N
N

N

HAL

open science

Planning agile motions for quadrotors in constrained
environments

Alexandre Boeuf, Juan Cortés, Rachid Alami, Thierry Simeon

» To cite this version:

Alexandre Boeuf, Juan Cortés, Rachid Alami, Thierry Simeon. Planning agile motions for quadrotors
in constrained environments. IEEE/RSJ International Conference on Intelligent Robots and Systems,

Sep 2014, Chicago, United States. 6p., 10.1109/IR0S.2014.6942564 . hal-01187138

HAL Id: hal-01187138
https://hal.science/hal-01187138
Submitted on 26 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01187138
https://hal.archives-ouvertes.fr

Planning agile motions for quadrotors in constrained environments

Alexandre Boeuf, Juan Cortés, Rachid Alami and Thierry Siméon

Abstract—Planning physically realistic and easily control-
lable motions of flying robots requires considering dynamics.
This paper presents a local trajectory planner, based on a
simplified dynamic model of quadrotors, which fits the require-
ments to be integrated into a global motion planning approach.
It relies on a closed-form solution to compute curves in the
kinodynamic state space that tend to minimize the flying time.
These curves have suitable continuity properties and guarantee
respect of physical limits of the system (i.e. bounds for the time-
derivatives of the pose coordinates). The paper explains how
this local planner can be used within different motion planning
approaches that enable the treatment of difficult problems in
constrained environments.

I. INTRODUCTION

When planning motions for Unmanned Aerial Vehicles
(UAVs) such as quadrotors, it is important to consider the
dynamic model of the system since not every geometrically
valid path corresponds to a feasible motion. For example,
because of its dynamic behavior, flying upside down, even
for a relatively short period of time, is hardly manageable for
a fixed-pitch quadrotor. Aiming to avoid the difficulties and
the high computational cost involving kinodynamic motion
planning [1], the problem is usually treated in two stages.
The first stage applies a basic path planning approach, dis-
regarding dynamic considerations. For this, sampling-based
path planning algorithms [2], such as the Rapidly-exploring
Random Tree (RRT) or the Probabilistic Roadmap (PRM),
can be used to produce a collision free path for the center
of mass of the robot. Indeed, since the robot orientation
depends on dynamic aspects, collisions cannot be tested for
the robot itself but for its smallest bounding-sphere. In a
second stage, this path, usually consisting of a sequence of
straight-line segments in R?, has to be transformed into a
dynamic trajectory. Trajectory generation methods, such as
[31, [4], [5], can be applied in this stage to each portion of
the path. The overall trajectory then consists of a sequence
of movements from one hovering position to another, which
leads to severe sub-optimality in terms of execution time.
However, such an unsuitable trajectory can be subsequently
optimized using several types of algorithms.

The aforementioned decoupled approach is computation-
ally efficient, and can be successfully applied to solve many
motion planning problems for UAVs (see for example [6],
[71, [8]). However, several classes of problems cannot be
treated using this approach, because the robot orientation

All authors are with CNRS, LAAS, 7 avenue du colonel Roche, F-31400
Toulouse, France and Univ de Toulouse, LAAS, F-31400 Toulouse, France
(e-mails: aboeuf@laas.fr, jcortes @laas.fr, alami@]laas.fr, nic@laas.fr)

This work has been partially supported by the European Community
under Contract ICT 287617 “ARCAS”

Fig. 1. Solution to the slot problem obtained with a basic RRT algorithm
using the proposed local planner as a steering method.

cannot be properly considered at the geometric stage. One
of such problems, which we refer to as the slot problem,
is illustrated in Fig. 1. In this problem, the robot has to
go through a narrow slot-shaped passage whose width is
smaller that the diameter of the smallest bounding-sphere of
the robot. Since a collision-free path does not exist for this
sphere, the decoupled approach will fail to find a solution.
Another type of problem that cannot be treated using a
decoupled approach is the transportation of a large object (at
medium or high velocity). When carrying such an object, it
is not suitable anymore to consider the minimum bounding-
sphere of the system because it does not fit its actual shape,
thus leading to invalidity of far too many possible solutions.
In these situations, collisions have to be tested for the actual
shape of the system, and hence, non-hovering states have to
be sampled and linked by collision-free flyable trajectories.
According to [4], such trajectories must be smooth in the
space of the flat outputs of the system with bounds on
their derivatives. Therefore, motion planning in this context
requires an efficient trajectory generation method able to
interpolate two kinodynamic states (position, velocity and
acceleration). Unfortunately, available trajectory generation
methods are either computationally expensive, or unlikely
for the present application, since they do not guarantee the
respect of limits in velocity and acceleration, or because they
require flying time as an input parameter [9].

This paper proposes a local motion (trajectory) planner
that considers a simplified dynamic model of the UAV. It
uses fourth-order splines to generate flyable trajectories of
minimal time with respect to the proposed closed form
solution. It can be used as part of an optimization method



in a decoupled approach in order to generate high velocity
trajectories in cluttered environments, or applied directly as
a steering method within a sampling-based motion planner.
Next sections describe the method and present results of
its application to several motion planning problems in con-
strained environments, including the slot problem.

II. LOCAL PLANNER
A. Overview

Thanks to the differential flatness of the quadrotor dynam-
ics [4], any smooth trajectory in the space of flat outputs can
be followed provided that derivatives are correctly bounded.
Note that real physical limits of a quadrotor are its total
thrust and angular accelerations (which are related to linear
acceleration and snap respectively) but as a simplification we
only consider limitations on derivatives of the flat outputs.
We also choose to limit linear velocity for safety reasons
in prospect of future experimental validation. This section
proposes a local motion planner for quadrotors that, given a
set of bounds for the derivatives, produces such trajectories
while trying to minimize the flying time. First, the dynamic
model is presented together with some basic concepts. The
closed-form of a specific fourth-order spline used to solve
the problem independently for each output is then proposed.
Finally, the way outputs are synchronized to form the final
trajectory is explained.

B. Simplified dynamic model of a quadrotor, configuration
space, geometric and kinodynamic state spaces

A quadrotor can be modeled as a free-flying object in R3.
It has six degrees of freedom: three for its position (OG =
r € R?) and three for its orientation (pitch, roll and yaw
angles: [0, ¢,]). Thus, its configuration space is C' = R? x
SO(3). As illustrated in Fig. 2, a quadrotor of mass m is
assumed to be submitted to three forces applied to its center
of mass G: his weight W = —mg.e,, a fluid friction force
f = —fv with f a fluid friction coefficient and v = r
(linear velocity of (), and a thrust force T, which is the
resulting force of the action of the four rotors. The direction
of the thrust vector is directly related to pitch and yaw angles.
Furthermore, Newton’s second law of motion shows that T
is a function of v and a = # (linear acceleration of G):

m.a=—-mg.e, — fv+T (1)

Let x% = [r,¢] € R3 x SO(2) = X be the geometric
state of the system (the flat outputs) with Xz the geometric
state space, and x¥ = [x% %% %% € X2 = Xk be the
kinodynamic state with X’ the kinodynamic state space.
Using (1), attitude angles [#, ] can be computed from v
and a. Hence, intermediate configurations ¢ € C can be
extracted from a trajectory in Xx with arbitrary resolution
for collision deception.

C. Closed-form solution of the trajectory generation problem

This subsection addresses the problem of generating
smooth trajectories in the kinodynamic state space with
inequality constraints on the norm of the derivatives. A

Fig. 2. Forces acting on the quadrotor in our simplified dynamic model.

trajectory between two states x{, xX € X is a time

parametrized function S : [0,tr] — Xg with tr € R such
that:

{ [5(0)7 S(O)7 S(O)] :X(}){ € Xk (2)
[S(tr), S(tr), S(tr)] =xp € Xk

Because the trajectory has to be continuous in C, and in
order to guaranty continuity of the angular velocity, S has
to be of class C3: S € C3([0, tr], X5). This is due to the
relationship between the attitude and the linear acceleration
imposed by (1). In addition, since these (local) trajectories
will be the elements of the solution provided by the (global)
motion planner, we want to ensure continuity of the jerk
(first derivative of acceleration) between two consecutive
trajectories. Thus, another constraint has to be imposed:

S(0) = S(tr) =0 3)

The trajectory generation problem can be independently
solved for each component ¢ = 1...4 of the geometric state
(i.e. each flat output). The parameter tr; € RT and S; €
C3([0, tri],R) have to be computed for each component,
taking into account bounds on the derivatives because of me-
chanical limitations of the system. These bounds are directly
considered up to the third order. Nevertheless, since jerk has
to be continuous and bounded, snap (second derivative of
acceleration) has to be bounded too. In summary, the set of
constraints is:

Si(0) = zo, Si(0) = vo
51(0) = aop, 51(0) =0
Si(t
S;(t

Fi) = TF, Sz(tF7) =R
Fi) =ap, Si(tp:) =0 )
19:(t)] < Vmaz € R*T
Si()] < mae € R*F
Ve 0, tp,], 4 15 maz
012 1 800 < e € RY
|Sl(t)| < Smazx € R*+

)

In order to minimize ¢ ;, full speed has to be reached as
soon as possible and maintained as long as possible. Let
the letter D refer to this phase of constant velocity and
let vp € [~Vmaz, Vmaz) be the value of velocity during
this phase. This means that time spent to reach it has to
be minimized: velocity have to get from vy to vp and
then from vp to vp as quickly as possible. Hence time
spent at maximum acceleration during those two phases
has to be maximized. It implies to minimize the durations
of acceleration variations. Let B refer to the phase of



constant acceleration during the first velocity variation and
ap € [—@maz, Gmaz] be this constant acceleration. Let G
be the phase of constant acceleration during the second
velocity variation and ag € [—@maz,@maz) this constant
acceleration. The phase in which acceleration variates from
ap to ap is noted A, and C is used to refer to the phase
in which acceleration variates from ap to zero. The phases
where acceleration variates from zero to ag and from ag
to ar are noted E and H respectively. All these phases are
illustrated with an example in Fig. 3. The principle holds
for higher derivatives: time spent at maximum jerk during
acceleration variations has to be maximized and durations
of jerk variations have to be minimized. This implies to
maximize time spent at maximum snap during jerk variations
and to minimize the durations of snap variations. This very
last part is easy since, following our approach, snap can be
discontinuous: snap variation is actually a snap commutation
of duration zero (V¢ € [0, tr,q], Si(t) € {=Smaz, 0, Smaz })-
In other words, S; is a piecewise constant function, which
implies that .S; is a piecewise polynomial function (a spline)
of the fourth order.

In the discussion above, we have mentioned seven main
phases in the (local) trajectory. For three of them (B, D, G),
acceleration is zero and hence snap is also zero. The
four others (A,C, E, H) are divided into three sub-phases
(1,2, 3). Phases 1 and 3 correspond to jerk variations and
then |'S';(t)| = Smaz- In phase 2, jerk is constant hence snap
is zero. The sign of the snap is opposed during phases 1 and
3, which have the same duration. Tab. I presents the notation
used for the durations of the phases and the expressions of
the snap as functions of ap and ag.

The expression of the snap during phase A; is explained
as follows: if agp > ayo, SZ has to be increasing, which
implies that §; has to be positive. Since §;(0) = 0, §;
has to be increasing during phase A;, and thus S;(t) =
+Smaz. Following the same reasoning, S';(t) = —Smaz if
ap < ag. If ag = ag, then phase A is not needed, and thus
'S'i(t) = 0. A similar reasoning can be applied to understand
the expressions for phases C, E and H.

Note that this closed-form solution is an intuitive way of
minimize flying time. Because of our choices of simplifica-
tion there is no guarantee of optimality. The actual optimal
solution could be found by applying Pontryagin maximum
principle to the corresponding optimal control problem (snap
as scalar control input and inequality constraints on the state)
but it would imply heavy numerical computation, making it
not suited to our needs. The sub-optimality factor induced
by our choices is yet to be measured. From now on, both
optimal time and optimal velocity are to be read as: with
respect to our closed-form solution.

D. Duration of the phases

At this point, the local trajectory for one coordinate (i.e its
corresponding spline) is defined by ap, ac and the duration
of all phases. This subsection explains how it can be defined
using a single parameter: vp. First, t4 1, ta2, tc,1 and to2
can be expressed as functions of ap, ag, jmar and Spaz-

TABLE I
VALUE OF THE SNAP AND DURATION OF EACH PHASE OF THE SPLINE

Phase Value of the Snap Duration
Ay sign(aB — ao).smaz ta
Ao 0 ta
A3 sign(ap — aB).Smaz taa
B 0 tp
Ch —sign(aB)‘sm,u tca
Ca 0 to,2
Cs3 sign(aB).smaz tca
D 0 tp
Eq sign(ag)-Smaax tp,1
FEo 0 tp.2
E3 -sign(ag)-Smaz tpa
G 0 tg
H, sign(arp — aG).Smax tH1
Ho> 0 tH.2
H; sign(ag — ar).Smax tH1

The same goes for ty,1, tH,2, tg,1 and tg 2 as functions of
G, OF, Jmaz and Smaez. We provide next explanations for
ta,1and t4 o. Let us define dgg =sign(ap —ao). From Tab. I
and (4), we can write:

ap = 5BO-Smaw-t,2471 +0B0-Smaz-ta,1.ta2 + ao (5)

and Si(ta1) = 6B0-Smax-ta1, which implies |§;(t41)| =
Smax-tAJ < jmaz, and thus:

2
S Jmax (6)

2
Smaw-tA’l
Smax

Let us note aj;, = Zf"”. Phase A, is only needed when
phases A; and Ajs are not enough to reach ap. If there is no
phase A, then t4 2 = 0. Then, using (5) and (6), we can
write: lap — ag| = smm.ti,l < ajim- If lap — ag| > aim.
then t42 # 0 (phase A is needed), and t4; = g’"” (its
lag—aol _ Jmaz |f

Imazx Smaz
tao = 0, then t4; = The principle is the
same for phases C, E and H and formulas are similar
(details are not provided here due to limited space). For
phase C, |lap — ag| is , by |ag| in phase
E and by |ag — ap| in phase H. The spline is now
defined by (ap,aq,ts,tp,te). Both couples (ap,tp) and
(ag,te) can actually be expressed as a function of vp.
Using Tab. I and (4), vp can be expressed as a function
of (ap,ta1,ta2,tB,tc1,tc,2) and hence as a function
of (ap,tp). Let Vg : (ap,tp) — vp be this function.
Let us also define v = Vp(—amas,0) and vF%® =
VB (amaz,0). It is possible to show (not detailed here due
to limited space) that, for all vp in [vB™", V%], there is
a unique ap € ([—a@maz, min(0,ag)] U [max(O,ao),a,,ww])
such that Vp(ap,0) = vp. If vp < vF™, then ap =

—amaz and phase B is needed. Its duration is simply tg =
lop — VB /amae. If vp > V™, then ap = Gmae and
tg = |vp — VE*|/Amas. Hence, as previously announced
(ap,tp) can be expressed as a function of vp. The same
goes for (ag, tq).

maximum value). In that case, t42 =

\1113 aol




POSITION ~
I - -1
T T T T T

ACCELERATION

Fig. 3.

. VELOCITY
o o
T T

H
T

Example of trajectory provided by the local planner for one coordinate. The bounds of each derivative are represented by pink dashed lines. Red

and green dashed lines represent initial and final values, respectively. In phase A, ap is reached with respect to maximum jerk and snap constraints. In
phase B, the system travel towards vp at constant acceleration ap. C is a deceleration phase and D the phase of constant velocity. H, G and E are the
symmetric phases of A, B and C, respectively. Note that, in order to show all the phases, |vp| = Umaz and |ag| = |ap| = @mas in this example. In a

general case, some phases can have zero duration.

At this point the spline is defined by (vp,tp). Let to
be the value of the time parameter at the end of phase C,
and tg its value at the beginning of phase E. As explained
previously, these two values can be expressed as a function
of vp. This is also the case for S;(t¢) and S;(tg). Let Ag
be the function vp +— S;(tg)—S;(tc). fvp # 0, then tp =
Ags(vp)/vp. Therefore, the spline is completely defined by
the sole value of vp. Note that, necessarily:

’UD.As(UD> <0 (7)
E. Optimal velocity

Once the spline is defined by vp, this section explains how
to compute the optimal value v,,; that minimizes ¢r;(vp).
Let V,4iq be the set of values of vp that meet the constraint
(7) and let us note Vy = [min(0, vep), max(0, vep:)]. For
synchronization purposes, it is necessary that Vo C Vyaiid,
which implies:

Yo € Vo, v.A5(0) <0 (8)

Let us note dp =sign(Ag(0)). Since minimizing ¢z ; requires
maximizing |vp|, (8) implies that, if Ag has zeros between
v = 0 and v = 60.Vmaas, then v,y is the one of lowest
absolute value. If not, vopt = 80.Umaz-

F. Synchronization

The trajectory generation problem is now solved for each
component independently. Hence, there are four different
values (tp;)i,4 = 1...4. This subsection explains how to
synchronize these one-dimensional trajectories. Solving each
problem provides a couple (tg,;,vopt;) and the associated
interval V, ;. The purpose of the definition of v,,; provided
in the previous subsection is to guaranty that vp — tp;(vp)

is continuously strictly monotonic on Vj ;. Furthermore,
lim tp;(vp) = +oo. This implies that, for any ¢ in
’UD‘)O

[tF, +00[, there is a unique v € V,; such that tp,(v) = ¢.
This property is used to synchronize the components. The
slowest component (of index 74;,.,) is identified and a simple
dichotomous search is used to find the unique vp € Vp; such
that tp;(vp) =t (vgp*) for the three other components.

As a result, all the components have the same final time
tlslow.
F

III. TWO GLOBAL PLANNERS
A. Decoupled approach

This subsection explains how the local planner presented
in the previous section can be used in a decoupled ap-
proach to motion (trajectory) planning. A decoupled ap-
proach consists of two stages: 1) planning a geometrically
valid path in Xg for the minimum bounding sphere of the
quadrotor; 2) transforming this path into a trajectory in
Xk . In our current implementation, a bi-directional RRT
algorithm is applied to explore X, and linear interpola-
tion is used to connect sampled states. Thus, the resulting
path is a concatenation of n collision-free straight line
segments in Xg, {x§,2%}i,i = 1...n. The local trajectory
planner is then applied to each pair of intermediate states
{[z§,0,0], [#%,0,0]};. The resulting trajectory is collision-
free, since the center of mass of the quadrotor follows
the initial geometric path. However, it is far from being
time-optimal because of the imposed stops at the ends of
local paths. A trajectory optimization method can be applied
to improve the time-optimality of this initial solution. We
have implemented a simple but efficient method based on
the random shortcut algorithm [10]. This iterative, anytime



algorithm works as follows: at each iteration, two states, x{(
and xi¢, are randomly selected from the overall trajectory.
Let us call z the initial state of the local trajectory in which
o¥ lies, and % the final state of the local trajectory in
which z lies. The local planner is then applied to generate
three new local trajectories between {zf, %}, {zf 2}
and {zX B}, If they are collision-free, the cost of the
trajectory 5 — 2 — 2K — 2K is computed, the cost
here being the overall flying time. If this cost is lower
than the one of zf — — %, this portion of the
overall trajectory is replaced by the new one. This step
is repeated until a given execution time, a given number
of iterations or a given gain of the cost is reached. This
simple approach is computationally very fast and efficient.
It quickly returns high-velocity, agile trajectories in cluttered
environments. Nevertheless, the approach is incomplete, in
the sense that it is unable to find solutions to some problems
involving aggressive maneuvers, such as the one illustrated
in Fig. 1. The approach is also unsuitable to solve problems
involving the transportation of a rigidly-attached large object,
whose orientation is defined by that of the quadrotor, and is
therefore dependent on its velocity and acceleration.

B. Direct use as a steering method

To overcome the limitations of the decoupled approach,
the proposed local trajectory planner can be directly used
as a steering method to connect sampled states within a
sampling-based motion planning algorithm. We investigate
here its application within the RRT algorithm, but other
planners could be used. This approach is able to solve
the aforementioned classes of problems involving aggressive
maneuvers or large object transportation. Nevertheless, there
are drawbacks and difficulties that need to be mentioned.
A first issue is the higher dimension of the state space,
compared to the decoupled approach in which RRT is
applied to explore the geometric state space Xz (which is of
dimensions 4, or 3 if v is fixed). Indeed, RRT is now directly
applied to explore X'x, which is a 12-dimensional space in
the present case. In addition, the local trajectory planner,
although computationally efficient, is orders of magnitude
more expensive than a simple linear interpolation, which
significantly penalizes the overall computational performance
of the motion planner. Another important issue is that there
is no natural metric in Xk (as discussed in [1]). Sampling-
based motion planners rely on a good metric in order to
accurately select the neighbor states. In our case, finding
a good metric is as hard as solving the local planning
problem itself (i.e. finding the minimal-time trajectory to
connect to states with differential constraints). Using a bad
metric leads to a bad exploration of the state space and thus
impairs convergence of the RRT algorithm. Nevertheless,
despite these weaknesses, the proposed local planner used
as a steering method allows us to solve difficult problems

Note that the portion of the initial trajectory between xf and :(:{{ (idem
for xé( and xg ) is different to the local trajectory generated by a new call
to the local planner, because zero jerk is imposed on x{( (and on :1:5( ) when
splitting the trajectory.

oA .

Fig. 4. Motion planning problem in a cluttered workspace. Start and goal
positions of the quadrotor are represented by green circles. The dashed blue
line is the path of the center of mass before optimization. The plain red line
is the resulting trajectory after optimization.

with a reasonable computation time, as will be shown in the
next section.

IV. SIMULATIONS
A. Computational performance of the local planner

To evaluate the computational cost of the local trajectory
planner, we performed experiments consisting of successive
calls from randomly chosen couples of kinodynamic states.
The CPU time (averaged over 10* calls) on a single core of
an Intel Xeon W3520 processor at 2.67GHz is 2.4 x 10~
seconds. This performance is for an implementation in C,
integrated in our motion planning software, Move3D [11].
Although this can appear as extremely fast, it has to be
compared to the cost of creating local paths using a basic
linear interpolation, which is about 2 x 1076 seconds using
the same software. Thus, computing local trajectories in X
is two orders of magnitude more expensive that computing
local paths in Xg.

B. Decoupled approach and optimization performances

For the evaluation of the decoupled motion planning
approach, we performed several experiments in a relatively
simple scenario, represented in Fig. 4. The problem is to
find a time-optimal trajectory for a quadrotor to fly between
two points at opposed corners of a 10 x 10 meter workspace
filled with box-shaped obstacles. In order to simplify the in-
terpretation of results, we impose constant altitude and fixed
yaw angle. The radius of the bounding sphere considered
for collision detection is 0.27 meters. The bounds on the
derivatives of position are v,,qp = 5 m.s™ !, Gmez = 10
M52, fmaz = 20 m.s™3 and S,,40 = 50 m.s~%. Note that
these values are for now an arbitrary choice since we do
not yet know the real limitations of our system. In a future
experimental process, they will have to be measured.

The proposed decoupled approach, using RRT as geo-
metric path planner and the random shortcut algorithm for
trajectory optimization, is able to provide a time-optimized
trajectory in less than 3 seconds of CPU time. One half
of this time is spent in the geometric exploration, and the



COST GAIN
o
o
T

L L L L L L ),
200 400 600 200 1000 1200 1400
ITERATION NUMBER.

L L L

L L L
0 05 1 15 2 25 3
CONPUTATIONAL TIME (s)

Fig. 5. Performances of the trajectory optimization method in terms of
iteration number and computational time.

35 4 45

551

— . WITH PRICR DISTANCE OPTIMIZATION
— WITHOUT

1.5 2 25 3
COMPUTATIONAL TIME (s)

Fig. 6. Evolution of the cost during optimization with and without prior
distance optimization.

other half in trajectory generation and optimization. As
illustrated in Fig. 5, about 300 iterations of the shortcut
algorithm (performed in about 1 second) are sufficient for
convergence. The plot represents the cost gain (i.e. the flying
time decrease). Flying time of the optimized trajectory is 8.3
seconds.

An alternative strategy to obtain a time-optimized trajec-
tory with a decoupled approach could be to optimize first the
length of the geometric path. This could be done using the
RRT#* algorithms instead of RRT (as proposed in [8]), or ap-
plying an optimization post-processing (i.e. path smoothing)
to the solution obtained with RRT. However, results of our
experiments show that this is a wrong strategy. Fig. 6 shows
that the convergence of the trajectory optimization process is
much slower when starting from the shortest path than when
using the “rough” path provided by RRT.

C. Direct use as a steering method: the slot problem

Finally, we present results obtained using the proposed
local planner as steering method inside RRT. The method was
applied to solve the difficult slot problem illustrated in Fig. 1.
The environment is a box of 10 x 10 x 3 meters, divided
in two halves by a series of aligned obstacles separated by
0.40 meters. The start position is in one side of this series
of obstacles and the goal is on the other side. The diameter
of the bounding sphere being of 0.54 meters, this problem
can not be solved by the decoupled approach, as there is
no collision-free path for the bounding sphere. Solving this
problem requires taking the orientation of the quadrotor into

account, which implies considering dynamics for motion
planning. Bounds for the time-derivatives of the position
are the same than in the previous example. The trajectory
represented in Fig. 1 has been obtained in 90 seconds with
a basic RRT algorithm using our local planner as steering
method. This computational time can be explained by the fact
that, while going through the slot, velocity and acceleration
of the quadrotor must have very specific values taken in a
small interval of possibilities. The empty space between two
obstacles in the configuration space becomes a very narrow
passage when mapped into the kinodynamic state space.

V. CONCLUSION

We have presented a method to compute physically-
realistic local trajectories of quadrotors. The method is com-
putationally efficient, which enables its integration into sev-
eral types of global motion planning approaches. Used within
a decoupled approach, based on geometric path planning and
subsequent trajectory generation and optimization, motion
planning problems in moderately-constrained environments
can be solved in very short computing time. Very difficult
problems, requiring a direct exploration of the kinodynamic
state space, can also be solved in reasonably-short computing
time using the proposed local planner as a steering method.
As future work, we intend to further investigate the issue
of finding an appropriate metric in the kinodynamic state
space that could speed up the RRT algorithm. We also
plan to compare the trajectories obtained with of our local
planner to solutions provided by optimal control methods in
order to better evaluate their quality, as it is done in [12].
Finally, experimental validation will soon be conducted in
our testbed.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning.
The International Journal of Robotics Research, no. 20:378-400, 2001.

[2] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[3] Y. Bouktir, M. Haddad and T. Chettibi. Trajectory planning for a
quadrotor helicopter. Proc. Mediterranean Conference on Control and
Automation, 2008.

[4] D. Mellinger and V. Kumar. Minimum snap trajectory generation and
control for quadrotors. Proc. ICRA, 2011.

[5] M. Hehn and R. D’Andrea. Quadrocopter Trajectory Generation and
Control. IFAC World Congress, vol. 18, no. 1, pp. 1485-1491. 2011.

[6] E. Koyuncu and G. Inalhan. A probabilistic B-spline motion planning
algorithm for unmanned helicopters flying in dense 3D environments.
Proc. IROS, 2008.

[71 P. M. Bouffard and S. L. Waslander. A hybrid randomized/nonlinear
programming technique for small aerial vehicle trajectory planning
in 3D. Planning, Perception and Navigation for Intelligent Vehicles
(PPNIV) 63, 2009.

[8] C. Richter, A. Bry, and N. Roy. Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments. Proc. ISRR,
2013.

[9] M. W. Mueller, M. Hehn and R. D’ Andrea. A computationally efficient
algorithm for state-to-state quadrocopter trajectory generation and
feasibility verification. Proc. IROS, 2013.

[10] R. Geraerts and M. H. Overmars. Creating high-quality paths for
motion planning. The International Journal of Robotics Research, no.
26:845-863, 2007.

[11] T. Siméon, J.-P. Laumond and F. Lamiraux. Move3D: a generic
platform for path planning. Proc. ISATP, 2001.

[12] M. Hehn, R. Ritz and R. D’Andrea. Performance Benchmarking
of Quadrotor Systems Using Time-Optimal Control. Autonomous
Robots, Volume 33,Numbers 1-2, 2012.



