Asymptotic Preserving numerical schemes for multiscale parabolic problems
Résumé
We consider a class of multiscale parabolic problems with diffusion coefficients oscillating in space at a possibly small scale $\varepsilon$. Numerical homogenization methods are popular for such problems, because they capture efficiently the asymptotic behaviour as $\varepsilon \rightarrow 0$, without using a dramatically fine spatial discretization at the scale of the fast oscillations. However, known such homogenization schemes are in general not accurate for both the highly oscillatory regime $\varepsilon \rightarrow 0$ and the non oscillatory regime $\varepsilon \sim 1$. In this paper, we introduce an Asymptotic Preserving method based on an exact micro-macro decomposition of the solution which remains consistent for both regimes.