
HAL Id: hal-01186876
https://hal.science/hal-01186876

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects of the Training Dataset Characteristics on the
Performance of Nine Species Distribution Models:

Application to Diabrotica virgifera virgifera
Maxime Dupin, Philippe Reynaud, Vojtech Jarosik, Richard Baker, Sarah

Brunel, Dominic Eyre, Jan Pergl, David Makowski

To cite this version:
Maxime Dupin, Philippe Reynaud, Vojtech Jarosik, Richard Baker, Sarah Brunel, et al.. Effects
of the Training Dataset Characteristics on the Performance of Nine Species Distribution Models:
Application to Diabrotica virgifera virgifera. PLoS ONE, 2011, 6 (6), �10.1371/journal.pone.0020957�.
�hal-01186876�

https://hal.science/hal-01186876
https://hal.archives-ouvertes.fr


Effects of the Training Dataset Characteristics on the
Performance of Nine Species Distribution Models:
Application to Diabrotica virgifera virgifera
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Abstract

Many distribution models developed to predict the presence/absence of invasive alien species need to be fitted to a
training dataset before practical use. The training dataset is characterized by the number of recorded presences/absences
and by their geographical locations. The aim of this paper is to study the effect of the training dataset characteristics on
model performance and to compare the relative importance of three factors influencing model predictive capability; size of
training dataset, stage of the biological invasion, and choice of input variables. Nine models were assessed for their ability to
predict the distribution of the western corn rootworm, Diabrotica virgifera virgifera, a major pest of corn in North America
that has recently invaded Europe. Twenty-six training datasets of various sizes (from 10 to 428 presence records)
corresponding to two different stages of invasion (1955 and 1980) and three sets of input bioclimatic variables (19 variables,
six variables selected using information on insect biology, and three linear combinations of 19 variables derived from
Principal Component Analysis) were considered. The models were fitted to each training dataset in turn and their
performance was assessed using independent data from North America and Europe. The models were ranked according to
the area under the Receiver Operating Characteristic curve and the likelihood ratio. Model performance was highly sensitive
to the geographical area used for calibration; most of the models performed poorly when fitted to a restricted area
corresponding to an early stage of the invasion. Our results also showed that Principal Component Analysis was useful in
reducing the number of model input variables for the models that performed poorly with 19 input variables. DOMAIN,
Environmental Distance, MAXENT, and Envelope Score were the most accurate models but all the models tested in this
study led to a substantial rate of mis-classification.
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Introduction

Since the 1950’s, biological invasions have increased due to an

intensification of global trade [1], [2], [3]. The establishment and

spread of invasive alien species has led to important economic and

environmental damage [4], [5], [6]. The risks of damage are likely

to rise with increasing global trade and in an era with a rapidly

changing climate. In Europe alone, 11000 alien species have in-

vaded, and 30% of them led to economic damage or have caused

harm to biological diversity [7].

Species distribution models (SDMs) or ecological niche models

provide a basis for predicting the distribution potential of invasive

species in regions other than their native ranges [8]. Although

these models do not answer the associated questions of oppor-

tunities for entry, evolutionary bottlenecks, potential for spread,

and impact, SDMs can be used to anticipate the geographical

course of species’ invasions [8]. Peterson and Vieglais [9] and

Peterson [8] explored the ability of species distribution models

(SDMs) to characterize the climatic conditions that are suitable for

invasive alien species and to identify new areas where these species

could establish. They concluded that these models provide pro-

active, predictive, and quantitative tools for pest risk analysis (PRA).

SDMs can also be coupled to climate change models to predict how

the geographic ranges of species will shift as anthropogenic climate

change proceeds [10], [11].

Some of these models, like CLIMEX [12] or the NAPPFAST

phenology and generic infection model [13], can incorporate cli-

matic tolerance data from laboratory studies or may infer para-

meter values from the relationship between the distribution and

the climate. The accuracy of the predictions from these models is

influenced by the aptitude, knowledge, training and time input of

each modeller as well as the data available. Other SDMs use a
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correlative approach based on a wide variety of statistical methods

or machine-learning techniques to assess climatic suitability. These

models implement classification rules developed from a training

dataset including a set of georeferenced presence locality records

and values of climatic variables for each site usually obtained from

interpolated climatic data sets. A great diversity of SDMs is avail-

able, and it is important to compare the performance of these mo-

dels to help risk assessors to choose the one that is most appropriate.

Several studies have been carried out to assess and compare

SDM performance [14], [15], [16]. The authors showed that no

model was systematically better than the others and that no single

model was optimal for all applications and species. Therefore, an

increased insight into the performance of models should help to

provide guidance on which are more appropriate in different situa-

tions. SDM performance is likely to depend on the size of the

training dataset [16], [17], [18], [19], [20], [21], [22] and on the

geographical spread of the presence locations [23], [24], [26],

[27], [28], [25] used for model calibration. These two factors

depend themselves on the stage of the biological invasion. The size

of the training dataset and the spread of the presence locations are

more likely to be restricted at an early stage of a biological invasion

than at a late stage. The choice of the input variables is another

important consideration to take into account when assessing the

performance of modelling methods as the selected set of input

variables and their correlations can influence model performance

[29], [30], [33], [34], [35]. To our knowledge, the combined

effects of all these factors (i.e., size of training dataset, stage of the

biological invasion, and choice of input variables) have not been

analysed and their relative importance have not been compared.

Some SDMs can be calibrated using species presence data only,

whereas others require either true absence or ‘pseudo-absence’

records in addition to presence records. The type of absence data

can influence model prediction accuracy [31], [32]. Pseudo ab-

sence locations are points or pixels randomly selected from an area

around presence records from which the species being modelled is

not known to occur as opposed to known not to occur as a result of

a survey. Vaclavik and Meentemeyer [31] found that models per-

formed better when calibrated using true absence data when dis-

persal constraints were taken into consideration. However, true

absence data are not frequently available for invasive species and,

in practice, SDMs are calibrated using pseudo-absence data [31].

True-absence data have been recognized to be a critical ingredient

not only for model calibration but also for model assessment.

When pseudo-absence data are used instead of real absence data

for model assessment, the levels of accuracy of the tested models

can be over-estimated [31]. Although models were assessed using

pseudo-absence data in several comparative studies in the past

([21], [28]), it is more appropriate to use reliable absence data to

assess the accuracy of SDMs [31].

The aim of this study was to investigate the effects of the size of

the training dataset, of the stage of the biological invasion, and of

the number of input bioclimatic variables on the performance of

nine distribution models. Model comparisons were performed

using Diabrotica virgifera virgifera presence and absence data from

North America and Europe. Numerous surveys have been carried

out for this species using pheromone traps and a very large

number of reliable presence and absence records are thus available

to assess SDM predictions for this invasive insect. Several training

data sets were defined at two different stages of D. virgifera virgifera

invasion (invaded areas recorded in 1955 and 1980). The nine

models studied were first fitted to each training dataset in turn

using three different sets of input variables, and model perfor-

mance was then assessed using independent data. Models were

calibrated using presence and pseudo-absence data as usually done

in practice for invasive species, but model assessment was per-

formed using recorded presence and absence data as recom-

mended by [31]. Results were used to rank the models according

to the size of the training dataset, the stage of the biological

invasion, and the number of bioclimatic input variables.

Materials and Methods

Presence and absence data of the Western Corn
Rootworm in North America and Europe

The western corn rootworm (WCR), Diabrotica virgifera virgifera

LeConte (Coleoptera: Chrysomelidae), is a major pest of cultivated

corn, Zea mays L. Most of the damage to this crop is caused by

larvae feeding on the roots of maize [36]. This pest species probably

originated in Central America but the current southernmost limit of

its distribution is in northern Mexico. In the 1950s and 1960s,

WCR rapidly expanded its range from the southwestern region of

the US Corn Belt, reaching the east coast of North America during

the 1980s [37]. It was recently introduced into Europe, where it was

first observed near Belgrade, Serbia in 1992 [38].

For North America (Figure 1), WCR locations were collected

from maps of the Entomology Department at Purdue University

(http://extension.entm.purdue.edu/wcr/), drawn by C. Richard

Edwards. The 2008 map was used, based on NAPIS and state data.

This map was georeferenced using the digital map of US Census

Bureau (http://www.census.gov/tiger/tms/gazetteer/county2k.txt).

A few additional locations were added based on data reported in the

literature. Presence and absence data were derived from WCR

occurrence reports from individual counties. Counties with more

than 50 percent of the corn acreage with irrigation according to

USDA National Agriculture Statistics Service (http://www.agcensus.

usda.gov/Publications/2007/index.asp) were considered as irri-

gated (Figure 1). Only non-irrigated counties were considered as

irrigation was not taken into account by the models considered in

this paper. Model predictions were meant to be of where the insect

would survive in the absence of irrigation.

For Europe (Figure 2), locations were supplied by National

Plant Protection Organizations, by the European and Mediterra-

nean Plant Protection Organization (http://www.eppo.org/) in

2010 and literature was checked for additional locations. Only

presence data were considered in Europe as the range of the pest is

still expanding and hence absences from this region may not be an

indication that the climate is unsuitable.

Figure 1. Western corn rootworm distribution in North
America. The hatched area represents non-irrigated maize area.
doi:10.1371/journal.pone.0020957.g001
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The total number of presence data points was 1198 (240 in

Europe) and the total number of absence data points was 977.

Climatic data and model input variables
Three sets of input variables were defined; a set including 19

bioclimatic variables, a set including six variables selected among

the 19 bioclimatic variables using information on insect biology,

and a set of three linear combinations of 19 bioclimatic variables

derived from Principal Component Analysis (PCA).

Set of 19 bioclimatic variables. Monthly mean tempera-

tures and monthly precipitation sums from the CRU TS 2.1 dataset

were used [39], provided by the Climatic Research Unit (CRU,

University of East Anglia, Norwich, GB). This dataset includes

climatic data for the 1961–1990 period at a 0.5u by 0.5u spatial

resolution. A set of 19 bioclimatic variables was defined using

DIVA-GIS v5.2 by combining monthly mean temperatures, mon-

thly precipitation sums, or both monthly mean temperatures and

precipitation sums. These variables are defined in Table 1.

Restricted set of six bioclimatic variables. Six variables

were chosen among the 19 available bioclimatic variables using

information about the insect biology. WCR is a soil inhabitant for

most of its life cycle. Temperature and soil moisture are thus con-

sidered the most important abiotic parameters that could affect

WCR establishment. Four parameters related to temperature and

two parameters related to rainfall were assumed to be relevant for

mapping the distribution of WCR (Table 1).

WCR metabolic activity and the development rate depend upon

temperature. Degree days can be used to predict the life stages of

this insect as shown by [40], [41], [42]. The Annual Mean

Temperature was selected among the 19 available bioclimatic

variables because this variable is related to the annual sum of de-

gree days available for development. The « Minimum Temper-

ature of the Coldest Month » and the « Mean Temperature of the

Coldest Quarter » parameters were selected due to their possible

effect on the mortality of eggs following exposure to low tem-

peratures during a single month or on a longer period [43]. The

Annual Temperature Range was also included because high death

rates were found in the first and second larval instars [44] and

temperature variation is known to be an important factor ex-

plaining high mortality of young larvae [45].

Ellsbury and Lee [46] suggested that wetness and temperature

may both influence overwintering survival of WCR. Lack of

winter precipitation can lead to a high mortality rate of eggs close

to the soil surface [47]. This aspect was taken into account by

selecting the variable: Precipitation of the Driest Quarter. Finally,

the Precipitation of the Wettest Month was selected in order to

take into account the influence of wetness on embryonic develop-

ment after diapause termination [48] and the lack of oxygen in

water-saturated soils.

Linear combinations of bioclimatic variables. Principal

component analysis (PCA) was used to reduce the 19 bioclima-

tic variables (Table 1) into a smaller number of newly derived

variables corresponding to independent linear combinations of the

original variables. The basic principle of PCA is that, if there are

some associations between the original variables, their first few

linear combinations are able to explain most of the variation pre-

sent in all the original variables [49]. The patterns in the original

data can then be summarized into a much smaller linear com-

bination of the variables than the full data set.

Principal components were extracted so that the first explained

the maximum amount of variation in the 19 variables, the second

the maximum amount of that unexplained by the first, etc. Fol-

lowing [49] (p. 443–454) the linear combinations, called principal

components, were extracted by a spectral decomposition of the

correlation matrix of the variables. The relationship between the

individual bioclimatic variables and the extracted components was

expressed by a Varimax rotated component matrix with Kaiser’s

normalization, with components scaled between 0–1. The closer

each component was to unity and further from zero, the greater

contribution that variable made to that component. The number

of components retained for further analyses was determined by the

eigenvalue equals one rule [50] and scree diagram [49] (p. 452–

453). Calculations were done in SPSSH v. 18.

Model calibration
Nine models were used to predict the presence and absence of

WCR in North America and Europe (Table 2). BIOCLIM is

based on environmental envelope techniques [51], [52]. It first

characterizes the environmental conditions of the actual distribu-

tion of the species and then identifies additional sites that fall

within the already defined environmental hyperspace [53]. The

Envelope Score algorithm (ES) is equivalent to the inclusive ‘‘OR’’

implementation of BIOCLIM described in [54]. DOMAIN

assigns a value of habitat suitability to each potential site based

on its proximity in the environmental space to the nearest

occurrence location [55]. Environmental Distance (ED) is a

generic algorithm based on environmental dissimilarity metrics.

Climate Space Model (CSM) is based on a principle components

analysis (PCA) technique where the optimum number of principal

components is determined using the Broken-Stick cutoff method

[56], [57]. The Genetic Algorithm for Rule-set Production

(GARP) uses a genetic algorithm to select a set of mathematical

rules defining the species ecological niche [58], [59]. Two versions

of GARP were implemented in this study, the desktop version of

GARP (DKGARP) and a new OpenModeller version (OMGARP)

with an updated algorithm. MAXENT is a machine-learning

method that estimates species distributions by finding the pro-

bability distribution of maximum entropy (i.e., that is most spread

out, or closest to uniform) with constraints on the expected values

of the environmental predictors [60], [61], [62]. Support Vector

Machines (SVMs) methods [63] identifies an environmental

envelope or hyperspace containing the data points, in which the

envelope is optimized with respect to the number of points in the

envelope and to the number of outliers [64].

BIOCLIM, ES, DOMAIN, ED and CSM only require

presence sites for model calibration, whereas the two versions of

Figure 2. Western corn rootworm distribution in Europe.
doi:10.1371/journal.pone.0020957.g002
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GARP, MAXENT and SVM require both presence and pseudo-

absence sites randomly sampled from the background. Twenty six

training datasets were generated for model calibration as follows.

Data were randomly selected from American presence data

located in either i) the area where the species was recorded as

present (the presence area) in USA before 1955 (Kansas, Colorado,

Nebraska South Dakota), or ii) the presence area in USA before

1980 (the same states and Montana, Wyoming, North Dakota, New

Mexico, Oklahoma, Texas, Minnesota, Wisconsin, Iowa, Missouri,

Illinois, Michigan, Indiana, Ohio) (Figure 3).

Several sizes of training datasets were considered; 10, 20, and 51

(all) presence sites for the training datasets defined from the 1955

presence area, and 10, 20, 50, 100, 150, 300, and 428 (all)

presence sites for training datasets defined from the 1980 presence

area. Three replicates were generated for each training area and

each sample size. Only the two training datasets including all

presence sites (51 for the 1955 presence area and 428 for the 1980

presence area) were not replicated. This procedure allowed us to

generate a range of training datasets with contrasting sizes cor-

responding to two different periods of the WCR invasion.

Each model was fitted to each training dataset using the three

sets of bioclimatic variables in turn. BIOCLIM and DOMAIN

were fitted using the DIVA-GIS software version 5.2 [65] (available

at http://www.diva-gis.org), OMGARP, DKGARP, E S, ED,

Table 1. Bioclimatic variables computed from monthly mean temperatures (T), from monthly precipitation sums (P), or from both
(T + P).

Code Bioclimatic variables Initial climatic variable

Bio01 Annual Mean Temperature T

Bio02 Mean Diurnal Range [Mean of monthly (max temp - min temp)] T

Bio03 Isothermality [(Bio02/Bio07)*100] T

Bio04 Temperature Seasonality [standard deviation *100] T

Bio05 Max Temperature of Warmest Month T

Bio06 Min Temperature of Coldest Month T

Bio07 Temperature Annual Range [Bio05–Bio06] T

Bio08 Mean Temperature of Wettest Quarter T + P

Bio09 Mean Temperature of Driest Quarter T + P

Bio10 Mean Temperature of Warmest Quarter T

Bio11 Mean Temperature of Coldest Quarter T

Bio12 Annual Precipitation P

Bio13 Precipitation of Wettest Month P

Bio14 Precipitation of Driest Month P

Bio15 Precipitation Seasonality [Coefficient of Variation] P

Bio16 Precipitation of Wettest Quarter P

Bio17 Precipitation of Driest Quarter P

Bio18 Precipitation of Warmest Quarter T + P

Bio19 Precipitation of Coldest Quarter T + P

The subset of 6 variables selected based on the literature is formatted in bold.
doi:10.1371/journal.pone.0020957.t001

Table 2. Nine models for predicting distribution of the western corn rootworm.

Name Class of method Data Software

BIOCLIM Envelope model P DIVA-GIS v5.2

Envelope Score (ES) Envelope model P openModeller v1.0.9

DOMAIN Multivariate distance P DIVA-GIS v5.2

Environmental Distance (ED) Multivariate distance P openModeller v1.0.9

Climate Space Model (CSM) Principal components analysis P openModeller v1.0.9

DKGARP Genetic Algorithm for Rule Set Production, desktop
version, with the best subset procedure

ppa openModeller v1.0.9

OMGARP Genetic Algorithm for Rule Set Production,
openModeller version, with the best subset procedure

ppa openModeller v1.0.9

MAXENT Maximum Entropy ppa Maxent v3.3.1

Support Vector Machine (SVM) Support Vector Machine ppa openModeller v1.0.9

Data needed for model calibration are presence data (p) or both presence and pseudo-absence data (ppa).
doi:10.1371/journal.pone.0020957.t002

Performance of Species Distribution Models

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e20957



CSM and SVM were fitted using the OpenModeller software

version 1.0.9 with default settings [66] (available at http://

openmodeller.sourceforge.net) and MAXENT was fitted using the

MAXENT software version 3.3.1 with default settings (available at

http://www.cs.princeton.edu/̃schapire/MAXENT/). When re-

quired, pseudo-absence data were generated using the software

from the background (USA and Europe). The nine considered

models are freely available, can be easily downloaded, and can be

easily fitted to presence records using calibration algorithms from

the website quoted above.

Assessing model performance
Model performance was assessed with a test dataset that in-

cluded the North American presence and absence sites and the

European presence sites. The 428 North American presence sites

used for model calibration were excluded from the test dataset in

order to provide independent data for model assessment. The test

dataset included 770 presence sites (240 in Europe) and 977

absence sites (all in North America).

The Receiver Operating Characteristic (ROC) methodology

(e.g. [67], [68]) was used to evaluate the ability of each fitted model

to discriminate between presence and absence sites. Two criteria

were computed for each fitted model using the test dataset; like-

lihood ratio and the area under the ROC curve.

D is a binary variable equal to 1 for presence and to zero for

absence. The test dataset was divided in two groups, one group

including the presence sites and one group including the absence

sites. Model outputs were computed for each site in both groups,

and each model output value (O) was compared to a decision

threshold (Th). The results were used to calculate the true positive

proportion, defined as TPP (number of plots with O .Th in the

group of sites with D = 1 divided by the total number of sites in this

group) and the true negative proportion, defined as TNP (number

of sites with O # Th in the group of sites with D = 0 divided by the

total number of sites in this group). TPP is referred to as Sen-

sitivity. TNP is referred to as Specificity.

Sensitivity and specificity values have several practical uses.

They can be directly used to study the accuracy of different

indicators in relation to the decision threshold values. They can

also be used to estimate other criteria such as the likelihood ratio

([69], [70]), defined as the ratio of Sensitivity to (1 - Specificity).

This ratio can be used to compare the probability of correctly

predicting a presence with the probability of incorrectly predicting

a presence. The ratio should thus be as high a possible. A ratio

close to one indicates that the two probabilities are similar and that

the model is not very useful. Note that the likelihood ratio is

dependent on the decision threshold-as well as the model. In pest

risk assessment, decision makers are often primarily interested in

high sensitivity values, in this study the likelihood ratio was

therefore computed for a threshold Th leading to a sensitivity

value equal to 0.95.

Sensitivity, specificity, and likelihood ratio depend on the

decision threshold Th. These criteria provide useful information

on the model accuracy in relation to the decision threshold chosen

by the model user. Since different model users may consider

different decision thresholds and since these thresholds are not

necessarily known in advance, it is also useful to assess model

accuracy for all possible decision thresholds. The ROC curve of a

model is a graphical plot of Sensitivity against (1-Specificity), the

values of TPP and TNP being calculated by varying the decision

threshold Th over the whole range of values taken by the model

output O. A summary of the overall accuracy of a model is the

area under the ROC curve (AUC), that has an expected value of

0.5 for a non-informative model (i.e., a model no better than

random classification) and of 1 for a perfect model (59). AUC has

an important probabilistic interpretation. It is equal to the pro-

bability that the model outputs for randomly selected pairs of

positive and negative events (here, D = 1 and D = 0) will be

correctly ordered. In this study, a non-parametric estimate of the

AUC value was calculated using the test dataset for all models and

all training datasets.

The fitted models were ranked according to their AUC and

likelihood ratio values. The effects of the size of the presence area

(the presence area in 1980 compared to the presence area in 1955),

the training dataset size (number of presence sites), and the set of

input variables (19 bioclimatic variables, six bioclimatic variables,

or the first three principal components) on model rank were tested

using a non-parametric Wilcoxon statistical test. All computations

were performed with R v.2.10 (cran.r-project.org).

Results

Linear combinations of bioclimatic variables
The first three linear combinations of bioclimatic variables

explained 83.5% of the variance of the bioclimatic data. Removing

the highly correlated bioclimatic variables and replacing them with

the three uncorrelated linear combinations thus reduced the total

variance explained by the bioclimatic variables by only 16.5%. The

first linear component was attributed mainly to temperature, the

second to precipitation during the wet or warm periods, and the

third to precipitation during drought (Table 3).

AUC
Table 4 shows the significance of the effects of the presence area

(1980 vs. 1955), the size of the training dataset, and the set of bio-

climatic variables on AUC values.

For all models except DKGARP, OMGARP and ES, AUC

values were significantly higher with the 1980 presence area than

with the 1955 presence area (p = 0.05). The strong influence of the

presence area on AUC is confirmed by the box plots displayed in

Figure 4; AUC were more frequently higher than 0.7 with the

1980 presence area than with the 1955 presence area. However,

even with the 1980 presence area, the AUC was higher than 0.8 in

a limited number of cases. The influence of the presence area on

model outputs is illustrated for model ES in Figure 5; the levels of

risk predicted by ES were highly dependent on the presence area

used to calibrate the model.

Figure 3. Geographical area of the training datasets. The
hatched area represents the WCR distribution before 1955 while the
grey area represents the WCR distribution before 1980.
doi:10.1371/journal.pone.0020957.g003
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The selection of the bioclimatic input variables also had a

significant effect on model AUC (Table 4). The effects of the input

variables on AUC are visible in Figure 4, but the box plots show

that the effect of this factor was smaller than the effect of the

presence area. The use of 6 bioclimatic variables instead of 19

significantly increased the AUC of BIOCLIM, DKGARP and

OMGARP. The use of the first three principal components

significantly increased the AUC when the model was fitted to

training datasets generated from the 1980 presence area. The only

exceptions were CSM and ES; the AUC values of these two

models were not influenced by the type of input variables (Table 4).

The effect of the size of the training dataset was not significant

for the 1955 presence area; the AUC values of models fitted to 10

presence sites and to 20 presence sites were similar (Table 4). For

Table 3. Rotated component matrix of Principal Component Analysis.

Bioclimatic variables Components

1 2 3

Bio01 Annual Mean Temperature 0.967 0.212 20.042

Bio02 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 0.403 20.214 20.379

Bio03 Isothermality (BIO2/BIO7) (* 100) 0.805 0.335 0.183

Bio04 Temperature Seasonality (standard deviation *100) 20.843 20.252 20.267

Bio05 Max Temperature of Warmest Month 0.856 0.074 20.287

Bio06 Min Temperature of Coldest Month 0.952 0.242 0.112

Bio07 Temperature Annual Range (BIO5-BIO6) 20.773 20.298 20.365

Bio08 Mean Temperature of Wettest Quarter 0.764 0.328 20.287

Bio09 Mean Temperature of Driest Quarter 0.958 0.11 0.095

Bio10 Mean Temperature of Warmest Quarter 0.892 0.148 20.21

Bio11 Mean Temperature of Coldest Quarter 0.967 0.231 0.054

Bio12 Annual Precipitation 0.3 0.798 0.502

Bio13 Precipitation of Wettest Month 0.342 0.896 0.166

Bio14 Precipitation of Driest Month 0.095 0.382 0.82

Bio15 Precipitation Seasonality (Coefficient of Variation) 0.285 0.068 20.745

Bio16 Precipitation of Wettest Quarter 0.332 0.894 0.205

Bio17 Precipitation of Driest Quarter 0.106 0.403 0.825

Bio18 Precipitation of Warmest Quarter 0.119 0.86 0.234

Bio19 Precipitation of Coldest Quarter 0.237 0.438 0.671

Varimax rotation method with Kaiser normalization. The components are scaled between 0–1; the closer the values to one, the more variance they explain. Values
between 0.7–0.79, 0.8–0.89.
doi:10.1371/journal.pone.0020957.t003

Table 4. Significance of effect of training area, size of training dataset, and set of bioclimatic variables on AUC values.

Model Area 1980/1955 Input variables Size

6/19var PCA/19var PCA/6var 20/10 Big/Small

1955 1980 1955 1980 1955 1980 1955 1980

BIOCLIM *** * *** ** *** ** ** NS NS ***

CSM *** NS NS NS NS NS NS NS NS NS

DKGARP . *** *** *** *** ** *** NS NS ***

DOMAIN *** NS NS NS *** NS *** NS NS NS

ED *** NS NS NS *** NS *** NS NS NS

ES NS NS NS NS NS NS NS NS NS ***

MAXENT *** NS NS *** *** *** *** NS NS NS

OMGARP . *** *** *** *** NS . NS NS NS

SVM *** NS NS NS * . * NS NS NS

Area 1980 vs. 1955, 6 variables vs. 19 variables, first three principal components (PCA) vs. 19 variables, PCA vs. 6 variables, training dataset size = 20 vs. 10, big training
dataset (more than 50 presence points) vs. small (less than 50).
***p,0.001 |
**p,0.01 |
*p,0.05 |. p,0.1 | NS not significant.
doi:10.1371/journal.pone.0020957.t004
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the 1980 presence area, training dataset size was significant for

three models; BIOCLIM, DKGARP, and ES (Table 4). The AUC

values of these models were increased by using a training dataset

including more than 50 presence sites.

Table 5 shows that the results of the comparison of AUC values

with two thresholds, 0.5 and 0.7. With the 1955 presence area,

values obtained for CSM, DOMAIN and SVM were never

significantly higher than 0.5 and only ES with the 19 bioclimatic

variables showed an AUC value significantly higher than 0.7 with

this restricted area (Table 5, Figures 4–5).

With the 1980 presence area, AUC was significantly higher

than 0.5 for all models and all types of input variables. With this

area, AUC was significantly higher than 0.7 for several models;

DOMAIN, ED, and MAXENT with all types of input variables,

CSM and ES with 19 bioclimatic variables, and DKGARP with

the first three principal components (Table 5). With the 1980

presence area, the AUC values of BIOCLIM, OMGARP, and

SVM were never significantly higher than 0.7 (p = 0.05) (Table 5).

Likelihood ratios
Table 6 shows the significance of the effects of presence area,

size of training dataset, and set of bioclimatic variables on like-

lihood ratios.

For all models except BIOCLIM, DKGARP, OMGARP and

ES, likelihood ratios were significantly higher with the 1980 WCR

presence area than with the 1955 area (p = 0.05). The influence of

the presence area on likelihood ratios is confirmed by the box plots

displayed in Figure 4. Ratios were more frequently higher than the

thresholds of 1 and 1.5 with the 1980 presence area than with the

1955 presence area. However, even with the 1980 presence area,

likelihood ratios were higher than two in a limited number of cases.

The type of the input variables had no significant effect on the

likelihood ratios of BIOCLIM, CSM, ES, and OMGARP (Table 6).

The use of 6 bioclimatic variables instead of 19 significantly

increased the likelihood ratio for DKGARP (with the 1980 area),

DOMAIN (with the 1980 area), and ED (with the 1955 presence

area). The use of the first three principal components significantly

increased the likelihood ratio of DKGARP (with the 1980 presence

area only), ED, MAXENT and SVM (with the 1955 presence area

only).

For the 1955 presence area, the size of the training dataset had

no significant influence on the likelihood ratio. For the 1980

presence area, the size of the training dataset had a significant

effect only for DKGARP and ES; the likelihood ratios of these

models were significantly higher when more than 50 presence sites

were used for model calibration.

Table 5 shows the results of the comparison of likelihood ratios

with two thresholds, 1 and 1.5. For the 1955 presence area, only

ratios obtained for ED (with 6 variables), ES (with 19 variables),

and MAXENT (with the first three principal components) were

significantly higher than 1 and ratios were never significantly higher

than 1.5 with this restricted area. For the 1980 presence area, all mo-

dels showed ratios significantly higher than 1 with two exceptions,

BIOCLIM and OMGARP. For this large presence area, the

likelihood ratio was significantly higher than 1.5 in a few cases: CSM

with 6 input variables, DOMAIN with 6 input variables, ED with the

first three principal components and MAXENT with 6 input

variables.

Figure 4. Box plots of AUC values and likelihood ratios (sensitivity = 0.95) computed for the nine models with 19 variables, 6
variables, or three principal components (PCA) for training datasets generated from two areas (1955 and 1980). Continuous and
dashed lines correspond to AUC = 0.5 or ratio = 1 and AUC = 0.7or ratio = 1.5 respectively.
doi:10.1371/journal.pone.0020957.g004
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Discussion

According to Peterson [8], ecological niche models assess only

one step of a species invasion; the ecological appropriateness of

new landscapes. Predicting the current or future distributions of

species is principally conducted using bioclimatic models. These

models assume that climate ultimately restricts species distribu-

tions. This assumption is made because in most situations climate

Figure 5. Outputs of model ES obtained with 20 presence data located within the 1955 presence area (A) and with 50 presence data
located within the 1980 presence area (B). The model was fitted using 19 input variables in both cases.
doi:10.1371/journal.pone.0020957.g005
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is the only factor for which data are readily available as the input

variables; however, in reality, the distribution is also under the

influence of other environmental and ecological components (e.g.,

altitude, host presence, competition, predation).

Our results showed that the performance of species distribution

models was highly variable and depended on the extent of the

species presence area, the size of the training dataset, and the type

and number of bioclimatic input variables. In almost all the

conditions tested, the AUC was not significantly higher than 0.7

and the likelihood ratio was not significantly higher than 1.5 when

training datasets were defined from the 1955 presence area. This

result shows that the models tested were not very useful for

predicting presence/absence of an invasive species, Diabrotica

virgifera virgifera when it was at an early stage of an invasion. Model

performance was much better when models were run with training

datasets generated from a larger presence area corresponding to

the WCR presence in USA in 1980. The models tested seem to be

better able to predict invasive species establishment when the

species has been recorded in a relatively large area and thus is

more likely to have reached its climatic limits. However, in this

case, results show that model performance depends on model type,

the number of bioclimatic input variables, and the size of the

training dataset.

Among the nine models considered in this study, BIOCLIM,

OMGARP, and SVM showed poor performance for the two

presence areas (1955 and 1980) and the three sets of bioclimatic

input variables (19, 6 and the three principal components). The

AUC of these models was never significantly higher than 0.7 and

their likelihood ratios were never significantly higher than 1.5

(p = 0.05). In addition, the likelihood ratios of BIOCLIM and

OMGARP were never significantly higher than 1, i.e. the

probability of correct presence prediction was thus not higher

than the probability of incorrect presence prediction when these

models were used to predict presence of WCR in North America

and Europe.

With the other six models (CSM, DKGARP, DOMAIN, ED,

ES, MAXENT), the AUC and the likelihood ratio were higher

than 0.7 and 1 in at least some of the conditions tested. For three

of these models (DOMAIN, ED, and MAXENT), the AUC was

significantly higher than 0.7 for all the three sets of bioclimatic

input variables when training datasets were generated from the

1980 presence area. In addition, the likelihood ratio of these three

models was significantly higher than 1.5 in some cases. The

performance of these models seems quite robust with the 1980

presence area. The model ES also showed good performance with

19 bioclimatic variables and ES is the only model giving an AUC

significantly higher than 0.7 when training datasets were generated

from the 1955 presence area. Overall, DOMAIN, ED, MAX-

ENT, and ES (with 19 bioclimatic variables) were the most

accurate models. The good performance of MAXENT is likely

due to its regularization procedure that counteracts a tendency to

over-fit models when using few species occurrences [21], [60]. Its

amount of regularization varies flexibly with sample size to ensure

consistent performance [22]. According to Giovanelli et al. [28],

GARP algorithms are penalized by their intrinsic measure of

predictive accuracy that tends to fail to discriminate the best

among a number of alternative models. Elith and Graham [71]

showed that GARP tended to overpredict suitability of invasive

species. The BIOCLIM model was found to perform poorly in

several past studies e.g., [21], [22]. This model performed also

poorly in our comparative study, but the version of BIOCLIM

including the ‘‘OR’’ option (i.e., the ES algorithm) performed well

with small samples when a large number of input variables was

considered.

Although other studies found that several distribution models

could show AUC values higher than 0.9 (e.g., [21], [28]), such

results were not obtained in our study; the AUC values never

reached 0.9 and the likelihood ratio was very rarely higher than 2

among all the conditions tested. All models thus led to a substantial

rate of mis-classification and pest risk assessors need to keep this in

mind when using these models to predict species distributions.

One of the reasons of mis-classification may be the use of either

too few or too many bioclimatic variables [29], [30], [33], [34].

The inclusion of too few variables can over estimate species

distributions by excluding from the model those variables that

restrict the species; in turn, inclusion of too many variables may

lead to mis-representations due to over-fitting because the pro-

gressive addition of variables can result in progressively smaller

potential distributions. The inclusion of unnecessary variables may

also place unrealistic constraints on identifying climatically suitable

habitat, and thus may result in areas being classified as climatically

unsuitable when, in fact, they are appropriate.

Table 5. Significance of the model performance.

Model
Input
variables AUC = 0.5 AUC = 0.7 LikR = 1 LikR = 1.5

1955 1980 1955 1980 1955 1980 1955 1980

BIOCLIM 6 . *** NS NS NS NS NS NS

19 NS *** NS NS NS NS NS NS

3 PCA * *** NS NS NS NS NS NS

CSM 6 NS *** NS NS NS *** NS **

19 NS *** NS *** NS *** NS NS

3 PCA NS *** NS NS NS *** NS NS

DKGARP 6 ** *** NS . NS . NS NS

19 NS *** NS NS NS NS NS NS

3 PCA ** *** NS *** NS ** NS NS

DOMAIN 6 NS *** NS *** NS *** NS *

19 NS *** NS *** NS *** NS NS

3 PCA NS *** NS *** NS *** NS NS

ED 6 ** *** NS * * *** NS NS

19 ** *** NS *** NS *** NS NS

3 PCA ** *** NS *** . *** NS **

ES 6 ** *** NS NS NS *** NS NS

19 ** *** * *** ** *** NS NS

3 PCA ** *** NS NS NS *** NS NS

MAXENT 6 NS *** NS *** NS *** NS **

19 NS *** NS *** NS *** NS .

3 PCA * *** NS *** * *** NS NS

OMGARP 6 ** *** NS NS NS NS NS NS

19 NS *** NS NS NS NS NS NS

3 PCA ** *** NS . NS NS NS NS

SVM 6 NS *** NS NS NS *** NS NS

19 NS *** NS NS NS *** NS NS

3 PCA NS *** NS . . *** NS NS

Tests ‘‘AUC,0.5 vs. AUC.0.5’’, ‘‘AUC,0.7 vs. AUC.0.7’’, ‘‘Likelihood ratio,1 vs.
Likelihood ratio.1’’, and ‘‘Likelihood ratio,1.5 vs. Likelihood ratio.1.5’’.
***p,0.001 |
**p,0.01 |
*p,0.05 |. p,0.1 | NS not significant.
doi:10.1371/journal.pone.0020957.t005
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The significance of the number of bioclimatic variables found in

this paper demonstrates that the number of model input variables

is an important consideration. With the 1980 presence area, the

use of the three linear combinations of the 19 variables sig-

nificantly improved model-based classification for seven out of

nine models. This is because the three principal axes merged

together information from the original 19 bioclimatic variables

with little lost from the variability of the original variables. The

increase in precision can thus be attributed to the removal of

redundant parameters, which prevents over-fitting. Compared to

principal component analysis, the benefit of using six bioclimatic

selected from the literature was smaller. This may be due to the

difficulty of identifying relevant variables using information about

the insect biology and, also, to the relatively small number of

bioclimatic variables available in our climatic dataset.

Several of the models tested in this study used ‘pseudo-absence’

data for calibration. Performance of SDMs was found to be

sensitive to the type of pseudo-absence data used for calibration

[32]. When pseudo-absence data are used in SDMs, the area from

which the pseudo-absence points are derived influence the out-

come of models. As only one type of pseudo-absence data was

considered in our comparative study, it will be interesting to see

how our conclusions are changed when pseudo-absence data are

generated with alternative techniques proposed by [32].

The methodological framework and the datasets presented in

this paper could be used to assess other models or other model

settings in the future, for example models based on machine

learning techniques like regression tree and random forest, and

more mechanistic models such as NAPPFAST. It would be also

informative to implement the same methodology with other

invasive species.
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