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ON THE GENERALIZED COMMUTING VARIETIES OF A REDUCTIVE LIE ALGEBRA.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

Abstract. The generalized commuting and isospectral commuting varieties of a reductive Lie algebra have

been introduced in a preceding article. In this note, it is proved that their normalizations are Gorenstein with

rational singularities. Moreover, their canonical modules are free of rank 1. In particular, the usual commuting

variety is Gorenstein with rational singularities and its canonical module is free of rank 1.
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1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of finite

dimension, ℓ is its rank, dimg = ℓ + 2n and G is its adjoint group. As usual, b denotes a Borel subalgebra of

g, h a Cartan subalgebra of g, contained in b, and B the normalizer of b in G.

1.1. Main results. By definition, for k > 1, the generalized commuting variety C(k) is the closure in gk

of the set of elements whose components are in a same Cartan subalgebra. Denoting by B(k) the subset

of elements of gk whose components are in a same Borel subalgebra and by B
(k)
n its normalization, the

generalized isospectral commuting variety C
(k)
x is above C(k) and under the inverse image of C(k) in B

(k)
n .

For k = 2, C(2) is the commuting variety of g and C
(2)
x is the isospectral commuting variety considered by

V. Ginzburg in [Gi12]. According to [CZ14, Proposition 5.6], C
(k)
x is an irreducible variety. For studying

these varieties, it is very useful to consider the closure in the grassmannian Grℓ(g) of the orbit of h under the

action of B in Grℓ(g). Denoting by X this variety, G.X is the closure of the orbit of h under G. Let E0 and

E be the restrictions to X and G.X of the tautological vector bundle over Grℓ(g) respectively. Denoting by
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E(k) the fiber product over G.X of k copies of E, E(k) is a subbundle of G.X × gk and C(k) is the image of E(k)

by the canonical projection G.X × gk // gk . Analogously, denoting by E
(k)

0
the restriction of E(k) to X,

the image X0,k of E
(k)

0
by the projection X × gk // gk is the closure in bk of the set of elements whose

components are in a same Cartan subalgebra. The fiber bundle G ×B E
(k)

0
is a vector bundle of rank ℓ over

the fiber bundle G ×B X over G/B. As for C(k), there is a surjective morphism from G ×B E
(k)

0
onto C

(k)
x . As a

matter of fact, the three morphisms:

E
(k)

0

τ0,k
// X0,k , E(k)

τk
// C(k) , G ×B E

(k)

0

τ∗,k
// C

(k)
x

are projective and birational. According to [CZ14, Theorem 1.2], G.X is smooth in codimension 1 so that

so is E(k). By [C15, Theorem 1.1], X is normal and Gorenstein then so are E
(k)

0
and G ×B E

(k)

0
. Denoting

by (G.X)n the normalization of G.X, the pullback bundle of E(k) over (G.X)n is the normalization of E(k).

Denoting it by E
(k)
n we have projective birational morphisms:

E
(k)

0

τn,0,k
// X̃0,k , E

(k)
n

τn,k
// C̃(k) , G ×B E

(k)

0

τn,∗,k
// C̃

(k)
x ,

with X̃0,k, C̃(k), C̃
(k)
x the normalizations of X0,k, C(k), C

(k)
x respectively. According to [C15, Proposition 4.6],

for some smooth big open subset O0 of X0,k, there exists a regular differential form of top degree without

zero. Moreover, the restriction of τ0,k to τ−1
0,k

(O0) is an isomorphism onto O0. By a simple argument, C(k)

and C
(k)
x are smooth in codimension 1. Moreover, for some smooth big open subsets O and O∗ in C(k) and

C
(k)
x respectively, the restrictions of τk and τ∗,k to τ−1

k
(O) and τ−1

∗,k
(O∗) are isomorphisms onto O and O∗

respectively. The main observation of this note is that there are regular differential forms of top degree on O

and O∗ without zero. As a result, we have the following theorem:

Theorem 1.1. The varieties X̃0,k, C̃(k), C̃
(k)
x are Gorenstein with rational singularities and their canonical

modules are free of rank 1. Moreover, (G.X)n is Gorenstein with rational singularities.

In particular, we give a new proof of a Ginzburg’s result [Theorem 1.3.4][Gi12]. For k = 2, C(2) is the

commuting variety of g by [Ri79] and it is normal by [C12, Theorem 1.1]. So the commuting variety of g

is Gorenstein with rational singularities and its canonical module is free of rank 1. Since X̃0,k has rational

singularities, we get that some cohomological groups in positive degree are equal to 0 and we deduce that

X0,k is normal.

This note is organized as follows. In Section 2, the variety X is introduced and we prove that on the

smooth loci of X and G ×B b, there are regular differential forms of top degree without zero. In Section 3,

we recall some results about E, X, G.X, (G.X)n. In Section 4, we give some results about C(k) and C
(k)
x and

we prove the main result about regular differential forms of top degree on the smooth loci of these varieties.

As a result, we get the main result of the note in Section 5. The goal of Section 6 is the normality of X0,k.

At last, in the appendix, some results are given to prove the normality of X0,k and Theorem 1.1.

1.2. Notations. • An algebraic variety is a reduced scheme over k of finite type.

• For V a vector space, its dual is denoted by V∗ and the augmentation ideal of its symmetric algebra

S(V) is denoted by S+(V). For A a graded algebra over N, A+ is the ideal generated by the homogeneous

elements of positive degree.

• All topological terms refer to the Zariski topology. If Y is a subset of a topological space X, denote by

Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a big open subset if

the codimension of X \ Y in X is at least 2. For Y a closed subset of an algebraic variety X, its dimension
2



is the biggest dimension of its irreducible components and its codimension in X is the smallest codimension

in X of its irreducible components. For X an algebraic variety, OX is its structural sheaf, Xsm is its smooth

locus, k[X] is the algebra of regular functions on X and k(X) is the field of rational functions on X when X

is irreducible. When X is smooth and irreducible, the sheaf of regular differential forms of top degree on X

is denoted by ΩX.

• For X an algebraic variety and for M a sheaf on X, Γ(V,M) is the space of local sections of M over

the open subset V of X. For i a nonnegative integer, Hi(X,M) is the i-th group of cohomology of M. For

example, H0(X,M) = Γ(X,M).

Lemma 1.2. [EGAII, Corollaire 5.4.3] Let X be an irreducible affine algebraic variety and let Y be a

desingularization of X. Then H0(Y,OY) is the integral closure of k[X] in its fraction field.

• For E a set and k a positive integer, Ek denotes its k-th cartesian power. If E is finite, its cardinality is

denoted by |E|.

• For a reductive Lie algebra, its rank is denoted by rk a and the dimension of its Borel subalgebras is

denoted by ba. In particular, dima = 2ba − rka.

• If E is a subset of a vector space V , denote by span(E) the vector subspace of V generated by E. The

grassmannian of all d-dimensional subspaces of V is denoted by Grd(V). By definition, a cone of V is a

subset of V invariant under the natural action of k∗ := k\{0} and a multicone of Vk is a subset of Vk invariant

under the natural action of (k∗)k on Vk.

• The dual of g is denoted by g∗ and it identifies with g by a given non degenerate, invariant, symmetric

bilinear form 〈. , .〉 on g × g, extending the Killing form of [g, g].

• Let b be a Borel subalgebra of g and let h be a Cartan subalgebra of g contained in b. Denote by R the

root system of h in g and by R+ the positive root system of R defined by b. The Weyl group of R is denoted

by W(R) and the basis of R+ is denoted by Π. The neutral elements of G and W(R) are denoted by 1g and

1h respectively. For α in R, the corresponding root subspace is denoted by gα and a generator xα of gα is

chosen so that 〈xα , x−α〉 = 1 for all α in R. Let Hα be the coroot of α.

• The normalizers of b and h in G are denoted by B and NG(h) respectively. For x in b, x is the element of

h such that x − x is in the nilpotent radical u of b.

• For X an algebraic B-variety, denote by G ×B X the quotient of G × X under the right action of B given

by (g, x).b := (gb, b−1.x). More generally, for k positive integer and for X an algebraic Bk-variety, denote by

Gk ×Bk X the quotient of Gk × X under the right action of Bk given by (g, x).b := (gb, b−1.x) with g and b in

Gk and Bk respectively.

Lemma 1.3. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a Q-variety

and let Y be a closed subset of X, invariant under P. Then Q.Y is a closed subset of X. Moreover, the

canonical map from Q ×P Y to Q.Y is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a projective

variety. Denote by Q ×P X and Q ×P Y the quotients of Q × X and Q × Y under the right action of P given

by (g, x).p := (gp, p−1.x). Let g 7→ g be the quotient map from Q to Q/P. Since X is a Q-variety, the map

Q × X −→ Q/P × X (g, x) 7−→ (g, g.x)

defines through the quotient an isomorphism from Q×P X to Q/P×X. Since Y is a P-invariant closed subset

of X, Q×P Y is a closed subset of Q×P X and its image by the above isomorphism equals Q/P×Q.Y . Hence
3



Q.Y is a closed subset of X since Q/P is a projective variety. From the commutative diagram:

Q ×P Y //

&&M
MM

MM
MM

MM
MM

Q/P × Q.Y

��

Q.Y

we deduce that the map Q ×P Y // Q.Y is a projective morphism. �

• For k > 1 and for the diagonal action of B in bk, bk is a B-variety. The canonical map from G × bk

to G ×B b
k is denoted by (g, x1, . . . , xk) 7→ (g, x1, . . . , xk). Let B(k) be the image of G × bk by the map

(g, x1, . . . , xk) 7→ (g(x1), . . . , g(xk)) so that B(k) is a closed subset of gk by Lemma 1.3. Let B
(k)
n be the

normalization of B(k) and η the normalization morphism. We have the commutative diagram:

G ×B b
k

γn
//

γ
##G

GG
GG

GG
GG

B
(k)
n

ηn}}{{
{{
{{
{{

B(k)

.

• Let ik be the injection (x1, . . . , xk) 7→ (1g, x1, . . . , xk) from bk to G×B b
k. Then ιk := γ◦ik and ιn,k := γn◦ik

are closed embeddings of bk into B(k) and B
(k)
n respectively. In particular, B(k)

= G.ιk(bk) and B
(k)
n =

G.ιn,k(bk).

• Let e be the sum of the xβ’s, β in Π, and let h be the element of h ∩ [g, g] such that β(h) = 2 for all

β in Π. Then there exists a unique f in [g, g] such that (e, h, f ) is a principal sl2-triple. The one parameter

subgroup of G generated by adh is denoted by t 7→ h(t). The Borel subalgebra containing f is denoted by

b− and its nilpotent radical is denoted by u−. Let B− be the normalizer of b− in G and let U and U− be the

unipotent radicals of B and B− respectively.

Lemma 1.4. Let k > 2 be an integer. Let X be an affine variety and set Y := bk × X. Let Z be a closed

subset of Y invariant under the action of B given by g.(v1, . . . , vk, x) = (g(v1), . . . , g(vk), x) with (g, v1, . . . , vk)

in B × bk and x in X. Then Z ∩ hk × X is the image of Z by the projection (v1, . . . , vk, x) 7→ (v1, . . . , vk, x).

Proof. For all v in b,

v = lim
t→0

h(t)(v)

whence the lemma since Z is closed and B-invariant. �

• For x ∈ g, let xs and xn be the semisimple and nilpotent components of x in g. Denote by gx and Gx the

centralizers of x in g and G respectively. For a a subalgebra of g and for A a subgroup of G, set:

ax := a ∩ gx Ax := A ∩Gx .

The set of regular elements of g is

greg := {x ∈ g | dimgx
= ℓ}.

Denote by greg,ss the set of regular semisimple elements of g. Both greg and greg,ss are G-invariant dense open

subsets of g. Setting hreg := h ∩ greg, breg := b ∩ greg, greg,ss = G(hreg) and greg = G(breg).

• Let p1, . . . , pℓ be some homogeneous polynomials generating the algebra S(g)G of invariant polynomials

under G. For i = 1, . . . , ℓ and for x in g, denote by εi(x) the element of g given by

〈εi(x) , y〉 =
d

dt
pi(x + ty) |t=0

4



for all y in g. Thereby, εi is an invariant element of S(g) ⊗k g under the canonical action of G. According

to [Ko63, Theorem 9], for x in g, x is in greg if and only if ε1(x), . . . , εℓ(x) are linearly independent. In this

case, ε1(x), . . . , εℓ(x) is a basis of gx.

2. On the varieties X and G ×B b

Denote by πg : g → g//G and πh : h → h/W(R) the quotient maps, i.e the morphisms defined by the

invariants. Recall g//G = h/W(R), and let X be the following fiber product:

X
χ

//

ρ

��

g

πg

��

h
πh

// h/W(R)

where χ and ρ are the restriction maps. The actions of G and W(R) on g and h respectively induce an action of

G×W(R) on X. According to [CZ14, Lemma 2.4], X is irreducible and normal. Moreover, Xreg := greg×h∩X

is a smooth open subset of X, k[X] is the space of global sections OG×Bb and k[X]G
= S(h). According to

[CZ14, Lemma 2.4], the map

G × b // X , (g, x) 7−→ (g(x), x)

defines through the quotient a projective birational morphism

G ×B b
χn

// X .

Lemma 2.1. (i) The set breg is a big open subset of b.

(ii) The set G ×B breg is a big open subset of G ×B b.

(iii) The restriction of χn to G ×B breg is an isomorphism onto Xreg.

(iv) The restriction of πg to greg is a smooth morphism.

Proof. (i) Let Σ be an irreducible component of b \ breg. Then Σ is a closed cone invariant under B and

Σ := Σ ∩ h is a closed cone of h. According to Lemma 1.4, Σ is contained in Σ + u. Suppose that Σ has

codimension 1 in b. A contradiction is expected. Then Σ = h or Σ has codimension 1 in h. The first case is

impossible since h ∩ breg is not empty. Hence Σ = Σ + u since Σ is irreducible of codimension 1 in b. As a

result, u is contained in Σ since Σ is a closed cone, whence the contradiction since u ∩ breg is not empty.

(ii) The complement of G×B breg in G×B b is equal to G×B b \ breg. By (i), b \ breg, is a B-invariant closed

subset of b of dimension at most dimb − 2. Then G ×B b \ breg is a closed subset of G ×B b of codimension

at least 2, whence the assertion.

(iii) By definition, Xreg = χn(G ×B breg). Let (g1, x1) and (g2, x2) be in G × breg such that (g1(x1), x1) =

(g2(x2), x2). For some b1 and b2 in B,

b1(x1)s = x1 and b2(x2)s = x2 = x1.

Setting:

y1 := b1(x1) and y2 := b2(x2),

y2 = b2g
−1
2
g1b−1

1
(y1) is a regular element of gx1 . In particular, y2,n and y1,n are regular nilpotent elements of

gx1 and they are in the borel subalgebra b∩ gx1 of gx1 . Hence b2g
−1
2
g1b−1

1
is in B and so is g−1

2
g1. As a result,

the restriction of χn to G ×B breg is injective. So, by Zariski’s Main Theorem [Mu88, §9], the restriction of

χn to G ×B breg is an isomorphism onto Xreg since Xreg is a smooth variety.
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(iv) Let x be in greg. The kernel of the differential of πg at x is the orthogonal complement of gx so that

the differential of πg at x is surjective whence the assertion by [H77, Ch. III, Proposition 10.4]. �

Proposition 2.2. (i) There exists a regular form of top degree, without zero on Xreg.

(ii) There exists a regular form of top degree, without zero on G ×B b.

Proof. (i) Let ω be a volume form on g. According to Lemma 2.1,(iv), the restriction of ω to greg is divisible

by dp1∧ · · · ∧dpℓ so that

ω = α ∧ dp1∧ · · · ∧dpℓ

with α a regular relative differential form of top degree with respect to πg. Denoting by v1, . . . , vℓ a basis of

h,

ω′ := α ∧ dv1∧ · · · ∧dvℓ

is a regular form of top degree on Xreg since S(g)G identifies with a subalgebra of S(h). As πg and ρ have the

same fibers and ω has no zero so has ω′.

(ii) By Lemma 2.1,(iii), χ∗n(ω′) is a regular form of top degree on G ×B breg without zero. Then by

Lemma C.1,(ii) and Lemma 2.1,(ii), theres exists a regular form of top degree on G ×B b, without zero. �

3. Main varieties and tautological vector bundles

Denote by X the closure in Grℓ(g) of the orbit of h under B. Since G/B is a projective variety, G.X is the

closure in Grℓ(g) of the orbit of h under G. Set:

E0 := {(u, x) ∈ X × b |; x ∈ u}, E := {(u, x) ∈ G.X × g |; x ∈ u}.

Then E0 and E are the restrictions to X and G.X respectively of the tautological vector bundle of rank ℓ over

Grℓ(g). Denote by π0 and π the bundle projections:

E0

π0
// X , E

π
// G.X .

Since the map

greg
// Grℓ(g) , x 7−→ gx

is regular, for all x in greg, gx is in G.X and for all x in breg, gx is in X. Denoting by X′ the image of breg, G.X′

is the image of greg and according to [CZ14, Theorem 1.2], X′ and G.X′ are smooth big open subsets of X

and G.X respectively.

Let τ0 and τ be the restrictions to E0 and E respectively of the canonical projection Grℓ(g) × g → g.

Denote by π∗ and τ∗ the morphisms

G ×B E0

π∗
// G ×B X , and G ×B E0

τ∗
// X

defined through the quotients by the maps

G × E0
// G × X , (g, u, x) 7−→ (g, u),

G × E0
// X , (g, u, x) 7−→ (g(x), x).

Lemma 3.1. (i) The morphism τ0 is a projective and birational morphism from E0 onto b.

(ii) The morphism τ is a projective and birational morphism from E onto g.

(iii) The morphism τ∗ is a projective and birational morphism from G ×B E0 onto X.
6



Proof. (i) and (ii) Since X and G.X are projective varieties, τ0 and τ are projective morphisms. For x in greg,

τ−1(x) = {gx}. Hence τ0 and τ are birational and their images are b and g since greg is an open subset of g.

(iii) The morphism

G × E0
// G × b , (g, u, x) 7−→ (g, x)

defines through the quotient a morphism

G ×B E0

τ1
// G ×B b .

The varieties G ×B E0 and G ×B b are embedded into G/B × E and G/B × g respectively as closed subsets

and τ1 is the restriction to G ×B E0 of idG/B ×τ. Hence τ1 is a projective morphism by (ii). As τ∗ is the

composition of τ1 and χn, τ∗ is a projective morphism since so is χn. The map

G × breg
// G × E0 , (g, x) 7−→ (g, gx, x)

defines through the quotient a morphism

G ×B breg

µ
// G ×B E0 .

According to Lemma 2.1,(iii), the restriction of τ∗ to τ−1
∗ (Xreg) is an isomorphism onto Xreg whose inverse

is µ◦χ−1
n . In particular, τ∗ is birational. �

Denote by (G.X)n the normalization of G.X. Let En be the following fiber product:

En

νn
//

πn

��

E

π

��

(G.X)n ν
// G.X

with ν the normalization morphism, νn, πn the restriction maps.

Proposition 3.2. (i) The varieties E0 and X are Gorenstein with rational singularities.

(ii) The varieties En and Xn are Gorenstein with rational singularities.

(iii) The varieties G ×B E0 and G ×B X are Gorenstein with rational singularities.

Proof. According to [C15, Theorem 1.1], X is Gorenstein with rational singularities, then by Lemma D.1,(i)

and (iv), so is E0 as a vector bundle over X. Furthermore, by Lemma D.1,(i) and (iii), G ×B X is Gorenstein

with rational singularities as a fiber bundle over a smooth variety whose fibers are Gorenstein with rational

singularities. As a result, by Lemma D.1,(i) and (iv), G ×B E0 is Gorenstein with rational singularities as a

vector bundle over G ×B X.

Proposition 3.2,(ii) will be proved in Section 5 (see Corollary 5.2). �

4. On the generalized isospectral commuting variety

Let k > 2 be an integer. The variety Gk ×Bk bk identifies with (G ×B b)
k. Denote by χ

(k)
n the morphism

Gk ×Bk bk
χ

(k)
n

// X(k) , (x1, . . . , xk) 7−→ (χn(x1), . . . , χn(xk)).

The varitey G/B identifies with the diagonal ∆ of (G/B)k so that G ×B b
k identifies with the restriction to ∆

of the vector bundle Gk ×Bk b(k) over G/B. Denote by γx the restriction of χ
(k)
n to G ×B b

k and by B
(k)
x its

7



image, whence a commutative diagram

G ×B b
k

γx
//

γ
##G

GG
GG

GG
GG

B
(k)
x

η
}}{{
{{
{{
{{

B(k)

with η the restriction to B
(k)
x of the canonical projection Xk // gk . Let ιx,k be the map given by

bk
ιx,k

// Xk , (x1, . . . , xk) 7−→ (x1, . . . , xk, x1, . . . , xk).

According to [CZ14, Lemma 2.7,(i) and Corollary 2.8,(i)], ιx,k is a closed embedding of bk into B
(k)
x and γx

is a projective birational morphism so that B
(k)
n is the normalization of B

(k)
x . Denote by C(k) the closure of

G.hk in gk with respect to the diagonal action of G in gk and set C
(k)
x := η−1(C(k)). The varieties C(k) and C

(k)
x

are called generalized commuting variety and generalized isospectral commuting variety respectively. For

k = 2, C
(k)
x is the isospectral commuting variety considered by M. Haiman in [Ha99, §8] and [Ha02, §7.2].

According to [CZ14, Proposition 5.6], C
(k)
x is irreducible and equal to the closure of G.ιx,k(hk) in B

(k)
x .

4.1. We consider the diagonal action of B in bk. Let X0,k be the closure of B.hk in bk. Set:

E(k) := {(u, x1, . . . , xk) ∈ G.X × gk | x1 ∈ u, . . . , xk ∈ u} and E
(k)

0
:= E(k) ∩ X × bk.

Then E
(k)

0
and E(k) are vector bundles over X and G.X respectively. Denote by π0,k and πk respectively their

bundle projections. Let τ0,k and τk be the restrictions to E
(k)

0
and E(k) respectively of the canonical projection

Grℓ(g) × g
k → gk. Denote by π∗,k and τ∗,k the morphisms

G ×B E
(k)

0

π∗,k
// G ×B X , and G ×B E

(k)

0

τ∗,k
// Xk

defined through the quotients by the maps

G × E
(k)

0
// G × X , (g, u, x) 7−→ (g, u),

G × E
(k)

0
// Xk , (g, u, x1, . . . , xk) 7−→ (g(x1), . . . , g(xk), x1, . . . , xk).

Lemma 4.1. (i) The morphism τ0,k is a projective morphism from E
(k)

0
onto X0,k.

(ii) The morphism τk is a projective morphism from E(k) onto C(k).

(iii) The morphism τ∗,k is a projective morphism from G ×B E
(k)

0
onto C

(k)
x .

Proof. (i) Since X is a projective variety, τ0,k is a projective morphism. Then its image is an irreducible

closed subset of bk since E
(k)

0
is irreducible as a vector bundle over an irreducible variety. Moreover, B.hk

is contained in τ0,k(E
(k)

0
) since τ0,k(E

(k)

0
) is invariant under B and contains hk. As a vector bundle of rank kℓ

over X, E
(k)

0
has dimension kℓ + dimu. Since the restriction to U × hkreg of the map

B × hk // bk , (g, x1, . . . , xk) 7−→ (g(x1), . . . , g(xk))

is injective, X0,k has dimension dim u + kℓ. Hence X0,k is the image of E
(k)

0
by τ0,k.

(ii) Since G.X is a projective variety, τk is a projective morphism. Then its image is an irreducible

closed subset of gk since E(k) is irreducible as a vector bundle over an irreducible variety. Moreover, G.hk is
8



contained in τk(E(k)) since τk(E(k)) is invariant under G and contains hk. As a vector bundle of rank kℓ over

G.X, E(k) has dimension kℓ + 2dimu. Since the fibers of the restriction to G × hkreg of the map

G × hk // gk , (g, x1, . . . , xk) 7−→ (g(x1), . . . , g(xk))

have dimension ℓ, C(k) has dimension 2dimu + kℓ. Hence C(k) is the image of E(k) by τk.

(iii) The morphism

G × E
(k)

0
// G × bk , (g, u, x) 7−→ (g, x)

defines through the quotient a morphism

G ×B E
(k)

0

τ1,k
// G ×B b

k .

The varieties G×BE
(k)

0
and G×B b

k are embedded into G/B×E(k) and G/B×gk respectively as closed subsets

and τ1,k is the restriction to G ×B E
(k)

0
of idG/B ×τk. Hence τ1,k is a projective morphism by (ii). As τ∗,k is

the composition of τ1,k and γx, τ∗,k is a projective morphism since so is γx. Moreover, by (ii), the image of

η◦τ∗,k is equal to C(k). Hence C
(k)
x is the image of τ∗,k since it is irreducible and equal to η−1(C(k)). �

4.2. For j = 1, . . . , k, denote by V
(k)

0, j
the subset of elements of X0,k whose j-th component is in breg and by

V
(k)

j
the subset of elements of C(k) whose j-th component is in greg. Let W

(k)

j
be the inverse image of V

(k)

j
by

η.

Let σ j be the automorphism of gk permuting the first and the j-th components of its elements. Then σ j

is equivariant under the diagonal action of G in gk and bk and hk are invariant under σ j. As a result, X0,k is

invariant under σ j and σ j(V
(k)

0,1
) = V

(k)

0, j
. In the same way, C(k) is invariant under σ j and σ j(V

(k)

1
) = V

(k)
j

. The

map

G × bk // G × bk , (g, x) 7−→ (g, σ j(x))

defines through the quotient an automorphism of G ×B b
k. Denote again by σ j this automorphism and the

restriction to Xk of the automorphism (x, y) 7→ (σ j(x), σ j(y)) of gk × hk. Since B
(k)
x is contained in Xk and

γx is a morphism from G ×B b
k to Xk such that γx◦σ j = σ j◦γx, B

(k)
x is invariant under σ j. In the same

way, σ j◦γ = γ◦σ j and B(k) is invariant under σ j. As a result σ j◦η = η◦σ j, C
(k)
x is invariant under σ j and

σ j(W
(k)

1
) = W

(k)

j
.

Lemma 4.2. Let j = 1, . . . , k.

(i) The set V
(k)

0, j
is a smooth open subset of X0,k. Moreover there exists a regular differential form of top

degree on V
(k)

0, j
, without zero.

(ii) The set V
(k)

j
is a smooth open subset of C(k). Moreover there exists a regular differential form of top

degree on V
(k)

j
, without zero.

(iii) The set W
(k)
j

is a smooth open subset of C
(k)
x . Moreover there exists a regular differential form of top

degree on W
(k)

j
, without zero.

Proof. According to the above remarks, we can suppose j = 1.

(i) By definition, V
(k)

0,1
is the intersection of X0,k and the open subset breg × b

k−1 of bk. Hence V
(k)

0,1
is an

open subset of X0,k. For x1 in breg, (x1, . . . , xk) is in V
(k)

0,1
if and only if x2, . . . , xk are in gx1 by Lemma 4.1,(i)
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since gx1 is in X. According to [Ko63, Theorem 9], for x in breg, ε1(x), . . . , εℓ(x) is a basis of gx and gx is

contained in b. Hence the map

breg ×Mk−1,ℓ(k)
θ0

// V
(k)

0,1
,

(x, (ai, j, 1 6 i 6 k − 1, 1 6 j 6 ℓ)) 7−→ (x,
∑ℓ

j=1 a1, jε j(x), . . . ,
∑ℓ

j=1 ak−1, jε j(x))

is a bijective morphism. The open subset breg has a cover by open subsets V such that for some e1, . . . , en

in b, ε1(x), . . . , εℓ(x), e1, . . . , en is a basis of b for all x in V . Then there exist regular functions ϕ1, . . . , ϕℓ on

V × b such that

v −

ℓ∑

j=1

ϕ j(x, v)ε j(x) ∈ span(e1, . . . , en)

for all (x, v) in V × b, so that the restriction of θ0 to V ×Mk−1,ℓ(k) is an isomorphism onto X0,k ∩ V × bk−1

whose inverse is

(x1, . . . , xk) 7−→ (x1, ((ϕ1(x1, xi), . . . , ϕℓ(x1, xi)), i = 2, . . . , k)).

As a result, θ0 is an isomorphism and V
(k)

0,1
is a smooth variety. Since breg is a smooth open subset of the

vector space b, there exists a regular differential form ω of top degree on breg×Mk−1,ℓ(k), without zero. Then

θ0∗(ω) is a regular differential form of top degree on V
(k)

0,1
, without zero.

(ii) By definition, V
(k)

1
is the intersection of C(k) and the open subset greg × g

k−1 of gk. Hence V
(k)

1
is an

open subset of C(k). For x1 in greg, (x1, . . . , xk) is in V
(k)

1
if and only if x2, . . . , xk are in gx1 by Lemma 4.1,(ii)

since gx1 is in G.X. According to [Ko63, Theorem 9], for x in greg, ε1(x), . . . , εℓ(x) is a basis of gx. Hence

the map

greg ×Mk−1,ℓ(k)
θ

// V
(k)

1
,

(x, (ai, j, 1 6 i 6 k − 1, 1 6 j 6 ℓ)) 7−→ (x,
∑ℓ

j=1 a1, jε j(x), . . . ,
∑ℓ

j=1 ak−1, jε j(x))

is a bijective morphism. The open subset greg has a cover by open subsets V such that for some e1, . . . , e2n

in g, ε1(x), . . . , εℓ(x), e1, . . . , e2n is a basis of g for all x in V . Then there exist regular functions ϕ1, . . . , ϕℓ on

V × g such that

v −

ℓ∑

j=1

ϕ j(x, v)ε j(x) ∈ span(e1, . . . , e2n)

for all (x, v) in V × g, so that the restriction of θ to V ×Mk−1,ℓ(k) is an isomorphism onto C(k) ∩ V × bk−1

whose inverse is

(x1, . . . , xk) 7−→ (x1, ((ϕ1(x1, xi), . . . , ϕℓ(x1, xi)), i = 2, . . . , k)).

As a result, θ is an isomorphism and V
(k)

1
is a smooth variety. Since greg is a smooth open subset of the vector

space g, there exists a regular differential form ω of top degree on greg ×Mk−1,ℓ(k), without zero. Then θ∗(ω)

is a regular differential form of top degree on V
(k)

1
, without zero.

(iii) Since Xreg is the inverse image of greg by the canonical projection X // g , W
(k)

1
is the intersection

of C
(k)
x and Xreg × X

k−1. Hence W
(k)

1
is an open subset of C

(k)
x . Moreover, W

(k)

1
is the image of G ×B V

(k)

0,1
by

γx. Since the maps ε1, . . . , εℓ are G-equivariant, the map

G × breg ×Mk−1,ℓ(k) // W
(k)

1
,

(g, x, ai, j, 1 6 i 6 k − 1, 1 6 j 6 ℓ) 7−→ γx(g, θ0(x, ai, j, 1 6 i 6 k − 1, 1 6 j 6 ℓ))
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defines through the quotient a surjective morphism

G ×B breg ×Mk−1,ℓ(k)
θx

// W
(k)

1
.

Let ̟2 be the canonical projection

greg ×Mk−1,ℓ(k) // Mk−1,ℓ(k) .

According to Lemma 2.1,(iii), the restriction of χn to G ×B breg is an isomorphism onto Xreg. So denote by

̟1 the morphism

W
(k)

1

̟1
// G ×B breg , (x1, . . . , xk, y1, . . . , yk) 7−→ χ−1

n (x1, y1).

Then θx is an isomorphism whose inverse is given by

x 7−→ (̟1(x), ̟2◦θ
−1
◦η(x))

since η(W
(k)

1
) = V

(k)

1
. In particular, W

(k)

1
is a smooth open subset of C

(k)
x . According to Proposition 2.2,(ii),

there exists a regular differential form ω of top degree on G ×B breg × Mk−1,ℓ(k), without zero. Then θx∗(ω)

is a regular differential form of top degree on W
(k)

1
, without zero. �

Corollary 4.3. Let j = 1, . . . , k.

(i) The morphism τ0,k is birational. More precisely, the restriction of τ0,k to τ−1
0,k

(V
(k)

0, j
) is an isomorphism

onto V
(k)

0, j
.

(ii) The morphism τk is birational. More precisely, the restriction of τk to τ−1
k

(V
(k)
j

) is an isomorphism

onto V
(k)

j
.

(iii) The morphism τ∗,k is birational. More precisely, the restriction of τ∗,k to τ−1
∗,k

(W
(k)

j
) is an isomorphism

onto W
(k)
j

.

Proof. According to the above remarks, we can suppose j = 1.

(i) For (x1, . . . , xk) in V
(k)

0,1
and for u in X containing x1, . . . , xk, u = gx1 since x1 is regular. Hence the

restriction of τ0,k to τ−1
0,k

(V
(k)

0,1
) is injective. According to Lemma 4.1,(i), V

(k)

0,1
is the image of τ−1

0,k
(V

(k)

0,1
) by

τ0,k. So, by Lemma 4.2,(i) and Zariski’s Main Theorem [Mu88, §9], the restriction of τ0,k to τ−1
0,k

(V
(k)

0,1
) is an

isomorphism onto V
(k)

0,1
.

(ii) For (x1, . . . , xk) in V
(k)

1
and for u in G.X containing x1, . . . , xk, u = gx1 since x1 is regular. Hence

the restriction of τk to τ−1
k

(V
(k)

1
) is injective. According to Lemma 4.1,(ii), V

(k)

1
is the image of τ−1

k
(V

(k)

1
) by

τk. So, by Lemma 4.2,(ii) and Zariski’s Main Theorem [Mu88, §9], the restriction of τk to τ−1
k

(V
(k)

1
) is an

isomorphism onto V
(k)

1
.

(iii) The variety G×BE
(k)

0
identifies to a closed subvariety of G/B×E(k). For (x1, . . . , xk, y1, . . . , yk) in W

(k)

1

and (u, v) in G/B×G.X such that (u, v, x1, . . . , xk) is in G×BE
(k)

0
, (x1, y1) is in Xreg, χn(u, x1) = (x1, y1) and v =

gx1 since x1 is regular. Moreover, u is unique by Lemma 2.1,(iii). Hence the restriction of τ∗,k to τ−1
∗,k

(W
(k)

1
) is

injective. According to Lemma 4.1,(iii), W
(k)

1
is the image of τ−1

∗,k
(W

(k)

1
) by τ∗,k. So, by Lemma 4.2,(iii) and

Zariski’s Main Theorem [Mu88, §9], the restriction of τ∗,k to τ−1
∗,k

(W
(k)

1
) is an isomorphism onto W

(k)

1
. �

Set:

V
(k)

0
:= V

(k)

0,1
∪ V

(k)

0,2
, V (k) := V

(k)

1
∪ V

(k)

2
, W (k) := W

(k)

1
∪W

(k)

2
.

11



Lemma 4.4. (i) The set τ−1
0,k

(V
(k)

0
) is a big open subset of E

(k)

0
.

(ii) The set τ−1
k

(V (k)) is a big open subset of E(k).

(i) The set τ−1
∗,k

(W (k)) is a big open subset of G ×B E
(k)

0
.

Proof. (i) Let Σ be an irreducible component of E
(k)

0
\ τ−1

0,k
(V

(k)

0
). Since V

(k)

0
is a B-invariant open cone, Σ is

a B-invariant closed subset of E
(k)

0
such that Σ ∩ π−1

0,k
(u) is a closed cone of π−1

0,k
(u) for all u in π0,k(Σ). As a

result π0,k(Σ) is a closed subset of X. Indeed, π0,k(Σ) × {0} = Σ ∩ X × {0}. For u in π0,k(Σ), denote by Σu the

closed subvariety of uk such that π−1
0,k

(u) ∩ Σ = {u} × Σu.

Suppose that Σ has codimension 1 in E
(k)

0
. A contradiction is expected. Then π0,k(Σ) has codimension at

most 1 in X. Since X′ is a big open subset of X, for all u in a dense open subset of π0,k(Σ), u ∩ breg is not

empty. If π0,k(Σ) has codimension 1 in X, then Σu = uk for all u in π0,k(Σ). Hence π0,k(Σ) = X and for all u

in a dense open subset of X′, Σu has dimension kℓ − 1. For such u, the image of Σu by the first projection

onto u is not dense in u since u ∩ breg is not empty. Hence the image of Σu by the second projection is equal

to u since Σu has codimension 1 in uk. It is impossible since this image is contained in u \ breg.

(ii) Let Σ be an irreducible component of E(k) \ τ−1
k

(V (k)). Since V (k) is a G-invariant open cone, Σ is a

G-invariant closed subset of E(k) such that Σ∩π−1
k

(u) is a closed cone of π−1
k

(u) for all u in πk(Σ). As a result

πk(Σ) is a closed subset of G.X. Indeed, πk(Σ)× {0} = Σ∩G.X × {0}. For u in πk(Σ), denote by Σu the closed

subvariety of uk such that π−1
k

(u) ∩ Σ = {u} × Σu.

Suppose that Σ has codimension 1 in E(k). A contradiction is expected. Then πk(Σ) has codimension at

most 1 in X. Since G.X′ is a big open subset of G.X, for all u in a dense open subset of πk(Σ), u ∩ greg is not

empty. If πk(Σ) has codimension 1 in G.X, then Σu = uk for all u in πk(Σ). Hence πk(Σ) = G.X and for all u

in a dense open subset of G.X′, Σu has dimension kℓ − 1. For such u, the image of Σu by the first projection

onto u is not dense in u since u ∩ greg is not empty. Hence the image of Σu by the second projection is equal

to u since Σu has codimension 1 in uk. It is impossible since this image is contained in u \ greg.

(iii) Let Σ be an irreducible component of G ×B E
(k)

0
\ τ−1
∗,k

(W (k)). Since W (k) is a G-invariant open cone, Σ

is a G-invariant closed subset of G ×B E
(k)

0
. So, for some B-invariant closed subset Σ0 of E

(k)

0
, Σ = G ×B Σ0.

Moreover, Σ0 is contained in E0,k \ τ
−1
0,k

(V
(k)

0
). According to (i), Σ0 has codimension at least 2 in E

(k)

0
. Hence

Σ has codimension at least 2 in G ×B E
(k)

0
. �

4.3. For 2 6 k′ 6 k, the projection

gk // gk
′

, (x1, . . . , xk) 7−→ (x1, . . . , xk′)

induces the projections

X0,k
// X0,k′ , V

(k)

0, j
// V

(k′)

0, j
.

Set:

V
(k)

0,1,2
:= V

(k)

0,1
∩ V

(k)

0,2
.

Lemma 4.5. Let ω be a regular differential form of top degree on V
(k)

0,1
, without zero. Denote by ω′ its

restriction to V
(k)

0,1,2
.

(i) For ϕ in k[V
(k)

0,1
], if ϕ has no zero then ϕ is in k∗.

(ii) For some invertible element ψ of k[V
(2)

0,1,2
], ω′ = ψσ2∗(ω

′).

(iii) The function ψ(ψ◦σ2) on V
(k)

0,1,2
is equal to 1.
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Proof. The existence of ω results from Lemma 4.2,(i).

(i) According to Lemma 4.2,(i), there is an isomorphism θ0 from breg ×Mk−1,ℓ(k) onto V
(k)

0,1
. Since ϕ is

invertible, ϕ◦θ0 is an invertible element of k[breg]. According to Lemma 2.1,(i), k[breg] = k[b]. Hence ϕ is

in k∗.

(ii) The open subset V
(k)

0,1,2
is invariant under σ2 so that ω′ and σ2∗(ω

′) are regular differential forms of

top degree on V
(k)

0,1,2
, without zero. Then for some invertible element ψ of k[V

(k)

0,1,2
], ω′ = ψσ2∗(ω

′). Let O2

be the set of elements (x, ai, j, 1 6 i 6 k − 1, 1 6 j 6 ℓ) of breg ×Mk−1,ℓ(k) such that

a1,1ε1(x) + · · · + a1,ℓεℓ(x) ∈ breg.

Then O2 is the inverse image of V
(k)

0,1,2
by θ0. As a result, k[V

(k)

0,1,2
] is a polynomial algebra over k[V

(2)

0,1,2
] since

for k = 2, O2 is the inverse image by θ0 of V
(2)

0,1,2
. Hence ψ is in k[V

(2)

0,1,2
] since ψ is invertible.

(iii) Since the restriction of σ2 to V
(k)

0,1,2
is an involution,

σ2∗(ω
′) = (ψ◦σ2)ω′ = (ψ◦σ2)ψσ2∗(ω

′),

whence (ψ◦σ2)ψ = 1. �

Corollary 4.6. The function ψ is invariant under the action of B in V
(k)

0,1,2
and for some sequence mα, α ∈ R+

in Z,

ψ(x1, . . . , xk) = ±
∏

α∈R+

(α(x1)α(x2)−1)mα ,

for all (x1, . . . , xk) in h2reg × h
k−2.

Proof. First of all, since V
(k)

0,1
and V

(k)

0,2
are invariant under the action of B in X0,k, so is V

(k)

0,1,2
. Let g be in B.

Since ω has no zero, g.ω = pgω for some invertible element pg of k[V
(k)

0,1
]. By Lemma 4.5,(i), pg is in k∗.

Since σ2 is a B-equivariant isomorphism from V
(k)

0,1
onto V

(k)

0,2
,

g.σ2∗(ω) = pgσ2∗(ω) and pgω
′
= g.ω′ = (g.ψ)g.σ2∗(ω

′) = pg(g.ψ)σ2∗(ω
′),

whence g.ψ = ψ.

The open subset h2reg of h2 is the complement of the nullvariety of the function

(x, y) 7−→
∏

α∈R+

α(x)α(y).

Then, by Lemma 4.5,(ii), for some a in k∗ and for some sequences mα, α ∈ R+ and nα, α ∈ R+ in Z,

ψ(x1, . . . , xk) = a
∏

α∈R+

α(x1)mαα(x2)nα ,

for all (x1, . . . , xk) in h2reg × h
k−2. Then, by Lemma 4.5,(iii),

a2
∏

α∈R+

α(x)mα+nαα(y)mα+nα = 1,

for all (x, y) in h2reg. Hence a2
= 1 and mα + nα = 0 for all α in R+. �

For α a positive root, denote by hα the kernel of α and set:

Vα := hα ⊕ g
α.

Denote by θα the map

k
θα

// X , t 7−→ exp(tad xα).h.
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According to [Sh94, Ch. VI, Theorem 1], θα has a regular extension to P1(k). Set Zα := θα(P1(k)). Denote

again by α the element of b∗ extending α and equal to 0 on u.

Lemma 4.7. Let α be in R+ and let x0 and y0 be subregular in hα. Set:

E := kx0 ⊕ kHα ⊕ g
α, E∗ := x0 ⊕ kHα ⊕ g

α, E∗,1 := x0 ⊕ kHα ⊕ (gα \ {0}), E∗,2 = y0 ⊕ kHα ⊕ (gα \ {0}).

(i) For x in E∗, the centralizer of x in b is contained in hα + E.

(ii) For V subspace of dimension ℓ of hα + E, V is in X if and only if it is in Zα.

(iii) The intersection of E∗,1 × E∗,2 and X0,2 is the nullvariety of the function

(x, y) 7−→ 〈x−α , y〉α(x) − 〈x−α , x〉α(y)

on E∗,1 × E∗,2.

Proof. (i) If x is regular semisimple, its component on Hα is different from 0 so that gx
= θα(t) for some t in

k. Suppose that x is not regular semisimple. Then x is in x0 + g
α. Hence gx ∩ b is contained in hα + E since

so is gx0 ∩ b.

(ii) All element of Zα is contained in hα + E. Let V be an element of X, contained in hα + E. According

to [CZ14, Corollary 4.3], V is an algebraic commutative subalgebra of dimension ℓ of b. By (i), V = θα(t)

for some t in k if V is a Cartan subalgebra. Otherwise, xα is in V . Then V = θα(∞) since θα(∞) is the

centralizer of xα in hα + E.

(iii) Let (x, y) be in E∗,1 × E∗,2 ∩X0,2. According to Lemma 4.1,(i), for some V in X, x and y are in V . By

(i) and (ii), V = θα(t) for some t in P1(k). For t in k,

x = x0 + s(Hα − 2txα) and y = y0 + s′(Hα − 2txα)

for some s, s′ in k, whence the equality of the assertion. For t = ∞,

x = x0 + sxα and y = y0 + s′xα

for some s, s′ in k so that α(x) = α(y) = 0. Conversely, let (x, y) be in E∗,1 × E∗,2 such that

〈x−α , y〉α(x) − 〈x−α , x〉α(y) = 0.

If α(x) = 0 then α(y) = 0 and x and y are in Vα = θα(∞). If α(x) , 0, then α(y) , 0 and

x ∈ θα(−
〈x−α , x〉

α(x)
) and y ∈ θα(−

〈x−α , x〉

α(x)
),

whence the assertion. �

Proposition 4.8. There exists on V
(k)

0
a regular differential form of top degree without zero.

Proof. According to Corollary 4.6, it suffices to prove mα = 0 for all α in R+. Indeed, if so, by Corollary 4.6,

ψ = ±1 on the open subset B.(h2reg × h
k−2) of V

(k)

0
so that ψ = ±1 on V

(k)

0,1,2
. Then, by Lemma 4.5,(ii), ω and

±σ2∗(ω) have the same restriction to V
(k)

0,1,2
so that there exists a regular differential form of top degree ω̃ on

V
(k)

0
whose restrictions to V

(k)

0,1
and V

(k)

0,2
are ω and ±σ2∗(ω) respectively. Moreover, ω̃ has no zero since so

has ω.

Since ψ is in k[V
(2)

0,1,2
] by Lemma 4.5,(ii), we can suppose k = 2. Let α be in R+, E, E∗,E∗,1, E∗,2 as in

Lemma 4.7. Suppose mα , 0. A contradiction is expected. According to Lemma 4.7,(iii), the restriction of

ψ to E∗,1 × E∗,2 ∩ V
(2)

0,1,2
is given by

ψ(x, y) = a〈x−α , x〉m〈x−α , y〉
n,
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with a in k∗ and (m, n) in Z2 since ψ is an invertible element of k[V
(2)

0,1,2
]. According to Lemma 4.5,(iii),

n = −m and a = ±1. Interchanging the role of x and y, we can suppose m inN. For (x, y) in E∗,1×E∗,2∩V
(2)

0,1,2

such that α(x) , 0, α(y) , 0 and

ψ(x, y) = ±〈x−α , x〉m(
〈x−α , x〉α(y)

α(x)
)−m
= ±α(x)mα(y)−m.

As a result, by Corollary 4.6, for x in x0 + k
∗Hα and y in y0 + k

∗Hα,

±α(x)mα(y)−m
= ±
∏

γ∈R+

γ(x)mγγ(y)−mγ .(1)

For γ in R+,

γ(x) = γ(x0) +
1

2
α(x)γ(Hα) and γ(y) = γ(y0) +

1

2
α(y)γ(Hα).

Since m is in N,

±α(x)m
∏

γ∈R+
mγ>0

(γ(y0) +
1

2
α(y)γ(Hα))mγ

∏

γ∈R+
mγ<0

(γ(x0) +
1

2
α(x)γ(Hα))−mγ =(2)

±α(y)m
∏

γ∈R+
mγ>0

(γ(x0) +
1

2
α(x)γ(Hα))mγ

∏

γ∈R+
mγ<0

(γ(y0) +
1

2
α(y)γ(Hα))−mγ .

For mα positive, the terms of lowest degree in (α(x), α(y)) of left and right sides are

±α(x)mα(y)mα

∏

γ∈R+\{α}
mγ>0

γ(y0)mγ

∏

γ∈R+\{α}
mγ<0

γ(x0)−mγ and ± α(y)mα(x)mα

∏

γ∈R+\{α}
mγ>0

γ(x0)mγ

∏

γ∈R+\{α}
mγ<0

γ(y0)−mγ

respectively and for mα negative, the terms of lowest degree in (α(x), α(y)) of left and right sides are

±α(x)m+mα

∏

γ∈R+\{α}
mγ>0

γ(y0)mγ

∏

γ∈R+\{α}
mγ<0

γ(x0)−mγ and ± α(y)m+mα

∏

γ∈R+\{α}
mγ>0

γ(x0)mγ

∏

γ∈R+\{α}
mγ<0

γ(y0)−mγ

respectively. From the equality of these terms, we deduce m = ±mα and
∏

γ∈R+\{α}
mγ>0

γ(y0)mγ

∏

γ∈R+\{α}
mγ<0

γ(x0)−mγ = ±
∏

γ∈R+\{α}
mγ>0

γ(x0)mγ

∏

γ∈R+\{α}
mγ<0

γ(y0)−mγ .

Since the last equality does not depend on the choice of subregular elements x0 and y0 in hα, this equality

remains true for all (x0, y0) in hα×hα. As a result, as the degrees in α(x) of the left and right sides of Equality

(2) are the same,

m −
∑

γ∈R+
mγ<0 and γ(Hα),0

mγ =

∑

γ∈R+
mγ>0 and γ(Hα),0

mγ.(3)

Suppose m = mα. By Equality (1),
∏

γ∈R+\{α}

γ(x)mγγ(y)−mγ = ±1.

Since this equality does not depend on the choice of the subregular elements x0 and y0 in hα, it holds for all

(x, y) in hreg × hreg. Hence mγ = 0 for all γ in R+ \ {α} and m = 0 by Equality (3). It is impossible since

mα , 0. Hence m = −mα. Then, by Equality (1)
∏

γ∈R+\{α}

γ(x)mγγ(y)−mγ = ±α(x)2mα(y)−2m.
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Since this equality does not depend on the choice of the subregular elements x0 and y0 in hα, it holds for all

(x, y) in hreg × hreg. Then m = 0, whence the contradiction. �

4.4. For 2 6 k′ 6 k, the projection

gk // gk
′

, (x1, . . . , xk) 7−→ (x1, . . . , xk′)

induces the projections

C(k) // C(k′) , V
(k)

j
// V

(k′)

j
.

Set:

V
(k)

1,2
:= V

(k)

1
∩ V

(k)

2
.

Lemma 4.9. Let ω be a regular differential form of top degree on V
(k)

1
, without zero. Denote by ω′ its

restriction to V
(k)

1,2
.

(i) For ϕ in k[V
(k)

1
], if ϕ has no zero then ϕ is in k∗.

(ii) For some invertible element ψ of k[V
(2)

1,2
], ω′ = ψσ2∗(ω

′).

(iii) The function ψ(ψ◦σ2) on V
(k)

1,2
is equal to 1.

Proof. Following the arguments of the proof of Lemma 4.5, the lemma results from Lemma 4.2,(ii). �

Corollary 4.10. The function ψ is invariant under the action of G in V
(k)

1,2
and for some sequence mα, α ∈ R+

in Z,

ψ(x1, . . . , xk) = ±
∏

α∈R+

(α(x1)α(x2)−1)mα ,

for all (x1, . . . , xk) in h2reg × h
k.

Proof. The corollary results from Lemma 4.9 by the arguments of the proof of Corollary 4.6. �

Proposition 4.11. There exists on V (k) a regular differential form of top degree without zero.

Proof. As in the proof of Proposition 4.8, it suffices to prove that mα = 0 for all α in R+ since G.(h2reg × h
k−2)

is a dense open subset of V (k). As V
(k)

0,1,2
is contained in V

(k)

1,2
, mα = 0 by the proof of Proposition 4.8. �

4.5. For 2 6 k′ 6 k, the projection

Xk // Xk′ , (x1, . . . , xk, y1, . . . , yk) 7−→ (x1, . . . , xk′ , y1, . . . , yk′ )

induces the projections

C
(k)
x

// C
(k′)
x , W

(k)

j
// W

(k′)

j
.

Set:

W
(k)

1,2
:= W

(k)

1
∩W

(k)

2
.

According to Corollary 4.3,(iii), W
(k)

1,2
is equal to G.ιx,k(V

(k)

0,1,2
).

Lemma 4.12. Let ω be a regular differential form of top degree on W
(k)

1
, without zero. Denote by ω′ its

restriction to W
(k)

1,2
.

(i) For ϕ in k[W
(k)

1
], if ϕ has no zero then ϕ is in k∗.

(ii) For some invertible element ψ of k[W
(2)

1,2
], ω′ = ψσ2∗(ω

′).

(iii) The function ψ(ψ◦σ2) on W
(k)

1,2
is equal to 1.
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Proof. Following the arguments of the proof of Lemma 4.5, the lemma results from Lemma 4.2,(iii). �

Corollary 4.13. The function ψ is invariant under the action of G in W
(k)

1,2
and for some sequence mα, α ∈ R+

in Z,

ψ◦ιx,k(x1, . . . , xk) = ±
∏

α∈R+

(α(x1)α(x2)−1)mα ,

for all (x1, . . . , xk) in h2reg × h
k.

Proof. Since W
(k)

1,2
= G.ιx,k(V

(k)

0,1,2
), the corollary results from Lemma 4.12 by the arguments of the proof of

Corollary 4.6. �

Proposition 4.14. There exists on W (k) a regular differential form of top degree without zero.

Proof. As in the proof of Proposition 4.8, it suffices to prove that mα = 0 for all α in R+ since G.ιx,k(h2reg ×

hk−2) is a dense open subset of W (k). As W
(k)

1,2
= G.ιx,k(V

(k)

0,1,2
), mα = 0 by the proof of Proposition 4.8. �

4.6. Recall that (G.X)n is the normalization of G.X. Denote by E
(k)
n the following fiber products:

E
(k)
n

νn,k
//

πn,k

��

E(k)

π

��

(G.X)n ν
// G.X

with ν the normalization morphism, πn,k, νn,k the restriction maps.

Lemma 4.15. The variety E
(k)
n is the normalization of E(k) and νn,k is the normalization morphism.

Proof. Since E(k) is a vector bundle over G.X, E
(k)
n is a vector bundle over (G.X)n. Then E

(k)
n is normal since

so is (G.X)n. Moreover, the fields of rational functions on E
(k)
n and E(k) are equal and the comorphism of νn,k

induces the morphism identity of this field so that νn,k is the normalization morphism. �

Denote by X̃0,k, C̃(k), C̃
(k)
x the normalizations of X0,k, C(k), C

(k)
x respectively. Let λ0,k, λk, λ∗,k be the

respective normalization morphisms.

Lemma 4.16. (i) There exists a projective birational morphism τn,0,k from E
(k)

0
onto X̃0,k such that τ0,k =

λ0,k◦τn,0,k. Moreover, τ−1
n,0,k

(λ−1
0,k

(V
(k)

0
)) is a smooth big open subset of E

(k)

0
and the restriction of τn,0,k to this

subset is an isomorphism onto λ−1
0,k

(V
(k)

0
).

(ii) There exists a projective birational morphism τn,k from E
(k)
n onto C̃(k) such that τk◦νn,k = λk◦τn,k.

Moreover, τ−1
n,k

(λ−1
k

(V (k))) is a smooth big open subset of E
(k)
n and the restriction of τn,k to this subset is an

isomorphism onto λ−1
k

(V (k)).

(iii) There exists a projective birational morphism τn,∗,k from G×BE
(k)

0
onto C̃

(k)
x such that τ∗,k = λ∗,k◦τn,∗,k.

Moreover, τ−1
n,∗,k

(λ−1
∗,k

(W (k))) is a smooth big open subset of G×B E
(k)

0
and the restriction of τn,∗,k to this subset

is an isomorphism onto λ−1
∗,k

(W (k)).

Proof. (i) According to Corollary 4.3,(i), τ0,k is a birational morphism from E
(k)

0
onto X0,k and E

(k)

0
is a

normal variety since so is X by [C15, Theorem 1.1]. Hence it factorizes through λ0,k so that for some
17



birational morphism τn,0,k from E
(k)

0
to X̃0,k, τ0,k = λ0,k◦τn,0,k, whence the commutative diagram:

E
(k)

0

τn,0,k

~~}}
}}
}}
} τ0,k

  A
AA

AA
AA

A

X̃0,k
λ0,k

// X0,k

.

According to Lemma 4.1,(i), τ0,k is a projective morphism. Hence so is τn,0,k since it deduces from τ0,k by

base extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(i), τ−1
0,k

(V
(k)

0
) is a big open subset of E

(k)

0
. Moreover, we have the commutative

diagram

τ−1
0,k

(V
(k)

0
)

τn,0,k

zztt
tt
tt
tt
t

τ0,k

""F
FF

FF
FF

FF

λ−1
0,k

(V
(k)

0
)

λ0,k

// V
(k)

0

.

By Lemma 4.2,(i), V
(k)

0
is a smooth open subset of X0,k so that λ0,k is an isomorphism from λ−1

0,k
(V

(k)

0
) onto

V
(k)

0
. By Corollary 4.3,(i), τ0,k is an isomorphism from τ−1

0,k
(V

(k)

0
) onto V

(k)

0
so that τ−1

0,k
(V

(k)

0
) is a smooth open

subset of E
(k)

0
. As a result, τn,0,k is an isomorphism from τ−1

0,k
(V

(k)

0
) onto λ−1

0,k
(V

(k)

0
).

(ii) According to Corollary 4.3,(ii), τk◦νn,k is a birational morphism from E
(k)
n onto C(k) and E

(k)
n is a normal

variety by Lemma 4.15,(i). Hence it factorizes through λk so that for some birational morphism τn,k from

E
(k)
n to C̃(k), τk◦νn,k = λk◦τn,k, whence the commutative diagram:

E
(k)
n

νn,k
//

τn,k

��

E(k)

τk

��

C̃(k)

λk

// C(k)

.

According to Lemma 4.1,(i), τk is a projective morphism. Hence so is τn,k since it deduces from τk by base

extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(ii), τ−1
n,k

(λ−1
k

(V (k))) is a big open subset of E
(k)
n since νn,k is a finite morphism.

Moreover, we have the commutative diagram

τ−1
n,k

(λ−1
k

(V (k)))
νn,k

//

τn,k

��

τ−1
k

(V (k))

τk

��

λ−1
k

(V (k))
λk

// V (k)

.

By Lemma 4.2,(ii), V (k) is a smooth open subset of C(k) so that λk is an isomorphism from λ−1
k

(V (k)) onto

V (k). By Corollary 4.3,(ii), τk is an isomorphism from τ−1
k

(V (k)) onto V (k) so that τ−1
k

(V (k)) is a smooth

open subset of E(k) and νn,k is an isomorphism from τ−1
n,k

(λ−1
k

(V (k))) onto τ−1
k

(V (k)). As a result, τn,k is an

isomorphism from τ−1
n,k

(λ−1
k

(V (k))) onto λ−1
k

(V (k)) and τ−1
n,k

(λ−1
k

(V (k))) is a smooth open subset of E
(k)
n .

(iii) According to Corollary 4.3,(iii), τ∗,k is a birational morphism from G ×B E
(k)

0
onto C

(k)
x and G ×B E

(k)

0

is a normal variety as a vector bundle over G ×B X which is normal by Proposition 3.2. Hence it factorizes
18



through λ∗,k so that for some birational morphism τn,∗,k from G ×B E
(k)

0
to C̃

(k)
x , τ∗,k = λ∗,k◦τn,∗,k, whence the

commutative diagram:

G ×B E
(k)

0

τn,∗,k

{{xx
xx
xx
xx
x

τ∗,k

##F
FF

FF
FF

FF

C̃
(k)
x

λ∗,k

// C
(k)
x

.

According to Lemma 4.1,(i), τ∗,k is a projective morphism. Hence so is τn,∗,k since it deduces from τ∗,k by

base extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(iii), τ−1
∗,k

(W (k)) is a big open subset of G ×B E
(k)

0
. Moreover, we have the

commutative diagram

τ−1
∗,k

(W (k))

τn,∗,k

yyss
ss
ss
ss
ss τ∗,k

##G
GG

GG
GG

GG

λ−1
∗,k

(W (k))
λ∗,k

// W (k)

.

By Lemma 4.2,(iii), W (k) is a smooth open subset of C
(k)
x so that λ∗,k is an isomorphism from λ−1

∗,k
(W (k)) onto

W (k). By Corollary 4.3,(i), τ∗,k is an isomorphism from τ−1
∗,k

(W (k)) onto W (k) so that τ−1
∗,k

(W (k)) is a smooth

open subset of G ×B E
(k)

0
. As a result, τn,∗,k is an isomorphism from τ−1

∗,k
(W (k)) onto λ−1

∗,k
(W (k)). �

Let Y be one of the three varieties X̃0,k, C̃(k), C̃
(k)
x and set:

Z :=



E
(k)

0
if Y = X̃0,k

E
(k)
n if Y = C̃(k)

G ×B E
(k)

0
if Y = C̃

(k)
x

, τ :=



τn,0,k if Y = X̃0,k

τn,k if Y = C̃(k)

τn,∗,k if Y = C̃
(k
x )

,

T :=



X if Y = X̃0,k

G.Xn if Y = C̃(k)

G ×B X if Y = C̃
(k
x )

, π :=



E
(k)

0
// X if Y = X̃0,k

E
(k)
n

// (G.X)n if Y = C̃(k)

G ×B E
(k)
n

// G ×B X if Y = C̃
(k)
x

,

where the arrow is the bundle projection in the last three equalities.

Proposition 4.17. (i) The morphism τ is a projective birational morphism.

(ii) The set Zsm is the inverse image of Tsm by π.

(iii) For some smooth big open subset O of Zsm, the restriction of τ toO is an isomorphism onto a smooth

big open subset of Y.

(iv) The sheaves ΩYsm
and ΩZsm

have a global section without 0.

Proof. (i) The assertion results from Lemma 4.16.

(ii) As a polynomial algebra over an algebra A is regular if and only if so is A, Zsm = π
−1(Tsm) since Z is

a vector bundle over T.

(iii) The assertion results from Lemma 4.16 and Lemma 4.4.

(iv) ForY = X̃0,k, the assertion results from Lemma C.1, Proposition 4.8, Lemma 4.2,(i) and Lemma 4.4,(i).

For Y = C̃(k), the assertion results from Lemma C.1, Proposition 4.11, Lemma 4.2,(ii) and Lemma 4.4,(ii).
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For Y = C̃
(k)
x , the assertion results from Lemma C.1, Proposition 4.14, Lemma 4.2,(iii) and Lemma 4.4,(iii).

�

5. Rational singularities

Let k > 2 be an integer and let Y, Z, T, τ, π be as in Proposition 4.17. Denote by ι the canonical

embeddings Ysm
// Y and Zsm

// Z . According to [Hir64], there exists a desingularization Γ of

T with morphism θ such that the restriction of θ to θ−1(Tsm) is an isomorphism onto Tsm. Let Z̃ be the

following fiber product

Z̃
θ

//

π

��

Z

π

��

Γ
θ

// T

with θ and π the restriction maps so that Z̃ is a vector bundle of rank kℓ over Γ and π is the bundle projection.

Moreover, θ is projective and birational so that Z̃ is a desingularization of Z and Y by Proposition 4.17,(i).

Proposition 5.1. Suppose Y = X̃0,k or C̃
(k)
x .

(i) The variety Z is Gorenstein with rational singularities. Moreover, its canonical bundle is free of rank

one.

(ii) The variety Y is Gorenstein with rational singularities. Moreover, its canonical bundle is free of rank

one.

Proof. (i) According to [C15, Theorem 1.1], X has rational singularities. Then, by Lemma D.1,(iii), so has

G ×B X as a fiber bundle over a smooth variety with fibers having rational singularities. As a result, by

Lemma D.1,(iv), Z has rational singularities as a vector bundle over a variety having rational singularities.

Moreover, T is Gorenstein by Proposition 3.2,(i) and (iii). Then so is Z as a vector bundle over T by

Lemma D.1,(i). By Proposition 4.17, ΩZsm
has a global section without zero. Then, by Lemma C.2, ι∗(ΩZsm

)

is a free module of rank one. Since Z has rational singularities, the canonical module of Z is equal to

ι∗(ΩZsm
) by [KK73, p.50], whence the assertion.

(ii) By Proposition 4.17,ΩYsm
has a global section without zero. Denote it by ω. By Proposition 4.17,(iii),

τ∗(ω) is a local section ofΩZsm
above a big open subset of Z. So by (i) and [KK73, p.50], τ∗(ω) has a regular

extension to Z̃. Denote it by ω̃ and by µ the morphism

O
Z̃

µ
// Ω
Z̃
, ϕ 7−→ ϕω̃.

Since ω has no zero, by Lemma C.2, τ◦θ∗µ is an isomorphism from OY onto ΩYsm
and ι∗(ΩYsm

) is a free

module of rank one. As a result, by [Hi91, Lemma 2.3], Y is Gorenstein with rational singularities. Then,

by [KK73, p.50], the canonical module of Y is equal to ι∗(ΩYsm
), whence the assertion. �

Corollary 5.2. (i) The variety C̃(k) is Gorenstein with rational singularities. Moreover its canonical module

is free of rank one.

(ii) The variety E
(k)
n is Gorenstein with rational singularities. Moreover its canonical module is free of

rank one.

(iii) The varieties En and (G.X)n are Gorenstein with rational singularities.
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Proof. In the proof, we suppose Y = C̃(k).

(i) According to [CZ14, Proposition 5.8,(ii)], C̃(k) is the categorical quotient of C̃
(k)
x by the action of W(R).

Hence, by [Boutot87, Théorème] and Proposition 5.1,(ii), Y = C̃(k) has rational singularities. By Proposition

4.17,(iv), ΩYsm
has a global section without zero. Then, by Lemma C.2, ι∗(ΩYsm

) is a free module of rank

one. Since Y has rational singularities, the canonical module of Y is equal to ι∗(ΩZsm
) by [KK73, p.50].

Moreover, Y is Cohen-Macaulay. So, by Lemma C.3, ι∗(ΩZsm
) has finite injective dimension, whence Y is

Gorenstein.

(ii) Denote by ω a global section of ΩYsm
without zero. By Proposition 4.17,(iii) and Lemma C.2, ΩZsm

has a global section without zero whose restriction to a big open subset of Zsm is equal to the restriction of

τ∗(ω). Denote it by ω′. Since Y has rational singularities, τ◦θ
∗
(ω) has a regular extension to Z̃ by [KK73,

p.50]. Denote it by ω̃. Then the restriction of ω̃ to θ
−1

(Zsm) is equal to θ
∗
(ω′). Let µ be the morphism

O
Z̃

µ
// Ω
Z̃
, ϕ 7−→ ϕω̃.

Since ω′ has no zero, by Lemma C.2, θ∗µ is an isomorphism from OZ onto ΩZsm
and ι∗(ΩZsm

) is free of rank

one. As a result, by [Hi91, Lemma 2.3], Z is Gorenstein with rational singularities. Then, by [KK73, p.50],

the canonical module of Z is equal to ι∗(ΩZsm
), whence the assertion.

(iii) Since Z is a vector bundle over T = (G.X)n, (G.X)n is Gorenstein with rational singularities by (ii)

and Lemma D.1,(ii) and (iv). Then so is En as a vector bundle over (G.X)n by Lemma D.1,(i) and (iv). �

Summarizing the results, Theorem 1.1 results from Proposition 5.1,(ii), and Corollary 5.2,(i) and (iii).

According to [Ri79], C(2) is the commuting variety of g and according to [C12, Theorem 1.1], C(2) is normal,

whence:

Corollary 5.3. The commuting variety of g is Gorenstein with rational singularities. Moreover, its canonical

module is free of rank 1.

6. Normality

Let k be a positive integer. The goal of this section is to prove that X0,k is a normal variety. Consider the

desingularization (Γ, θ) of X as in Section 5. For simplicity of the notations, for k positive integer, we denote

by πk the bundle projection E
(k)

0
// X and by F(k) the fiber product

F(k)

πk

��

θk
// E

(k)

0

πk

��

Γ
θ

// X

with θk and πk the restriction morphisms.

6.1. Let F∗ be the dual of the vector bundle F(1) over Γ.

Lemma 6.1. Let F∗ be the sheaf of local sections of F∗. For i > 0 and for j > 0, Hi(Γ, S j(F∗)) = 0.

Proof. Since π1 is the bundle projection of the vector bundle F(1) over Γ, OF(1) is equal to π1
∗
(S(F∗)) so that

π1∗(OF) = S(F∗)
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As a result, for i > 0,

Hi(F(1),OF(1) ) = Hi(Γ, S(F∗)) =
⊕

j∈N

Hi(Γ, S j(F∗))

According to Lemma 3.1,(i), F(1) is a desingularization of the smooth variety b. Hence by [El78],

Hi(F(1),OF(1) ) = 0

for i > 0, whence

Hi(Γ, S j(F∗)) = 0

for i > 0 and j > 0. �

According to the identification of g and g∗ by the bilinear form 〈. , .〉, b− identifies with b∗. Denote by F−

the orthogonal complement to F(1) in Γ × b− so that F− is a vector bundle of rank n over Γ. Let F− be the

sheaf of local sections of F−.

Corollary 6.2. Let J0 be the ideal of OΓ ⊗k S(b−) generated by F−. Then, for i > 0, Hi(Γ, J0) = 0 and

Hi(Γ,F−) = 0.

Proof. Since F− is the orthogonal complement to F(1) in Γ × b−, J0 is the ideal of definition of F(1) in

OΓ ⊗k S(b−) whence a short exact sequence

0 −→ J0 −→ OΓ ⊗k S(b−) −→ S(F∗) −→ 0

and whence a cohomology long exact sequence

· · · −→ Hi(Γ, S(F∗)) −→ Hi+1(Γ, J0) −→ Hi+1(Γ,OΓ ⊗k S(b−)) −→ · · · .

Then, by Lemma 6.1, from the equality

Hi(Γ,OΓ ⊗k S(b−)) = S(b−) ⊗k Hi(Γ,OΓ)

for all i, we deduce Hi(Γ, J0) = 0 for i > 2. Moreover, since Γ is an irreducible projective variety, H0(Γ,OΓ) =

k and since F(1) is a desingularization of b, H0(Γ, S(F∗)) = S(b−) so that the map

H0(Γ,OΓ ⊗k S(b−)) −→ H0(Γ, S(F∗))

is an isomorphism. Hence Hi(Γ, J0) = 0 for i = 0, 1. The gradation on S(b−) induces a gradation on

OΓ ⊗k S(b−) so that J0 is a graded ideal. Since F− is the subsheaf of local sections of degree 1 of J0, it is a

direct factor of J0, whence the corollary. �

Proposition 6.3. Let k, l be nonnegative integers.

(i) For all positive integer i, Hi(Γ, (F∗)⊗k) = 0.

(ii) For all positive integer i,

Hi+l(Γ,F
⊗l
− ⊗OΓ (F∗)

⊗k) = 0.

Proof. (i) According to Lemma 6.1, we can suppose k > 1. Denote by F∗
k

the restriction to the diagonal

of Γk of the vector bundle F∗k over Γk. Identifying Γ with the diagonal of Γk, F∗
k

is a vector bundle over

Γ. Since F∗ is the dual of the vector bundle F(1) over Γ, F∗
k

is the dual of the vector bundle F(k) over Γ.

Let ψk be the bundle projection of F∗
k

and let F∗
k

be the sheaf of local sections of F∗
k
. Then OF(k) is equal to

ψ∗
k
(S(F∗

k
)) and since F(k) is a vector bundle over Γ, for all nonnegative integer i,

Hi(F(k),OF(k) ) = Hi(Γ, S(F∗k)) =
⊕

q∈N

Hi(Γ, Sq(F∗k )).
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According to Proposition 5.1,(ii), for i > 0, the left hand side is equal to 0 since F(k) is a desingularization

of X̃0,k by Proposition 4.17,(i). As a result, for i > 0,

Hi(Γ, Sk(F∗k))) = 0.

The decomposition of F∗
k

as a direct sum of k copies isomorphic to F∗ induces a multigradation of S(F∗
k
).

Denoting by S j1,..., jk the subsheaf of multidegree ( j1, . . . , jk), we have

Sk(F∗k) =
⊕

( j1 ,..., jk)∈Nk

j1+···+ jk=k

S j1,..., jk and S1,...,1 = (F∗)
⊗k.

Hence for i > 0,

0 = Hi(Γ, Sk(S∗k)) =
⊕

( j1 ,..., jk )∈Nk

j1+···+ jk=k

Hi(Γ, S j1 ,..., jk )

whence the assertion.

(ii) Let k be a nonnegative integer. Prove by induction on j that for i > 0 and for l > j,

Hi+ j(Γ,F
⊗ j
− ⊗OΓ (F∗)

⊗(k+l− j)) = 0.(4)

By (i) it is true for j = 0. Suppose j > 0 and (4) true for j − 1 and for all l > j − 1. From the short exact

sequence of OΓ-modules

0 −→ F− −→ OΓ ⊗k b− −→ F∗ −→ 0

we deduce the short exact sequence of OΓ-modules

0 −→ F
⊗ j
− ⊗OΓ (F∗)

⊗(k+l− j) −→ b− ⊗k F
⊗( j−1)
− ⊗OΓ (F∗)

⊗(k+l− j) −→ F
⊗( j−1)
− ⊗OΓ (F∗)

⊗(k+l− j+1) −→ 0.

From the cohomology long exact sequence deduced from this short exact sequence, we have the exact

sequence

Hi+ j−1(Γ,F
⊗( j−1)
− ⊗OΓ (F∗)

⊗(k+l− j+1)) −→ Hi+ j(Γ,F
⊗ j
− ⊗OΓ (F∗)

⊗(k+l− j))

−→ Hi+ j(Γ, b− ⊗k F
⊗( j−1)
− ⊗OΓ (F∗)

⊗(k+l− j))

for all positive integer i. By induction hypothesis, the first term equals 0 for all i > 0. Since

Hi+ j(Γ, b− ⊗k F
⊗( j−1)
− ⊗OΓ (F∗)

⊗(k+l− j)) = b− ⊗k Hi+ j(Γ,F
⊗( j−1)
− ⊗OΓ (F∗)

⊗(k+l− j)),

the last term of the last exact sequence equals 0 by induction hypothesis again, whence Equality (4) and

whence the assertion for j = l. �

The following corollary results from Proposition 6.3,(ii) and Proposition B.1.

Corollary 6.4. For k positive integer and for l = (l1, . . . , lk) in Nk,

Hi+|l|(Γ,

l1∧
F− ⊗OΓ · · · ⊗OΓ

lk∧
F−) = 0

for all positive integer i.
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6.2. By definition, F(k) is a closed subvariety of Γ × bk. Denote by ̺ the canonical projection from Γ × bk

to Γ, whence the diagram

F(k) �
�

//

πk
##G

GG
GG

GG
GG

G Γ × bk

̺

��

Γ

For j = 1, . . . , k, denote by S j,k the set of injections from {1, . . . , j} to {1, . . . , k} and for σ in S j,k, set:

Kσ :=M1 ⊗OΓ · · · ⊗OΓ Mk with Mi :=

{
OΓ ⊗k S(b−) if i < σ({1, . . . , j})

J0 if i ∈ σ({1, . . . , j})

For j in {1, . . . , k}, the direct sum of the Kσ’s is denoted by J j,k and for σ in S1,k, Kσ is also denoted by

Kσ(1),k.

Lemma 6.5. Let J be the ideal of definition of F(k) in OΓ×bk .

(i) The ideal ̺∗(J) of OΓ ⊗k S(bk−) is the sum of K1,k, . . . ,Kk,k.

(ii) There is an exact sequence of OΓ-modules

0 −→ Jk,k −→ Jk−1,k −→ · · · −→ J1,k −→ ̺∗(J) −→ 0

(iii) For i > 0, Hi(Γ × bk, J) = 0 if Hi+ j(Γ, J
⊗ j

0
) = 0 for j = 1, . . . , k.

Proof. (i) Let Jk be the sum of K1,k, . . . ,Kk,k. Since J0 is the ideal of OΓ ⊗k S(b−) generated by F−, Jk is a

prime ideal of OΓ ⊗k S(bk−). Moreover, F− is the sheaf of local sections of the orthogonal complement to F

in Γ × b−. Hence Jk is the ideal of definition of F(k) in OΓ ⊗k S(bk−), whence the assertion.

(ii) For a a local section of J j,k and for σ in S j,k, denote by aσ(1),...,σ( j) the component of a on Kσ. Let d

be the map J j,k → J j−1,k such that

dai1 ,..., i j
=

j∑

l=1

(−1)l+1ai1 ,..., il−1,il+1,..., i j

Then by (i), we have an augmented complex

0 −→ Jk,k

d
−→ Jk−1,k

d
−→ · · ·

d
−→ J1,k −→ ̺∗(J) −→ 0.

Let J be the subbundle of the trivial bundle Γ × S(b−) such that the fiber at x is the ideal of S(b−) generated

by the fiber F−,x of F− at x. Then J0 is the sheaf of local sections of J and the above augmented complex is

the sheaf of local sections of the augmented complex of vector bundles over Γ,

0 −→ C
(k)

k
(Γ × S(b−), J) −→ · · · −→ C

(k)

1
(Γ × S(b−), J)→ J −→ 0

defined as in Subsection B.2. According to Lemma B.2 and Remark B.3, this complex is acyclic, whence

the assertion by Nakayama Lemma since J, S(b−) and the complex are graded.

(iii) Let i be a positive integer such that Hi+ j(Γ, J
⊗ j

0
) = 0 for j = 1, . . . , k. Then for j = 1, . . . , k and for σ

in S j,k, Hi+ j(Γ,Kσ) = 0 since Kσ is isomorphic to a sum of copies of J
⊗ j

0
. Moreover, Hi(Γ,Kl,k) = 0 for l =

1, . . . , k since Hi(Γ, J0) = 0 by Corollary 6.2. Hence by (ii), since H• is an exact δ-functor, Hi(Γ, ̺∗(J)) = 0,

whence the assertion since ̺ is an affine morphism. �
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6.3. For k positive integer, for j nonnegative integer and for l = (l1, . . . , lk) in Nk, set:

M j,l := J
⊗ j

0
⊗OΓ

l1∧
F− ⊗OΓ · · · ⊗OΓ

lk∧
F−

Lemma 6.6. Let k be a positive integer and let ( j, l) be in N × Nk.

(i) The OΓ-module J0 is locally free.

(ii) For j > 0, there is an exact sequence

0 −→ S(b−) ⊗kM j−1,(n,l) −→ S(b−) ⊗kM j−1,(n−1,l) −→ · · ·

−→ S(b−) ⊗kM j−1,(1,l) −→M j,l −→ 0

(iii) For i > 0, Hi+ j+|l|(Γ,M j,l) = 0.

Proof. (i) Let x be in Γ and let F−,x be the fiber at x of the vector bundle F− over Γ. Then F−,x is a subspace

of dimension n of b−. Let M be a complement to F−,x in b−. Since the map y 7→ F−,y is a regular map from

Γ to Grn(b−), for all y in an open neighborhood V of x in Γ,

b− = F−,x ⊕ M

Denoting by F−,V the restriction of F− to V , we have

OV ⊗k b− = F−,V ⊕ OV ⊗k M

so that

OV ⊗k S(b−) = S(F−,V) ⊗k S(M)

whence

J0 |V = S+(F−,V ) ⊗k S(M).

As a result, J0 is locally free since so is F−.

(ii) Since J0 is the ideal of OΓ ⊗k S(b−) generated by the locally free module F− of rank n and since F−

is locally generated by a regular sequence of the algebra OΓ ⊗k S(b−), having n elements, we have an exact

Koszul complex

0 −→ S(b−) ⊗k

n∧
F− −→ · · · −→ S(b−) ⊗k F− −→ J0 −→ 0

whence a complex

0 −→ S(b−) ⊗k

n∧
F− ⊗OΓ M j−1,l −→ · · · −→ S(b−) ⊗k F− ⊗OΓ M j−1,l

−→ J0 ⊗OΓ M j−1,l −→ 0.

According to (i), M j−1,l is a locally free module. Hence this complex is acyclic.

(iii) Prove the assertion by induction on j. According to Corollary 6.4, it is true for j = 0. Suppose that

it is true for j − 1. According to the induction hypothesis, for all positive integer i and for p = 1, . . . , n,

Hi+ j−1+p+|l|(Γ, S(b−) ⊗kM j−1,(p,l)) = S(b−) ⊗k Hi+ j−1+p+|l|(Γ,M j−1,(p,l)) = 0.

Then, according to (ii), Hi+ j+|l|(Γ,M j,l) = 0 for all positive integer i since H• is an exact δ-functor. �

Proposition 6.7. The variety X0,k is Gorenstein with rational singularities and its canonical module is free

of rank 1. Moreover the ideal of definition of X0,k in S(b−)⊗k is the space of global sections of J.
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Proof. From the short exact sequence,

0 −→ J −→ OΓ×bk −→ OF(k) −→ 0

we deduce the long exact sequence

· · · −→ Hi(Γ × bk, J) −→ S(b−)
⊗k ⊗k Hi(Γ,OΓ) −→ Hi(F(k),OF(k) ) −→ Hi+1(Γ × bk, J) −→ · · ·

According to Proposition 2.2,(i), Hi(Γ,OΓ) = 0 for i > 0 and according to Lemma 6.5,(iii) and Lemma 6.6,(iii),

Hi(Γ × bk, J) = 0 for i > 0. Hence, Hi(F(k),OF(k) ) = 0 for i > 0, whence the short exact sequence

0 −→ H0(Γ × bk, J) −→ S(b−)
⊗k −→ H0(F(k),OF(k)) −→ 0

As F(k) is a desingularization of X0,k, k[X̃0,k] is the space of global sections of OF(k) by Lemma 1.2. Then

k[X0,k] = k[X̃0,k] since the image of S(b−)⊗k is contained in k[X0,k], whence the proposition by Proposi-

tion 5.1,(ii). �

Corollary 6.8. (i) The normalization morphism of C
(k)
x is a homeomorphism.

(ii) The normalization morphism of C(k) is a homeomorphism.

Proof. (i) As X0,k is contained in bk, we deduce the commutative diagram

G ×B X0,k
�

�

//

��

G ×B b
k

γx

��

C
(k)
x

�

�

// B
(k)
x

According to [CZ14, Proposition 3.4], the normalization morphism of B
(k)
x is a homeomorphism. Then

since G ×B b
k is a desingularization of B

(k)
x , the fibers of γx are connected by Zariski Main Theorem [Mu88,

§9]. Then so are the fibers of the restriction of γx to G ×B X0,k since G ×B X0,k is the inverse image of C
(k)
x .

According to Proposition 6.7, G ×B X0,k is a normal variety. Moreover, the restriction of γx to G ×B X0,k is

projective and birational, whence the commutative diagram

G ×B X0,k

γ̃x
//

γx
##G

GG
GG

GG
GG

G
C̃

(k)
x

λ∗,k��~~
~~
~~
~~

C
(k)
x

with λ∗,k the normalization morphism. For x in C
(k)
x , λ−1

∗,k
(x) = γ̃x(γ−1

x (x)). Hence λ∗,k is injective since the

fibers of γx are connected, whence the assertion since λ∗,k is closed as a finite morphism.

(ii) Denote again by η the restriction of η to C
(k)
x . We have a commutative diagram

C̃
(k)
x

η̃
��

λ∗,k
// C

(k)
x

η

��

C̃(k)

λk

// C(k)

with λk the normalization morphism. According to [CZ14, Proposition 5.8], all fiber of η or η̃ is one single

W(R)-orbit and by (i), λ∗,k is bijective. Hence λk is bijective, whence the assertion since λk is closed as a

finite morphism. �
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Appendix A. Notations

In this appendix, V is a finite dimensional vector space. Denote by S(V) and
∧

V respectively the sym-

metric and exterior algebras of V . For all integer i, Si(V) and
∧i V are the subspaces of degree i for the usual

gradation of S(V) and
∧

V respectively. In particular, Si(V) and
∧i V are equal to zero for i negative.

• For l positive integer, denote by Sl the group of permutations of l elements.

• For m positive integer and for l = (l1, . . . , lm) in Nm, set:

|l| := l1+ · · ·+ lm

Sl(V) := Sl1(V) ⊗k · · · ⊗k Slm(V)

l∧
V :=

∧l1 V ⊗k · · · ⊗k
∧lm V.

• For k positive integer and for l = (l1, . . . , lm) in Nm such that 1 6 |l| 6 k, denote by V⊗k the k-th tensor

power of V and by Sl the direct product Sl1× · · · ×Slm . The group Sl has a natural action on V⊗k given by

(σ1, . . . , σm).(v1⊗ · · · ⊗ vk) = vσ1(1)⊗ · · · ⊗ vσ1(l1)⊗vl1+σ2(1)⊗ · · · ⊗ vl1+σ2(l2)

⊗ · · · ⊗v|l|−lm+σm(1)⊗ · · · ⊗ v|l|−lm+σm(lm)⊗v|l|+1⊗ · · · ⊗ vk.

The map

a 7−→ πk,l(a) :=

m∏

j=1

1

l j!

∑

σ∈Sl

σ.a

is a projection from V⊗k onto (V⊗k)Sl . Moreover, the restriction to (V⊗k)Sl of the canonical map from V⊗k

to Sl(V) ⊗k V⊗(k−|l|) is an isomorphism of vector spaces.

Appendix B. Some complexes

Let X be a smooth algebraic variety. For M a coherent OX-module and for k positive integer, denote by

M
⊗k the k-th tensor power of M. According to Notations A, for all l in Nm such that |l| 6 k, there is an

action of Sl on M
⊗k. Moreover, Sl(M) and

∧l M are coherent modules defined by the same formulas as in

Notations A.

B.1. Let E and M be locally free OX-modules.

Proposition B.1. Let i be a positive integer and suppose that

Hi+ j(X,E
⊗k ⊗OX

M) = 0

for all nonnegative integers j, k.

(i) For all positive integers m and k and for all l in Nm such that |l| 6 k,

Hi(X, Sl(E) ⊗OX
E
⊗(k−|l|) ⊗OX

M) = 0.

(ii) For all positive integers n1, n2, k and for all (l,m) in Nn1 × Nn2 such that |l| + |m| 6 k,

Hi(X, Sl(E) ⊗OX

m∧
E ⊗OX

E
⊗(k−|l|−|m|) ⊗OX

M) = 0.

Proof. (i) Since πk,l(E
⊗k) is isomorphic to Sl(E) ⊗OX

E
⊗(k−|l|) and since πk,l is a projector of E⊗k, Sl(E) ⊗OX

E
⊗(k−|l|) is isomorphic to a direct factor of E⊗k and Sl(E) ⊗OX

E
⊗(k−|l|) ⊗OX

M is isomorphic to a direct factor

of E⊗k ⊗OX
M, whence the assertion.
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(ii) Denoting by ε(σ) the signature of the element σ of the symmetric group Sm, the map

E
⊗m −→ E

⊗m a 7→ 1
m!

∑
σ∈Sm

ε(σ)σ.a

is a projection from E
⊗m onto a submodule of E

⊗m isomorphic to
∧m E. So,

∧m E is isomorphic to a

direct factor of E⊗m. Then, by induction on m, for l in Nm,
∧l E is isomorphic to a direct factor of E⊗|l|.

As a result, according to (i), for all positive integers n1, n2, k and for all (l,m) in Nn1 × Nn2 such that

|l| + |m| 6 k, Sl(E) ⊗OX

∧m E ⊗OX
E
⊗(k−|l|−|m|) ⊗OX

M is isomorphic to a direct factor of E⊗k ⊗OX
M, whence

the assertion. �

B.2. Let W be a subspace of V and set E := V/W . Let C
(n)
• (V,W), n = 1, 2, . . . be the sequence of graded

spaces over N defined by the induction relations:

C
(1)

0
(V,W) := V C

(1)

1
(V,W) := W C

(1)
i

(V,W) := 0

C
(n)

0
(V,W) := V⊗n C

(n)

j
(V,W) := C

(n−1)

j
(V,W) ⊗k V ⊕C

(n−1)

j−1
(V,W) ⊗k W

for i > 2 and j > 1.

Lemma B.2. Let n be a positive integer. There exists a graded differential of degree −1 on C
(n)
• (V,W) such

that the complex so defined has no homology in positive degree.

Proof. Prove the lemma by induction on n. For n = 1, d is given by the inclusion map W // V . Suppose

that C
(n−1)
• (V,W) has a differential d verifying the conditions of the lemma. For j > 0, denote by δ the linear

map

C
(n)

j
(V,W) // C

(n)

j−1
(V,W) , (a⊗v, b⊗w) 7−→ (da⊗v + (−1) jb⊗w, db⊗w)

with a, b, v, w in C
(n−1)
j

(V,W), C
(n−1)

j−1
(V,W), V , W respectively. Then δ is a graded differential of degree −1.

Let c be a cycle of positive degree j of C
(n)
• (V,W). Then c has an expansion

c = (

d∑

i=1

ai⊗vi,

d′∑

i=1

bi⊗vi)

with v1, . . . , vd a basis of V such that v1, . . . , vd′ is a basis of W and with a1, . . . ,ad and b1, . . . , bd′ in

C
(n−1)
j

(V,W) and C
(n−1)

j−1
(V,W) respectively. Since c is a cycle,

d∑

i=1

dai⊗vi + (−1) j
d′∑

i=1

bi⊗vi = 0

Hence bi = (−1) j+1dai for i = 1, . . . , d′ so that

c + δ(0,

d′∑

i=1

(−1) jai⊗vi) = (

d∑

i=1

ai⊗vi +

d′∑

i=1

ai⊗vi,

d′∑

i=1

(bi⊗vi + (−1) jdai⊗vi)) = (

d∑

i=1

ai⊗vi +

d′∑

i=1

ai⊗vi, 0).

So we can suppose b1= · · · =bd′ = 0. Then a1, . . . ,ad are cycles of degree j of C
(n−1)
• (V,W). By induction

hypothesis, they are boundaries of C
(n−1)
• (V,W) so that c is a boundary of C

(n)
• (V,W), whence the lemma. �

Remark B.3. The results of this subsection remain true for V or W of infinite dimension since a vector space

is an inductive limit of finite dimensional vector spaces.
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Appendix C. Rational Singularities

Let X be an affine irreducible normal variety.

Lemma C.1. Let Y be a smooth big open subset of X.

(i) All regular differential form of top degree on Y has a unique regular extension to Xsm.

(ii) Suppose that ω is a regular differential form of top degree on Y, without zero. Then the regular

extension of ω to Xsm has no zero.

Proof. (i) Since ΩXsm
is a locally free module of rank one, there is an affine open cover O1, . . . ,Ok of Xsm

such that the restriction of ΩXsm
to Oi is a free OOi

-module generated by some section ωi. For i = 1, . . . , k,

set O′
i

:= Oi ∩ Y . Let ω be a regular differential form of top degree on Y . For i = 1, . . . , k, for some regular

function ai on O′
i
, aiωi is the restriction of ω to O′

i
. As Y is a big open subset of X, O′

i
is a big open subset

of Oi. Hence ai has a regular extension to Oi since Oi is normal. Denoting again by ai this extension, for

1 6 i, j 6 k, aiωi and a jω j have the same restriction to O′
i
∩ O′

j
and Oi ∩ O j since ΩXsm

is torsion free as a

locally free module. Let ω′ be the global section ofΩXsm
extending the aiωi’s. Then ω′ is a regular extension

of ω to Xsm and this extension is unique since Y is dense in Xsm and ΩXsm
is torsion free.

(ii) Suppose that ω has no zero. Let Σ be the nullvariety ofω′ in Xsm. If it is not empty, Σ has codimension

1 in Xsm. As Y is a big open subset of X, Σ ∩ Xsm is not empty if so is Σ. As a result, Σ is empty. �

Denote by ι the inclusion morphism Xsm
// X .

Lemma C.2. Suppose that ΩXsm
has a global section ω without zero. Then the OX-module ι∗(ΩXsm

) is free

of rank 1. More precisely, the morphism θ:

OX
θ

// ι∗(ΩXsm
) , ψ 7−→ ψω

is an isomorphism.

Proof. For ϕ a local section of ι∗(ΩXsm
) above the open subset U of X, for some regular function ψ on

U ∩ Xsm,

ψ(ω
∣∣∣U∩Xsm

) = ϕ.

Since X is normal, so is U and U ∩ Xsm is a big open subset of U. Hence ψ has a regular extension to U. As

a result, there exists a well defined morphism from ι∗(ΩXsm
) to OX whose inverse is θ. �

According to [Hir64], X has a desingularization Z with morphism τ such that the restriction of τ to

τ−1(Xsm) is an isomorphism onto Xsm. Since Z and X are varieties over k, we have the commutative diagram

Z
τ

//

p
##F

FF
FF

FF
FF

X

q
{{ww
ww
ww
ww
w

Spec(k)

.

According to [H66, V. §10.2], p!(k) and q!(k) are dualizing complexes over Z and X respectively. Fur-

thermore, by [H66, VII, 3.4] or [Hi91, 4.3,(ii)], p!(k)[−dim Z] equals ΩZ . Set D := q!(k)[−dim Z] so that

τ!(D) = ΩZ by [H66, VII, 3.4] or [Hi91, 4.3,(iv)]. In particular, D is dualizing over X.

Lemma C.3. Suppose that X has rational singularities. Let M be the cohomology in degree 0 of D. Then

the OX-modules τ∗(ΩZ) and M are isomorphic. In particular, τ∗(ΩZ) has finite injective dimension.
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Proof. Since τ is a projective morphism, we have the isomorphism

Rτ∗(RHomZ(ΩZ ,ΩZ)) // RHomX(R(τ)∗(ΩZ),D)(5)

by [H66, VII, 3.4] or [Hi91, 4.3,(iii)]. Since Hi(RHomZ(ΩZ ,ΩZ)) = OZ for i = 0 and 0 for i > 0, the left

hand side of (5) can be identified with Rτ∗(OZ). Since X has rational singularities, Rτ∗(OZ) = OX and D has

only cohomology in degree. Moreover, by Grauert-Riemenschneider Theorem [GR70], Rτ∗(ΩZ) has only

cohomology in degree 0, whence Rτ∗(ΩZ) = τ∗(ΩZ). Then, by (5), we have the isomorphism

OX
// HomX((τ)∗(ΩZ),M) .

As D is dualizing, we have the isomorphism

Rτ∗(ΩZ) // RHomX(RHomX(Rτ∗(ΩZ),D),D)

whence the isomorphism τ∗(ΩZ) // M . As a result, τ∗(ΩZ) has finite injective dimension since so has

M. �

Appendix D. About singularities

In this section we recall a well known result. Let X be a variety and Y a fiber bundle over X. Denote by τ

the bundle projection.

Lemma D.1. (i) If X is Gorenstein and the fibers of τ are Gorenstein, then so is Y.

(ii) If Y is a Gorenstein vector bundle over X, then X is Gorenstein.

(iii) Suppose that X and the fibers of τ have rational singularities. Then so has Y.

(iv) If Y is a vector bundle over X, X has rational singularities if and only if so has Y.

Proof. Let y be in Y , x := τ(y) and Fx the fiber of Y at x. Denote by ÔX,x and ÔY,y the completions of the

local rings OX,x and OY,y respectively.

(i) By hypothesis, OX,x and OFx ,y are Gorenstein. Then so is OX,x ⊗k OFx ,y. So by [Bru, Proposition

3.1.19,(a)], OY,y is Gorenstein, whence the assertion.

(ii) Since Y is a vector bundle over X, ÔY,y is a ring of formal series over ÔX,x. By [Bru, Proposition

3.1.19,(c)], ÔY,y is Gorenstein. So, by [Bru, Proposition 3.1.19,(b)], ÔX,x is Gorenstein. Then by [Bru,

Proposition 3.1.19,(c)], OX,x is Gorenstein, whence the assertion.

(iii) There exists a cover of X by open subsets O such that τ−1(O) is isomorphic to O × F. According to

the hypothesis, O and F have rational singularities. Then so has τ−1(O), whence the assertion since a variety

has rational singularities if and only it has a cover by open subsets having rational singularities.

(iv) If Y is a vector bundle over X, then there exists a cover of X by open subsets O, such that τ−1(O) is

isomorphic to O× km with m = dimY − dim X. According to [KK73, p.50], O× km has rational singularities

if and only if so has O, whence the assertion since a variety has rational singularities if and only it has a

cover by open subsets having rational singularities. �
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