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Introduction

Although the EU regulation is still in a consolidation phase, 502 substances (including 230 monomers and 272 additives) among the 937, which are positively listed in EU
directives on plastics in contact with food, are subjected to specific migration limits (SML) due to toxicological concern. To face such legal obligations, mathematical
modeling, as introduced in article 8 of 2002/72/EC, is a competitive alternative to time-consuming migration tests. As materials became more sophisticated (multi-layer
multi-materials) or as modeling in semi-solid food was required (e.g. for consumer exposure assessment), only numerical techniques were available up to few years
via commercial or freely available software. However, numerical techniques have several drawbacks for end-users with mainly a chemical background: i) they may be
computationally burdensome with non-optimized discretization schemes, ii) they may lead to unreliable accuracies for particular stiff problem (e.g. strong partitioning,
very thin layers such as adhesive layers), iii) their implementation for legal purposes requires a validation procedure, which is not available. To tackle the limitations of
most of available software, this work addresses new exact analytical solutions i) to validate any migration software, ii) to implement efficient probabilistic modeling,
iii) to allow real time calculations and transport coefficients identification.

Generic mathematical formulation for multilayer materials in contact with a semi-solid food

The canonical solution for the one-dimension migration of packaging substances into a continuously stirred liquid with a finite volume was proposed by Crank [1] with additional
refinements discussed by Vergnaud [2]. The first analytical solution for a semi-solid or for a liquid including a mass transfer resistance (i.e. mass Biot or Sherwood number) was proposed
by Sagiv [3] twenty-six years later. As the last solution involves a slow convergence with the number of terms, an equivalent but still approximated analytical solution was proposed by
Vitrac and Hayert [4]. Very recently, we reformulated the “Sagiv problem” by introducing an efficient mathematical method known as “energy method” already used to solve multi-
component convection-diffusion problem to derive exact analytical solutions for problems previously renowned “without analytical solution” [5].

The physical dimensionless formulation is introduced on a comprehensible case consisting in a bilayer material with a whole thickness /. in contact with a semi-solid food on the right
side. This formulation can be straightforwardly downgraded to a monolayer material or generalized to n-layer materials.
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Compliance testing emphasis

The standard and degree finite element method is still available for comparison.
Advanced users: >>How to take a decision with different sources of uncertainty FAST FINITE YOLUME
Related tool: ==FV MONOLAYER simulation FORMULATIOM (v. 1.01)

Order: _F=Food, _P1=layer in contact with food To remove a layer: assign its length to 0 or delete it
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