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ABSTRACT

Management of the portfolios containing low liquidity asses a tedious problem.
The buyer proposes the price that can differ greatly frompager value estimated
by the seller, so the seller can not liquidate his portfaigtantly and waits for a more
favorable offer. To minimize losses and move the theory td@ractical needs one
can take into account the time lag of the liquidation of alguild asset. Working
in the Merton’s optimal consumption framework with contius time we consider
an optimization problem for a portfolio with an illiquid, &ky and a risk-free asset.
While a standard Black-Scholes market describes the ligart gf the investment
the illiquid asset is sold at an exogenous random momentpwitbcribed liquidation
time distribution. The investor has the logarithmic wjilitinction as a limit case of a
HARA-type utility. Different distributions of the liquidén time of the illiquid asset
are under consideration - a classical exponential digtabwand Weibull distribution
that is more practically relevant. Under certain condgiave show the existence
of the viscosity solution in both cases. Applying numericathods we compare
classical Merton’s strategies and the optimal consumgitmtation strategies for
portfolios with different liquidation time distributioraf an illiquid asset.

KEYWORDS
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1. Introduction

Financial crises of 2008 helped practitioners to undedsthe difficulties connected with a management of
portfolios with illiquid assets and showed a significantadhéer solid mathematical models addressing this
problem. Though financial institutes deal with illiquid etson a regularly basis there is no general framework
for such portfolios especially if they provide stochasticames or down payments.

The most challenging task one faces defining such frameveott incorporate the illiquidity in a math-
ematically tractable way. Intuitively it is clear which dig assets we would call liquid, yet there is still no
widely accepted way of defining illiquidity of an asset as eameable parameter. The mathematically correct
definition, being a problem itself, is not the biggest chadie in this area. The exact formulation of the goals of
the portfolio optimization is even more tedious, sinceilidity is usually connected with different sale mech-
anisms and with an essential liquidation lag-time. Thelststic processes that describe such effects are not
studied profoundly in financial mathematics. Now let us gidwrief overview of the models that are relevant to
this paper.

In 1993Duffie and Zariphopouloin [10] develop the framework of the optimal consumptiontfee contin-
uous time model, proposed erton, [19]. They considered an infinite time horizon and provexldhistence
and uniqueness of the viscosity solution of the associat#sl é¢tjuation for the class of concave utility func-
tionsU (c) satisfying the following conditiondJ in cis strictly concaveC?(0, +), U(c) < M(1+-c)Y, with

*This research is supported by the European Union in the FROPRE-2012-ITN Program under Grant Agreement Number 304617
(FP7 Marie Curie Action, Project Multi-ITN STRIKE - Novel Meods in Computational Finance). Short reference for contRITN-GA-
2012-304617 STRIKE.
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O0<y<1M>0;U(0) >0, ICiLrBU’(c) = o0, CIi%rrgou’(c) =0.

Later, in 1997, in [9] an extended problem of hedging in inptete markets with hyperbolic absolute
risk aversion (so called HARA) utility function was studiedere the stochastic income cannot be replicated
by trading available securities. An investor receiveslsistic income in momerttat a ratey;, wheredY, =
uYidt +nY.dW:, t>0,Yo=y, y>0andu,n > 0—consthereW! is a standard Brownian motion. The
riskless bank account has a constant continuously compintieicbst rater. A traded security has a pric@
given bydS = aSdt+ oS (pdW! + /1— p2dWP?), a, o > 0— constandW? is an independent standard
Brownian motion,p € (—1,1) is a correlation between price procesSeandY;. The investor utility function

for consumption process is given by (c(t)) = E Um eKtU(c(t))dt] , U(c(t)) = c(t)Y, wherey € (0,1)
0

andk is a discount factok > r. The investors wealth proces®volvesdL; = [rLi + (o +0 —r) 1 — ¢ + Y;]dt+

oe(pdW! +/1— p2dW?), t > 0,Lo = |, whered could be regarded as the dividends payed constantly from

an illiquid asset or as the possession cdsisan initial wealth endowment arrg represents an investment in

the risky asse8, with the remaining wealth held in riskless borrowing ordeamg. The goal is to characterize

an investor value functiox(l,y) = sup % (C). The sete/(l,y) is a set of admissible contro{gr, c) such
(me)ea/(Ly)

thatLt >0.

Remark.The notation of the stratedyr, c) is standard for the problems of such kind. Throughout thigepa
we will denote the amount of the investment in a liquid riskget ast and investor’'s consumption as Both
controls do depend on time, so to emphasize it to the reademiglat also us€r(t),c(t)) or even(rz, ¢;) from
time to time.

The authors in [9] proved the smoothness of the viscositytenl of the associated Hamilton-Jacobi-
Bellman (HJB) equation in the case of the HARA utility furmtiand the infinite time horizon. This proof
heavily relies on a reduction of the initial HIB equation to@DE. After this reduction the main result follows
from the uniform convergence of the classical solution ofarmly elliptic equation to the viscosity solution,
which is unique.

It is important to mention that the authors use the discoactiof e <' in (1) as a technical factor which
is not related to stochastic income. The economical settoes not imply any liquidation of an illiquid asset
which provides stochastic inconye

Schwarz and Tebaldn [21] broadened a model of random income proposed befohey Bssumed that
the non-traded illiquid asset generates a flow of randomnirecn the form of dividends, until it is sold at a
fixed moment of time. The authors define illiquid asset as aptablat can not be sold neither piece by piece
nor at once before the investment’s horizon, denoted ,ashich is a fixed deterministic value at which the
asset generates a random cash-flow equal to its’ paper-&athess momenT (the cash-flow is denoted &k).
With this economical reasoning behind it this model of ilidjty looks rather promising yet needs a more exact
qualitative and quantitive description. In this particytaper we will talk about a further improvement of this
framework, especially, weakening the trading conditiaorsahn illiquid asset that can move a model closer to
the practical needs.

One of the possible extensions of this problem was dongrgy Papanikolaou and Westerfefd[3]. They
considered exactly the same model as in [21]. However, tbeyraed that an illiquid asset can be traded but only
at infrequent, stochastic moments of time and thus the wihodz-asset portfolio could be rebalanced. With a
series of numerical calculations they provide an intuittbthe influence of illiquidity on the marginal utility of
the investor. The authors numerically study the cases winenuat of the illiquid wealth is significantly bigger
than the amount of the liquid capital and comparing it with tpposite case (insignificantly small amount of
illiquid wealth) they show that the effects of the asset belliquid may cause unbounded deviations from the
Merton solution.

In 2008He [13] proposed a model with the same set-up but different tcaimés on illiquid asset. While
the investor can instantaneously transfer funds from theédito the illiquid asset, the vice versa transaction is
allowed only in exponentially distributed moments of timiéwe author finds an approximate numerical solution
of the problem for the constant risk-aversion (CARA) wjifiinction.

Industry is highly interested in feasible illiquidity mdde The practitioners constantly state that portfolios
that include illiquid assets have a heavily time-depentehtvior (see, for example, [7]). There were several
attempts made in this direction. In [16], for example, théhats use endogenous random time horizon and
demonstrate that a standard optimization problem with atogenous stopping time differs from classical
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Metron case. However, in this paper we focus on the timezbaris an exogenous random variable. We would
like to note is that the set-up with exogenous time is agfuatbnomically motivated. For example, standard
inheritance procedures in several EU countries assumeltbatliquid assets are sold and the cash is then
divided between the heirs. Naturally the sale occurs in daanmoment of time and the inheritance manager
splits the cash between the heirs immediately after the saiether example of an exogenous liquidation
time that justifies our model are shares-for-the-loan austi This phenomenon is typical for the the emerging
markets where governmentally owned businesses are at suintgpvatized fully or partially. For example, it
was very typical for a post-soviet markets in their transitperiod and is still relevant for a number of states in
the Eastern Europe.

We develop a connection between the model of illiquidy [24d ghe optimal consumption problem with
an undiversifiable future income. We substitute the somewa#ttdicial constraint that the liquidation time is
fixed from very beginning with the assumption that it is s&stically distributed exogenous time. We formulate
the problem for a general case with an arbitrary liquidatiore distribution and some utility functions in the
next Section and in the Section 5 we find the bounds for theevalnction. In the Section 6 and Section 7 we
investigate two special cases with logarithmic utility étion and two liquidation time distributions: exponen-
tial and the Weibull distribution. One of the important a@imitions of this paper is that using the technique
of the viscosity solutions we show the existence and unigs®iof the solution of the HIB equation that cor-
responds to the case of Weibull-distribution which probgbdensity function under certain conditions has a
local maximum. This situation corresponds to a measurabie-lag between the sell-offer and an actual deal.
Strong stability of the viscosity solutions allows to gehmarical approximations with a range of monotone and
consistent schemes, for example, as it was dondioykin [20].

Remark The idea to work with a non-exponential discounting is rew/for exampldvar Ekelnadin [11]
has show the possibility to work with different discountifagtors, however to our knowledge the idea of a
different discounting in a framework of illiquidity was newproposed before.

2. Economical setting

We assume that the investor’s portfolio includes a riskbessd, a risky asset and a non-traded asset that gener-
ates stochastic income i.e. dividends. However, in contvéh the previous works we replace the liquidation
time that was deterministic before with a stochasticalstrithuted timeT . A risk-free bank accouri; with the
interest rater and a stock pric& follow

dB =rBdt, dS =S(adt+odW!),t<T (1)

wherer is assumed to be constant, the continuously compoundedfratirna > r and the standard deviation
o, r,a,0—const An illiquid assetH; that can not be traded up to the tifi@nd which paper value is correlated
with the stock price and follows

%" = (U — 8)dt+n(pdW! +/1— p2dW?),t < T. )

wherep is the expected rate of return of the risky illiquid as$ét},W?) are two independent standard Brown-
ian motions is the rate of dividend paid by the illiquid assatis the continuous standard deviation of the rate
of return, andp € (—1;1) is the correlation coefficient between the stock index aedlliguid risky asset. The
parametergl, d, n, p are all assumed to be constant. The liquidation fime a random-distributed continuous
variable which does not depend on the Brownian motighi$,W?). The probability density function of
distribution is denoted by(t) whereasb(t) denotes the cumulative distribution function, ab) the survival
function also known aa reliability function®(t) = 1 — ®(t). We omit here the explicit notion of the possible
parameters of distribution in order to make the formulaatsino

Given the filtration{ % } generated by the Brownian motigvi= (W*,W?) we assume that the consumption
process is an element of the spage of non-negative % }-progressively measurable processesuch that

E (/:c(t)dt) <o, SE[0,T]. 3
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The investor wants to maximize the average utility consunpetb the time of liquidation, given by

_& {/OTU(c(t))dt} . (4)

Here we used’ to indicate that we are averaging over all random varialdlas.wealth proceds is the sum of
cash holdings in bonds, stocks ameshdomdividends from the non-traded asset minus the consumgpttiears.
Thus, we can write

dly = (rLe+OH + (o —r1) —¢)dt+ godWr. (5)
The set of admissible policies is standard and consistsreétment strategigst, ¢;) such that
1. ¢ belongs ta?.,
2. 1 is {.% }-progressively measurable affi{ 7 )%dt < w a.s. forang < 1 < T,

3. L, defined by the stochastic differential equation (5) antlahconditionsL; =1 > 0,H; =h > 0 a.e.
t<T).

We claim that one can explicitly average (4) oeand with the certain conditions posed @nandU (c)
the problem (4) is equivalent to the maximization of

%(c)—E [ /0 “B)U (c(t))dt] , ®)

whereE is an expectation over space coordinates excluding

Remark It is important to note, that it is exponentially distributed we gpteciselythe problem of optimal
consumption with random income that was studied in [9] anelaly discussed in introduction.

We demonstrate here a formal derivation of the equivalemteden two optimal problems briefly men-
tioned by Merton in [19].

Proposition 2.1. The problems (4) and (6) are equivalent provided
lim ®(HE U (c(t)] = 0. (7

Proof. We have

{/u dt} /(p [/u dt]dT //(p (t)dTdt ®)

whereg(t) = E[U(c(t)]. Because of the absolute convergerfc%;(oT U(c(t))dt} = fOT g(t)dt and integrating (8)
by parts we get

/ / OdTdt=o )/OT g(t)dt|°o°+/ow5(t)g(t)dt:E {/Owtb(t)u(c(t))dt},

where we used the condition (7) to eliminate the first ternd, the absolute convergence of the integral to move
the expectation ouf O

Remark In the majority of the models consumptiaft) is bounded as time goes to infinity. For all these
models condition (7) is satisfied automatically. Yet if oegards absolute values of consumption and it grows
as time goes to infinity this constraint is needed.

From now on in this paper we will work with the problem (4) withndom liquidation timeT that has
a distribution satisfying the condition (7) in Propositiarl and, therefore, corresponds to ttedue function
V(t,l,h) which is defined as

V(t,l,h) = maxEUqa D)dT|L(t) =1,H({t) = h] . ©)
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For the value function we can derive a HIB equation on whiclioses in this paper

V(LR + SRV L) + (A (1 h) + (1~ S)hVh(t, L)

+  maxG[m +maxH[c] =0, (10)
Glm = %V”(t,l,h)n202+\/|h(t,l,h)npm7h+r[(afr)\/|(t,l,h), (11)
Hlc = —cM(t,],h)+®(t)U(c), (12)

with the boundary condition

V(t,l,h) — 0, ast — co.

3. Viscosity solution of the problem. Comparison Principle

Definition 3.1. A continuous functioru: Q — R is a viscosity solution of (10) if both conditions are saédfi

e Uis aviscosity subsolutign.e. for anyg € Cz(ﬁ) and any local maximum poim € Qofu— @ holds,
F (20,U(20), D(20), D*p(20)) < O

e U is aviscosity supersolutign.e. for anyg Cz(ﬁ) and any local minimum poirg € Q of u— @ holds,
F (20,u(20), D(20), D?9(20)) > O,

whereF is a left-hand side of (10).

The fact that the value function for a problem of such kindvisaosity solution is well known (see e.g. [8])
and generally holds if the control and state variables aif@umly bounded. However, this is not the case for
the optimal consumption problem and thus a more sophistigatoof is needed. This problem was previously
studied in [10], [9], [22]. The main difficulties in our caserne from the non-exponential time discounting we
are using in the utility functional (9). As we mentioned hbefahis leads to the HIB equation (10) being three
dimensional. This demands additional work. We will concatet on the new results and will omit the details of
the arguments that work in our problem and could be found®h [1

Theorem 3.1. There exists a unique viscosity solution of the correspuneiJB equation (9) if
1. U(c) is strictly increasing, concave and twice differentiabieci
2. im0 P(HE[U(c(t))] =0, P(t) ~ e ¥t or faster as t— oo,
3. U(c) <M(1+4c¢)YwithO< y<land M> 0,
4. lim¢goU’(c) = +oo, lime_,1U’(c) = 0.

The proof of this statement is to be done in three steps. Atviesneed to establish certain properties
of the value-functiorV (t,1,h) that corresponds to our problem. This properties are faxtadland proved in
Lemma 3.2 that follows. Then we show that the value functidh wuch properties is a viscosity solution of
the problem, this is done in Lemma 3.3. The uniqueness ottfigion follows from thecomparison principle
that is actually a very useful tool by itself and is formuthsnd proved in Theorem 3.4.

Lemma 3.2. Under the condition$l) — (4) from Theorem 3.1 the value functiorit\, h) (9) has the following
properties:

(i) V(t,1,h)is concave and non-decreasing in | and in h,
(i) V(t,1,h) is strictly increasing in |,

(iii) V(t,1,h)is strictly decreasing in t starting from some point,
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(iv) 0<V(t,I,h) <O(|I|Y+ |h|Y) uniformly in t.

1. Proof. Let us look on the pointél1,hy) and(l2, hz) with correspondingrz, ¢f) and (75, c5) which are
g-optimal controls in each of this points respectively ormoter words:

+00

V(t,|,h)<E[t

‘D(T)U(CS)dT} +&,

wherel = I1,1, h=hy,h; andc = ¢y, ¢, correspondingly. We choose the pofatci 4 (1— a)c5), where
a € Rand 0< a < 1. The policy(al1+ (1—a)lz, ahy + (1— a)hy) is admissible for this point

V(t,ali+(1—a)ly,ahi+(1—a)hy) > E [ t+m5(r)u(ac§+(l— a)cﬁ)dr} . (13)

The utility function is concave (see conditionflom Theorem 3.1), so we can write

E U:w@(r)u(ac‘?r (1- a)cg)dr} > aE [/t+m¢(r)u(ci)dr] (14)

—+o00
+ (1-a)E

| d)(r)U(ci)dr} > aV(t,l, )+ (1—a)V(t,lz,h) + 2¢.

Now that we have proved the concavity \étt,l,h) in | andh. We can show that it is not decreasing.
Without any loss of generality we can assume that I> andh; < hy. Note that if(75}, c3) is £-optimal
for (I1,hy) it is admissible for(l,, hy) which means that

V(t,11,h) <V (t,12,hp) + ¢,
settinge — 0 we get thaV¥ (t,l, h) is non-decreasing in first two variables. O

2. Proof. To show tha¥ (t,1,h) is strictly increasing in we can assume the contrary. Let us lookat |,
such thaw/(t,11,h) =V (t,l,,h). Since we already know th¥f(t,|,h) is non-decreasing ihthe function
V should be constant on the interVial I,], moreover, sinc¥ is concave in this interval has to be infinite.
This means that there is suththatV(t,l,h) =V (t,lp,h) for anyl > lo. Let (7, cf) be g-optimal for
(ta lo, h)

+oo

V(t,lo,h) <E {
t

D(T)U (cf)dr} +e&. (15)

We denotef;" ®(1)dt asK(t) and look on the inequality

o400

Iy > max(lo,U’l[l/K(t)(E[/t (1)U ()dT] +€)]/r),

whereU ~1 denotes an inverse utility function. The strategy- 0 andc = rl; does not depend on time
but is admissible foft, 11, h). Indeed, due to the fact that the straté@yl1) does not depend on time one

can write .
KMtU(rly) =E { | tD(r)U(rll)dr} < V(t,l,h).

But if we look atK (t)U (rl1) and use the formula fdi given above we get

+oo__
K@tU(rly) > E [ | CD(r)U(cs)dr] +é€,

which is greater or equal ¥(t, lo, h) according to the Equation (15). That givesw(s, lo,h) <V (t,I1,h)
which is a contradiction keeping in mind tHat> lp. So,V is strictly increasing ir. o O
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3. Proof. According to condition 2 from Theorem 3.1 the productigt) andU (c(t)) as well agb(t) itself
should be both decreasing for- T starting from a large enough So we choose two moments of time
t; andty such thatr <t; < tp, At =t —t; and look aVV/ (tp, 1, h) then
V(t,l,h) = [ DU (c)dt =

to t1

P(T+ At)U (Cryar)dT,

since®(t) is decreasing for every> t; and the process; . for T > t; with L(tz) = I,H(tz) = h has
exactly the same realisations@sfor > t; with L(t1) =I,H(t1) = h one can write

(T + AU (Crya)dT < / B(T)U (Crra)dT < V(ts,1,h).
ty

ty
So for anyt; andt, such thatr < t; <ty we getV(t1,1,h) >V(tz,1,h). e O

4. Proof. Instead of the original problem with the non-traded incore@agated byH;,Hy = h one can
consider a fiction consumption-investment problem with ectgd asset on the market, such that has a
sufficient initial endowment (meaning that one can genezaéetly the same income flow &k would
by investing in the market). Suppose the synthetic asseifslgeometrical Brownian motion

d§=ad'S+0'SdW, t>0 =5, §>0, (16)
with constantsr’ and o’ to be defined later. Next, thaitial wealth equivalenbf the stochastic income
is defined by

f(h) = OF, [/ e‘KtEthdt} ,

0

& = exp(—;(9f+ 02) + oW + ezV\42> :

whereb6; = (a —r)/o and6, = (a’ —r)/d’.
It turns out that with the properly choseri ando’ we achieve thaf (h) < C1h. Moreover, the stochastic
income rateH; can be replicated by a self-financing strategy on the compterket(B;,S,S) with

the additional initial endowmertt(h). This fact is well known from the martingale-based studiethe
consumption-investment problem, primarily carried ouli#] and [17].

To finish the proof, we notice that since the stochastic iregan be replicated, any admissible strategy
for the original problem with initial conditiond, h) is dominated by a strategy on the synthetic market
with initial endowment + f(h) < | +Cyh. On the other hand, we have the growth conditionsd¢r)
andU(c). So, the maximal utility is bounded from above by the solutad the classic investment-
consumption problem with initial wealth+ C;h, HARA utility and exponential discounting. Due to
Merton we have a closed form solution for this case. Puttiregyghing together, we obtain the desired
bound (all the further details can be found in [14] and [1@]). O

Now we can prove the existence of the viscosity solution efgfoblem (10).

Lemma 3.3. Under the conditions of Lemma 3.2 the functioft,V, h) is a viscosity solution of (10) on the
domain D= (0, ) x (0,) x (0, c0).

Proof. We again use the reasoning from the proof of Theorem 4.1 ihja®modify it for our case. To show
thatV is a viscosity solution one need to show that it is a viscaomifyersolution and a viscosity subsolution of
the problem.

Let us show at first that (t, 1, h) is a viscosity supersolution for (10). Let us lookgat C?(D) and assume that
(to,lo, ho) € D is a point where a minimum &f — @ is achieved. We can assume thdto, lo, ho) = ¢(to, lo, ho)
andV > ¢ in D without any loss of generality. To show thétis a supersolution we need to check that
F¢|(to,lo, o, 1T,¢) <0, where

1
f[q)] (t07 lo, ho, 71, C) = ﬂ(to, lo, hO) + E”zhg)%h(tm lo, hO) + (I’| o+ 5h0)(ﬂ (t07 lo, hO)
+ (4 —9)hogn(to,lo,ho) + m7§XG[t0, lo, ho, 1] + maxH [to, l0, ho, c],
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with G[r] andH [c] defined in (10).

We consider a locally constant strategw, co) for the period of timef tending to zero. One can take
6 = min{1/n, 7} wheret = inf{t >ty : W = 0} to ensure feasibility of this strategy. Since this strategy
suboptimal we can write (using the dynamic programmingqipie, [12])

to+0 to+6 __
V(to,|0,ho)ZE[/t ¢(t)U(Co)dt+V(Le,He,9)]ZEM ¢<t>U<co>dt+cp<Le,He,e>] 17)

0 0

On the other hand, applyingdlcalculus to the smooth functigmwe can expand

to+06
ELp(6.Lo.Ho)l = 0ltalo.o) +E | [ Dp(s L Ho)ds].
/1o
Substituting into (17) and using standard estimates tomqupiate the terms witlp(s, Is, hs), @ (s,Is, hs), @h(s,1s, hs),
etc. via@(to,lo, ho) +O(s), @ (to,lo, ho) + O(S), @h(to,lo, ho) + O(s) respectively, we obtain the bound

{ 't°+ey[(p](to,|o,ho700>m)} +E [/tow h(s)ds] <0,

Jig fo

with h(s) = O(s). Dividing by E[to+ 6] and taking the limith — o« (so8 — 0 andE {j{oﬁe h(s)ds} — 0) we
get (17) agm, Cp) can be arbitrary admissible pair.
The second part of the proof is to show thdt, |, h) is a subsolution as well. However, the proof of the

second part of Theorem 4.1 in [10] can be applied verbatira kerwe omit further details.
O

The third result that is needed to finalize the proof of Theofel is acomparison principldormulated
below as Theorem 3.4. Results of this type are well-knownenegal for bounded controls, but due to the
unboundness of the controls, classical proofs requiretataps for our case.

Theorem 3.4. (Comparison Principle) Let ut, 1, h) be an upper-semicontinuous concave viscosity subsolution
of (10) on D and \{t,1,h) is a supersolution of (10) on D which is bounded from belovifoumly continuous

on D, and locally Lipschitz in D, such thattyl,h) — 0, V(t,I,h) — 0as t— c and|u(t,l,h)|+ [V (t,],h)| <

O(J1)Y + |h}Y) for large I, h, where0 < y < 1, uniformly in t. Then «< v onD.

Proof. Let us introducex := (I,h), x € R" x R™ to make formulae shorter. Assume for contradiction that
sugtﬁx)eﬁ[u(nx) —V(t,x)] > 0. LetT, — « be an increasing sequence of time momemts; O be a parameter
an
WMt x) = u(t,x) — v(t,x) —m(T, —1).

Sinceu,v — 0 ast — o, for sufficiently largen and sufficiently smalin the maximum of¥™" must occur in an
internal point ofD. So let us assume that> 0 andT, are such that SUP)ep WPmN(x,t) occurs in some point
(to,Xo) With to < Ty Let us define two functions and g

ﬁ(t,X) = U(t,X) - rﬁ(Tn _t)a
4

Y2X 4w + 00+ ) +m(Th—1)

3

wherex = (Ix,h), y= (ly,hy) andA € (y,1), 6,& > 0, w € R? being parameters to be varied later. Finally, we

look at the pointx,y,t) where the following function achieves a maximum
Y(t,xy) = G(t,x) —v(t,y) — @(t, x.y).
Sincet is an interior point we can write
2m=w(t,%) —w(t,y). (18)

On the other hand, one can boundt, x;t) — v (y) merely by and its derivatives which can be written
down explicitly. It appears then, that 8sé, ||m|| — 0 the distancélx—y]| tends to zero and bottt,X), (t,y)
are close tdtp,Xp), so in the limit in terms ofjx—y|| — 0 (18) leads ton < 0 and we get a contradiction. [

pt,xy) =
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4. Homotheticity reduction for utility functions of the HARA type

Though the HIB equation (10) generally fails to have a rédnatith respect to the time variable, it is pos-
sible to reduce its dimension if the utility function is ofttHARA type. In this paper we work just with the

logarithmic utility function. First of all, the logarithmicase allows one to consider time distributions with
subexponential tails, while enjoying the homotheticitduetion available for utility functions of the general

HARA type. Secondly, the logarithmic case could in some sdiesregarded as a limiting of the HARA case
with ytending to zero. This allows to translate all the obtainediits to the general power case of HARA utility

with only straightforward modifications.

Rewriting the HIB equation (10) for the logarithmic utilfiynctionU (c(t)) = logc(t) we get

Vi(t,1,h)  + %nzhzvhh(t,l,h) + (rl + 3V (t,1,h) + (1 — 8)hVk(t,1,h)

+ mT?xG[ni + rp>%xH [c]=0 (19)
Glm = %||(t,l,h)n202+\/|h(t,l,h)r7pnah+rr(or—r)\/|(t,l,h), (20)
Hlc] = —cM(t,],h)+®(t)log(c). (21)

Using the homotheticity of the logarithm and homogeneitytta differential operator applied to the value
function in (19) we rewrit&/ (t,1,h) in the following way

V(t,1,h) =W(t,2) — W1 (t)logh+ Wa(t), (22)

havingz=I/hand¥i(t) = /;° ®(s)dsand¥;(t) to be chosen later.

Remark.The form of the substitution can be defined via Lie group asialgf the given equation. In [4]
such analysis was carried out for a model of illiquidity witlctions. The analysis for the current model with
logarithmic and general HARA-type utility is done in [5].

The Hamiltonian terms mayG[r] and maxH|c] in (19) now become

maxG[m = ﬂrgg;<h[%wzzazrf2+rﬂ(—npa(Wz+zV\éz)+(a—r)Wz)L (23)
mcaxH [ = max[-cW,+®(t)log(c)] + D(t)log(h), (24)

c¢'=c/h
and the optimal policies after formal maximization are

mih) = ha—z<npaz_((a_r>_r,pa)v‘@’z),
()
W,
We rewrite (19) using formulae (23) and (24)
2 2
W w30+ (=0 0 0) ) W)+ A (41— (- &)+ o

(25)

c.(h = h

2
+ mnngWZZUZH’Z + 1 (—NPT(Wo+2Wp) + (a — )WL) | + I’cﬂfg([—c/wz-i-a(t) log(c))] =0.

We provide the formal maximization &f[71] andG|c| and obtain

2
maxH(n — 3 ((np—(a—r)/o)2yL +20p(np— (a—1)/0)W+npAWs)

mcaxG[c} = ®(t) (log®(t) — 1) — P(t) logW.

S0 (19) becomes

2 2 2
W+ Wy (t) + ('72 +(u— 6)) Wi (t) + () (logD(t) — 1) + dp2Wgy— %%
+ d3z2W, + W, — @(t) logW; = O, (26)



L. A. Bordag et al. / International Journal of Engineering and Matlagical Modelling

where
a—r—npo 1 2
d = 92 dz:§l7 (1-p9),
d — 2d2+%(a—r)+r_(u_5). 27)

Now by choosing¥,(t) as a solution of the equation

2
Wh(t) + (—'72 +(u— 6)) Wi(t) +®(t)(log®(t) — 1) =0, Wa(t) — 0,t — oo,
we can cancel out the terms dependent only iorthe equation (26). We arrive at
df (W) =
W — =L oW+ Gz W+ W — (1) logWs = O. (28)
4

5. Bounds for the value function

The main tool we are going to use to obtain the bounds is thepadson principle given by Theorem 3.4. Since
(28) is a two-dimensional PDE and by itself is not a HIB equmtive argue as follows. Any formal sub- or
super- solution of (28) can be transformed to a sub- or sigmution of (19) with a substitution described by
(22). On the other hand, for the HIB equation (19) TheoremaBd.Theorem 3.4 hold and we can obtain a
lower and upper bound. In order to comply with the Definitioh ®&e have to take the equation (28) with the
minus sign.

Determining an upper bound demands specific informatiorhercamulative distribution functiofe(t) of
the liquidation time. In the next Section this issue is adsee specifically for two practically applicable cases
of exponentially and Weibull distributed liquidation tirie

A lower bound, however, could be found without any specifioimation on®(t). Let us look on an
optimal consumption problem without random income. Thia ©assical two dimensional Merton’s problem
for which we can write the HIB equation on the value functiginz). This problem corresponds to (19) but
without any terms, containing the derivatives with respettand with a notatioV — u, | — z

Ut + rluz+ maxG[mj + maxH|c|] = 0, (29)
s c>0

G = %uzz(t,z)n202+ (a —r)ugt, 2),

H[c] = —cu,(t,z) + P(t) log(c). (30)
After the formal maximization, one gets

2 Uzz

We look for a solution in the fornu(t,z) = W1 (t)logz+ ©1(t), where agait¥y(t) = " ®(s)dsandO.(t)
is a solution of

bt rlug— (O’;r>2“§ +®(t) (log®(t) — B(t)) — B(t) logu, = 0.

—r)2 _ _
W, <r+;(aozr) )—CD(CD—IoquJrIoglPl):O. (31)

One can easily check that sualiends to zero uniformly as— o and since the solution of (29) is a lower
bound for our three-dimensional problem we obtain the falhy inequality for the lower bound

Wi(t)logz+ O4(t) <W(zt) =V(t,l,h) — Wilogh+ Wy (1),

or

Wi (t)logl +©4(t) — Wa(t) <V(t,l,h).
In the next Sections we consider specific liquidation timsridiutions. First we take the most simple one -
an exponential distribution. We get asymptotically tigbtuibds for the value function and derivatives, which
lead to asymptotic formulae for the optimal policies. Notpsisingly, in the limit case when the random
income vanishes the value function and optimal policiemade with the classical Merton solution for the
logarithmic case. Another somewhat more complicated cageiWeibull distribution, where the bounds have
no elementary representation, but their asymptotic carebieat! using incomplete gamma functions.

10
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6. The case of exponential distributed liquidation time and logarithmic utility
function

Now we examine the optimal consumption problem introducefibte in the case of the logarithmic utility.
Despite that we know from [10] that the optimal strategy derist and the value function is the viscosity
solution of the HIB equation, it is desirable to have therogtipolicy in the feedback form (25). In a general
situation the feedback optimal policy is hard to establisices the value function is not a priori smooth. On
the other hand, smoothness of the value function simplifiegptoblem so it becomes amenable to standard
verification theorems of optimization theory, see e.g. [12kre we prove that in the case at hand the value
function is twice differentiable. As far as we know this fagas not explicitly addressed before, though the
structure of our proof is similar to the paper [9] where thedsthness was proved for the HARA utility case.
Since the case without stochastic income is known to havesedIform solution and was derived by Merton
[19], it is plausible to consider it as a zero-term approxiora Keeping that in mind, we will rigorously prove
that value function tends to the Merton closed form solutiothe limit of vanishing random income. Recall
the definition of the value function

(1m,0)

V(t,I,h) = maxE Utm e “tlog(c)dt|L(t) =I,H(t) = h] , kK>0. (32)

At first let us note that in the exponential liquidation timistdbution case the problem is homogenous in time.
We introduceV/ (1, h)

V(I,h) = maxE Mm e K0 Iog(c)ds} = maxE Uow eK"Iog(c)dv] ,

(rc) (mc)
which is independent on time. Substituting
V(t,l,h) =e *WV(l,h)

into the HJB equation (10) we arrive at a time-independeri BBV (I,h). With a slight abuse of notation,
hereafter we will use the same lettérffor V. The reduced equation takes the form

%nththa D)+ (11 + SVI(1, 0) + (1 — 8)Vh (1, h) + maxG[m + maxH [c] = kV (1, h),
c>

G[r = }v” (I,h) a2 +Vin(I,hynproh+ ma —r)Vi (1, h), (33)

2
H[c] = —cVi(I,h) +log(c). (34)

Now using substitution (22) witl/, = % and¥, = K—lz(u —0— ”—22) we can argue exactly as in the general
case and represevi{l, h) in the form

2
V(|,h)v(z)+'°Eh+K12<u5”2>, z=1/h, (35)

sov(z) satisfies the ordinary differential equation of second orde
2
%22\/’+ m}gx[;nzoz\/ —n((V+2z¥)npo+(a - r)\/)} + mag([—cszr log(c+ 8)] = kv, (36)
c>—

whereVv = v, and the dimension of the problem is reduced to one. It is itapbto note that such reduction
was possible due to the exponential decay, the homotstlatihe logarithmic function and the linearity of the
control equations, which make the reduction (35) sound.

Assuming thatv is smooth and strictly concave, we perform a formal maxitiizaof the quadratic part
(33) which leads to

2
KW’ = _%(V)2+ 22 + dszW' V' [1+ log(v)] 37)

11
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where agairt;, d, andds are defined in (27).
Coming back to the original variables we obtain the optinwigies in the form

o np, Vi)
() = Grss Tllh) = === —h 2

Summing up, we announce the main result of this Section.

Theorem 6.1. Suppose + (U —0) >0and d # 0.

(38)

(i) There is the unique €0, +) solution \(z) of (37) in a class of concave functions.

(i) Forl,h> 0the value function is given by (35). For=h0,| > 0 the value function V1, 0) coincides with
the classical Merton solution

1 H_}(O{fr)z_K +Iog’((KI):M+Iog’(<KI). (39)

V(I’O):ﬁ 2 o2

(iii) If the ratio between the stochastic income and the total theahds to zero, the policigsr, c*) given by
(38) tend to the classical Merton’s policies

(a—n)V?
a2 W’

¢.(1,0) ~kl, m.(1,0) ~ — (40)

(iv) Policies (38) are optimal.

We have shown that the solution exists and tends to Mertaamwhenh = 0. In the next step we will show
the smoothness of the solution.

6.1 The dual optimization problem and smoothness of the viscosity solution
In this Section we introduce the dual optimization problefthva synthetic asset such that the optimization
equation formally coincides with (37). The regularity oéttual problem proves the regularity of the original
one due to the unigueness of the viscosity solution.

Consider the investment-consumption problem with the thgabbces%; defined by

Z = (dgZ+0d107% —)dt+ oTkdW! +nZy/1— p2dW?,
Zo = z>0, (41)

whered; andds are defined in (27). We define the set of admissible conwf(lz) as the set of pair§r, ¢) such
that there exists an a.s. positive solutignof the stochastic differential equation (4%),> —dé andc andt
satisfy the integrability conditions (3).

The investor wants to maximize the average utility given by

%(c)=E Uom e ¥Tlog(3 + c(1))dT

and the value functiow is defined asv(z) = SUR 0.2 U (c).
The associated HIB equation is reduced to the ODE

KW = thZ2W' 4 max %aznzvx/’ + dlanm/} + dazw + max [—cw +log(c+8)], (42)
s c>—

Next, keeping in minadv' > 0,w” < 0, we can rewrite (42) as
df (w)?
2w

Now, it is easy to see that (42) reduces to (37) assumingufssmooth. Thus, if we prove thatis smooth
and concave, we will get the desired result¥an (36) as well. The possibility to switch back and forth from

+ b Z2W' + d3zw 4 dW — 1 —logw — kw = 0. (43)

12
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V in (34) tov in (36) andw in (42) is guaranteed by the existence and unigueness ofighesity solutions
given by Theorem 3.1. On the other hand, if a function is tHeeséunction for the corresponding optimization
problem, and the HIB equations formally coincide, the valmetions must coincide as well due to uniqueness.
Therefore, it is sufficient to prove thatis smooth.

From the previous Section we already know thd i (0, ) andD = [0, «] the following theorem hold.

Theorem 6.2. The function w is the unique viscosity solution of (42) in DdAhe value function i, h) is the
unique viscosity solution of (35) in BD.

Let us now prove the smoothness of the solution and of its'diesivative.
Theorem 6.3. The function w in (43) is the unique concav&B) solution of (42).
To start with the proof of the theorem we need some expliditniols forw.

Lemma 6.4. The following bounds hold for (&)
Cilog(z4+Cp) <W(2) < (z+Cg)Y, zeQ (44)
for some constants;(3C,,C3 > 0and0< y < 1.

Proof. The function
W™ (2) =C1log(z+C3), z€Q

is a subsolution for (43) as the coefficient of the leadingat@gmic term is negative provided;,C, > 0 are
appropriately chosen. On the other hand, the function

W' (z2) = (z+GC3)¥, zeQ

is a supersolution provided< y < 1 is sufficiently close to 1. Indeed, the leading terr?'isiith the coefficient
—(d2(w)?)/(2w"), which in turn grows as-y/(y— 1) and becomes arbitrarily large gigends to 1.
Thus, the desired bound (44) is a consequence of the corapamimciple formulated in Theorem 3.4. [

Now we can prove Theorem 6.3.

Proof. It is known that uniformly elliptic equations enjoy regtitsr but as before the main obstacle is the lack
of uniform bounds. The main idea of the proof is to approxarthe original problem with a convergent family
of optimization problems such that the approximating eiguatis uniformly elliptic and thus smooth. Then the
smoothness follows from the stability of viscosity soluscand uniqueness.

Step 1.Consider the value function (z) = SUR oyei(n) % (c) for the problem with the additional strategy
constraint—L < 1 < L for almost evenyt. Arguing as in Section 2 we conclude that thatis an increasing
continuous function, which is the unique viscosity solntio

Kwi = da2W + _{r;%él_ %aznzv\/,_’ +dyw] | +dszwf + Crr;%( [—cew +log(c+d)]. (45)
Moreover, the bounds of Lemma 6.4 hold@dog(z+C,) < W-(2) < (z+Cz)Y.

Thus, there exists a concave functigstch thatv. — W, L — oo locally uniformly. Then due to the stability
property and uniqueness of the viscosity solution the fona is a viscosity solution of (42) and thus coincides
with w. Thereforem, — w,L — oo locally uniformly.

Step 2. We claim thatw;_ is a smooth function on an arbitrary interval, z;] such thatzy > 0. Due to
concavity we may assume that derivativggz; ), w (z2) exist. On the one hand the functien is the unique
solution of the boundary problem

1

ku = AU+ max |-o?mu’+diom | +dszd + max [—cu +log(c+d)], (46)
—L<n<L |2 c>-0

Uuz) = wi(z), u(z)=w(z), z¢clzn,z.

On the other hand, according to the general theory of fullglinear elliptic equations of second order of
Bellman type in a compact region, (Ségylov [18]), (45) has a uniqu€? solution in[zy, 2] that coincides with
wi_ andw_is smooth or{z;, z].

13
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Step 3.We show that the constrairtl < 7% < L is superfluous for sufficiently lardeand can be eliminated.
Firstitis clear that due to concavity and monotonicitywpf the condition-L < 7z < L in (45) can be substituted

with 77 < L. Now we prove that
d2(w] )2
sup {_ i( L)FL

7e(z1,2) ZWL/

for sufficiently largeL. Assume the contrary for contradiction. Then there is asecer, € (z1,2), Ln —
such that
d%(W'L(Zn))Z
2w/ (zn)
kwe > 22w — Lo+ dazwf + [6w] —1—logw] ] .

> Lp, (47)

Sincew_ — w and both function are monotone and concave there existassl;,C, such thatC, <
W (z2) <Cp, z€ [z,2)] for all sufficiently largel, and alsanv]’ — 0 asn — . But this contradicts (47) a®,
takes values in a bounded intervahgg(z,) is bounded as well.

Step 4.We are going to show that there is a constént 0 which does not depend dnsuch thaw/(z) <
K, ze [z1,2)]. Arguing again by contradiction suppose there is a sequeneéz;, 2] such thai'(z,) — .
Then analogously to Step 3, the right hand side of (46) grawisftnity sincew| (z) on the interval that is
bounded. At the same time the left hand side stays boundedalseof a continuous function on a bounded
interval.

Step 5. Putting it all together, we have the following chain of ingaltions. The functionss are unique
smooth solutions in the class of concave functions to thentaty problem (46) for some sufficiently large
M > 0. Sincew — w, it follows thatw is the unique viscosity solution of (46) in the class of camcfunctions.
On the other hand, the equation (46) possesses the uniquetssaiution, see [18], which must coincide with
the viscosity solution. Thus is aC2-smooth function oriz;, ] and the claim of the theorem follows since the
interval is arbitrarye O

6.2 Asymptotic behavior of the value function
In this Section we examine the asymptotic behavior of thee/dilinctionV (t,1,h) in (34) and show that as
I/h — o it becomes the classical Merton solution.

Theorem 6.5. There is a positive constant Guch that

M4+ Iog’(<KI) <V(h) <M+ log(k (! :Cléh))

1 1(a—r)?

K2 +2 o?

where M is a constant from the Merton’s formula (39).

Proof. The proof is based on the idea mentioned in Lemma 3.2, butisgkcific exponentially distributed lig-
uidation time case the bounds could be found explicitly. TEfithand inequality is obvious since any strategy
(m,c) for the classical problem withy =1, Ho = 0 is admissible for the problem with any non-zero initial ewd
ment as well. For the right-hand side, let us consider aifictitinvestment-consumption problem without any
stochastic income but with an additional synthetic asstt thie price procesS: d§ = a’§ +o0;§dW, t>0,

§ =9, § > 0 with appropriate constants’ and o’. Next, we define thénitial wealth equivalentof the
stochastic income defined by

Vs(l,h) = O [ /0 e fthdt} ,

&

exp(—;(ef +63)+ oW + 92W> ;
wheref; = (a —r)/o1 andf, = (a’ —r)/07.

As we mention in the proof of Lemma 3.2 (see page 5), by a chobfnice of the constanta’, ¢’ the
stochastic income rate; can be replicated by a self-financing strategy on the compfetrket(B;, S, ) with

14
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the additional initial endowmerft(h) < C10h, see [17], [14] and [10]. Thus, any average utility genetdte
the strategyr, c) € <7(1,h) can be attained in the settings of a classical Merton’s prohtith the initial wealth
I + f(h) <1+Cydh. This actually gives the right-hand bound in Theorem 8.1. O

From this theorem we immediately get th&tl, h) behaves as the classical Merton solution (399 as 0
orl/h— oo,

Corollary 6.6. V5(I,h) converges locally uniformly to Mieg(k!)/k asd — 0.

Corollary 6.7. V(I,h) = M +log(kl)/k +0O(1/z) as z=1/h — . Also for the function \z) we obtain
w(z) = (M —K) + 952 o(1/2).

Proof. Indeed,

V(l,h)—M— Iog}({rd)‘ < ’i (log(k (I +&6C1h)) — Iog(KI))‘ =0 <i> . (48)
The formula immediately follows from the form ¥f(1, h).e O

Finally, we verify that the optimal policies given by (38)asptotically give the Merton strategy (40).

Lemma 6.8. For the value function y&) holds

1 1
V\/(Z)Kz+o(z>, z— o, (49)
Proof. Consider the functiow, defined as
log(A
W (2) = wirg)— 29,

so thatw, solves (42) but with the term
F (wz) = max[—cw; +log(c+ 9)]
c>—-90

replaced by

o
Fy(wy) = Cﬂ@(}\ —cw; + log(c+ X) )

Then, by Corollary 6.6v, converges locally uniformly to the Merton’s value function

v(z) = (M —K)+

log(kz)
P

We note that solves (42) withd = 0 that is delivered b¥ (-) = lim,_, F) (-). Thus, sincev, is concave, the
uniform convergence ofiy to vimplies the convergence of derivatives, so)lin, W, (z2) =V (2) = Kiz Hence,

lim W (1) = lim AV(A) = %

A—o0 A—o0

which proves the lemmas. O

Theorem 6.9. The following asymptotic formulae hold for the optimal pis (38) as z= 1 /h — co.

¢ 1 ™ a-r

TV T e (°0)
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Proof. The formula forc* in (50) immediately follows from Lemma 6.8. For the second pae rewrite (38)

in a form
™ np ki zv(2)

[ o 02z (2)°

To calculate the limit value aPVv’(z) we rewrite (37) as a quadratic equation with respeet{0Sincev,, < 0
we choose the negative root and obtain

—B—+vB?—4AC
TS
where
1
A = énz(l_p)zzza
B = k(zw)—1-(M-C)k+0(1),
K o2

Expanding all constants and usimg, = 1/k + 0(1) we finally get

PVyA(2) =

O

The facts that the solution exists, is unique and smooth givepportunity for numerical calculations.
For example, basing on a script, developeddmdersson, Svensson, Karlsson and Elge [2], with some
modifications and corrections of minor mistakes we can atite solution for the exponential case and compare
it with a two-dimensional Merton solution as shown on theuregl.

7. The case of a Weibull distributed liquidation time and a logarithmic utility
function

One of the most natural ways to extend the framework of a nahddistributed liquidation time described
in the Section 2 is to introduce a distribution with a proliabdensity function that has a local maximum
unlike exponential distribution. It is very natural to expthat the assets of a certain type might have a time-lag
between the moment when the sell offer is opened and a time sdraeone reacts on it. From the practitioner’s
point of view an empirical estimation of such time-lag is &mal measure of illiquidity that can give an insight
into the strategy of a portfolio management. In this Sectierlook closely on a Weibull distribution that has a
local maximum. The Weibull distribution is commonly usedsimvival analysis, in reliability engineering and
failure analysis, and in industrial engineering to deserianufacturing and delivery times. It seems to be quite
adequate for the studied case. We demonstrate that thegaemfamework is applicable for this case, show the
existence and uniqueness of the solution and using a nusthalgorithm generate an insight into how this case
differs from the exponential illiquid and Merton’s absalytliquid cases.

In this Section we will discuss the case when the liquidatiime T is a random Weibull-distributed variable
independent of the Brownian motiof&/*, W?).
The probability density function of the Weibull distribati is

o k t k-1 7(t/)\)k
"’(X’A’k)_A<A) €
ift>0and=0,ift <O.

Let us also introduce as before the cumulative distribufioretion d(x, A, k) = 1— e~/ if t > 0 and
=0, if t < 0 and the survival functio®(t) = 1— ®(t). We will often omit the constant parametérandk in
notations for shortness.

It is important to notice that whek= 1 the Weibull-distribution turns into exponential one,tthhee have
already discussed before and kor 1 its probability density has a local maximum. This situatimrresponds
to our economical motivation.
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The equation (10) is the same as before but the term thatspamels to® is naturally replaced by Weibull
survival function

V(L1 h) + %nzhzvhha,l,h)ﬂrl+h>v|<t,l,h>+<u—6>hvh<t,l,h> (51)
+ mngMJrncnze})xH[c]:O,

Gl = %\/” (t,1,h) 102 +Vin(t,],h)nproh+ m(a — r)Vi(t,1,h), (52)

Hid = —cv(tlh)+e M U(c), (53)

Proposition 7.1. All the conditions of the Theorem 3.1 hold for the case of te#MI distribution with k> 1
and, therefore, there exists a unique solution for the pob(51).

Indeed the conditions. 13. and 4 are not altered since we work with the same logarithmictytdnd one
can easily see that the Weibull cumulative function sagdfie condition 2for the case > 1.

Analogously to the equation (28) one can obtain a two dinteraiequation using a known reduction
z=1/h. We study all the symmetry reductions of this model for thpamential and Weibull case in [5]. Yet
here let us just list a two dimensional equation that cowrdp to the Weibull case

d? (W)
2 Wy
whered;, d> andds correspond to the constants for the general case (27).

The functionWy(t) = [ ®(s)dscan be defined explicitly a¥(t) = 4T (%, (%)k) whererl (a,x) is an
incomplete gamma function. For this function we can use #nes representation by Laguerre polynomials

and asymptotic representation [1], [15].
The lower bound foW(z,t) can be found exactly as in Section 5

W(zt) =V (t,l,h) —Wilogh— W,(t) > W1 (t)logz+ (O(t) — Wa(t)),

where the behavior of the functiotlg, W, and® byt — c can be now well defined.
The equation??) for the auxiliary functior¥,(t) takes the form

2 K
/ s\ A (L (/A _
v+ (T +w-9) 5 (5 () )~ M war - (55)
Wy(t) — 0,t — oo,
The solution for this equation can be found explicitly

Wy(t) = — ('722 + (1 — 6)> %r (i (/t\)k) +e*(%)k ((;)k+1) (56)

Equation (31) fol© is now

: L@—rP?\NA (L N\ a /A _
6+<r+2 52 kr k’()\) e (e” +(t/A)*+logA —logk

+ logl (i, ()t‘)k)) =0. (57)

And one can find an explicit solution for it as well
k A_ (1 /t\K
>4 (L Ar(i(t
i) (e ())))

_(pp @EDENAL (LN (0 (e
o) = (r+ 552 kr k’(/\) +e \%) (e
Since% > 0 we can show that asymptotically as» e

Wit) — )‘—kk(t)1*‘<e*<t/">k (1+o (t*")) ,

W) —pte U (140(tY), k>

A=K ik (k—1)kA -
- (t/3) k K
o) e (1+ P |nt+o(t ))

W — + 0o 2W,+ A3z + SW, — e~ /1) Jogwg, = 0, (54)

>
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It follows from the asymptotic behavior that the value fuatin (51) tends to zero faster than*t and
consequently Theorem 3.1 is applicable for the Weibulfrittisted liquidation time.

On the Figure 1 one can see the results of the numerical siowlf@r consumption and investment strate-
gies that we run for a Weibull and exponential case. As tharpaterk that is responsible for the form of
Weibull distribution increases the optimal policies diffégnificantly from the exponential liquidation time
case. Az increases, i.e. the illiquid part of the portfolio becomesuifficiently small, we can see that all the
policies tend to one solution which is, in fact, a Merton siolu for a two-asset problem derived in [19].

0,25
(5]
X
[9)
[0}
=]
(7]
==C, Weibull, k=2
£ 0,2
L)
2
=+=Pj i =
- Pi, Weibull, k=2
c
©
S 0,15
~ C, Weibull, k=1,1
T
[J]
E —
2 8 +-Pi, Weibull, k=1,1
£ 01
Qo
® - - _
s C, Weibull, k=1,3
o
© P—-
s 005
2 ' ~Pi, Weibull, k=1,3
=]
g
-
o C, Exponent
[J]
& 0
©
£ N WM WMWOWOMLWOILWOILUOIWINIININIWNNILWOIOLWGLWDLWGLW LW LW LN
v AN AN AN NN AN NN NN NN :
NSO MNNANOASNOTOMOWANNCHWOO W Pi, Exponent
dTAd N NMNMSETITODNDNDOONNOWONOD O
z=l/h

Figure 1. Consumption stream c and the share of liquid capitatored in a risky asset depending on the ratio
between the liquid and illiquid asset. As illiquid assetwsbecomes infinitely small the policies tend to Merton
policies for a two-asset problem. We used the following peaters for assets+ 0.01,0 = 0.5,6 = 0.02 p =
0.4, =0.05n=03andA =2

It is especially important to note that the optimal policggnificantly differ from Merton solution when
illiquidity becomes higher. Already when an amount of illiq asset is more than 5% of the portfolio value the
percentage of capital that is not invested in a risky stod¢ligher than in Merton model.

8. Conclusion

We have proposed a framework with which one can obtain a nesment strategy for a portfolio that consists

of a liquid riskless and liquid risky assets and of an illdjasset. We suppose that illiquid asset is liquidated in
a random moment of time that has a prescribed distributioThieorem 3.1 we have proved the existence and
unigueness of the solution for a variety of the portfolioigptation problems. We have applied the obtained
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theorem to two different cases of exponential and Weibgtliiation time distributions. For the exponentially
distributed random liquidation time but for existence amiqjueness we have proved the smoothness of the
solution and found a lower and upper bound. For the Weibattithuted liquidation time with parametkr> 1

we have demonstrated the applicability of a general The@dnthat proves the existence and uniqueness of a
viscosity solution and also found a lower and upper boundtfdie have also demonstrated numerically that
the resulting strategies for such portfolio differ from thierton case yet tend to it when illiquidity becomes
infinitely small.
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