + (Dy;jUn@)), ..., D3,Un(@))) X (8, — )
and because 8, is a zero of DU,,, we obtain
~D;U, (") = (Dy;Un(@. ..., Dy;Un(@) X (B, — 6.

Writing 3, for the J x J matrix whose Jth row equals (DljUn(é’;), .. ,DJjUn(é’j’.)), with j € {1,...,J}, we can
rewrite the last expansion as '

— VnDU,(0") = £, Vn(B, — ). (A.11)

Now, recalling (A.9), assumptions (I3) and (I6) yield that £, — £* = £(6*) in probability. As a consequence, (AIT)
and (A.10) together with Slutsky’s Theorem complete the proof of the second claim.
Finally, for the proof of the last claim, since DU, (f,) = 0, a Taylor expansion around 6, shows that

K A ] A K e A *
nUy(0°) — nUy,(6,) = 5 {Vn (6, — 0" Z@){ Vn (6, - 6)
for some 6, between , and 6*. Arguing as above we see that X(f,) — X* in probability. Hence, to complete the proof

if suffices to show that 5
J
U, (6% — Zf B, j(t) — Zklzt)}nk(t)/-]} di — 0

in probability. Since

J 2
nU (") = - Zf bon(0) - Z",Eg;"(tw} d,
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this amounts to proving that
1
f {n,j(0) = B, j(0)/8IG™ ()dt — 0
0
in probability. Taking v € (0, 1/2) in (A)), we see that

1-1/n 1 1-1/n
f {on /(1) = B j0OF g{G™ () dr < Op()—= f, / {11 =y /glG @) - 0

1/n

using condition (I9) and dominated convergence. From (I9) we also see that

1
f B, (?/g{G™ (t)}*dt — 0
1-1/n

in probability. Condition (T9) implies also that

1
f P (081G (DY dr — 0
1-1/n
in probability; see [@]. Similar considerations apply to the left tail and complete the proof. (|

Proof of Corollary[7} Writing £* for the conditional law given the X; js, we see from Theorem 3] that

BEN
W[ LIV (A, ()21, LT (A}, (©))2]] < L= nW3ue i, ).

=1
where L = sup, . ;4/(4, x), p denotes the law of the errors, &;;, and fi, ; the empirical distribution function on

€1js---»&nj. Note that L < oo by (I7), while anz(p,ﬂ,,,j) = Op(1) as in the proof of Theorem Hence, we
conclude that

muAL, (©) ~ —Zf Bi/goG™') YT 'y)2

in probability. The conclusion now follows from Lemma 1 in [Iﬂ]. O

If centering were necessary and we had () rather than the limit in Theorem[6] we could adapt the last argument
as follows. If A and B are positive random variables, then E|JA — B| < E(A!/> — B/?)2 + 2{EAE(A!/? — B'/?)2}1/2,
We can apply this bound to (an optimal coupling of) m,A,, (®) and m,A;, (©). Now if the errors have a log-concave
distribution then nEW (u, fin,;) = O(Inn); see Corollary 6.12 in [ﬁ We conclude that

WilL{m,Ap, (©) = e, }, LmyA,, (©) = ¢, }] = Wi[Lim, Ay, (©)}, L{m,A,, (©)}]

vanishes in probability if m, = O(n”) for some p € (0, 1) . As a consequence,

1 1 B? -E B? 1
WAL (O) = ¢~ = L L __yTyly
A, () C"WJ,-Z‘ 0 (§oG )2 2
in probability. U
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Table 1: Simulations under Hj.

0.7

0.8

0.9

0.95

J| n my =n my,=n"" m,=n"° my=n"- m=n" My, =n
| 50 0.144 0.079 0.038 0.046 0.041 0.03
| 100 0.148 0.067 0.07 0.05 0.04 0.033
| 200 0.129 0.085 0.068 0.043 0.037 0.044
2 | 500 0.138 0.089 0.05 0.048 0.035 0.036
| 1000 0.127 0.086 0.063 0.055 0.039 0.032
| 2000 0.129 0.104 0.071 0.048 0.043 0.038
| 5000 0.039 0.042 0.041 0.049 0.043 0.055
| 50 0.295 0.194 0.115 0.078 0.054 0.034
| 100 0.273 0.163 0.089 0.053 0.034 0.039
| 200 0.238 0.15 0.077 0.054 0.047 0.031
3 | 500 0.226 0.122 0.07 0.057 0.042 0.029
| 1000 0.217 0.107 0.092 0.069 0.042 0.035
| 2000 0.221 0.128 0.077 0.053 0.043 0.035
| 5000 0.205 0.145 0.082 0.06 0.025 0.047
| 50 0.659 0.428 0.281 0.129 0.111 0.081
| 100 0.583 0.337 0.192 0.104 0.083 0.053
| 200 0.538 0.281 0.159 0.081 0.078 0.029
5 | 500 0.449 0.267 0.138 0.063 0.056 0.04
| 1000 0.415 0.238 0.129 0.064 0.051 0.037
| 2000 0.354 0.212 0.115 0.06 0.053 0.032
| 5000 0.322 0.203 0.108 0.057 0.061 0.039
| 50 0.996 0.971 0.873 0.702 0.553 0.456
| 100 0.994 0.902 0.708 0.433 0.33 0.226
| 200 0.958 0.802 0.521 0.247 0.184 0.119
10 | 500 0.914 0.663 0.388 0.149 0.093 0.063
| 1000 0.864 0.532 0.286 0.119 0.084 0.046
| 2000 0.813 0.473 0.239 0.103 0.063 0.051
| 5000 0.756 0.449 0.217 0.088 0.061 0.041
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Table 2: Power of the test for y=4&(1).

0.7

0.8

0.9

0.95

J| n m, =n” m, =n” m, =n” m, =n” m,=n""" m,=n
| 50 0961 0.919 0.897 0.864 0.829  0.838
| 100 1 0.998 0.998 0.995 0.994  0.993
| 200 1 1 1 1 1 1

2 | 500 1 1 1 1 1 1
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0987 0.971 0.97 0.953 0.939 0.91
| 100 1 1 0.999 1 0.999  0.999
| 200 1 1 1 1 1 1

3] 500 1 1 1 1 1 1
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 0.996 0.988 0.976 0.971 0.955
| 100 1 1 1 1 1 1
| 200 1 1 1 1 1 1

5] 500 1 1 1 1 1 1
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 1 1 1 0.996  0.985
| 100 1 1 1 1 1 1
| 200 1 1 1 1 1 1

10 | 500 1 1 1 1 1 1
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
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Table 3: Power of the test y 4 Laplace (0, 1) .

0.6

0.7

0.8

0.9

0.95

J| n m, =n m, =n m, =n m, =n m, =n m, =n
| 50 0426 0.33 0.3 0.241 0223  0.163
| 100  0.658 0.534 0.468 0.365 0.361 0.3
| 200  0.855 0.824 0.751 0.665 0.613  0.602
2| 500  0.998 0.998 0.993 0.982 0.965  0.962
| 1000 1 1 1 1 0.999 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50  0.657 0.533 0.422 0.331 0.282 0223
| 100  0.831 0.708 0.586 0.514 0.461 0.377
| 200  0.946 0.915 0.841 0.778 0.709  0.661
3] 500 1 0.998 0.997 0.994 0.989 0977
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50  0.895 0.741 0.633 0.471 0.394 0333
| 100 0936 0.874 0.728 0.623 0.519 0443
| 200  0.994 0.947 0.903 0.847 0.786  0.696
5| 500 1 1 1 0.996 0.992 0985
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 0.997 0.97 0.875 0.79 0.703
| 100 0997 0.985 0.949 0.854 0.765  0.643
| 200 1 0.996 0.968 0.924 0.859  0.789
10 | 500 1 1 1 0.996 0.996 0975
| 1000 1 1 1 1 1 0.999
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
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Table 4: Power of the test y 4 1(3)-

0.6

0.7

0.8

0.9

0.95

1 | n m, =n m, =n m, =n m, =n m, =n m, =n
| 50 0566 0.445 0.429 0.352 0.321 0.307
| 100 0775 0.704 0.647 0.576 0.503  0.454
| 200  0.942 0.927 0.882 0.833 0.771 0.697

2 | 500 1 0.997 0.995 0.991 0.989  0.957
| 1000 1 1 1 1 1 0.986
| 2000 1 1 1 1 1 0.999
| 5000 1 1 1 1 1 0.997
| 50 0745 0.653 0.546 0.46 0402  0.349
| 100  0.881 0.821 0.738 0.65 0.592  0.563
| 200 098 0.958 0.928 0.891 0.873  0.794

3] 500 1 1 0.999 0.997 0.997 0978
| 1000 1 1 1 1 1 0.995
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0.91 0.813 0.682 0.593 0.525 0.45
| 100 0972 0.909 0.822 0.751 0.686  0.621
| 200 0995 0.984 0.967 0.915 0.887  0.836

5| 500 1 1 1 0.999 0.999  0.995
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 0.997 0.953 0.894 0.827  0.758
| 100 0.999 0.993 0.969 0.907 0.862 0.79
| 200 1 0.998 0.995 0.961 0.941 0.903

10 | 500 1 1 1 1 0.998  0.988
| 1000 1 1 1 1 1 0.998
| 2000 1 1 1 1 1 0.999
| 5000 1 1 1 1 1 1
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Table 5: Power of the test y 4 t(4)-

0.6

0.7

0.8

0.9

0.95

I | n m, =n m, =n m, =n m, =n m, =n m, =n
| 50 0398 0.353 0.292 0.207 0.182  0.183
| 100  0.623 0.52 0.429 0.341 0.29 0.228
| 200  0.826 0.717 0.65 0.589 0.526 0.41
2 | 500 0989 0.978 0.954 0.928 0.878  0.787
| 1000 1 1 0.999 1 0.984  0.955
| 2000 1 1 1 1 1 0.985
| 5000 1 1 1 1 1 0.993
| 50 0634 0.495 0.4 0.295 0263 0222
| 100  0.756 0.666 0.56 0.465 0.399 0336
| 200 0914 0.859 0.778 0.663 0.602 0521
3| 500  0.998 0.989 0.985 0.972 0.928  0.868
| 1000 1 1 1 1 0.999  0.963
| 2000 1 1 1 1 1 0.989
| 5000 1 1 1 1 1 1
| 50 0851 0.709 0.583 0.426 0.359 0316
| 100 0919 0.825 0.668 0.546 0493 0316
| 200 0959 0.908 0.842 0.738 0.684 0578
5] 500 1 0.997 0.994 0.973 0.934  0.888
| 1000 1 1 1 1 0.999  0.968
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 0.999
| 50 1 0.986 0.941 0.813 0.774  0.653
| 100 1 0.988 0.925 0.806 0.738  0.606
| 200 1 0.991 0.948 0.854 0.813  0.679
10 | 500 1 1 0.998 0.985 0.954  0.886
| 1000 1 1 1 1 0.997  0.949
| 2000 1 1 1 1 1 0.974
| 5000 1 1 1 1 1 0.995
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