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ON THE GENERALIZED COMMUTING VARIETIES OF A REDUCTIVE LIE ALGEBRA.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

AssTrRACT. The generalized commuting and isospectral commuting varieties of a reductive Lie algebra have
been introduced in a preceding article. In this note, it is proved that their normalizations are Gorenstein with
rational singularities. Moreover, their canonical modules are free of rank 1. In particular, the usual commuting
variety is Gorenstein with rational singularities and its canonical module is free of rank 1.
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1. INTRODUCTION

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of finite
dimension, ¢ is its rank, dimg = £ + 2n and G is its adjoint group. As usual, b denotes a Borel subalgebra of
g, b a Cartan subalgebra of g, contained in b, and B the normalizer of b in G.

1.1. Main results. By definition, for k > 1, the generalized commuting variety C® is the closure in g*
of the set of elements whose components are in a same Cartan subalgebra. Denoting by B® the subset
of elements of g* whose components are in a same Borel subalgebra and by 23;’" its normalization, the
generalized isospectral commuting variety C';k) is above C® and under the inverse image of €% in Bflk).
For k = 2, C? is the commuting variety of g and 6;2) is the isospectral commuting variety considered by
V. Ginzburg in [Gil2]. According to [CZ14, Proposition 5.6], @S(k) is an irreducible variety. For studying
these varieties, it is very useful to consider the closure in the grassmannian Gr¢(g) of the orbit of [) under the
action of B in Grg(g). Denoting by X this variety, G.X is the closure of the orbit of h under G. Let £y and
€ be the restrictions to X and G.X of the tautological vector bundle over Gry(g) respectively. Denoting by
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&® the fiber product over G.X of k copies of &, E® is a subbundle of G.X x g* and C® is the image of £®
by the canonical projection G.X x g8 — g* . Analogously, denoting by 880 the restriction of £€® to X,

the image Xoj of EE)k) by the projection X x g —— g¥ is the closure in b* of the set of elements whose

components are in a same Cartan subalgebra. The fiber bundle G Xp 86@ is a vector bundle of rank £ over
the fiber bundle G X X over G/B. As for ¥, there is a surjective morphism from G X 83‘) onto G;k). Asa
matter of fact, the three morphisms:

T T*'
&y’ -~ Xox » e® i c® G xp e — ¥

are projective and birational. According to [CZ14, Theorem 1.2], G.X is smooth in codimension 1 so that
so is &®, By [C15, Theorem 1.1], X is normal and Gorenstein then so are SE)k) and G Xp 85"). Denoting
by (G.X), the normalization of G.X, the pullback bundle of &M over (G.X), is the normalization of X,
Denoting it by 851]‘) we have projective birational morphisms:

Tn,0,k

k b k Tk
8(()) - %O,k s 851)

e Th,x, T
b, Gxpel el

with .%Ejk, CH), (‘Z;k) the normalizations of Xqy, C%, G;k) respectively. According to [C15, Proposition 4.6],
for some smooth big open subset Og of Xy, there exists a regular differential form of top degree without
zero. Moreover, the restriction of 7oy to 7 }{(00) is an isomorphism onto Opy. By a simple argument, cw

and G;k) are smooth in codimension 1. Moreover, for some smooth big open subsets O and O, in €% and
G;k) respectively, the restrictions of 7; and 7.4 to TZI(O) and T;}{(O*) are isomorphisms onto O and O,
respectively. The main observation of this note is that there are regillar differential forms of top degree on O
and O, without zero. As a result, we have the following theorem:

Theorem 1.1. The varieties Xoy, cw, (‘Zg(k) are Gorenstein with rational singularities and their canonical
modules are free of rank 1. Moreover, (G.X), is Gorenstein with rational singularities.

In particular, we give a new proof of a Ginzburg’s result [Theorem 1.3.4][Gi12]. For k = 2, € is the
commuting variety of g by [Ri79] and it is normal by [C12, Theorem 1.1]. So the commuting variety of g
is Gorenstein with rational singularities and its canonical module is free of rank 1. Since i&; has rational
singularities, we get that some cohomological groups in positive degree are equal to 0 and we deduce that
X0k 1s normal.

This note is organized as follows. In Section 2, the variety X is introduced and we prove that on the
smooth loci of X and G Xp b, there are regular differential forms of top degree without zero. In Section 3,
we recall some results about &, X, G.X, (G.X),. In Section 4, we give some results about C® and C';k) and
we prove the main result about regular differential forms of top degree on the smooth loci of these varieties.
As a result, we get the main result of the note in Section 5. The goal of Section 6 is the normality of X .
At last, in the appendix, some results are given to prove the normality of X(; and Theorem 1.1.

1.2. Notations. e An algebraic variety is a reduced scheme over k of finite type.

e For V a vector space, its dual is denoted by V* and the augmentation ideal of its symmetric algebra
S(V) is denoted by S, (V). For A a graded algebra over N, A is the ideal generated by the homogeneous
elements of positive degree.

o All topological terms refer to the Zariski topology. If Y is a subset of a topological space X, denote by
Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a big open subset if

the codimension of X \ Y in X is at least 2. For Y a closed subset of an algebraic variety X, its dimension
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is the biggest dimension of its irreducible components and its codimension in X is the smallest codimension
in X of its irreducible components. For X an algebraic variety, Oy is its structural sheaf, Xy, is its smooth
locus, k[X] is the algebra of regular functions on X and k(X) is the field of rational functions on X when X
is irreducible. When X is smooth and irreducible, the sheaf of regular differential forms of top degree on X
is denoted by Qy.

e For X an algebraic variety and for M a sheaf on X, I'(V, M) is the space of local sections of M over
the open subset V of X. For i a nonnegative integer, H'(X, M) is the i-th group of cohomology of M. For
example, HO(X, M) = T'(X, M).

Lemma 1.2. [EGAII, Corollaire 5.4.3] Let X be an irreducible affine algebraic variety and let Y be a
desingularization of X. Then HO(Y, Oy) is the integral closure of k[X] in its fraction field.

e For E a set and k a positive integer, EX denotes its k-th cartesian power. If E is finite, its cardinality is
denoted by |E]|.

e For a reductive Lie algebra, its rank is denoted by rk a and the dimension of its Borel subalgebras is
denoted by b,. In particular, dima = 2b, — rka.

o If E is a subset of a vector space V, denote by span(E) the vector subspace of V generated by E. The
grassmannian of all d-dimensional subspaces of V is denoted by Gry(V). By definition, a cone of V is a
subset of V invariant under the natural action of k* := k\ {0} and a multicone of V¥ is a subset of V¥ invariant
under the natural action of (k*)* on V*.

e The dual of g is denoted by g and it identifies with g by a given non degenerate, invariant, symmetric
bilinear form (., .) on g X g, extending the Killing form of [g, g].

e Let b be a Borel subalgebra of g and let Iy be a Cartan subalgebra of g contained in b. Denote by R the
root system of by in g and by R the positive root system of R defined by b. The Weyl group of R is denoted
by W(R) and the basis of R, is denoted by II. The neutral elements of G and W(R) are denoted by 1, and
1y respectively. For @ in R, the corresponding root subspace is denoted by g* and a generator x, of g¢ is
chosen so that {(x, , x_,) = 1 for all @ in R. Let H, be the coroot of .

e The normalizers of b and [ in G are denoted by B and Ng(h) respectively. For x in b, X is the element of
b such that x — X is in the nilpotent radical u of b.

e For X an algebraic B-variety, denote by G Xp X the quotient of G X X under the right action of B given
by (g, x).b := (gb, b".x). More generally, for k positive integer and for X an algebraic B-variety, denote by
G* X X the quotient of G x X under the right action of B¥ given by (g, x).b := (gbh,b~".x) with g and b in
G* and BF respectively.

Lemma 1.3. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a Q-variety
and let Y be a closed subset of X, invariant under P. Then Q.Y is a closed subset of X. Moreover, the
canonical map from Q Xp Y to Q.Y is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a projective
variety. Denote by O Xp X and Q Xp Y the quotients of Q x X and Q X Y under the right action of P given
by (g, x).p := (gp, p~'.x). Let g — g be the quotient map from Q to Q/P. Since X is a Q-variety, the map

OxX — Q/PxX  (g9,%) +> (9,9.X)
defines through the quotient an isomorphism from Q Xp X to Q/P x X. Since Y is a P-invariant closed subset

of X, O XpY is aclosed subset of O xp X and its image by the above isomorphism equals Q/P x Q.Y. Hence
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Q.Y is a closed subset of X since Q/P is a projective variety. From the commutative diagram:
OXpY —=Q/PxQ.Y

L

QY
we deduce that the map Q Xp Y —— Q.Y is a projective morphism. O

e For k > 1 and for the diagonal action of B in b¥, b* is a B-variety. The canonical map from G x b
to G xp b¥ is denoted by (g, x1,...,x) ¥ (g,x1,...,x). Let BE be the image of G X ¥ by the map
(G X1 ..., X)) = (g(x1),...,9(x)) so that B is a closed subset of g* by Lemma 1.3. Let Bg{) be the
normalization of B® and 5 the normalization morphism. We have the commutative diagram:

G Xp bk T Bg{) .
R K)
o Let i be the injection (xy,...,xx) — (14, x1,...,x) from b¥ to G x5 bk, Then ¢ := yoir and ty g 1= ypoi

are closed embeddings of b* into B® and Bflk) respectively. In particular, B® = G.4 (%) and B;k) =
G .t 1 (5.

e Let e be the sum of the xg’s, B8 in 11, and let & be the element of h N [g, g] such that B(h) = 2 for all
B in I1. Then there exists a unique f in [g, g] such that (e, A, f) is a principal sl,-triple. The one parameter
subgroup of G generated by ad/ is denoted by ¢ — h(t). The Borel subalgebra containing f is denoted by
b_ and its nilpotent radical is denoted by u_. Let B_ be the normalizer of b_ in G and let U and U_ be the
unipotent radicals of B and B_ respectively.

Lemma 1.4. Let k > 2 be an integer. Let X be an affine variety and set Y := b x X. Let Z be a closed
subset of Y invariant under the action of B given by g.(vy, . .. ,0k, x) = (g(v1),. .., g(wy), x) with (g, vy, ..., 0k)
in Bx 0% and x in X. Then Z N Y x X is the image of Z by the projection (v1, .. .,vg, X) — (07, ..., Ug, X).

Proof. For all vin b,
v = lim A(¢)(v)
t—0
whence the lemma since Z is closed and B-invariant. O

e For x € g, let x5 and x; be the semisimple and nilpotent components of x in g. Denote by g* and G* the
centralizers of x in g and G respectively. For a a subalgebra of g and for A a subgroup of G, set:

a*:=ang”* A :=ANGY .
The set of regular elements of g is
Oreg = {x€g|dimg* = ¢}.
Denote by greg s the set of regular semisimple elements of g. Both ge; and gyeg 55 are G-invariant dense open
subsets of g. Setting breg =bhn Oreg> breg =bnN Oreg> Oreg,ss = G(breg) and Oreg = G(breg)-

eLet py,..., p; be some homogeneous polynomials generating the algebra S(g)° of invariant polynomials
under G. Fori = 1,...,¢ and for x in g, denote by &;(x) the element of g given by

d
(&i(x),y) = api(x + 1Y) |1=0
4



for all y in g. Thereby, &; is an invariant element of S(g) ®; g under the canonical action of G. According
to [Ko63, Theorem 9], for x in g, x is in gye, if and only if £1(x), ..., &,(x) are linearly independent. In this
case, €1(x), ..., &p(x) is a basis of g*.

2. ON THE VARIETIES X’ AND G X D

Denote by my : ¢ — g//G and 7y, : h — bh/W(R) the quotient maps, i.e the morphisms defined by the
invariants. Recall g//G = )/ W(R), and let X be the following fiber product:

X
T
b P

h/W(R)

where )y and p are the restriction maps. The actions of G and W(RR) on g and b respectively induce an action of
GXW(R)on X. According to [CZ14, Lemma 2.4], X is irreducible and normal. Moreover, Xeg := Greg XHNX
is a smooth open subset of X, k[X] is the space of global sections Ogx,p and k[X]° = S(b). According to
[CZ14, Lemma 2.4], the map

GXb—— =X

. (9.0 = (9(0), %)
defines through the quotient a projective birational morphism

GXgh ki

Lemma 2.1. (i) The set by, is a big open subset of b.
(ii) The set G Xp byeg is a big open subset of G Xp b.
(iii) The restriction of xy to G Xp byeg is an isomorphism onto Xyeg.
(iv) The restriction of 7 t0 @reg is a sSmooth morphism.

Proof. (i) Let X be an irreducible component of b \ by,. Then X is a closed cone invariant under B and
T := 2N is a closed cone of h. According to Lemma 1.4, X is contained in  + u. Suppose that X has
codimension 1 in b. A contradiction is expected. Then Y= hor Y has codimension 1 in . The first case is
impossible since ) N by, is not empty. Hence X = T + u since X is irreducible of codimension 1 in b. As a
result, 1 is contained in ¥ since ¥ is a closed cone, whence the contradiction since u N Dreg is nOt empty.

(i) The complement of G X byeg in G Xp b is equal to G Xg b \ byeg. By (i), b\ breg, is a B-invariant closed
subset of b of dimension at most dimb — 2. Then G Xp b \ by is a closed subset of G Xp b of codimension
at least 2, whence the assertion.

(iii) By definition, Xieg = xn(G Xp breg). Let (g1, x1) and (g2, x2) be in G X Dbyeg such that (gq(x1),x7) =
(g2(x2), x2). For some by and b, in B,

bi(x1)s =x1 and by(x2)s = X2 = X1.

Setting:
y1 :=bi(x1) and ys := ba(xa),

Y2 = bag, 1g 1bI1(y1) is a regular element of g". In particular, y, , and y; , are regular nilpotent elements of
g and they are in the borel subalgebra b N g* of g*'. Hence bag; 1g1bI1 isin B and so is g; 'g1. As aresult,
the restriction of y,, to G Xp by is injective. So, by Zariski’s Main Theorem [Mu88, §9], the restriction of

Xn 10 G Xp Dpeg is an isomorphism onto X,es since Xyeg is a smooth variety.
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(iv) Let x be in greg. The kernel of the differential of 7y at x is the orthogonal complement of g* so that
the differential of 4 at x is surjective whence the assertion by [H77, Ch. III, Proposition 10.4]. O

Proposition 2.2. (i) There exists a regular form of top degree, without zero on Xyeg.
(i1) There exists a regular form of top degree, without zero on G Xg b.

Proof. (i) Let w be a volume form on g. According to Lemma 2.1,(iv), the restriction of w to gy is divisible
by dp;A--- Adp, so that
w=aAndp;A---Adp,

with « a regular relative differential form of top degree with respect to my. Denoting by vy, ..., v, a basis of
b,
o =aAdyA--- Adog
is a regular form of top degree on X, since S(g)¢ identifies with a subalgebra of S(b). As 7, and p have the
same fibers and w has no zero so has w’.
(ii) By Lemma 2.1,(iii), y;(w”) is a regular form of top degree on G Xp by, without zero. Then by
Lemma C.1,(ii) and Lemma 2.1,(ii), theres exists a regular form of top degree on G X b, without zero. O

3. MAIN VARIETIES AND TAUTOLOGICAL VECTOR BUNDLES

Denote by X the closure in Grg(g) of the orbit of ) under B. Since G/B is a projective variety, G.X is the
closure in Gry(g) of the orbit of h under G. Set:

Eo:={(u,x) e X Xb|;x € ul, & ={(u,x) e GXXgl;x € ul.

Then &( and € are the restrictions to X and G.X respectively of the tautological vector bundle of rank ¢ over
Gr(g). Denote by 7y and 7 the bundle projections:

o n

X, €

€o GX.

Since the map

Oreg Gr(g) , x> g

is regular, for all x in greg, ¢* is in G.X and for all x in b, g is in X. Denoting by X’ the image of by, G. X’
is the image of gy, and according to [CZ14, Theorem 1.2], X" and G.X’ are smooth big open subsets of X
and G.X respectively.

Let 79 and 7 be the restrictions to &g and € respectively of the canonical projection Gry(g) X g — g.
Denote by 7, and 7, the morphisms

Ty Ty

G Xp 80 GxpX, and GXBE() X
defined through the quotients by the maps
G X & GxX, (g, u, x) — (g, u),
Gx <& X, (g, u, x) — (g(x), X).

Lemma 3.1. (i) The morphism 1 is a projective and birational morphism from Eq onto b.
(ii) The morphism 7 is a projective and birational morphism from & onto g.

(iii) The morphism 7. is a projective and birational morphism from G Xg &g onto X.
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Proof. (i) and (ii) Since X and G.X are projective varieties, 7 and 7 are projective morphisms. For x in greg,
7~1(x) = {¢*}. Hence 7 and 7 are birational and their images are b and g since gyeg is an open subset of g.
(iii) The morphism
Gx& —Gxb, (g, u, x) — (g, x)
defines through the quotient a morphism

1

GXB((:O G Xxph.

The varieties G Xp &y and G Xp b are embedded into G/B X € and G/B X g respectively as closed subsets
and 7 is the restriction to G Xp & of idg/px7. Hence 7; is a projective morphism by (ii). As 7, is the
composition of 71 and y,, T is a projective morphism since so is y,. The map

G X Dyeg

Gx¢&, (g, x) — (9,9, x)

defines through the quotient a morphism

G Xp breg Gxp&p.

According to Lemma 2.1,(iii), the restriction of 7, to T;I(fxreg) is an isomorphism onto X,.;, whose inverse
is oy . In particular, 7, is birational. O

Denote by (G.X), the normalization of G.X. Let &, be the following fiber product:

Vn

En e
(G X)n GX

with v the normalization morphism, v, 7, the restriction maps.

Proposition 3.2. (i) The varieties £y and X are Gorenstein with rational singularities.
(i) The varieties &, and X, are Gorenstein with rational singularities.
(iii) The varieties G Xg £y and G Xg X are Gorenstein with rational singularities.

Proof. According to [C15, Theorem 1.1], X is Gorenstein with rational singularities, then by Lemma D.1,(i)
and (iv), so is &y as a vector bundle over X. Furthermore, by Lemma D.1,(i) and (iii), G X X is Gorenstein
with rational singularities as a fiber bundle over a smooth variety whose fibers are Gorenstein with rational
singularities. As a result, by Lemma D.1,(i) and (iv), G Xp & is Gorenstein with rational singularities as a
vector bundle over G Xg X.

Proposition 3.2,(ii) will be proved in Section 5 (see Corollary 5.2). O

4. ON THE GENERALIZED ISOSPECTRAL COMMUTING VARIETY

Let k > 2 be an integer. The variety G¥ x g b* identifies with (G x b)f. Denote by ng) the morphism

®
X
G* x g ¥ x® (X1, %) F (en(X1), - -5 ().

The varitey G/B identifies with the diagonal A of (G/ B)* so that G xp bf identifies with the restriction to A

of the vector bundle G¥ x5 b® over G/B. Denote by vy, the restriction of ng) to G Xp b* and by B;k) its
7



image, whence a commutative diagram

GXBbk

~

BK)

BY

(k)
X

with 7 the restriction to By of the canonical projection X* — g¥ . Let 1,4 be the map given by

Uy k k

px—— S XK, (X1 ey X)) — (X1, e oy Xpy X1 e+, XE).

According to [CZ14, Lemma 2.7,(i) and Corollary 2.8,()], tx x is a closed embedding of b¥ into Bik) and yy
is a projective birational morphism so that B;k) is the normalization of B;k). Denote by C% the closure of
G.b* in g* with respect to the diagonal action of G in g* and set (‘Zik) := 7 1(CM). The varieties € and C';k)
are called generalized commuting variety and generalized isospectral commuting variety respectively. For
k=2, (‘Zik) is the isospectral commuting variety considered by M. Haiman in [Ha99, §8] and [Ha02, §7.2].
According to [CZ14, Proposition 5.6], G;k) is irreducible and equal to the closure of G.Lx,k(bk) in B;k).

4.1.  We consider the diagonal action of B in bk, Let Xo x be the closure of B.HF in bk, Set:
e® .= {(u, x1,...,x) € GX X gk | x1 €u,...,xx €u} and SE)k) =W x xpk.

Then Sgk) and £® are vector bundles over X and G.X respectively. Denote by 7 and 7 respectively their

bundle projections. Let 7o and 7 be the restrictions to SBk) and £® respectively of the canonical projection
Gri(g) X ¢ = g*. Denote by 7, x and 7. the morphisms

Tk Tak

G xp Y GxpX, and  Gxp&l ——— s

defined through the quotients by the maps

GxeY GxX, (g.ux) r— (gu),

k —_ —
Gx el X, (Gauxrs . x0) > (g, g0, T LX)
Lemma 4.1. (i) The morphism 7oy is a projective morphism from Sgk) onto X .

(ii) The morphism ty is a projective morphism from E® onto €W,

(iii) The morphism t. is a projective morphism from G Xp 880 onto (‘Zg(k).

Proof. (1) Since X is a projective variety, Toy is a projective morphism. Then its image is an irreducible
closed subset of b¥ since 88‘) is irreducible as a vector bundle over an irreducible variety. Moreover, B.H*

is contained in To,k(EE)k)) since To,k(SE)k)) is invariant under B and contains b*. As a vector bundle of rank k¢

k

over X, 8(()k) has dimension k¢ + dimu. Since the restriction to U X Dy,

of the map
Bx ) —————oF, (g, X155 X)) = (g(x1), . .., g (X))

is injective, Xo ; has dimension dimu + k€. Hence X is the image of SBk) by 7o.
(ii) Since G.X is a projective variety, 7y is a projective morphism. Then its image is an irreducible
closed subset of g* since £® is irreducible as a vector bundle over an irreducible variety. Moreover, G.hris
8



contained in 74 (£®) since 74(E®) is invariant under G and contains h*. As a vector bundle of rank k¢ over

G.X, €® has dimension k¢ + 2dimu. Since the fibers of the restriction to G x b’r‘eg of the map

G x bt g, (9, x1, ..., %) V> (g(x1), ...,9(xx))

have dimension ¢, €® has dimension 2dim u + k€. Hence C% is the image of £® by 7.
(iii) The morphism

GXEY ————=GxV,  (gux)— (g,%)

defines through the quotient a morphism

T
GXBSE)k)l;’k>GXBbk.

The varieties G Xp 85") and G xzb¥ are embedded into G/Bx X and G/B x ¢ respectively as closed subsets
and 7 & is the restriction to G Xp SBk) of idg,p> 7. Hence 7y is a projective morphism by (ii). As 7, is

the composition of 7 x and yx, 7.4 1s a projective morphism since so is yx. Moreover, by (ii), the image of
1°T.x is equal to €. Hence G;k) is the image of 7. since it is irreducible and equal to ~1(C®). m]

4.2. For j=1,...,k, denote by V(()kj). the subset of elements of X whose j-th component is in by, and by

V;.k) the subset of elements of CX whose j-th component is in Oreg- Let Wj.k) be the inverse image of Vj(.k) by
1.

Let o ; be the automorphism of g* permuting the first and the j-th components of its elements. Then o |
is equivariant under the diagonal action of G in g* and b* and B¥ are invariant under o . As aresult, Xo is
invariant under o ; and o j(V(()]ff) = V(()kj) In the same way, C® is invariant under o jand o j(Vik)) = V](.k). The
map

Gxbk— s Gxpr, (g, x) — (g, 0j(x))

defines through the quotient an automorphism of G X b*. Denote again by o ; this automorphism and the
restriction to X* of the automorphism (x, y) — (o i(x), 0 j(y)) of gF x b¥. Since Bik) is contained in X* and
¥x is a morphism from G xg b¥ to X* such that yyeo = T j%x, Bik) is invariant under o ;. In the same
way, o joy = yoo; and B® is invariant under o ;- As aresult o jon = nooj, G;k) is invariant under o-; and
o (W) = Wi,
Lemma4.2. Let j=1,...,k

(1) The set V(()]f]). is a smooth open subset of Xox. Moreover there exists a regular differential form of top
degree on V(()]fj)., without zero.

(i) The set Vj(.k) is a smooth open subset of C©. Moreover there exists a regular differential form of top
degree on V](.k), without zero.

(>iii) The set W](.k) is a smooth open subset of G;k). Moreover there exists a regular differential form of top

degree on WJ(.k), without zero.

Proof. According to the above remarks, we can suppose j = 1.
(i) By definition, V(()kf is the intersection of X, and the open subset by X bk! of b*. Hence V(()kf is an

open subset of Xg . For xy in byeg, (xq,...,x;) isin V(()ki if and only if x5, ..., x; are in g*' by Lemma 4.1,(i)
9



since g"! is in X. According to [Ko63, Theorem 9], for x in breg, £1(X), ..., &¢(x) is a basis of g* and g" is
contained in b. Hence the map

6o k
breg X Mk—l,((k) V(()i >
(6 (@i | SE<k=1L1<j<O) = (630 a1jei(0), .., X5 a1 j&(x)
is a bijective morphism. The open subset by has a cover by open subsets V such that for some ey, ...,e,
inb, 1(x),...,ex(x),e1,...,e,1s abasis of b for all x in V. Then there exist regular functions ¢, ..., @, on
V X b such that
¢
v— @j(x,v)ej(x) € span(ey,...,ey,)
j=1

for all (x,v) in V X b, so that the restriction of 6y to V X My_; ¢(k) is an isomorphism onto Xp; NV X pk-1
whose inverse is
(x15 - xp) o (e, (@1 (e, ), o pe(X1, X)), 0= 2,000, k).
As a result, 8y is an isomorphism and V(()ki is a smooth variety. Since b, is a smooth open subset of the
vector space b, there exists a regular differential form w of top degree on bee X My_1 ¢(k), without zero. Then
6p.(w) is a regular differential form of top degree on V(()kf , without zero.
(ii) By definition, Vik) is the intersection of C® and the open subset greg X gc=1 of ¢*. Hence V%k) is an

open subset of % For x; in Oreg> (X1,...,X;) 18 1n V{k) if and only if xp, ..., x; are in g*' by Lemma 4.1,(ii)
since g™ is in G.X. According to [Ko63, Theorem 9], for x in greg, €1(x), ..., &(x) is a basis of g*. Hence
the map
0 k
greg X Mk—l,{(k) Vf ) ,
(0 (a1 Si<k=1,1<j<0)— (5,35 anjgi(0), ..., X5, ar-1,j8(x)

is a bijective morphism. The open subset g, has a cover by open subsets V such that for some ey, ..., ez,
ing, g1(x),...,&(x),e1,...,ey, is abasis of g for all xin V. Then there exist regular functions ¢, ..., ¢, on

V X g such that

¢
0= ) @j(x0)E;(x) € span(er. ... e2,)
j=1
for all (x,v) in V X g, so that the restriction of 6 to V X My_j ¢(k) is an isomorphism onto el Ny x pt!
whose inverse is

(xlw"’xk) — (xl’((‘pl(xhxi)a"'a‘pf(xlaxi))’i = 2aak))

As aresult, 6 is an isomorphism and Vik) is a smooth variety. Since gy 18 a smooth open subset of the vector
space g, there exists a regular differential form w of top degree on greg X My_1 ¢(k), without zero. Then 6. (w)

is a regular differential form of top degree on v®, without zero.

(k)
1

of G;k) and Xyeg X X*-!. Hence Wfk) is an open subset of Cf;k). Moreover, Wfk) is the image of G Xp V(()ki by
vx- Since the maps €1, ..., & are G-equivariant, the map

(iii) Since Xieg is the inverse image of gree by the canonical projection X ——= g, W," is the intersection

G X breg X Mi—1,¢(k) Wi,

(9, % aij, 1 <i<k—-1,1<j<O)— yx(g,00(x,ai;,1 <i<k-1,1<j<?)
10



defines through the quotient a surjective morphism

Ox
G Xp breg X Mk_l,[(k) Wik) .
Let @, be the canonical projection
Oreg X My_1,¢(k) Mj—1,e(k) .

According to Lemma 2.1,(iii), the restriction of x;, to G Xp by is an isomorphism onto X,e.. So denote by
@ the morphism

w —
: GbiI‘Cga (-xla""xk’yla"'ayk)Han(xlayl)'

(k)
W
Then 6y is an isomorphism whose inverse is given by
X = (@1(2), @206 on(x)

since n(Wik)) = Vik). In particular, Wik) is a smooth open subset of (‘Zik). According to Proposition 2.2,(ii),
there exists a regular differential form w of top degree on G Xpg beg X Mj_1 ¢(k), without zero. Then 6y, (w)
is a regular differential form of top degree on Wik), without zero. O

Corollary 4.3. Let j=1,...,k
(i) The morphism 7o is birational. More precisely, the restriction of Ty to Ta}{(v(()]f]).) is an isomorphism

onto V(()k)..
,J

(ii) The morphism vy is birational. More precisely, the restriction of Ty to lel(VJ(.k)) is an isomorphism
onto Vj.k).

(iii) The morphism t..x is birational. More precisely, the restriction of T to T*_llc(W;.k)) is an isomorphism
onto Wﬁ.k).

Proof. According to the above remarks, we can suppose j = 1.

(1) For (xy,...,x;) in V(()k% and for u in X containing xi,...,x;, ¥ = g*' since x; is regular. Hence the
restriction of 7o to Ta,}((v(()]ji) is injective. According to Lemma 4.1,(i), Vg’? is the image of Ta,}((v(()]ji) by

70 S0, by Lemma 4.2,(i) and Zariski’s Main Theorem [Mu88, §9], the restriction of 7 to 7 }{(V(()kf ) is an

isomorphism onto ngf.

@i1) For (x1,...,xz) in V%k) and for u in G.X containing xi,...,x;, 4 = ¢! since x; is regular. Hence
the restriction of 7y to lel(ng)) is injective. According to Lemma 4.1,(ii), V%k) is the image of lel(ng)) by
7. So, by Lemma 4.2,(ii) and Zariski’s Main Theorem [Mu88, §9], the restriction of 74 to T;l(Vik)) is an
isomorphism onto Vik).

(iii) The variety G Xp Sgc) identifies to a closed subvariety of G/B X W For (xy, ..., Xk Yls. .., Yr)in W{k)
and (u, v) in G/BXG.X such that (u, v, x1, ..., x) is in GXEY, (x1,y1) is in Xreg, xa(tt, X1) = (x1,y1) and v =
g*! since x| is regular. Moreover, u is unique by Lemma 2.1,(iii). Hence the restriction of 7, 4 to T;lk(Wik)) is
injective. According to Lemma 4.1,(iii), Wfk) is the image of T*_,k(Wik)) by T.k. So, by Lemma 4.2,(iii) and
Zariski’s Main Theorem [Mu88, §9], the restriction of 7, 4 to T*_}{(Wik)) is an isomorphism onto Wik). |

Set:

v =viouvl, v =vP oVl wl = wh o wi
11



Lemma 4.4. (i) The set T&}((V(()k)) is a big open subset of SE)k).
(1) The set lel (VWO is a big open subset of EX.
(1) The set T;}((W(k)) is a big open subset of G Xp Sg{).

Proof. (i) Let X be an irreducible component of SBk) \ T(;,}c(v(()k))' Since V(()k) is a B-invariant open cone, X is
a B-invariant closed subset of Eg() such that X N ﬂg’}{(u) is a closed cone of 71'(_),}{(14) for all u in mox(X). As a
result 7o £ (X) is a closed subset of X. Indeed, o x(X) X {0} = £ N X X {0}. For u in 7y x(X), denote by X, the
closed subvariety of 1 such that ﬂa’}c(u) NZ ={u} xZ,.

Suppose that X has codimension 1 in Eg(). A contradiction is expected. Then 7 ;(X) has codimension at
most 1 in X. Since X’ is a big open subset of X, for all u in a dense open subset of 7o x(Z), u N byeg is not
empty. If 79 x(X) has codimension 1 in X, then X, = u¥ for all u in mok(Z). Hence mox(X) = X and for all u
in a dense open subset of X’, ¥, has dimension k¢ — 1. For such u, the image of X, by the first projection
onto u is not dense in u since u N breg is not empty. Hence the image of X, by the second projection is equal
to u since ¥, has codimension 1 in u*. It is impossible since this image is contained in u \ Dyeg.

(i1) Let X be an irreducible component of [ALAY TZI(V(k)). Since V® is a G-invariant open cone, X is a
G-invariant closed subset of €% such that =N ﬂ,?l(u) is a closed cone of ﬂ,?l(u) for all u in m(¥). As a result
mr(X) is a closed subset of G.X. Indeed, mi(Z) X {0} = XN G.X X {0}. For u in m;(X), denote by Z, the closed
subvariety of u* such that 71',;1(14) NX={u}xZ,.

Suppose that T has codimension 1 in €®. A contradiction is expected. Then m;(X) has codimension at
most 1 in X. Since G.X" is a big open subset of G.X, for all u in a dense open subset of 7;(X), 1 N Greg is nOt
empty. If (%) has codimension 1 in G.X, then X, = u* for all u in 7;(X). Hence (X)) = G.X and for all u
in a dense open subset of G.X’, ¥, has dimension k¢ — 1. For such u, the image of X, by the first projection
onto u is not dense in u since u N geg is not empty. Hence the image of X, by the second projection is equal
to u since ¥, has codimension 1 in u*. It is impossible since this image is contained in u \ Greg.

(iii) Let X be an irreducible component of G Xp Eg() \ T;}{(W(k)). Since W% is a G-invariant open cone, X
is a G-invariant closed subset of G Xp 85"). So, for some B-invariant closed subset X of Sgk), 2 =G Xg2p.
Moreover, X is contained in €y \ T(_)’}C(V(()k)). According to (i), o has codimension at least 2 in 88"). Hence

2 has codimension at least 2 in G Xp Eg‘). |
4.3. For 2 < k’ <k, the projection

k K

g ———>9 , (Xl,...,Xk)H(Xl,...,Xk/)

induces the projections

k 4
Yo — Xox V(()J) —_— Vé, j) .
Set:
k) ._ k) (k)
V0,1,2 = Vo,l N Vo,z‘

Lemma 4.5. Let w be a regular differential form of top degree on y®

o.1» Without zero. Denote by «’ its

.. (k)
restriction to Vo, 12

(1) For ¢ in k[V(()kf], if ¢ has no zero then ¢ is in k.
(ii) For some invertible element  of k[V(()zl) o 0 = Yo ().
(iii) The function Y(oo>) on vo s equal to 1.

0,1,2
12



Proof. The existence of w results from Lemma 4.2,(i).

(i) According to Lemma 4.2,(i), there is an isomorphism 6y from bree X My ¢(k) onto V(()kf Since ¢ is
invertible, @of is an invertible element of k[byes]. According to Lemma 2.1,(i), k[bree] = k[b]. Hence ¢ is
in k*.

(i1) The open subset V(()],?,z
top degree on V(()],?,z’ without zero. Then for some invertible element y of k[ngf,z], W' = Yo (w). Let O
be the set of elements (x,a;j,1 <i<k—1,1< j<{) of breg X My_ (k) such that

is invariant under o so that w’ and o».(w”") are regular differential forms of

ar1€1(x) + -+ + ay €¢(X) € Dreg.

Then O; is the inverse image of V(()kf , by 6. As aresult, k[V(()kf ,1is a polynomial algebra over k[V(()zl) ,] since
for k = 2, O, is the inverse image by 6 of V(()zl) ,- Hence ¢ is in k[V(()zl) ,] since ¥ is invertible.
(iii) Since the restriction of o to V(()ki , 18 an involution,
02.(w") = (Yeo2)w = (Yoo . (o),
whence (YooY = 1. O

Corollary 4.6. The function \ is invariant under the action of B in V(()ki , and for some sequence My, a € Ry
inZ,
Y(xi,. .00 = £ | | @Gnan) ™)™,
aeR,
forall (x1,...,x)in I)feg x hF2,
Proof. First of all, since V(()]’? and V(()IE are invariant under the action of B in Xy, so is V(()liz.
Since w has no zero, g.w = p,w for some invertible element p, of k[V(()kf ]. By Lemma 4.5,(i), p, is in k*.

Let g be in B.

Since o is a B-equivariant isomorphism from V(()kf onto V(()k%,

go—Z*(w) = pgo-Z*(w) and Pgw, = g.(/.), = (g'ﬁ)g(fz*(w’) = Pg(g-'ﬁ)O'z*(w’),

whence g.yy = .

The open subset b2

reg Of b? is the complement of the nullvariety of the function

@y — [ | e@ew).

aeR,

Then, by Lemma 4.5,(ii), for some «a in k* and for some sequences m,, @ € R, and n,, @ € R, in Z,

Y(xi,...,x)=a l_[ a(x) " a(x)",

aeR,

for all (xi, ..., x;) in b2, X H*2. Then, by Lemma 4.5 (iii),

reg
a2 l_[ a,(x)m‘,+nna(y)mn+nw — 1’
aeR,

2

for all (x, y) in bg.,. Hence a* =1and my, + n, = 0 for all @ in R,. O

For « a positive root, denote by b, the kernel of @ and set:
Vy :=bh, ®g".
Denote by 0, the map

k e X, t — exp(tad x,).b.

13



According to [Sh94, Ch. VI, Theorem 1], 0, has a regular extension to P!(k). Set Z, := 0,(P'(k)). Denote
again by « the element of b* extending « and equal to 0 on 1.

Lemma 4.7. Let « be in R, and let xy and yo be subregular in b,. Set:
E =kxo®kH,®q%, E.:=x00kH,®q%, E.;:=x00kH,®(@"\{0}), E.»=yodkH,®(g"\{0}).

(i) For x in E,, the centralizer of x in b is contained in b, + E.
(1) For V subspace of dimension € of b, + E, V is in X if and only if it is in Z,,.
(iii) The intersection of E, 1 X E, > and X3 is the nullvariety of the function

(x,y) ¥ (x_a , Yra(x) — (x—q , X)(y)
on E*’l X E*,z.
Proof. (i) If x is regular semisimple, its component on H,, is different from 0 so that g* = 6,(¢) for some ¢ in
k. Suppose that x is not regular semisimple. Then x is in xo + g%. Hence g* N b is contained in b, + E since
so is g™ N b.

(i1) All element of Z, is contained in b, + E. Let V be an element of X, contained in b, + E. According
to [CZ14, Corollary 4.3], V is an algebraic commutative subalgebra of dimension £ of b. By (i), V = 0,(¢)
for some ¢ in k if V is a Cartan subalgebra. Otherwise, x, is in V. Then V = 6,(c0) since 0,(c0) is the
centralizer of x, in b, + E.

(iii) Let (x,y) be in E. | X E. 2 N Xp 2. According to Lemma 4.1,(i), for some V in X, x and y are in V. By
(i) and (ii), V = 0,(¢) for some 7 in P! (k). For ¢ in k,

x=xo0+s(Hy, —2txq) and y=yo+ 5 (Hy, — 2tx,)
for some s, 5" in k, whence the equality of the assertion. For ¢ = co,
xX=x0+sx, and y=yo+ s x,

for some s, s” in k so that a(x) = a(y) = 0. Conversely, let (x,y) be in E, | X E, > such that

(X—a s Pa(x) = {x—o , X)a(y) = 0.
If a(x) = 0 then a(y) = 0 and x and y are in V, = 0,(c0). If a(x) # 0, then a(y) # 0 and

<x-a,x>) and yeea(_u—a,x}

a(x) a(x)

whence the assertion. O

x € 0,(—

),

Proposition 4.8. There exists on V(()k) a regular differential form of top degree without zero.

Proof. According to Corollary 4.6, it suffices to prove m, = 0 for all « in R.. Indeed, if so, by Corollary 4.6,

Y = +1 on the open subset B.(I)feg x H*2) of V(()k) so that y = +1 on V((),fi,z- Then, by Lemma 4.5,(ii), w and

+073.(w) have the same restriction to V% 5o that there exists a regular differential form of top degree & on

0,12

V(()k) whose restrictions to ngf and Vgg are w and +07,(w) respectively. Moreover, @ has no zero since so
has w.

Since ¥ is in k[V(()’zl)l] by Lemma 4.5,(ii), we can suppose k = 2. Leta be in Ry, E, E.,E, |, E.» as in

Lemma 4.7. Suppose m, # 0. A contradiction is expected. According to Lemma 4.7,(iii), the restriction of

2 . .
YtoE, 1 XE. 2N V((),1,2 is given by

Y(x,y) = alx_q , X)"(X_a s )",
14



with a in k* and (m,n) in Z? since ¢ is an invertible element of k[V(()zl) ,1- According to Lemma 4.5,(iii),
n = —mand a = =1. Interchanging the role of x and y, we can suppose m in N. For (x,y)in E, ; XE, 2N V(()zl) 5
such that @(x) # 0, a(y) # 0 and

(x=a s V) (y)

Y(x,y) = £(x_q , )"(
a(x)

)" = xa(0)"a(y) ™.
As aresult, by Corollary 4.6, for x in xg + k*H, and y in yg + k*H,,,
(1) ra(x)"a@) ™" = = | | vy

YER.

For y in R,
1 1
y(x) = y(xo) + Ea(X)y(Ha) and y(y) = y(yo) + Ea(y)y(Ha)-

Since misin N,

1 1
@ (0" [ | 0/o) + 3@ H)"™ [ [ 0rx0) + JatyH) ™ =

YER+ YER+
my>0 my<0

1 1
xa(y)" | | o)+ SaGnyH)™ | | Glwo) + sa)y(H) ™.

YER+ YER+
my>0 my<0

For m, positive, the terms of lowest degree in (a(x), a(y)) of left and right sides are

o)™ [ ] vwo™ [| oo™ and  sa@)e™ [] vy [] vwo™

yeR4\fa) yeR4\fa) yeR4\fa) yeR4\(a)
my>0 my<0 my>0 my<0

respectively and for m, negative, the terms of lowest degree in (a(x), a(y)) of left and right sides are

(™" [ ywo™ [] ve0™ and  za@y™™ [] yoo™ [] vwo™

yeR+\{a} YER+\{a} YER+\{a} yeR+\{a}
my>0 my<0 my>0 my<0

respectively. From the equality of these terms, we deduce m = +m, and

1—[ Y(yo)™ 1—[ y(xo)™ =+ l_[ Y(x0)™ 1—[ y(yo) ™.

yeER+\{a} YER+\{a} yER+\{a} YER+\{a}
my>0 my<0 my>0 my<0

Since the last equality does not depend on the choice of subregular elements xy and yg in b, this equality
remains true for all (xg, yo) in b, Xb,. As a result, as the degrees in a(x) of the left and right sides of Equality
(2) are the same,

3) m- > my= > om,

YER+ yeR+
my<0 and y(Hq)#0 my>0 and y(Hq)#0

Suppose m = m,. By Equality (1),
[] r@my@m™ ==1.

YR}
Since this equality does not depend on the choice of the subregular elements xy and yq in b, it holds for all
(X, y) in Dreg X breg. Hence m, = 0 for all y in R, \ {a} and m = 0 by Equality (3). It is impossible since
mq # 0. Hence m = —m,. Then, by Equality (1)

[T r@mvw™ = zet™aw) ™.

yeR+\al
15



Since this equality does not depend on the choice of the subregular elements xy and yq in b, it holds for all
(x,y) in hreg X Breg. Then m = 0, whence the contradiction. O

4.4. For 2 < k' <k, the projection

gk%gk b (xl"“’xk)H(xl"“’xk,)

induces the projections

e . &) , V;_k) - V](.k/) ‘

Set:
k) ._ y,(k) (k)
V1,2 = V1 N V2 .

Lemma 4.9. Let w be a regular differential form of top degree on v® without zero. Denote by ' its
restriction to Vik%.

(1) For ¢ in k[ka)], if ¢ has no zero then g; isink*.

(ii) For some invertible element s of k[Vi’z)], W = Yo (W).

(iii) The function Y(yo0) on ka; is equal to 1.

Proof. Following the arguments of the proof of Lemma 4.5, the lemma results from Lemma 4.2,(ii). O

Corollary 4.10. The function ¥ is invariant under the action of G in Vik% and for some sequence mg, @ € R,

inZ,
v, om0 = = | @ata) ™,
a€R,
forall (x1,...,x)in bfeg x k.
Proof. The corollary results from Lemma 4.9 by the arguments of the proof of Corollary 4.6. O

Proposition 4.11. There exists on V® a regular differential form of top degree without zero.

Proof. As in the proof of Proposition 4.8, it suffices to prove that m, = 0 for all @ in R, since G.(lf)rzeg x h2)

is a dense open subset of VO, As V(()ki , 18 contained in ka%, myg = 0 by the proof of Proposition 4.8. O
4.5. For 2 < k’ <k, the projection

i

R ) L Xl e e s Xk Yls e e s i) > (X1 oo s Xk Yls e v s Yir)
induces the projections
CC— G B —

Set:
& ._ k) (k)
Wi, =W nw,”
According to Corollary 4.3,(iii), Wik% is equal to G.Lx’k(v(()]ji,z).

Lemma 4.12. Let w be a regular differential form of top degree on w®

e without zero. Denote by «' its

restriction to Wik;.
(i) For ¢ in k[Wik)], if @ has no zero then ¢ is in k*.
(ii) For some invertible element  of k[Wizz)], W = Yoy (W).
(iii) The function Y(oo) on Wfkg is equal to 1.
16



Proof. Following the arguments of the proof of Lemma 4.5, the lemma results from Lemma 4.2,(iii). O

Corollary 4.13. The function y is invariant under the action of G in Wikg and for some sequence mg, @ € R,

in2,
Youap(xr, . ox0) = | | @Geatan) ™)™,
aeR,
forall (x1,...,x)in I)feg x ¥,
Proof. Since W(k) .Lx’k(V(()ki ,) the corollary results from Lemma 4.12 by the arguments of the proof of
Corollary 4.6. O

Proposition 4.14. There exists on WX a regular differential form of top degree without zero.

Proof. As in the proof of Proposition 4.8, it suffices to prove that m, = 0 for all @ in R, since G.ix k(breg

H*2) is a dense open subset of W®). As W(k) .Lx,k( o1 2), myg = 0 by the proof of Proposition 4.8. O

4.6. Recall that (G.X), is the normalization of G.X. Denote by S;k) the following fiber products:

g® Tk e
Ttn,k l/ ‘/7‘{
(G.X)y ——G.X

with v the normalization morphism, 7, k, v« the restriction maps.
Lemma 4.15. The variety E;k) is the normalization of E® and vy is the normalization morphism.

Proof. Since X is a vector bundle over G.X, S;k) is a vector bundle over (G.X),. Then S;k) is normal since
so is (G.X),. Moreover, the fields of rational functions on E;k) and €W are equal and the comorphism of v,
induces the morphism identity of this field so that v, 4 is the normalization morphism. O

Denote by f();(, Ck), G;k) the normalizations of Xg, cw, Gg(k) respectively. Let Ao, Ax, A« be the
respective normalization morphisms.

Lemma 4.16. (i) There exists a projective birational morphism Ty o from Sgc) onto ‘%Tk such that to; =
Ao k°Tn 0k Moreover T;B Ay }((V(()k))) is a smooth big open subset of 85,") and the restriction of Tn oy to this
subset is an isomorphism onto Ay }{(V(()k)).

(ii) There exists a projective birational morphism T,y from E;k) onto C® sych that TkoVnk = AkoTng

Moreover, T;,k(/llzl(V(k))) is a smooth big open subset of Sflk)

and the restriction of Ty to this subset is an
isomorphism onto A;l(V(k)).

(k) o)

1il ere exists a projective birational morphism Ty . y from GXp onto such that T, = A koTnsk-
(iii) Th t tive birational h Gxp& onto €y hthat T, x = AT«
Moreover, T k(/l* k(W(k))) is a smooth big open subset of G Xp E(k) and the restriction of Ty . i to this subset

is an isomorphism onto A lk(W(k)).

Proof. (i) According to Corollary 4.3,(i), Tox is a birational morphism from Sgc) onto Xox and Sgc) is a
normal variety since so is X by [C15, Theorem 1.1]. Hence it factorizes through Aoy so that for some
17



birational morphism 7y, o 4 from SE)k) to Xok, Tox = A0x°Tn,04> Whence the commutative diagram:

0
€ 0

Xok

Xok

Aok

According to Lemma 4.1,(i), o4 is a projective morphism. Hence so is 7,4 since it deduces from 7 ; by
base extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(i), 7, }((V(()k)) is a big open subset of 88‘). Moreover, we have the commutative
diagram

-1 y,k)
Tox(Vo )

y 0k

1y
ﬂO,k(VO )

®)
VO

Aok

By Lemma 4.2,(i), V(()k) is a smooth open subset of X so that Ao is an isomorphism from 4, }C(V(()k)) onto
V(()k). By Corollary 4.3,(i), o is an isomorphism from T(_)’}{(V(()k)) onto V(()k) so that T(_)’}{(V(()k)) is a smooth open
subset of 88](). As aresult, 7,04 is an isomorphism from 7, }((V(()k)) onto 4, }((V(()k)).

(i1) According to Corollary 4.3,(ii), Tg°vnx is a birational morphism from E;k) onto % and E;k) is anormal
variety by Lemma 4.15,(1). Hence it factorizes through A so that for some birational morphism 7, 4 from

E;k) to CK), 1rovy x = AkoTyk, Whence the commutative diagram:

gy — b

] B

G e®

Ak

According to Lemma 4.1,(i), 7y is a projective morphism. Hence so is 7, since it deduces from 74 by base
extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(ii), T;’}{(/IZI(V("))) is a big open subset of E;k) since vy is a finite morphism.
Moreover, we have the commutative diagram

Vnk _
T4 (V) (V)
| ;
-1y (k) )
41 v®) m 14

By Lemma 4.2,(ii), V® is a smooth open subset of C® so that Ay is an isomorphism from /IIZI(V(")) onto
v, By Corollary 4.3,(ii), 7 is an isomorphism from T]:l(V(k)) onto V® so that T]:l(V(k)) is a smooth
open subset of &® and Vnk 1S an isomorphism from T;’k(/llzl(\/(k))) onto T,Zl(V(k)). As a result, T4 is an
isomorphism from r;’}{(/l,;l(vﬁf))) onto /llzl(V(k)) and r;’}{u,;l(vﬁf))) is a smooth open subset of 8;").

(iii) According to Corollary 4.3,(iii), 7. is a birational morphism from G Xp Eg() onto G;k) and G Xp Eg()

is a normal variety as a vector bundle over G X X which is normal by Proposition 3.2. Hence it factorizes
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through A, x so that for some birational morphism 7, . x from G Xp 88") to (‘Zik), Tik = A k°Tn k> Whence the
commutative diagram:
G xp &Y
Tn,k Tuk

ey’ - ey’
#,k

According to Lemma 4.1,(i), 7.4 is a projective morphism. Hence so is 7, . x since it deduces from 7, ; by
base extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(iii), T;k(W(k)) is a big open subset of G Xp 8E)k). Moreover, we have the
commutative diagram

T*_k(W(k))

y T

—1 k) (k)
/l*’ k(W ) P W

By Lemma 4.2,(iii), W® is a smooth open subset of G;k) so that A, 4 is an isomorphism from A;}((W(k)) onto
w®, By Corollary 4.3,(i), 7.4 is an isomorphism from T*_llc(W(k)) onto W% so that T*_]lc(W(k)) is a smooth

open subset of G Xp 88]{). As aresult, T, x is an isomorphism from T*_}((W(k)) onto /lg}c(W(k)). m|

Let 9 be one of the three varieties io,k, Cm, C';k) and set:

e it 9 =X ok i = Xy
3= e® it 9=0Ch | 1:={ 1 if Y=C&k |
Gxpel if 9=cV Tk if 9 =€%
X it 9 = Xox e ——=x if 9 = Xox
T={ GX, if 9=05H  q= eP _—~(Gx) i 9=CP ,

. ok —
GxpX if ) =C) Gxpe® —=Gxpx it P=eP

where the arrow is the bundle projection in the last three equalities.

Proposition 4.17. (i) The morphism T is a projective birational morphism.

(i) The set 34y is the inverse image of Tqm by .

(iii) For some smooth big open subset O of 3sm, the restriction of T to O is an isomorphism onto a smooth
big open subset of 7).

(iv) The sheaves Qy and Q3 have a global section without 0.

Proof. (i) The assertion results from Lemma 4.16.

(ii) As a polynomial algebra over an algebra A is regular if and only if so is A, 3¢m = 7' (Tgm) since 3 is
a vector bundle over T.

(ii1) The assertion results from Lemma 4.16 and Lemma 4.4.

(iv) For®) = i&;, the assertion results from Lemma C.1, Proposition 4.8, Lemma 4.2,(i) and Lemma 4.4,(i).

For 9 = é?’:), the assertion results from Lemma C.1, Proposition 4.11, Lemma 4.2,(ii) and Lemma 4.4,(ii).
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For Y = ;k), the assertion results from Lemma C.1, Proposition 4.14, Lemma 4.2,(iii) and Lemma 4.4,(iii).
O

5. RATIONAL SINGULARITIES

Let £k > 2 be an integer and let ), 3, T, T, t be as in Proposition 4.17. Denote by ¢ the canonical
embeddings VY —— P and Jgn —— 3 . According to [Hir64], there exists a desingularization I of

T with morphism 0 such that the restriction of 0 to 0~!(Ty,) is an isomorphism onto Tgy,. Let E be the
following fiber product

3———3
r T

with 0 and 7 the restriction maps so that 3 is a vector bundle of rank k¢ over I' and 7 is the bundle projection.
Moreover, 6 is projective and birational so that J is a desingularization of 3 and 9 by Proposition 4.17,(i).

-
0

Proposition 5.1. Suppose ) = %Tk or G;k).

(1) The variety 3 is Gorenstein with rational singularities. Moreover, its canonical bundle is free of rank
one.

(i) The variety ) is Gorenstein with rational singularities. Moreover, its canonical bundle is free of rank
one.

Proof. (i) According to [C15, Theorem 1.1], X has rational singularities. Then, by Lemma D.1,(iii), so has
G Xp X as a fiber bundle over a smooth variety with fibers having rational singularities. As a result, by
Lemma D.1,(iv), 3 has rational singularities as a vector bundle over a variety having rational singularities.
Moreover, T is Gorenstein by Proposition 3.2,(i) and (iii). Then so is 3 as a vector bundle over T by
Lemma D.1,(i). By Proposition 4.17, Q3_has a global section without zero. Then, by Lemma C.2, ¢,(3,)
is a free module of rank one. Since J has rational singularities, the canonical module of 3 is equal to
1.(Q3,,) by [KK73, p.50], whence the assertion.

(i1) By Proposition 4.17, Qy)__ has a global section without zero. Denote it by w. By Proposition 4.17,(iii),
T (w) is a local section of Q3 above a big open subset of 3. So by (i) and [KK73, p.50], T"(w) has a regular
extension to 3. Denote it by w and by u the morphism

u
Og Qg ,

@ — Q.

Since w has no zero, by Lemma C.2, 10,y is an isomorphism from Oy onto Qy_ and 1.(Qy_, ) is a free
module of rank one. As a result, by [Hi91, Lemma 2.3], 9 is Gorenstein with rational singularities. Then,
by [KK73, p.50], the canonical module of ?) is equal to ¢,(Ly_, ), whence the assertion. m|

Corollary 5.2. (i) The variety C® is Gorenstein with rational singularities. Moreover its canonical module
is free of rank one.

(ii) The variety éflk) is Gorenstein with rational singularities. Moreover its canonical module is free of
rank one.

(iii) The varieties &, and (G.X), are Gorenstein with rational singularities.
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Proof. In the proof, we suppose U = e®, -

(i) According to [CZ14, Proposition 5.8,(ii)], @’6 is the categ,(lr’ical quotient of C';k) by the action of W(R).
Hence, by [Boutot87, Théoréme] and Proposition 5.1,(ii), 9 = C® has rational singularities. By Proposition
4.17,(3iv), Qy_, has a global section without zero. Then, by Lemma C.2, ¢.(Qy_, ) is a free module of rank
one. Since ¥ has rational singularities, the canonical module of 9 is equal to ¢.(Q3_,) by [KK73, p.50].
Moreover, 9 is Cohen-Macaulay. So, by Lemma C.3, 1,(Q3_, ) has finite injective dimension, whence ) is
Gorenstein.

(ii) Denote by w a global section of Q) = without zero. By Proposition 4.17,(iii) and Lemma C.2, Q3_
has a global section without zero whose restriction to a big open subset of 3, is equal to the restriction of
T"(w). Denote it by w’. Since 9 has rational singularities, roﬁ*(a)) has a regular extension to 3 by [KK73,

p.50]. Denote it by w. Then the restriction of w to 6_1 (3sm) 1s equal to 6*(40’). Let u be the morphism

u
03

Q5 , © — Y.
Since w’ has no zero, by Lemma C.2, 0,4 is an isomorphism from O3 onto Q3 and ¢,(Q3,,) is free of rank
one. As aresult, by [Hi91, Lemma 2.3], 3 is Gorenstein with rational singularities. Then, by [KK73, p.50],
the canonical module of J is equal to ¢,(€3,, ), whence the assertion.

(iii) Since 3 is a vector bundle over T = (G.X),, (G.X), is Gorenstein with rational singularities by (ii)
and Lemma D.1,(ii) and (iv). Then so is &, as a vector bundle over (G.X), by Lemma D.1,(i) and (iv). O

Summarizing the results, Theorem 1.1 results from Proposition 5.1,(ii), and Corollary 5.2,(i) and (iii).
According to [Ri79], C@ is the commuting variety of g and according to [C12, Theorem 1.1], €@ is normal,
whence:

Corollary 5.3. The commuting variety of g is Gorenstein with rational singularities. Moreover, its canonical
module is free of rank 1.

6. NORMALITY

Let k be a positive integer. The goal of this section is to prove that Xy is a normal variety. Consider the
desingularization (I', 0) of X as in Section 5. For simplicity of the notations, for k positive integer, we denote

by st the bundle projection EE)k) ——= X and by F® the fiber product

F® Ok e (()k)
|
T X
0

with 0y and Tt the restriction morphisms.

6.1. Let F* be the dual of the vector bundle F(V over I
Lemma 6.1. Let 3 be the sheaf of local sections of F*. Fori > 0 and for j > 0, H(T, S/(3*)) = 0.

Proof. Since T is the bundle projection of the vector bundle F(V over T, O FO is equal to 77 (S(F*)) so that

71.(OF) = S(F7)
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As aresult, for i > 0,
H(FD,040) = HI(T, S(F) = (P HIT. $/(F))
jeN
According to Lemma 3.1,(i), F(!) is a desingularization of the smooth variety b. Hence by [E178],
H/(FD, 0p1) =0
for i > 0, whence
H'T,S/(F) =0

fori>0and j> 0. O

According to the identification of g and g* by the bilinear form (., .), b_ identifies with b*. Denote by F_
the orthogonal complement to F in T' x b_ so that F_ is a vector bundle of rank n over I'. Let F_ be the
sheaf of local sections of F_.

Corollary 6.2. Let Jy be the ideal of Or ® S(b_) generated by F_. Then, for i > 0, H(T,Jo) = 0 and
HI(T,J_)=0.

Proof. Since F_ is the orthogonal complement to F in I x b_, Jy is the ideal of definition of F( in
Or ®k S(b_) whence a short exact sequence

0— Jo— Or®e S(b.) — S(F*) — 0
and whence a cohomology long exact sequence
+- — HI([,S(I") — H™(T,do) — H*(I, Or @ S(b-)) — -+ .
Then, by Lemma 6.1, from the equality
H'(T, Or ®; S(b_)) = S(b_) ® H'(T, Or)

for all i, we deduce H(T', Jo) = O for i > 2. Moreover, since I'is an irreducible projective variety, H(I", Or) =
k and since F(! is a desingularization of b, HO(T", S(F*)) = S(b_) so that the map

H(T, Or ®; S(b_)) — HA(T, S(T*))

is an isomorphism. Hence H/(T',Jo) = O for i = 0,1. The gradation on S(b_) induces a gradation on
Or @ S(b_) so that Jg is a graded ideal. Since F_ is the subsheaf of local sections of degree 1 of Jy, it is a
direct factor of Jy, whence the corollary. ]

Proposition 6.3. Let k, [ be nonnegative integers.
(i) For all positive integer i, H'(T, (FH%y = 0.
(ii) For all positive integer i,
H*(T, 7% @0, (F)%) = 0.

Proof. (i) According to Lemma 6.1, we can suppose k > 1. Denote by F, the restriction to the diagonal
of T'* of the vector bundle F** over I'*. Identifying I with the diagonal of T¥, F . 1s a vector bundle over
. Since F* is the dual of the vector bundle FV) over I', F Z is the dual of the vector bundle F® over I
Let ¢4 be the bundle projection of F} and let I be the sheaf of local sections of F;. Then Opw is equal to
¥, (S(F})) and since F ) is a vector bundle over I, for all nonnegative integer i,

HI(F®, 0pw) = HI(T, $(Fp) = @D HIT, S94TFp).
qeN
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According to Proposition 5.1,(ii), for i > 0, the left hand side is equal to 0 since F® is a desingularization
of Xo by Proposition 4.17,(1). As a result, for i > 0,

H(T,s5@) =0

The decomposition of F as a direct sum of k copies isomorphic to F* induces a multigradation of S(5).
Denoting by §;, . the subsheaf of multidegree (ji, ..., ji), we have

.....

Hence for i > 0,

whence the assertion.
(ii) Let k be a nonnegative integer. Prove by induction on j that for i > 0 and for [ > j,

(4) Hl+j(l—‘ 3!'@] (:}'* Q(k+1— j)) _

By (i) it is true for j = 0. Suppose j > 0 and (4) true for j — 1 and for all / > j — 1. From the short exact
sequence of Op-modules

0—F —Or&%b. —F —0

we deduce the short exact sequence of Op-modules
0 —s §®J LT Bkt b @, F20U-D o R0, (FH)PUkH=D F2U-D B0, (F)Bk+l=+D __, .

From the cohomology long exact sequence deduced from this short exact sequence, we have the exact
sequence

Hi* j—l(r, 31%(1'—1) R0, (9*)®(k+l— j+1)) gt j(r, gif’j R0, (T)®(k+l— j))
- Hl+j(1—*’ b_ ®]lg :}?(]_1) ®(’)r (T)@(k+l—]))

for all positive integer i. By induction hypothesis, the first term equals O for all i > 0. Since
B, b @ T2 @0, (5)°4HD) = b_ e HH(, 52070 @, (77010,

the last term of the last exact sequence equals O by induction hypothesis again, whence Equality (4) and
whence the assertion for j = [. O

The following corollary results from Proposition 6.3,(ii) and Proposition B.1.

Corollary 6.4. For k positive integer and for | = (I, ..., 1) in N¥,

l] lk
HT, \ 789, -+ @0, \F)=0

for all positive integer i.
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6.2. By definition, F® is a closed subvariety of I' x b¥. Denote by o the canonical projection from I' x b¥
to I', whence the diagram

FOC -~ T xpk

BN

r

For j=1,...,k, denote by S the set of injections from {1,..., j} to {1,...,k} and for o in S 4, set:

Or@e SO.) if i¢a(l,..., )

Ko := M ®py -+ ®op My with M; :={ 9 it icoll... i)

For jin {1,...,k}, the direct sum of the X;’s is denoted by J ;i and for o in Sy, X, is also denoted by
Keyk-

Lemma 6.5. Let J be the ideal of definition of F® in Opy .
(i) The ideal 0.(J) of Or & S() is the sum of K11, ..., Kix.
(i) There is an exact sequence of Or-modules

0— ik — Jrc1f — -+ — J1x — 0+(@) — 0
(iii) For i > 0, HI(I'x b5, J) = 0 if H*I(, §g) = O for j = 1,.... k.

Proof. (i) Let Ji be the sum of Ky, ..., K. Since Jg is the ideal of Or ®, S(b_) generated by J_, J is a
prime ideal of Or ®; S(b*). Moreover, F_ is the sheaf of local sections of the orthogonal complement to F
in T x b_. Hence J; is the ideal of definition of F® in O @, S(b%), whence the assertion.

.....

I=1
Then by (i), we have an augmented complex

d d d
0— Jik — Jh—1h — -+ — Jik — 0+(J) — 0.

Let J be the subbundle of the trivial bundle I" X S(b_) such that the fiber at x is the ideal of S(b_) generated

by the fiber F_ , of F_ at x. Then dy is the sheaf of local sections of J and the above augmented complex is
the sheaf of local sections of the augmented complex of vector bundles over I,

0— COTxSE®), ) — -+ — CPT xS0, /) > J—0

defined as in Subsection B.2. According to Lemma B.2 and Remark B.3, this complex is acyclic, whence
the assertion by Nakayama Lemma since J, S(b-) and the complex are graded.

(iii) Let i be a positive integer such that H*(T, 3;3]) =0for j=1,...,k Thenfor j=1,...,k and for o
in Sy, H™*/(T, X,) = 0 since K, is isomorphic to a sum of copies of 3?’ . Moreover, H(T, Kix)=0forl=
1,...,ksince H(T,Jy) =0 by Corollary 6.2. Hence by (ii), since H® is an exact ¢-functor, H(T, 0:(d)) =0,

whence the assertion since o is an affine morphism. O
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6.3. For k positive integer, for j nonnegative integer and for [ = (I, ..., ;) in N¥, set:

l] lk
®;
Mj,l = 301 ®0r /\97_ ®or * - oy /\?_

Lemma 6.6. Let k be a positive integer and let (j,1) be in N x NX,
(i) The Or-module Jy is locally free.
(ii) For j > O, there is an exact sequence

0 — S(b-) & M1,y — S(O-) & M1 (n-1,) — ***
— S(b) & Mj1,1, — My — 0
(iii) For i > 0, H/*I(T, M) = 0.
Proof. (i) Let xbe in I" and let F_ , be the fiber at x of the vector bundle F_ over I'. Then F_ is a subspace

of dimension n of b_. Let M be a complement to F_ , in b_. Since the map y = F_, is a regular map from
I' to Gry,(b-), for all y in an open neighborhood V of x in T,

b_=F_,®&M
Denoting by J_ y the restriction of J_ to V, we have
Oy @ b_ = ?_,V®Ov®kM
so that
Oy @k S(b-) = S(F_v) & S(M)
whence
dolv = S+(F-v) & S(M).

As aresult, Jg is locally free since so is F_.

(ii) Since J is the ideal of Or @ S(b_) generated by the locally free module F_ of rank n and since F_
is locally generated by a regular sequence of the algebra Or ®, S(b_), having n elements, we have an exact
Koszul complex

O—>S(b_)®k/\&’_—>---—>S(b_)®k?_—>30—>0

whence a complex

n
0 — S(b-) ®x /\ F_®0r Mj_1y —> -+ —> S(b) & F_ ®o M1,
— Jo ®or Mj_1; — 0.

According to (i), M;_y; is a locally free module. Hence this complex is acyclic.
(iii) Prove the assertion by induction on j. According to Corollary 6.4, it is true for j = 0. Suppose that
it is true for j — 1. According to the induction hypothesis, for all positive integer i and for p = 1,...,n,

HH PN, S(0-) @ Mo ) = S(0-) @ HH I, My ) = 0.
Then, according to (ii), H+*I T, M ;1) = 0 for all positive integer i since H® is an exact 6-functor. O

Proposition 6.7. The variety Xy is Gorenstein with rational singularities and its canonical module is free

of rank 1. Moreover the ideal of definition of Xy in S(b_)%* is the space of global sections of J.
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Proof. From the short exact sequence,
0—J — Opupt — Opwy — 0
we deduce the long exact sequence
- — H(T x 85, 9) — S(0)% @, H(T, 0r) — H/(F®, 0p0) — HF (T x 0, J) — -

According to Proposition 2.2,(i), H/(T', Or) = 0 for i > 0 and according to Lemma 6.5,(iii) and Lemma 6.6, (iii),
Hi(T x b, J) = 0 for i > 0. Hence, H/(F ®_ O rw) = 0 for i > 0, whence the short exact sequence

0 — HOT x b, ) — S(0_)®* — H'(F®, 0p0) — 0

As F® is a desingularization of Xqy, k[i&;] is the space of global sections of Opw by Lemma 1.2. Then
k[Xox] = k[¥Xox] since the image of S(b_)®* is contained in k[Xox], whence the proposition by Proposi-
tion 5.1,(ii). O

Corollary 6.8. (i) The normalization morphism of C';k) is a homeomorphism.
(ii) The normalization morphism of C® is a homeomorphism.

Proof. (i) As X is contained in b¥, we deduce the commutative diagram

G XB %O,k(—> G XB bk

| |

@ S(k) C B E(k)

According to [CZ14, Proposition 3.4], the normalization morphism of B;k) is a homeomorphism. Then
since G xp b¥ is a desingularization of Bik), the fibers of yx are connected by Zariski Main Theorem [Mu88,
§9]. Then so are the fibers of the restriction of yx to G Xp Xo since G Xp Xy is the inverse image of (‘Zik).
According to Proposition 6.7, G Xp Xo 1s a normal variety. Moreover, the restriction of yx to G Xp Xo is
projective and birational, whence the commutative diagram

G X B XQ’]{ G;k)

Tx Ak
e

with A, ; the normalization morphism. For x in G;k), /1*‘]1(()() = yx(yvx (x)). Hence Ak 1s injective since the

fibers of yx are connected, whence the assertion since A, x is closed as a finite morphism.
(ii) Denote again by 7 the restriction of 7 to G;k). We have a commutative diagram

—
e;k) k e;k)

_—

ek . e®
Ak
with A, the normalization morphism. According to [CZ14, Proposition 5.8], all fiber of i or 77 is one single
W(R)-orbit and by (i), 4.« is bijective. Hence Ay is bijective, whence the assertion since Ay is closed as a

finite morphism. O
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APPENDIX A. NOTATIONS

In this appendix, V is a finite dimensional vector space. Denote by S(V) and A V respectively the sym-
metric and exterior algebras of V. For all integer i, S'(V) and /\' V are the subspaces of degree i for the usual
gradation of S(V) and A V respectively. In particular, S'(V) and A’V are equal to zero for i negative.

e For [ positive integer, denote by &; the group of permutations of / elements.

e For m positive integer and for [ = ({1, ...,1,) in N, set
|l ;= L4+,
S'(V):= SI(V)®--- @ S™(V)

[
/\V:I /\11V®k‘”®k/\lmv

e For k positive integer and for [ = (/4,.. m) in N such that 1 < |l| < k, denote by V& the k-th tensor
power of V and by &; the direct product 611 -x &, . The group &; has a natural action on V® given by
(15 sOm) (V1@ @) = Vo (1)@ * * ® Vg (1)BVL +05 (1)@ " * * @ ULy 40y (1)

® BVl (D " ** E Vll=lyy 0 (1) BV +1©* * @ V.

The map

1
a — my(a) =]—[l—

is a projection from V& onto (V). Moreover, the restriction to (V)% of the canonical map from %
to S/(V) &, VE* I ig an isomorphism of vector spaces.

M

o.a

ge

Iq

APPENDIX B. SOME COMPLEXES

Let X be a smooth algebraic variety. For M a coherent Ox-module and for k positive integer, denote by
M®* the k-th tensor power of M. According to Notations A, for all / in N such that |/| < k, there is an
action of S; on M®. Moreover, SM) and A’ M are coherent modules defined by the same formulas as in
Notations A.

B.1. Let € and M be locally free Ox-modules.
Proposition B.1. Let i be a positive integer and suppose that
i+ ®k
H™(X, ™ ®9, M) =0
for all nonnegative integers j, k.
(i) For all positive integers m and k and for all | in N such that |l| < k,
H (X, S(&) ®p, £2CM @y, M) =0

(i1) For all positive integers ny, ny, k and for all (I, m) in N"' X N2 such that |l| + |m| < k,

H'(X, 8'(€) @0, /\ € @0, E%"M) @0, M) =0

Proof. (i) Since ﬂ'k’[(8®k) is isomorphic to si&) ®0y &&= and since 7k, 1s a projector of &% Sle) ®0y
E®,=I i isomorphic to a direct factor of £%¥ and S/(€) ®py E8U=ID ®0, M is isomorphic to a direct factor
of £%k ®o, M, whence the assertion.
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(ii) Denoting by &(o) the signature of the element o of the symmetric group S,,, the map
g®Mm _, g8m am % Y, E(0)o.a

is a projection from £®" onto a submodule of £®" isomorphic to A™&. So, A\™ € is isomorphic to a
direct factor of €®”. Then, by induction on m, for [ in N, A' € is isomorphic to a direct factor of ¥,
As a result, according to (i), for all positive integers n;, ny, k and for all (/,m) in N x N"2 such that
I + Im| < k, SE) ®ov, N E @0, EE*TITMD @0 M is isomorphic to a direct factor of €% ®¢, M, whence
the assertion. O

B.2. Let W be a subspace of V and set E := V/W. Let CE")(V, W), n =1,2,... be the sequence of graded
spaces over N defined by the induction relations:

cPwvwy=v  cPywy=w cPwv,w)=0
CoV, Wy = ve COW W) = UV Wy e Ve UV, W) e W
fori>2and j> 1.

Lemma B.2. Let n be a positive integer. There exists a graded differential of degree —1 on C S")(V, W) such
that the complex so defined has no homology in positive degree.

Proof. Prove the lemma by induction on n. For n = 1, d is given by the inclusion map W —— V . Suppose
that C ﬁ”_l)( V, W) has a differential d verifying the conditions of the lemma. For j > 0, denote by ¢ the linear
map

v, w) cﬁ.’?l(v, W),  (asv, bew) —> (dasv + (—1)/bew, dbsw)

with a, b, v, w in CE."_D(V, W), CE.':D(V, W), V, W respectively. Then ¢ is a graded differential of degree —1.

Let c be a cycle of positive degree j of C E")(V, W). Then ¢ has an expansion

d &
c= (Z a;®v;, Z bi®v;)
i=1 i=1

with vq,...,vs a basis of V such that vq,...,v is a basis of W and with ay,...,a; and bq,...,by in
CE."_I)(V, W) and C;'i_l)(V, W) respectively. Since c is a cycle,

1
d . d
Z dajev; + (=1)/ Z biev; = 0
i=1 i=1

Hence b; = (—1)/*!da; fori = 1,...,d" so that

d d d’ d d d
¢+ 6(0, Z(—l)ja,@vi) - (Z a;ev; + Z a:o0;, Z(b,-@vi + (=1Yda;ev)) = (Z a;ev; + Z a;ev;, 0).
i=1 i=1 i=1 i=1 i=1 i=1

So we can suppose bj=--- =by = 0. Then ay,...,a, are cycles of degree j of CE"_U(V, W). By induction
hypothesis, they are boundaries of C ﬁ”_l)(V, W) so that c is a boundary of CE")(V, W), whence the lemma. 0O

Remark B.3. The results of this subsection remain true for V or W of infinite dimension since a vector space

is an inductive limit of finite dimensional vector spaces.
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APPENDIX C. RATIONAL SINGULARITIES

Let X be an affine irreducible normal variety.

Lemma C.1. Let Y be a smooth big open subset of X.

(1) All regular differential form of top degree on Y has a unique regular extension to Xgp,.

(i1) Suppose that w is a regular differential form of top degree on Y, without zero. Then the regular
extension of w to Xgm has no zero.

Proof. (1) Since Qy_ is a locally free module of rank one, there is an affine open cover Oy, ..., O of Xgy
such that the restriction of Qy_ to O; is a free Op,-module generated by some section w;. Fori = 1,...,k,
set O) := O; NY. Let w be a regular differential form of top degree on Y. Fori = 1,...,k, for some regular
function a; on O}, a;w; is the restriction of w to O]. As Y is a big open subset of X, O is a big open subset
of O;. Hence a; has a regular extension to O; since O; is normal. Denoting again by a; this extension, for
1 <i,j <k, a;w; and a;w; have the same restriction to O} N O;. and O; N O; since Qx, is torsion free as a
locally free module. Let w’ be the global section of Qy_ extending the a;w;’s. Then «’ is a regular extension
of w to Xym and this extension is unique since Y is dense in X, and Qx, is torsion free.

(i) Suppose that w has no zero. Let X be the nullvariety of «’ in Xy, If it is not empty, X has codimension
1in Xgpn. As Y is a big open subset of X, £ N Xy, is not empty if so is X. As a result, X is empty. O

Denote by ¢ the inclusion morphism X, — X .

Lemma C.2. Suppose that Qx_, has a global section w without zero. Then the Ox-module 1.(Qx,) is free
of rank 1. More precisely, the morphism 6:

Ox

L*(stm) B lﬁ — ww
is an isomorphism.

Proof. For ¢ a local section of ¢,({x_ ) above the open subset U of X, for some regular function ¢ on
U N Xsm,

W unx,,) = ¢.
Since X is normal, so is U and U N Xy, is a big open subset of U. Hence ¢ has a regular extension to U. As

aresult, there exists a well defined morphism from ¢.(Qx,, ) to Ox whose inverse is 6. m|

According to [Hir64], X has a desingularization Z with morphism 7 such that the restriction of 7 to
71 (Xgm) is an isomorphism onto Xgp,. Since Z and X are varieties over k, we have the commutative diagram

N A

Spec(k)

According to [H66, V. §10.2], p'(k) and ¢'(k) are dualizing complexes over Z and X respectively. Fur-
thermore, by [H66, VII, 3.4] or [Hi91, 4.3,(ii)], p'(k)[-dim Z] equals Q. Set D := ¢'(k)[-dim Z] so that
7'(D) = Qz by [H66, VII, 3.4] or [Hi91, 4.3,(iv)]. In particular, D is dualizing over X.

Lemma C.3. Suppose that X has rational singularities. Let M be the cohomology in degree O of D. Then

the Ox-modules 1.(Qy) and M are isomorphic. In particular, T.(Q7) has finite injective dimension.
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Proof. Since 7 is a projective morphism, we have the isomorphism

(&) R7.(RAomz(Qz, Q7)) RAomx(R(7).(Qz), D)

by [H66, VII, 3.4] or [Hi91, 4.3,(iii)]. Since H!(RZomz(Qz, Q7)) = Oz fori = 0 and 0 for i > 0, the left
hand side of (5) can be identified with R7,.(Oz). Since X has rational singularities, R7.(0z) = Ox and D has
only cohomology in degree. Moreover, by Grauert-Riemenschneider Theorem [GR70], R7.(€2) has only
cohomology in degree 0, whence R7.(€z) = 7.(€z). Then, by (5), we have the isomorphism

Ox Homx((1)(Qz), M) .

As D is dualizing, we have the isomorphism

R7.(Qz)

Ro%omyx (R omyx(Rt.(Q2), D), D)

whence the isomorphism 7.(Qz) —— M . As a result, 7.({)7) has finite injective dimension since so has
M. O

APPENDIX D. ABOUT SINGULARITIES

In this section we recall a well known result. Let X be a variety and Y a fiber bundle over X. Denote by 7
the bundle projection.

Lemma D.1. (i) If X is Gorenstein and the fibers of T are Gorenstein, then so is Y.
(1) If Y is a Gorenstein vector bundle over X, then X is Gorenstein.
(iii) Suppose that X and the fibers of T have rational singularities. Then so has Y.
@iv) If Y is a vector bundle over X, X has rational singularities if and only if so has Y.

Proof. Letybein Y, x := 7(y) and F, the fiber of Y at x. Denote by 6;; and (gy\y the completions of the
local rings Oy, and Oy, respectively.

(i) By hypothesis, Ox, and O, , are Gorenstein. Then so is Ox ® Of_,. So by [Bru, Proposition
3.1.19,(a)], Oy, is Gorenstein, whence the assertion.

(ii) Since Y is a vector bundle over X, 6)/; is a ring of formal series over O/;;C By [Bru, Proposition
3.1.19,(c)l], 6)/; is Gorenstein. So, by [Bru, Proposition 3.1.19,(b)], O/;;C is Gorenstein. Then by [Bru,
Proposition 3.1.19,(c)], Ox , is Gorenstein, whence the assertion.

(iii) There exists a cover of X by open subsets O such that 77!(0) is isomorphic to O x F. According to
the hypothesis, O and F have rational singularities. Then so has 77! (0), whence the assertion since a variety
has rational singularities if and only it has a cover by open subsets having rational singularities.

(iv) If Y is a vector bundle over X, then there exists a cover of X by open subsets O, such that 1(0) is
isomorphic to O X k™ with m = dimY —dim X. According to [KK73, p.50], O x k™ has rational singularities
if and only if so has O, whence the assertion since a variety has rational singularities if and only it has a
cover by open subsets having rational singularities. O
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