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The solution u is obtained by integrating over t: du/dt=f(u)
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Accuracy and reliability of different models used for the prediction
of the migration from monolayer and multilayer materials

Olivier Vitrac and Daniel Goujot

Introduction
Although the EU regulation is still in a consolidation phase, 502 substances (including 230 monomers and 272 additives) among the 937, which are positively listed in EU
directives on plastics in contact with food, are subjected to specific migration limits (SML) due to toxicological concern. To face such legal obligations, mathematical
modeling, as introduced in article 8 of 2002/72/EC, is a competitive alternative to time-consuming migration tests. As materials became more sophisticated (multi-layer
multi-materials) or as modeling in semi-solid food was required (e.g. for consumer exposure assessment), only numerical techniques were available up to few years
via commercial or freely available software. However, numerical techniques have several drawbacks for end-users with mainly a chemical background: i) they may be
computationally burdensome with non-optimized discretization schemes, ii) they may lead to unreliable accuracies for particular stiff problem (e.g. strong partitioning,
very thin layers such as adhesive layers), iii) their implementation for legal purposes requires a validation procedure, which is not available. To tackle the limitations of
most of available software, this work addresses new exact analytical solutions i) to validate any migration software, ii) to implement efficient probabilistic modeling,
iii) to allow real time calculations and transport coefficients identification.

Generic mathematical formulation for multilayer materials in contact with a semi-solid food
The canonical solution for the one-dimension migration of packaging substances into a continuously stirred liquid with a finite volume was proposed by Crank [1] with additional
refinements discussed by Vergnaud [2]. The first analytical solution for a semi-solid or for a liquid including a mass transfer resistance (i.e. mass Biot or Sherwood number) was proposed
by Sagiv [3] twenty-six years later. As the last solution involves a slow convergence with the number of terms, an equivalent but still approximated analytical solution was proposed by
Vitrac and Hayert [4]. Very recently, we reformulated the “Sagiv problem” by introducing an efficient mathematical method known as “energy method” already used to solve multi-
component convection-diffusion problem to derive exact analytical solutions for problems previously renowned “without analytical solution” [5].

The physical dimensionless formulation is introduced on a comprehensible case consisting in a bilayer material with a whole thickness ls in contact with a semi-solid food on the right
side. This formulation can be straightforwardly downgraded to a monolayer material or generalized to n-layer materials.

A : surface contact area (m)
Cf : concentration in food (kg∙m3)
Cs : residual concentration in the entire

material (kg∙m-3)
C1

t=0 : initial concentration in layer 1
C2

t=0 : initial uniform concentration in layer 2
c(x,t) : concentration in material at x and t (kg∙m3)
Bi :mass Biot number = h∙ls/D2 (-)

D1 :diffusion coefficient in layer 1 (m2∙s-1)
D,D2 :diffusion coefficient in the layer

in contact, numbered 2 (m2∙s-1)
h : interfacial mass transfer coefficient

in food (m∙s-1), it takes into account the
effect of food texture

Transport equation
(dimensionless form)
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Contact conditions
(dimensionless form)
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Boundary conditions
(dimensionless form)
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K1 : Partition coefficient between
food and layer 1 (-)

K,K2 : Partition coefficient between food
and the layer in contact, numbered 2 (-)

L : dilution ratio = ls/lf
ls : whole thickness of the material (m)
lf : equivalent food thickness = Vf/A
t : dimensionless time = t’∙D2/ls

2

t’ : contact time (s)
x : dimensionless position (-)
x' : position (m)
Vf : volume of food (m3)
w1 : relative thickness of layer 1 (-)

Exact analytical solutions for monolayer materials
in contact with a semi-solid food
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Sagiv’s solution Goujot –Vitrac’s solution

t=10-1

dimensionless
time

less than
3 terms

less than
30 terms

between
25-50 terms

t=10-3
Number of terms to achieve a
maximum relative error in c(x,t)
lower than 10-5.

As this criterion is beyond the capabilities of
common commercial migration software, it
would give the number of terms required to
validate a software for any migration
condition, that is for any triplet (Bi∙L, K/L, t).

Only the Goujot-Vitrac’s solution [5]
guarantees a rapid decrease of the number of
terms when the dimensionless diffusion time
(t) increases. This property is related to the
energy of the solution, which was proven to
be strictly decreasing with t. In other words,
the high frequency terms vanish rapidly with
increasing t, whatever Bi∙L and K/L values.

Approximated analytical solution
for monolayer materials 
in contact with a semi-solid food

Exact solutions suffer from transcendental equations, whose zeros cannot be
expressed in terms of a finite sequence of algebraic operations. The Vitrac-
Hayert’s solution derived in [4] solves this issue by approximating the initial set of
partial differential equations by a simple conditional ordinary differential
equation, while providing an accurate estimate of the mass flux density at the
interface. It has been shown that this class of solution has efficient properties to
help the identification of transport coefficients from noisy or truncated
desorption kinetics.
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Exact analytical solution for multilayer materials 
in contact with a semi-solid food (the first exact solution ever published)

An exact solution for multilayer materials has been recently derived [6] from the generalization
of the scalar product defined in [5]. The solution expands on a basis of eigenfunctions, which
depends on the considered layer. For concision, the solution for a bilayer material is presented
here.
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The Goujot-Vitrac’s solution expands onto a basis of eigenfunctions,
which are orthogonal for a bilinear operator described in [5]. This
operator relies on a scalar product, which was optimized to handle a
wide range of boundary conditions, such as any arbitrary sorption
isotherm and a mass transfer resistance on the food side.
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Our approach
INRA is contributing to develop basic scientific and
engineering supports for a reliable implementation of
migration modeling for the packaging community (packaging
and food industries, control and regulatory authorities, food
safety agencies). As the approach was motivated by
Chemical Engineering concepts, our work was concerned
with pioneering valuable techniques of prediction from
molecular mechanisms to a macroscopic description of food-
packaging interactions. Three fields were particularly
investigated with possible applications beyond the sole food
packaging application:

• molecular mechanisms involving in the control of
transport coefficients (partition, diffusion coefficients)
and in their activation with temperature and
plasticizing effects;

• exact mathematical solutions of transport
equations for punctual assessment and probabilistic
assessment of the contamination of food products by
materials intended to be in contact;

• design of decision tools, which act as expert
systems and which can handle both missing properties
and large uncertainties on input parameters.
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How accurate is the approximated solution ?
for any contact condition
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Vitrac-Hayert’s solution
leads to accurate results
without any bias on
residual concentration (Cs)
and interface mass flux (j)
for any contact condition,
while providing an easy
numerical implementation
in any programming
language or even in a
spreadsheet.

Combined with a least-
square method, it offers
real time identifications of
combined transport coef-
ficients [4].

These curves (kinetic

phase diagrams) plot the

mass flux density versus

the residual concentration

for any contact time. The

comparisons depicted here

are much more stringent

than with kinetics.

Illustration on a bilayer material
How does the analytical solution expands over several layers ?

The example illustrates four practical cases with a same initial amount of migrant in the entire
packaging. The scenarios are coded by the paired values: [C1

t=0 C2
t=0]-[K1 K2]:

(a) monolayer, (b) material including a functional barrier
(c) bilayer including similar materials, (d-e) bi-materials.

Notations (SI units)

diffusion
time

gradient
direction

Free implementation of last algorithms and methodologies
on the SAFE FOOD PACKAGING PORTAL: http://h29.univ-reims.fr

It is worth to notice that all solutions are self-similar for any triplet ((Bi∙L, K/L, t)

Concentration in food/simulant
L=0.04, Bi=1000, D1=D2
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