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ABSTRACT

Management of the portfolios containing low liquidity assets is a tedious problem.
The buyer proposes the price that can differ greatly from thepaper value estimated
by the seller, so the seller can not liquidate his portfolio instantly and waits for a more
favorable offer. To minimize losses and move the theory towards practical needs one
can take into account the time lag of the liquidation of an illiquid asset. Working
in the Merton’s optimal consumption framework with continuous time we consider
an optimization problem for a portfolio with an illiquid, a risky and a risk-free asset.
While a standard Black-Scholes market describes the liquid part of the investment
the illiquid asset is sold at an exogenous random moment withprescribed liquidation
time distribution. The investor has the logarithmic utility function as a limit case of a
HARA-type utility. Different distributions of the liquidation time of the illiquid asset
are under consideration - a classical exponential distribution and Weibull distribution
that is more practically relevant. Under certain conditions we show the existence
of the viscosity solution in both cases. Applying numericalmethods we compare
classical Merton’s strategies and the optimal consumption-allocation strategies for
portfolios with different liquidation time distributionsof an illiquid asset.
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1. Introduction
Financial crises of 2008 helped practitioners to understand the difficulties connected with a management of
portfolios with illiquid assets and showed a significant need for solid mathematical models addressing this
problem. Though financial institutes deal with illiquid assets on a regularly basis there is no general framework
for such portfolios especially if they provide stochastic incomes or down payments.

The most challenging task one faces defining such framework is to incorporate the illiquidity in a math-
ematically tractable way. Intuitively it is clear which of the assets we would call liquid, yet there is still no
widely accepted way of defining illiquidity of an asset as a measurable parameter. The mathematically correct
definition, being a problem itself, is not the biggest challenge in this area. The exact formulation of the goals of
the portfolio optimization is even more tedious, since illiquidity is usually connected with different sale mech-
anisms and with an essential liquidation lag-time. The stochastic processes that describe such effects are not
studied profoundly in financial mathematics. Now let us givea brief overview of the models that are relevant to
this paper.

In 1993Duffie and Zariphopoulouin [10] develop the framework of the optimal consumption forthe contin-
uous time model, proposed byMerton, [19]. They considered an infinite time horizon and proved the existence
and uniqueness of the viscosity solution of the associated HJB equation for the class of concave utility func-
tionsU(c) satisfying the following conditions:U in c is strictly concave;C2(0,+∞), U(c)≤ M(1+c)γ , with
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0< γ < 1,M > 0; U(0)≥ 0, lim
c→0

U ′(c) = +∞, lim
c→∞

U ′(c) = 0.

Later, in 1997, in [9] an extended problem of hedging in incomplete markets with hyperbolic absolute
risk aversion (so called HARA) utility function was studied. Here the stochastic income cannot be replicated
by trading available securities. An investor receives stochastic income in momentt at a rateYt , wheredYt =
µYtdt+ηYtdW1

t , t ≥ 0,Y0 = y, y ≥ 0 andµ ,η > 0− consthereW1 is a standard Brownian motion. The
riskless bank account has a constant continuously compoundinterest rater. A traded security has a priceS
given by dSt = αStdt + σSt(ρdW1

t +
√

1−ρ2dW2
t ), α, σ > 0− const andW2 is an independent standard

Brownian motion,ρ ∈ (−1,1) is a correlation between price processesSt andYt . The investor utility function

for consumption processct is given byU (c(t)) = E

[

∫ ∞

0
e−κtU(c(t))dt

]

, U(c(t)) = c(t)γ , whereγ ∈ (0,1)

andκ is a discount factorκ > r. The investors wealth processL evolvesdLt = [rLt +(α +δ − r)πt −ct +Yt ]dt+
σπt(ρdW1

t +
√

1−ρ2 dW2
t ), t ≥ 0,L0 = l , whereδ could be regarded as the dividends payed constantly from

an illiquid asset or as the possession costs,l is an initial wealth endowment andπt represents an investment in
the risky assetS, with the remaining wealth held in riskless borrowing or lending. The goal is to characterize
an investor value functionV(l ,y) = sup

(π,c)∈A (l ,y)
U (C). The setA (l ,y) is a set of admissible controls(π,c) such

thatLt ≥ 0.
Remark.The notation of the strategy(π,c) is standard for the problems of such kind. Throughout this paper

we will denote the amount of the investment in a liquid risky asset asπ and investor’s consumption asc. Both
controls do depend on time, so to emphasize it to the reader wemight also use(π(t),c(t)) or even(πt ,ct) from
time to time.

The authors in [9] proved the smoothness of the viscosity solution of the associated Hamilton-Jacobi-
Bellman (HJB) equation in the case of the HARA utility function and the infinite time horizon. This proof
heavily relies on a reduction of the initial HJB equation to an ODE. After this reduction the main result follows
from the uniform convergence of the classical solution of a uniformly elliptic equation to the viscosity solution,
which is unique.

It is important to mention that the authors use the discount factore−κt in (1) as a technical factor which
is not related to stochastic income. The economical settingdoes not imply any liquidation of an illiquid asset
which provides stochastic incomeYt .

Schwarz and Tebaldiin [21] broadened a model of random income proposed before. They assumed that
the non-traded illiquid asset generates a flow of random income in the form of dividends, until it is sold at a
fixed moment of time. The authors define illiquid asset as an asset that can not be sold neither piece by piece
nor at once before the investment’s horizon, denoted asT, which is a fixed deterministic value at which the
asset generates a random cash-flow equal to its’ paper-valueat this momentT (the cash-flow is denoted asHT ).
With this economical reasoning behind it this model of illiquidity looks rather promising yet needs a more exact
qualitative and quantitive description. In this particular paper we will talk about a further improvement of this
framework, especially, weakening the trading conditions for an illiquid asset that can move a model closer to
the practical needs.

One of the possible extensions of this problem was done byAng, Papanikolaou and Westerfeldin [3]. They
considered exactly the same model as in [21]. However, they assumed that an illiquid asset can be traded but only
at infrequent, stochastic moments of time and thus the wholethree-asset portfolio could be rebalanced. With a
series of numerical calculations they provide an intuitionof the influence of illiquidity on the marginal utility of
the investor. The authors numerically study the cases when amount of the illiquid wealth is significantly bigger
than the amount of the liquid capital and comparing it with the opposite case (insignificantly small amount of
illiquid wealth) they show that the effects of the asset being illiquid may cause unbounded deviations from the
Merton solution.

In 2008He [13] proposed a model with the same set-up but different constraints on illiquid asset. While
the investor can instantaneously transfer funds from the liquid to the illiquid asset, the vice versa transaction is
allowed only in exponentially distributed moments of time.The author finds an approximate numerical solution
of the problem for the constant risk-aversion (CARA) utility function.

Industry is highly interested in feasible illiquidity models. The practitioners constantly state that portfolios
that include illiquid assets have a heavily time-dependentbehavior (see, for example, [7]). There were several
attempts made in this direction. In [16], for example, the authors use endogenous random time horizon and
demonstrate that a standard optimization problem with an endogenous stopping time differs from classical
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Metron case. However, in this paper we focus on the time-horizon is an exogenous random variable. We would
like to note is that the set-up with exogenous time is actually economically motivated. For example, standard
inheritance procedures in several EU countries assume thatthe illiquid assets are sold and the cash is then
divided between the heirs. Naturally the sale occurs in a random moment of time and the inheritance manager
splits the cash between the heirs immediately after the sale. Another example of an exogenous liquidation
time that justifies our model are shares-for-the-loan auctions. This phenomenon is typical for the the emerging
markets where governmentally owned businesses are at some point privatized fully or partially. For example, it
was very typical for a post-soviet markets in their transition period and is still relevant for a number of states in
the Eastern Europe.

We develop a connection between the model of illiquidy [21] and the optimal consumption problem with
an undiversifiable future income. We substitute the somewhat artificial constraint that the liquidation timeT is
fixed from very beginning with the assumption that it is stochastically distributed exogenous time. We formulate
the problem for a general case with an arbitrary liquidationtime distribution and some utility functions in the
next Section and in the Section 5 we find the bounds for the value function. In the Section 6 and Section 7 we
investigate two special cases with logarithmic utility function and two liquidation time distributions: exponen-
tial and the Weibull distribution. One of the important contributions of this paper is that using the technique
of the viscosity solutions we show the existence and uniqueness of the solution of the HJB equation that cor-
responds to the case of Weibull-distribution which probability density function under certain conditions has a
local maximum. This situation corresponds to a measurable time-lag between the sell-offer and an actual deal.
Strong stability of the viscosity solutions allows to get numerical approximations with a range of monotone and
consistent schemes, for example, as it was done byMunk in [20].

Remark. The idea to work with a non-exponential discounting is not new, for exampleIvar Ekelnadin [11]
has show the possibility to work with different discountingfactors, however to our knowledge the idea of a
different discounting in a framework of illiquidity was never proposed before.

2. Economical setting

We assume that the investor’s portfolio includes a risklessbond, a risky asset and a non-traded asset that gener-
ates stochastic income i.e. dividends. However, in contrast with the previous works we replace the liquidation
time that was deterministic before with a stochastically distributed timeT. A risk-free bank accountBt with the
interest rater and a stock priceSt follow

dBt = rBtdt, dSt = St(αdt+σdW1
t ), t ≤ T (1)

wherer is assumed to be constant, the continuously compounded rateof returnα > r and the standard deviation
σ , r,α,σ −const. An illiquid assetHt that can not be traded up to the timeT and which paper value is correlated
with the stock price and follows

dHt

Ht
= (µ −δ )dt+η(ρdW1+

√

1−ρ2dW2), t ≤ T. (2)

whereµ is the expected rate of return of the risky illiquid asset,(W1,W2) are two independent standard Brown-
ian motions,δ is the rate of dividend paid by the illiquid asset,η is the continuous standard deviation of the rate
of return, andρ ∈ (−1;1) is the correlation coefficient between the stock index and the illiquid risky asset. The
parametersµ , δ , η , ρ are all assumed to be constant. The liquidation timeT is a random-distributed continuous
variable which does not depend on the Brownian motions(W1,W2). The probability density function ofT
distribution is denoted byφ(t) whereasΦ(t) denotes the cumulative distribution function, andΦ(t) the survival
function also known asa reliability functionΦ(t) = 1−Φ(t). We omit here the explicit notion of the possible
parameters of distribution in order to make the formulae shorter.

Given the filtration{Ft} generated by the Brownian motionW= (W1,W2) we assume that the consumption
process is an element of the spaceL+ of non-negative{Ft}-progressively measurable processesct such that

E

(

∫ s

0
c(t)dt

)

< ∞, s∈ [0,T]. (3)
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The investor wants to maximize the average utility consumedup to the time of liquidation, given by

U (c) := E

[

∫ T

0
U(c(t))dt

]

. (4)

Here we usedE to indicate that we are averaging over all random variables.The wealth processLt is the sum of
cash holdings in bonds, stocks andrandomdividends from the non-traded asset minus the consumption stream.
Thus, we can write

dLt = (rLt +δHt +πt(α − r)−ct)dt+πtσdW1
t . (5)

The set of admissible policies is standard and consists of investment strategies(πt ,ct) such that

1. ct belongs toL+,

2. πt is {Ft}-progressively measurable and
∫ s
t (πτ)

2dτ < ∞ a.s. for anyt ≤ τ ≤ T,

3. Lt , defined by the stochastic differential equation (5) and initial conditionsLt = l > 0, Ht = h > 0 a.e.
(t ≤ T).

We claim that one can explicitly average (4) overT and with the certain conditions posed onΦ andU(c)
the problem (4) is equivalent to the maximization of

U (c) := E

[

∫ ∞

0
Φ(t)U(c(t))dt

]

, (6)

whereE is an expectation over space coordinates excludingT.
Remark.It is important to note, that ifT is exponentially distributed we getpreciselythe problem of optimal

consumption with random income that was studied in [9] and already discussed in introduction.
We demonstrate here a formal derivation of the equivalence between two optimal problems briefly men-

tioned by Merton in [19].

Proposition 2.1. The problems (4) and (6) are equivalent provided

lim
t→∞

Φ(t)E [U(c(t)] = 0. (7)

Proof. We have

E

[

∫ T

0
U(c(t))dt

]

=
∫ ∞

0
φ(T)E

[

∫ T

0
U(c(t))dt

]

dT =
∫ ∞

0

∫ T

0
φ(T)g(t)dTdt, (8)

whereg(t) = E[U(c(t)]. Because of the absolute convergenceE

[

∫ T
0 U(c(t))dt

]

=
∫ T

0 g(t)dt and integrating (8)

by parts we get

∫ ∞

0

∫ T

0
φ(T)g(t)dTdt= Φ(T)

∫ T

0
g(t)dt

∣

∣

∞
0 +

∫ ∞

0
Φ(t)g(t)dt = E

[

∫ ∞

0
Φ(t)U(c(t))dt

]

,

where we used the condition (7) to eliminate the first term, and the absolute convergence of the integral to move
the expectation out.•

Remark. In the majority of the models consumptionc(t) is bounded as time goes to infinity. For all these
models condition (7) is satisfied automatically. Yet if one regards absolute values of consumption and it grows
as time goes to infinity this constraint is needed.

From now on in this paper we will work with the problem (4) withrandom liquidation timeT that has
a distribution satisfying the condition (7) in Proposition2.1 and, therefore, corresponds to thevalue function
V(t, l ,h) which is defined as

V(t, l ,h) = max
(π,c)

E

[

∫ ∞

t
Φ(τ)U(c(τ))dτ |L(t) = l ,H(t) = h

]

. (9)

4



L. A. Bordag et al. / International Journal of Engineering and Mathematical Modelling

For the value function we can derive a HJB equation on which wefocus in this paper

Vt(t, l ,h) +
1
2

η2h2Vhh(t, l ,h)+(rl +h)Vl (t, l ,h)+(µ −δ )hVh(t, l ,h)

+ max
π

G[π]+max
c≥0

H[c] = 0, (10)

G[π] =
1
2

Vll (t, l ,h)π2σ2+Vlh(t, l ,h)ηρπσh+π(α − r)Vl (t, l ,h), (11)

H[c] = −cVl (t, l ,h)+Φ(t)U(c), (12)

with the boundary condition

V(t, l ,h)→ 0, ast → ∞.

3. Viscosity solution of the problem. Comparison Principle

Definition 3.1. A continuous functionu : Ω → R is a viscosity solution of (10) if both conditions are satisfied

• u is aviscosity subsolution, i.e. for anyφ ∈C2(Ω̄) and any local maximum pointz0 ∈ Ω̄ of u−φ holds,

F(z0,u(z0),Dφ(z0),D
2φ(z0))≤ 0

• u is aviscosity supersolution, i.e. for anyφ ∈C2(Ω̄) and any local minimum pointz0 ∈ Ω̄ of u−φ holds,

F(z0,u(z0),Dφ(z0),D
2φ(z0))≥ 0,

whereF is a left-hand side of (10).

The fact that the value function for a problem of such kind is aviscosity solution is well known (see e.g. [8])
and generally holds if the control and state variables are uniformly bounded. However, this is not the case for
the optimal consumption problem and thus a more sophisticated proof is needed. This problem was previously
studied in [10], [9], [22]. The main difficulties in our case come from the non-exponential time discounting we
are using in the utility functional (9). As we mentioned before, this leads to the HJB equation (10) being three
dimensional. This demands additional work. We will concentrate on the new results and will omit the details of
the arguments that work in our problem and could be found in [10].

Theorem 3.1. There exists a unique viscosity solution of the corresponding HJB equation (9) if

1. U(c) is strictly increasing, concave and twice differentiable in c,

2. limt→∞ Φ(t)E[U(c(t))] = 0, Φ(t)∼ e−κt or faster as t→ ∞,

3. U(c)≤ M(1+c)γ with 0< γ < 1 and M> 0,

4. limc→0U ′(c) = +∞, limc→+∞U ′(c) = 0.

The proof of this statement is to be done in three steps. At first we need to establish certain properties
of the value-functionV(t, l ,h) that corresponds to our problem. This properties are formulated and proved in
Lemma 3.2 that follows. Then we show that the value function with such properties is a viscosity solution of
the problem, this is done in Lemma 3.3. The uniqueness of thissolution follows from thecomparison principle
that is actually a very useful tool by itself and is formulated and proved in Theorem 3.4.

Lemma 3.2. Under the conditions(1)− (4) from Theorem 3.1 the value function V(t, l ,h) (9) has the following
properties:

(i) V(t, l ,h) is concave and non-decreasing in l and in h,

(ii) V(t, l ,h) is strictly increasing in l,

(iii) V(t, l ,h) is strictly decreasing in t starting from some point,

5
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(iv) 0 ≤V(t, l ,h)≤ O(|l |γ + |h|γ) uniformly in t.

1. Proof. Let us look on the points(l1,h1) and(l2,h2) with corresponding(πε
1 ,c

ε
1) and(πε

2 ,c
ε
2) which are

ε-optimal controls in each of this points respectively or in another words:

V(t, l ,h)≤ E

[

∫ +∞

t
Φ(τ)U(cε)dτ

]

+ ε ,

wherel = l1, l2, h= h1,h2 andc= c1,c2 correspondingly. We choose the point(αcε
1+(1−α)cε

2), where
α ∈ R and 0< α < 1. The policy(α l1+(1−α)l2,αh1+(1−α)h2) is admissible for this point

V(t,α l1+(1−α)l2,αh1+(1−α)h2)> E

[

∫ +∞

t
Φ(τ)U(αcε

1+(1−α)cε
2)dτ

]

. (13)

The utility function is concave (see condition 1. from Theorem 3.1), so we can write

E

[

∫ +∞

t
Φ(τ)U(αcε

1+(1−α)cε
2)dτ

]

> αE

[

∫ +∞

t
Φ(τ)U(cε

1)dτ
]

(14)

+ (1−α)E

[

∫ +∞

t
Φ(τ)U(cε

2)dτ
]

> αV(t, l1,h1)+(1−α)V(t, l2,h2)+2ε .

Now that we have proved the concavity ofV(t, l ,h) in l andh. We can show that it is not decreasing.
Without any loss of generality we can assume thatl1 6 l2 andh1 6 h2. Note that if(πε

1 ,c
ε
1) is ε-optimal

for (l1,h1) it is admissible for(l2,h2) which means that

V(t, l1,h1)6V(t, l2,h2)+ ε ,

settingε → 0 we get thatV(t, l ,h) is non-decreasing in first two variables.•

2. Proof. To show thatV(t, l ,h) is strictly increasing inl we can assume the contrary. Let us look atl1 < l2
such thatV(t, l1,h) =V(t, l2,h). Since we already know thatV(t, l ,h) is non-decreasing inl the function
V should be constant on the interval[l1, l2], moreover, sinceV is concave inl this interval has to be infinite.
This means that there is suchl0 thatV(t, l ,h) = V(t, l0,h) for any l > l0. Let (πε ,cε) be ε-optimal for
(t, l0,h)

V(t, l0,h)≤ E

[

∫ +∞

t
Φ(τ)U(cε)dτ

]

+ ε . (15)

We denote
∫ +∞
t Φ(τ)dτ asK(t) and look on the inequality

l1 > max(l0,U
−1[1/K(t)(E[

∫ +∞

t
Φ(τ)U(cε)dτ ]+ ε)]/r),

whereU−1 denotes an inverse utility function. The strategyπ = 0 andc= rl1 does not depend on time
but is admissible for(t, l1,h). Indeed, due to the fact that the strategy(0, rl1) does not depend on time one
can write

K(t)U(rl1) = E

[

∫ +∞

t
Φ(τ)U(rl1)dτ

]

6V(t, l1,h).

But if we look atK(t)U(rl1) and use the formula forl1 given above we get

K(t)U(rl1)> E

[

∫ +∞

t
Φ(τ)U(cε)dτ

]

+ ε ,

which is greater or equal toV(t, l0,h) according to the Equation (15). That gives usV(t, l0,h)<V(t, l1,h)
which is a contradiction keeping in mind thatl1 > l0. So,V is strictly increasing inl . •

6
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3. Proof. According to condition 2 from Theorem 3.1 the product ofΦ(t) andU(c(t)) as well asΦ(t) itself
should be both decreasing fort > τ starting from a large enoughτ. So we choose two moments of time
t1 andt2 such thatτ < t1 < t2, ∆t = t2− t1 and look atV(t2, l ,h) then

V(t2, l ,h) =
∫ ∞

t2
Φ(t)U(ct)dt

τ=t−∆t
=

∫ ∞

t1
Φ(τ +∆t)U(cτ+∆t)dτ ,

sinceΦ(t) is decreasing for everyt > t1 and the processcτ+∆t for τ ≥ t1 with L(t2) = l ,H(t2) = h has
exactly the same realisations ascτ for τ ≥ t1 with L(t1) = l ,H(t1) = h one can write

∫ ∞

t1
Φ(τ +∆t)U(cτ+∆t)dτ <

∫ ∞

t1
Φ(τ)U(cτ+∆t)dτ 6V(t1, l ,h).

So for anyt1 andt2 such thatτ < t1 < t2 we getV(t1, l ,h)>V(t2, l ,h). •

4. Proof. Instead of the original problem with the non-traded income generated byHt ,H0 = h one can
consider a fiction consumption-investment problem with a special asset on the market, such that has a
sufficient initial endowment (meaning that one can generateexactly the same income flow asHt would
by investing in the market). Suppose the synthetic asset follows geometrical Brownian motion

dS′t = α ′S′t +σ ′S′tdWt , t ≥ 0 S′0 = s′, s′ > 0, (16)

with constantsα ′ andσ ′ to be defined later. Next, theinitial wealth equivalentof the stochastic income
is defined by

f (h) = δEh

[

∫ ∞

0
e−κtξtHtdt

]

,

ξt = exp

(

−1
2
(θ 2

1 +θ 2
2 )+θ1W

1
t +θ2W

2
t

)

,

whereθ1 = (α − r)/σ andθ2 = (α ′− r)/σ ′.

It turns out that with the properly chosenα ′ andσ ′ we achieve thatf (h)<C1h. Moreover, the stochastic
income rateHt can be replicated by a self-financing strategy on the complete market(Bt ,St ,S′t) with
the additional initial endowmentf (h). This fact is well known from the martingale-based studies of the
consumption-investment problem, primarily carried out in[14] and [17].

To finish the proof, we notice that since the stochastic income can be replicated, any admissible strategy
for the original problem with initial conditions(l ,h) is dominated by a strategy on the synthetic market
with initial endowmentl + f (h) < l +C1h. On the other hand, we have the growth conditions forΦ(t)
andU(c). So, the maximal utility is bounded from above by the solution of the classic investment-
consumption problem with initial wealthl +C1h, HARA utility and exponential discounting. Due to
Merton we have a closed form solution for this case. Putting everything together, we obtain the desired
bound (all the further details can be found in [14] and [10]).•

Now we can prove the existence of the viscosity solution of the problem (10).

Lemma 3.3. Under the conditions of Lemma 3.2 the function V(t, l ,h) is a viscosity solution of (10) on the
domain D= (0,∞)× (0,∞)× (0,∞).

Proof. We again use the reasoning from the proof of Theorem 4.1 in [10] but modify it for our case. To show
thatV is a viscosity solution one need to show that it is a viscositysupersolution and a viscosity subsolution of
the problem.
Let us show at first thatV(t, l ,h) is a viscosity supersolution for (10). Let us look atφ ∈C2(D) and assume that
(t0, l0,h0) ∈ D is a point where a minimum ofV −φ is achieved. We can assume thatV(t0, l0,h0) = φ(t0, l0,h0)
andV > φ in D without any loss of generality. To show thatV is a supersolution we need to check that
F [φ ](t0, l0,h0,π,c)≤ 0, where

F [φ ](t0, l0,h0,π,c) = φt(t0, l0,h0)+
1
2

η2h2
0φhh(t0, l0,h0)+(rl0+δh0)φl (t0, l0,h0)

+ (µ −δ )h0φh(t0, l0,h0)+max
π

G[t0, l0,h0,π]+max
c

H[t0, l0,h0,c],

7
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with G[π] andH[c] defined in (10).
We consider a locally constant strategy(π0,c0) for the period of timeθ tending to zero. One can take

θ = min{1/n,τ} whereτ = inf{t ≥ t0 : Wt = 0} to ensure feasibility of this strategy. Since this strategyis
suboptimal we can write (using the dynamic programming principle, [12])

V(t0, l0,h0)≥ E

[

∫ t0+θ

t0
Φ(t)U(c0)dt+V(Lθ ,Hθ ,θ)

]

≥ E

[

∫ t0+θ

t0
Φ(t)U(c0)dt+φ(Lθ ,Hθ ,θ)

]

. (17)

On the other hand, applying Itô calculus to the smooth functionφ we can expand

E[φ(θ ,Lθ ,Hθ )] = φ(t0, l0,h0)+E

[

∫ t0+θ

t0
Dφ(s,Ls,Hs)ds

]

.

Substituting into (17) and using standard estimates to approximate the terms withφ(s, ls,hs), φl (s, ls,hs), φh(s, ls,hs),
etc. viaφ(t0, l0,h0)+O(s), φl (t0, l0,h0)+O(s), φh(t0, l0,h0)+O(s) respectively, we obtain the bound

E

[

∫ t0+θ

t0
F [φ ](t0, l0,h0,c0,π0)

]

+E

[

∫ t0+θ

t0
h(s)ds

]

≤ 0,

with h(s) = O(s). Dividing by E[t0+θ ] and taking the limitn→ ∞ (soθ → 0 andE
[

∫ t0+θ
t0

h(s)ds
]

→ 0) we

get (17) as(π0,c0) can be arbitrary admissible pair.
The second part of the proof is to show thatV(t, l ,h) is a subsolution as well. However, the proof of the

second part of Theorem 4.1 in [10] can be applied verbatim here so we omit further details.•

The third result that is needed to finalize the proof of Theorem 3.1 is acomparison principleformulated
below as Theorem 3.4. Results of this type are well-known in general for bounded controls, but due to the
unboundness of the controls, classical proofs require adaptations for our case.

Theorem 3.4. (Comparison Principle) Let u(t, l ,h) be an upper-semicontinuous concave viscosity subsolution
of (10) on D and V(t, l ,h) is a supersolution of (10) on D which is bounded from below, uniformly continuous
on D, and locally Lipschitz in D, such that u(t, l ,h)→ 0, V(t, l ,h)→ 0 as t→ ∞ and |u(t, l ,h)|+ |V(t, l ,h)| ≤
O(|l |γ + |h|γ) for large l,h, where0< γ < 1, uniformly in t. Then u≤ v onD.

Proof. Let us introducex := (l ,h), x ∈ R
+ ×R

+ to make formulae shorter. Assume for contradiction that
sup(t,x)∈D[u(t,x)−v(t,x)] > 0. LetTn → ∞ be an increasing sequence of time moments,m> 0 be a parameter
and

Ψm,n(t,x) = u(t,x)−v(t,x)−m(Tn− t).

Sinceu,v→ 0 ast → ∞, for sufficiently largen and sufficiently smallm the maximum ofΨm,n must occur in an
internal point ofD. So let us assume that ¯m> 0 andTn are such that sup(x,t)∈D Ψm̄,n(x, t) occurs in some point
(t0,x0) with t0 < Tn. Let us define two functions ˜u andφ

ũ(t,x) = u(t,x)− m̄(Tn− t),

φ(t,x,y) =

∣

∣

∣

∣

y−x
ξ

−4ϖ
∣

∣

∣

∣

4

+θ(lx+hx)
λ + m̄(Tn− t)

wherex= (lx,hx), y= (ly,hy) andλ ∈ (γ ,1), θ ,ξ > 0, ϖ ∈ R
2
+ being parameters to be varied later. Finally, we

look at the point(x̄, ȳ, t̄) where the following function achieves a maximum

ψ(t,x,y) = ũ(t,x)−v(t,y)−φ(t,x,y).

Sincet̄ is an interior point we can write

2m̄= ut(t̄, x̄)−vt(t̄, ȳ). (18)

On the other hand, one can boundut(t̄, x̄, t̄)− vt(ȳ) merely byφ and its derivatives which can be written
down explicitly. It appears then, that asθ ,ξ ,‖ϖ‖ → 0 the distance‖x̄− ȳ‖ tends to zero and both(t̄, x̄), (t̄, ȳ)
are close to(t0,x0), so in the limit in terms of‖x̄− ȳ‖→ 0 (18) leads to ¯m≤ 0 and we get a contradiction.•

8
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4. Homotheticity reduction for utility functions of the HARA type

Though the HJB equation (10) generally fails to have a reduction with respect to the time variable, it is pos-
sible to reduce its dimension if the utility function is of the HARA type. In this paper we work just with the
logarithmic utility function. First of all, the logarithmic case allows one to consider time distributions with
subexponential tails, while enjoying the homotheticity reduction available for utility functions of the general
HARA type. Secondly, the logarithmic case could in some sense be regarded as a limiting of the HARA case
with γ tending to zero. This allows to translate all the obtained results to the general power case of HARA utility
with only straightforward modifications.

Rewriting the HJB equation (10) for the logarithmic utilityfunctionU(c(t)) = logc(t) we get

Vt(t, l ,h) +
1
2

η2h2Vhh(t, l ,h)+(rl +δh)Vl (t, l ,h)+(µ −δ )hVh(t, l ,h)

+ max
π

G[π]+max
c≥0

H[c] = 0 (19)

G[π] =
1
2

Vll (t, l ,h)π2σ2+Vlh(t, l ,h)ηρπσh+π(α − r)Vl (t, l ,h), (20)

H[c] = −cVl (t, l ,h)+Φ(t) log(c). (21)

Using the homotheticity of the logarithm and homogeneity ofthe differential operator applied to the value
function in (19) we rewriteV(t, l ,h) in the following way

V(t, l ,h) =W(t,z)−Ψ1(t) logh+Ψ2(t), (22)

havingz= l/h andΨ1(t) =
∫ ∞
t Φ(s)dsandΨ2(t) to be chosen later.

Remark.The form of the substitution can be defined via Lie group analysis of the given equation. In [4]
such analysis was carried out for a model of illiquidity withfrictions. The analysis for the current model with
logarithmic and general HARA-type utility is done in [5].

The Hamiltonian terms maxπ G[π] and maxcH[c] in (19) now become

max
π

G[π] = max
π ′=π/h

[
1
2

Wzzσ2π ′2+π ′ (−ηρσ(Wz+zWzz)+(α − r)Wz)], (23)

max
c

H[c] = max
c′=c/h

[−c′Wz+Φ(t) log(c′)]+Φ(t) log(h), (24)

and the optimal policies after formal maximization are

π⋆(l ,h) = hσ−2
(

ηρσz− ((α − r)−ηρσ)
Wz

Wzz

)

,

c⋆(l ,h) = h
Φ(t)
Wz

, (25)

We rewrite (19) using formulae (23) and (24)

Wt +Ψ′
2(t)+

(

−η2

2
+(µ −δ )

)

Ψ1(t)+
η2

2
z2Wzz+(η2+ r − (µ −δ ))zWz+δWz

+ max
π ′

[

1
2

Wzzσ2π ′2+π ′ (−ηρσ(Wz+zWzz)+(α − r)Wz)

]

+max
c′≥0

[

−c′Wz+Φ(t) log(c′)
]

= 0.

We provide the formal maximization ofH[π] andG[c] and obtain

max
π

H[π] = −1
2
((ηρ − (α − r)/σ)2W2

z

Wzz
+2ηρ(ηρ − (α − r)/σ)zWz+ηρ2z2Wzz)

max
c

G[c] = Φ(t)
(

logΦ(t)−1
)

−Φ(t) logWz.

so (19) becomes

Wt +Ψ′
2(t)+

(

−η2

2
+(µ −δ )

)

Ψ1(t)+Φ(t)(logΦ(t)−1)+d2z2Wzz−
d2

1

2
(Wz)

2

Wzz

+ d3zWz+δWz−Φ(t) logWz = 0, (26)

9
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where

d1 =
α − r −ηρσ

σ2 , d2 =
1
2

η2(1−ρ2),

d3 = 2d2+
ρη
σ

(α − r)+ r − (µ −δ ). (27)

Now by choosingΨ2(t) as a solution of the equation

Ψ′
2(t)+

(

−η2

2
+(µ −δ )

)

Ψ1(t)+Φ(t)(logΦ(t)−1) = 0, Ψ2(t)→ 0, t → ∞,

we can cancel out the terms dependent only ont in the equation (26). We arrive at

Wt −
d2

1

2
(Wz)

2

Wzz
+d2z2Wzz+d3zWz+δWz−Φ(t) logWz = 0. (28)

5. Bounds for the value function
The main tool we are going to use to obtain the bounds is the comparison principle given by Theorem 3.4. Since
(28) is a two-dimensional PDE and by itself is not a HJB equation, we argue as follows. Any formal sub- or
super- solution of (28) can be transformed to a sub- or super-solution of (19) with a substitution described by
(22). On the other hand, for the HJB equation (19) Theorem 3.1and Theorem 3.4 hold and we can obtain a
lower and upper bound. In order to comply with the Definition 3.1 we have to take the equation (28) with the
minus sign.

Determining an upper bound demands specific information on the cumulative distribution functionΦ(t) of
the liquidation time. In the next Section this issue is addressed specifically for two practically applicable cases
of exponentially and Weibull distributed liquidation timeT.

A lower bound, however, could be found without any specific information onΦ(t). Let us look on an
optimal consumption problem without random income. This isa classical two dimensional Merton’s problem
for which we can write the HJB equation on the value functionu(t,z). This problem corresponds to (19) but
without any terms, containing the derivatives with respectto h and with a notationV → u, l → z

ut + rluz+max
π

G[π]+max
c≥0

H[c] = 0, (29)

G[π] =
1
2

uzz(t,z)π2σ2+π(α − r)uz(t,z),

H[c] =−cuz(t,z)+Φ(t) log(c). (30)

After the formal maximization, one gets

ut + rluz−
1
2

(

α − r
σ

)2 u2
z

uzz
+Φ(t)

(

logΦ(t)−Φ(t)
)

−Φ(t) loguz = 0.

We look for a solution in the formu(t,z) = Ψ1(t) logz+Θ1(t), where againΨ1(t) =
∫ ∞
t Φ(s)dsandΘ1(t)

is a solution of

Θ′
1+Ψ1

(

r +
1
2
(α − r)2

σ2

)

−Φ(Φ− logΦ+ logΨ1) = 0. (31)

One can easily check that suchu tends to zero uniformly ast → ∞ and since the solution of (29) is a lower
bound for our three-dimensional problem we obtain the following inequality for the lower bound

Ψ1(t) logz+Θ1(t)≤W(z, t) =V(t, l ,h)−Ψ1 logh+Ψ2(t),

or
Ψ1(t) logl +Θ1(t)−Ψ2(t)≤V(t, l ,h).

In the next Sections we consider specific liquidation time distributions. First we take the most simple one -
an exponential distribution. We get asymptotically tight bounds for the value function and derivatives, which
lead to asymptotic formulae for the optimal policies. Not surprisingly, in the limit case when the random
income vanishes the value function and optimal policies coincide with the classical Merton solution for the
logarithmic case. Another somewhat more complicated case is the Weibull distribution, where the bounds have
no elementary representation, but their asymptotic can be derived using incomplete gamma functions.

10
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6. The case of exponential distributed liquidation time and logarithmic utility
function

Now we examine the optimal consumption problem introduced before in the case of the logarithmic utility.
Despite that we know from [10] that the optimal strategy doesexist and the value function is the viscosity
solution of the HJB equation, it is desirable to have the optimal policy in the feedback form (25). In a general
situation the feedback optimal policy is hard to establish since the value function is not a priori smooth. On
the other hand, smoothness of the value function simplifies the problem so it becomes amenable to standard
verification theorems of optimization theory, see e.g. [12]. Here we prove that in the case at hand the value
function is twice differentiable. As far as we know this factwas not explicitly addressed before, though the
structure of our proof is similar to the paper [9] where the smoothness was proved for the HARA utility case.
Since the case without stochastic income is known to have a closed form solution and was derived by Merton
[19], it is plausible to consider it as a zero-term approximation. Keeping that in mind, we will rigorously prove
that value function tends to the Merton closed form solutionin the limit of vanishing random income. Recall
the definition of the value function

V(t, l ,h) = max
(π,c)

E

[

∫ ∞

t
e−κt log(c)dt|L(t) = l ,H(t) = h

]

, κ > 0. (32)

At first let us note that in the exponential liquidation time distribution case the problem is homogenous in time.
We introduceṼ(l ,h)

Ṽ(l ,h) = max
(π,c)

E

[

∫ ∞

t
e−κ(s−t) log(c)ds

]

= max
(π,c)

E

[

∫ ∞

0
e−κv log(c)dv

]

,

which is independent on time. Substituting

V(t, l ,h) = e−κtṼ(l ,h)

into the HJB equation (10) we arrive at a time-independent PDE on Ṽ(l ,h). With a slight abuse of notation,
hereafter we will use the same letterV for Ṽ. The reduced equation takes the form

1
2

η2h2Vhh(l ,h)+(rl +δh)Vl (l ,h)+(µ −δ )hVh(l ,h)+max
π

G[π]+max
c≥0

H[c] = κV(l ,h),

G[π] =
1
2

Vll (l ,h)π2σ2+Vlh(l ,h)ηρπσh+π(α − r)Vl (l ,h), (33)

H[c] =−cVl (l ,h)+ log(c). (34)

Now using substitution (22) withΨ1 =
1
κ andΨ2 =

1
κ2 (µ −δ − η2

2 ) we can argue exactly as in the general
case and representV(l ,h) in the form

V(l ,h) = v(z)+
logh

κ
+

1
κ2

(

µ −δ − η2

2

)

, z= l/h, (35)

sov(z) satisfies the ordinary differential equation of second order

η2

2
z2v′′+max

π

[

1
2

π2σ2v′−π
(

(v′+zv′′)ηρσ +(α − r)v′
)

]

+ max
c≥−δ

[−cvz+ log(c+δ )] = κv, (36)

wherev′ = vz and the dimension of the problem is reduced to one. It is important to note that such reduction
was possible due to the exponential decay, the homotethicity of the logarithmic function and the linearity of the
control equations, which make the reduction (35) sound.

Assuming thatv is smooth and strictly concave, we perform a formal maximization of the quadratic part
(33) which leads to

κvv′′ =−d2
1

2
(v′)2+d2z2(v′′)2+d3zv′v′′−v′′

[

1+ log(v′)
]

, (37)

11
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where againd1,d2 andd3 are defined in (27).
Coming back to the original variables we obtain the optimal policies in the form

c⋆(l ,h) =
h

v′(l/h)
, π⋆(l ,h) =−ηρ

σ
l −h

d1

σ
v′(l/h)
v′′(l/h)

. (38)

Summing up, we announce the main result of this Section.

Theorem 6.1. Suppose r− (µ −δ )> 0 and d1 6= 0.

(i) There is the unique C2(0,+∞) solution v(z) of (37) in a class of concave functions.

(ii) For l ,h> 0 the value function is given by (35). For h= 0, l > 0 the value function V(l ,0) coincides with
the classical Merton solution

V(l ,0) =
1

κ2

[

r +
1
2
(α − r)2

σ2 −κ
]

+
log(κ l)

κ
= M+

log(κ l)
κ

. (39)

(iii) If the ratio between the stochastic income and the total wealth tends to zero, the policies(π⋆,c⋆) given by
(38) tend to the classical Merton’s policies

c⋆(l ,0)∼ κ l , π⋆(l ,0)∼− (α − r)l
σ2

V2
l

Vll
. (40)

(iv) Policies (38) are optimal.

We have shown that the solution exists and tends to Merton case whenh= 0. In the next step we will show
the smoothness of the solution.

6.1 The dual optimization problem and smoothness of the viscosity solution
In this Section we introduce the dual optimization problem with a synthetic asset such that the optimization
equation formally coincides with (37). The regularity of the dual problem proves the regularity of the original
one due to the uniqueness of the viscosity solution.

Consider the investment-consumption problem with the wealth processZt defined by

Zt = (d3Zt +d1σπt −ct)dt+σπtdW1
t +ηZt

√

1−ρ2dW2
t ,

Z0 = z≥ 0, (41)

whered1 andd3 are defined in (27). We define the set of admissible controlsˆA (z) as the set of pairs(π,c) such
that there exists an a.s. positive solutionZt of the stochastic differential equation (41),ct ≥ −δ andc andπ
satisfy the integrability conditions (3).

The investor wants to maximize the average utility given by

Û (c) = E

[

∫ ∞

0
e−κτ log(δ +c(τ))dτ

]

and the value functionw is defined asw(z) = sup(π,c)∈ ˆA (z) Û (c).
The associated HJB equation is reduced to the ODE

κw= d2z2w′′+max
π

[

1
2

σ2π2w′′+d1σπw′
]

+d3zw′+ max
c≥−δ

[

−cw′+ log(c+δ )
]

, (42)

Next, keeping in mindw′ > 0,w′′ < 0, we can rewrite (42) as

−d2
1

2
(w′)2

w′′ +d2z2w′′+d3zw′+δw′−1− logw′−κw= 0. (43)

Now, it is easy to see that (42) reduces to (37) assuming thatw is smooth. Thus, if we prove thatw is smooth
and concave, we will get the desired result forv in (36) as well. The possibility to switch back and forth from

12
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V in (34) to v in (36) andw in (42) is guaranteed by the existence and uniqueness of the viscosity solutions
given by Theorem 3.1. On the other hand, if a function is the value function for the corresponding optimization
problem, and the HJB equations formally coincide, the valuefunctions must coincide as well due to uniqueness.
Therefore, it is sufficient to prove thatw is smooth.

From the previous Section we already know that ifD = (0,∞) andD = [0,∞] the following theorem hold.

Theorem 6.2. The function w is the unique viscosity solution of (42) in D. And the value function V(l ,h) is the
unique viscosity solution of (35) in D×D.

Let us now prove the smoothness of the solution and of its’ first derivative.

Theorem 6.3. The function w in (43) is the unique concave C2(D) solution of (42).

To start with the proof of the theorem we need some explicit bounds forw.

Lemma 6.4. The following bounds hold for w(z)

C1 log(z+C2)< w(z)< (z+C3)
γ , z∈ Ω (44)

for some constants C1,C2,C3 > 0 and0< γ < 1.

Proof. The function
W−(z) =C1 log(z+C2), z∈ Ω

is a subsolution for (43) as the coefficient of the leading logarithmic term is negative providedC1,C2 > 0 are
appropriately chosen. On the other hand, the function

W+(z) = (z+C3)
γ , z∈ Ω

is a supersolution provided 0< γ < 1 is sufficiently close to 1. Indeed, the leading term iszγ with the coefficient
−(d2

1(w
′)2)/(2w′′), which in turn grows as−γ/(γ −1) and becomes arbitrarily large asγ tends to 1.

Thus, the desired bound (44) is a consequence of the comparison principle formulated in Theorem 3.4.•

Now we can prove Theorem 6.3.

Proof. It is known that uniformly elliptic equations enjoy regularity, but as before the main obstacle is the lack
of uniform bounds. The main idea of the proof is to approximate the original problem with a convergent family
of optimization problems such that the approximating equations is uniformly elliptic and thus smooth. Then the
smoothness follows from the stability of viscosity solutions and uniqueness.

Step 1.Consider the value functionwL(z) = sup(π,c)∈ ˆA (z) Û (c) for the problem with the additional strategy
constraint−L ≤ πt ≤ L for almost everyt. Arguing as in Section 2 we conclude that thatwL is an increasing
continuous function, which is the unique viscosity solution to

κwL = d2z2w′′
L + max

−L≤π≤L

[

1
2

σ2π2w′′
L +d1πw′

L

]

+d3zw′
L + max

c≥−δ

[

−cw′
L + log(c+δ )

]

. (45)

Moreover, the bounds of Lemma 6.4 hold soC1 log(z+C2)< wL(z)< (z+C3)
γ .

Thus, there exists a concave function ˆw such thatwL → ŵ,L→ ∞ locally uniformly. Then due to the stability
property and uniqueness of the viscosity solution the function ŵ is a viscosity solution of (42) and thus coincides
with w. ThereforewL → w,L → ∞ locally uniformly.

Step 2. We claim thatwL is a smooth function on an arbitrary interval[z1,z2] such thatz1 > 0. Due to
concavity we may assume that derivativesw′

L(z1),w′
L(z2) exist. On the one hand the functionwL is the unique

solution of the boundary problem

κu = d2z2u′′+ max
−L≤π≤L

[

1
2

σ2π2u′′+d1σπu′
]

+d3zu′+ max
c≥−δ

[

−cu′+ log(c+δ )
]

, (46)

u(z1) = wL(z1), u(z2) = wL(z2), z∈ [z1,z2].

On the other hand, according to the general theory of fully nonlinear elliptic equations of second order of
Bellman type in a compact region, (seeKrylov [18]), (45) has a uniqueC2 solution in[z1,z2] that coincides with
wL andwL is smooth on[z1,z2].

13
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Step 3.We show that the constraint−L≤ πt ≤ L is superfluous for sufficiently largeL and can be eliminated.
First it is clear that due to concavity and monotonicity ofwL, the condition−L≤ πt ≤ L in (45) can be substituted
with πt ≤ L. Now we prove that

sup
z∈(z1,z2)

[

−d2
1(w

′
L)

2

2w′′
L

]

< L

for sufficiently largeL. Assume the contrary for contradiction. Then there is a sequencezn ∈ (z1,z2), Ln → ∞
such that

− d2
1(w

′
L(zn))

2

2w′′
L(zn)

> Ln, (47)

κwL ≥ d2z2w′′
L −Ln+d3zw′

L +
[

δw′
L −1− logw′

L

]

.

SincewL → w and both function are monotone and concave there exist constantsC1,C2 such thatC1 <
w′

L(z)<C2, z∈ [z1,z2] for all sufficiently largeL, and alsow′′
L → 0 asn→ ∞. But this contradicts (47) aszn

takes values in a bounded interval sowL(zn) is bounded as well.
Step 4.We are going to show that there is a constantK < 0 which does not depend onL such thatw′′

L(z)<
K, z∈ [z1,z2]. Arguing again by contradiction suppose there is a sequencezn ∈ [z1,z2] such thatw′′

L(zn)→ ∞.
Then analogously to Step 3, the right hand side of (46) grows to infinity sincew′

L(z) on the interval that is
bounded. At the same time the left hand side stays bounded as avalue of a continuous function on a bounded
interval.

Step 5. Putting it all together, we have the following chain of implications. The functionswL are unique
smooth solutions in the class of concave functions to the boundary problem (46) for some sufficiently large
M > 0. SincewL → w, it follows thatw is the unique viscosity solution of (46) in the class of concave functions.
On the other hand, the equation (46) possesses the unique smooth solution, see [18], which must coincide with
the viscosity solution. Thusw is aC2-smooth function on[z1,z2] and the claim of the theorem follows since the
interval is arbitrary.•

6.2 Asymptotic behavior of the value function
In this Section we examine the asymptotic behavior of the value functionV(t, l ,h) in (34) and show that as
l/h→ ∞ it becomes the classical Merton solution.

Theorem 6.5. There is a positive constant C1 such that

M +
log(κ l)

κ
≤V(l ,h)≤ M+

log(κ(l +C1δh))
κ

,

M =
1

κ2

[

r +
1
2
(α − r)2

σ2 −κ
]

where M is a constant from the Merton’s formula (39).

Proof. The proof is based on the idea mentioned in Lemma 3.2, but in the specific exponentially distributed liq-
uidation time case the bounds could be found explicitly. Theleft-hand inequality is obvious since any strategy
(π,c) for the classical problem withL0 = l ,H0 = 0 is admissible for the problem with any non-zero initial endow-
ment as well. For the right-hand side, let us consider a fictitious investment-consumption problem without any
stochastic income but with an additional synthetic asset with the price processS′: dS′t =α ′S′t +σ ′

1S′tdWt , t ≥ 0,
S′0 = s′, s′ > 0 with appropriate constantsα ′ andσ ′. Next, we define theinitial wealth equivalentof the
stochastic income defined by

Vδ (l ,h) = δEh

[

∫ ∞

0
e−rt ξtHtdt

]

,

ξt = exp

(

−1
2
(θ 2

1 +θ 2
2 )+θ1W

(1)
t +θ2Wt

)

,

whereθ1 = (α − r)/σ1 andθ2 = (α ′− r)/σ ′
1.

As we mention in the proof of Lemma 3.2 (see page 5), by a careful choice of the constantsα ′,σ ′ the
stochastic income rateHt can be replicated by a self-financing strategy on the complete market(Bt ,St ,S′t) with
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the additional initial endowmentf (h) <C1δh, see [17], [14] and [10]. Thus, any average utility generated by
the strategy(π,c)∈A (l ,h) can be attained in the settings of a classical Merton’s problem with the initial wealth
l + f (h)< l +C1δh. This actually gives the right-hand bound in Theorem 3.1.•

From this theorem we immediately get thatV(l ,h) behaves as the classical Merton solution (39) asδ → 0
or l/h→ ∞.

Corollary 6.6. Vδ (l ,h) converges locally uniformly to M+log(κ l)/κ asδ → 0.

Corollary 6.7. V(l ,h) = M + log(κ l)/κ +O(1/z) as z= l/h → ∞. Also for the function w(z) we obtain

w(z) = (M−K)+ log(κz)
κ +O(1/z).

Proof. Indeed,

∣

∣

∣

∣

V(l ,h)−M− log(κ l)
κ

∣

∣

∣

∣

<

∣

∣

∣

∣

1
κ
(log(κ(l +δC1h))− log(κ l))

∣

∣

∣

∣

= O

(

1
z

)

. (48)

The formula immediately follows from the form ofV(l ,h).•

Finally, we verify that the optimal policies given by (38) asymptotically give the Merton strategy (40).

Lemma 6.8. For the value function w(z) holds

w′(z) =
1

κz
+o

(

1
z

)

, z→ ∞. (49)

Proof. Consider the functionwλ defined as

wλ (z) = w(λz)− log(λ )
κ

,

so thatwλ solves (42) but with the term

F(wz) = max
c≥−δ

[−cwz+ log(c+δ )]

replaced by

Fλ (wz) = max
c≥−δ/λ

[

−cwz+ log(c+
δ
λ
)

]

.

Then, by Corollary 6.6wλ converges locally uniformly to the Merton’s value function

v(z) = (M−K)+
log(κz)

κ
.

We note thatv solves (42) withδ = 0 that is delivered byF∞(·) = limλ→∞ Fλ (·). Thus, sincewλ is concave, the
uniform convergence ofwλ to v implies the convergence of derivatives, so limλ→∞ w′

λ (z) = v′(z) = 1
κz. Hence,

lim
λ→∞

w′
λ (1) = lim

λ→∞
λv′(λ ) =

1
κ
,

which proves the lemma.•

Theorem 6.9. The following asymptotic formulae hold for the optimal policies (38) as z= l/h→ ∞.

c⋆

l
∼ 1

κ
,

π⋆

l
∼ α − r

σ2 . (50)
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Proof. The formula forc⋆ in (50) immediately follows from Lemma 6.8. For the second part, we rewrite (38)
in a form

π⋆

l
=

ηρ
σ

− k1

σ2

zv′(z)
z2v′′(z)

.

To calculate the limit value ofz2v′′(z) we rewrite (37) as a quadratic equation with respect tovzz. Sincevzz< 0
we choose the negative root and obtain

vzz(z) =
−B−

√
B2−4AC

2A
,

where

A =
1
2

η2(1−ρ)2z2,

B = k(zvz)−1− (M−C)κ +o(1),

C = − k2
1

2σ2 (vz)
2.

Expanding all constants and usingzwz = 1/κ +o(1) we finally get

z2vzz(z) =
(α − r)l

σ2 +o(1).•

The facts that the solution exists, is unique and smooth givean opportunity for numerical calculations.
For example, basing on a script, developed byAndersson, Svensson, Karlsson and Elias, see [2], with some
modifications and corrections of minor mistakes we can obtain the solution for the exponential case and compare
it with a two-dimensional Merton solution as shown on the Figure 1.

7. The case of a Weibull distributed liquidation time and a logarithmic utility
function

One of the most natural ways to extend the framework of a randomly distributed liquidation time described
in the Section 2 is to introduce a distribution with a probability density function that has a local maximum
unlike exponential distribution. It is very natural to expect that the assets of a certain type might have a time-lag
between the moment when the sell offer is opened and a time when someone reacts on it. From the practitioner’s
point of view an empirical estimation of such time-lag is a natural measure of illiquidity that can give an insight
into the strategy of a portfolio management. In this Sectionwe look closely on a Weibull distribution that has a
local maximum. The Weibull distribution is commonly used insurvival analysis, in reliability engineering and
failure analysis, and in industrial engineering to describe manufacturing and delivery times. It seems to be quite
adequate for the studied case. We demonstrate that the proposed framework is applicable for this case, show the
existence and uniqueness of the solution and using a numerical algorithm generate an insight into how this case
differs from the exponential illiquid and Merton’s absolutely liquid cases.

In this Section we will discuss the case when the liquidationtimeT is a random Weibull-distributed variable
independent of the Brownian motions(W1,W2).
The probability density function of the Weibull distribution is

φ(x,λ ,k) =
k
λ

( t
λ

)k−1
e−(t/λ )k,

if t ≥ 0 and= 0, if t < 0.
Let us also introduce as before the cumulative distributionfunction Φ(x,λ ,k) = 1−e−(t/λ )k, if t ≥ 0 and

= 0, if t < 0 and the survival functionΦ(t) = 1−Φ(t). We will often omit the constant parametersλ andk in
notations for shortness.

It is important to notice that whenk = 1 the Weibull-distribution turns into exponential one, that we have
already discussed before and fork> 1 its probability density has a local maximum. This situation corresponds
to our economical motivation.
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The equation (10) is the same as before but the term that corresponds toΦ is naturally replaced by Weibull
survival function

Vt(t, l ,h) +
1
2

η2h2Vhh(t, l ,h)+(rl +h)Vl (t, l ,h)+(µ −δ )hVh(t, l ,h) (51)

+ max
π

G[π]+max
c≥0

H[c] = 0,

G[π] =
1
2

Vll (t, l ,h)π2σ2+Vlh(t, l ,h)ηρπσh+π(α − r)Vl (t, l ,h), (52)

H[c] = −cVl (t, l ,h)+e−(t/λ )kU(c), (53)

Proposition 7.1. All the conditions of the Theorem 3.1 hold for the case of the Weibull distribution with k> 1
and, therefore, there exists a unique solution for the problem (51).

Indeed the conditions 1., 3. and 4. are not altered since we work with the same logarithmic utility and one
can easily see that the Weibull cumulative function satisfies the condition 2. for the casek> 1.

Analogously to the equation (28) one can obtain a two dimensional equation using a known reduction
z= l/h. We study all the symmetry reductions of this model for the exponential and Weibull case in [5]. Yet
here let us just list a two dimensional equation that corresponds to the Weibull case

Wt −
d2

1

2
(Wz)

2

Wzz
+d2z2Wzz+d3zWz+δWz−e−(t/λ )k logWz = 0, (54)

whered1,d2 andd3 correspond to the constants for the general case (27).

The functionΨ1(t) =
∫ ∞
t Φ(s)ds can be defined explicitly asΨ1(t) = λ

k Γ
(

1
k ,
(

t
λ
)k
)

, whereΓ(α,x) is an

incomplete gamma function. For this function we can use the series representation by Laguerre polynomials
and asymptotic representation [1], [15].

The lower bound forW(z, t) can be found exactly as in Section 5

W(z, t) =V(t, l ,h)−Ψ1 logh−Ψ2(t)≥ Ψ1(t) logz+(Θ(t)−Ψ2(t)),

where the behavior of the functionsΨ1,Ψ2 andΘ by t → ∞ can be now well defined.
The equation (??) for the auxiliary functionΨ′

2(t) takes the form

Ψ′
2(t)+

(

−η2

2
+(µ −δ )

)

λ
k

Γ
(

1
k
,
( t

λ

)k
)

−e−(t/λ )k((t/λ )k+1) = 0, (55)

Ψ2(t)→ 0, t → ∞,

The solution for this equation can be found explicitly

Ψ2(t) =−
(

−η2

2
+(µ −δ )

)

λ
k

Γ
(

1
k
,
( t

λ

)k
)

+e−(
t
λ )

k
(

( t
λ

)k
+1

)

(56)

Equation (31) forΘ is now

Θ′+

(

r +
1
2
(α − r)2

σ2

)

λ
k

Γ
(

1
k
,
( t

λ

)k
)

−e−(t/λ )k(e−(t/λ )k +(t/λ )k+ logλ − logk

+ logΓ
(

1
k
,
( t

λ

)k
)

) = 0. (57)

And one can find an explicit solution for it as well

Θ(t) =−
(

r +
(α − r)2

2σ2

)

λ
k

Γ
(

1
k
,
( t

λ

)k
)

+e−(
t
λ )

k
(

e−(
t
λ )

k

+
( t

k

)k
+ ln

(

λ
k

Γ
(

1
k
,
( t

λ

)k
)))

.

Since1
k > 0 we can show that asymptotically ast → ∞

Ψ1(t) → λ k

k
(t)1−ke−(t/λ )k

(

1+O
(

t−k
))

,

Ψ2(t) → −1
k

te−(t/λ )k
(

1+O
(

t−k
))

, k> 1,

Θ(t) → λ −k
λk

te−(t/λ )k
(

1+
(k−1)kλ

λ −k
t−k ln t +O

(

t−k
)

)

.
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It follows from the asymptotic behavior that the value function in (51) tends to zero faster thane−κt and
consequently Theorem 3.1 is applicable for the Weibull-distributed liquidation time.

On the Figure 1 one can see the results of the numerical simulation for consumption and investment strate-
gies that we run for a Weibull and exponential case. As the parameterk that is responsible for the form of
Weibull distribution increases the optimal policies differ significantly from the exponential liquidation time
case. Asz increases, i.e. the illiquid part of the portfolio becomes insufficiently small, we can see that all the
policies tend to one solution which is, in fact, a Merton solution for a two-asset problem derived in [19].

Figure 1. Consumption stream c and the share of liquid capitalπ stored in a risky asset depending on the ratio
between the liquid and illiquid asset. As illiquid asset value becomes infinitely small the policies tend to Merton
policies for a two-asset problem. We used the following parameters for assets r= 0.01,σ = 0.5,δ = 0.02,ρ =
0.4,µ = 0.05,η = 0.3 andλ = 2

It is especially important to note that the optimal policiessignificantly differ from Merton solution when
illiquidity becomes higher. Already when an amount of illiquid asset is more than 5% of the portfolio value the
percentage of capital that is not invested in a risky stock ishigher than in Merton model.

8. Conclusion
We have proposed a framework with which one can obtain a management strategy for a portfolio that consists
of a liquid riskless and liquid risky assets and of an illiquid asset. We suppose that illiquid asset is liquidated in
a random moment of time that has a prescribed distribution. In Theorem 3.1 we have proved the existence and
uniqueness of the solution for a variety of the portfolio optimization problems. We have applied the obtained
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theorem to two different cases of exponential and Weibull liquidation time distributions. For the exponentially
distributed random liquidation time but for existence and uniqueness we have proved the smoothness of the
solution and found a lower and upper bound. For the Weibull distributed liquidation time with parameterk> 1
we have demonstrated the applicability of a general Theorem3.1 that proves the existence and uniqueness of a
viscosity solution and also found a lower and upper bound forit. We have also demonstrated numerically that
the resulting strategies for such portfolio differ from theMerton case yet tend to it when illiquidity becomes
infinitely small.
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