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Abstract

Nitrous oxide (N2O) is a greenhouse gas with a global warming potential approximately 298 times greater than that of CO2.
In 2006, the Intergovernmental Panel on Climate Change (IPCC) estimated N2O emission due to synthetic and organic
nitrogen (N) fertilization at 1% of applied N. We investigated the uncertainty on this estimated value, by fitting 13 different
models to a published dataset including 985 N2O measurements. These models were characterized by (i) the presence or
absence of the explanatory variable ‘‘applied N’’, (ii) the function relating N2O emission to applied N (exponential or linear
function), (iii) fixed or random background (i.e. in the absence of N application) N2O emission and (iv) fixed or random
applied N effect. We calculated ranges of uncertainty on N2O emissions from a subset of these models, and compared them
with the uncertainty ranges currently used in the IPCC-Tier 1 method. The exponential models outperformed the linear
models, and models including one or two random effects outperformed those including fixed effects only. The use of an
exponential function rather than a linear function has an important practical consequence: the emission factor is not
constant and increases as a function of applied N. Emission factors estimated using the exponential function were lower
than 1% when the amount of N applied was below 160 kg N ha21. Our uncertainty analysis shows that the uncertainty
range currently used by the IPCC-Tier 1 method could be reduced.
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Introduction

Nitrous oxide (N2O) is a greenhouse gas (GHG) with a global

warming potential approximately 298 times greater than that of

CO2 [1]. N2O emissions increased by almost 17% from 1990 to

2005 [2]. The nitrogen (N) cycle is complex and N2O emissions

are determined by many factors [3]. Natural and anthropogenic

N2O is emitted as a result of nitrification (oxidation of ammonia)

and denitrification (nitrate reduction), and these processes are

influenced by applications of mineral N fertilizer and manure to

agricultural soils [4,5]. N applications are recognized as the major

source of anthropogenic nitrous oxide emission [6,7]. N2O

emissions are also influenced by other management practices

(e.g., tillage [8]), soil and climate characteristics (e.g. soil water

content) [9,10,11,12,13].

For countries unable to provide local statistics, N2O emission

can be estimated by the IPCC-Tier 1 method. In this approach,

direct N2O emission from N inputs is calculated as YN

inputs = (FSN+FON+FCR+FSOM)*EF1+ (FSN+FON+FCR+FSOM)-

FR*EF1FR, where FSN is the annual amount of synthetic N

fertilizer applied to soils, FON is the annual amount of organic N

applied to soils, FCR is the annual amount of N in crop residues,

FSOM is the annual amount of N in mineral soils, EF1 is the

emission factor for N2O emissions from N inputs and FR indicates

that the value concerned is for flooded rice [14]. For all crops

other than flooded rice, the relationship between N2O emission

from N fertilizer and the dose of N applied can be expressed as

Y = EF*X, where Y represents N2O emissions due solely to N

fertilization, X is the amount of synthetic and organic N applied

and EF (emission factor) is the amount of N2O emitted per unit of

applied N. In the United Nations Framework Convention on

Climate Change [15], 56% of developed countries reported using

the Tier 1 method of the IPCC to estimate N2O emission from

agricultural soils in 2006, and half the published N2O emission

inventories are based on this approach [16].

The EF value of 1.25%, set in 1999 [17], was calculated from

the following linear regression: Y = 0.0125*X, where Y is the

emission rate (in kg N2O-N ha21 yr21) and X is the fertilizer

application rate (in kg N ha21 yr21), based on 20 experiments

[18]. A background emission of 1 kg N2O-N ha21 yr21 (i.e.,

emission for X = 0) was obtained in five experiments. The new

value of EF used by the IPCC after 2006 (1%; [14]) was estimated

from a larger dataset, including N2O emission measurements from

studies on both crops and grassland [10].

Several recent studies have improved the estimation of N2O

emission further. Process-based models, such as the DNDC model

[12] have been used to calculate the N2O emission factor as a

function of the organic carbon content of the soil, fertilizer type

and weather conditions, and the DAYCENT model [19] has been

used to calculate N2O emissions as a function of soil class, daily

weather, historical vegetation cover and land management

practices, such as the type of crop grown, fertilizer additions and

cultivation events. As these models describe the nitrogen cycle in

detail, they may require long computation times and many input
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variables and are therefore difficult to implement [20]. Various

statistical models have also recently been proposed for the

estimation of N2O emission from global datasets. For example,

linear regression models have been used [20,21], and a nonlinear

model based on an exponential function was proposed in another

study [13].

The IPCC-Tier 1 method used for the estimation of N2O

emissions due to N fertilization includes three main sources of

uncertainty on N2O emission: (i) the uncertainty concerning the

equation relating N2O emission to applied N, (ii) the uncertainty

concerning the equation parameters and (iii) the uncertainty about

the amount of applied N (X).

In the IPCC-Tier 1 method, N2O emission is assumed to be

linearly related to applied N, but this assumption has been

challenged; some authors [22,23] suggest that N2O emission may

instead increase exponentially as a function of applied N, and an

exponential relationship between Y and X was also considered in

the N2O mitigation protocol proposed by Millar et al. [24]. A

nonlinear relationship between Y and X was also considered by

Stehfest and Bouwman [10]. There is currently no consensus

concerning the most appropriate function for describing the

relationship between N2O emission and applied N at the global

scale.

Uncertainty about the true value of the model parameter EF is

another source of concern, for two reasons. First, N2O emission

measurements are known to be highly variable, both within a

given site-year and between site-years. For a given site-year, N2O

emission varies principally due to climatic conditions, such as

variations in the timing and intensity of rainfall, which modify

microbial activity and the rates of gaseous emission [25]. For

example, N2O emissions must be measured after a period of rain

to detect peaks in emission. Many factors may be responsible for

variability between site-years, including differences in manage-

ment practices (e.g. type of N fertilizer), soil characteristics and

weather conditions between sites and years [20], by modifying

chemical exchanges in agricultural soils. Duration of the exper-

iment [10] and method used to measure emissions [11] may also

affect N2O emission measurements. Second, the emission factor

can be estimated by several different statistical methods, some

based on fixed-parameter models (i.e., classical regression) and

others based on mixed-effect models or Bayesian methods. The

sensitivity of EF to the statistical method used for its estimation has

never been evaluated.

Finally, the amounts of N applied can be estimated from

regional and national statistics and from interviews with farmers

[10,26,27], but the actual amounts of N applied are not perfectly

known and vary from year to year.

In this study, we focused on the first two of these sources of

uncertainty: the equation of the model and the values of the model

parameters. We fitted 13 different models to the dataset of Stehfest

and Bouwman [10], and calculated uncertainty ranges on average

N2O emissions from a subset of these models, comparing our

ranges with those currently used by the IPCC.

Materials and Methods

Database
The dataset is a global compilation of nitrous oxide (N2O) and

nitric oxide (NO) emissions extracted from peer-reviewed publi-

cations appearing between 1979 and 2004, established by Stehfest

and Bouwman [10]. Readers should refer to the original paper by

Stehfest and Bouwman for a more complete presentation of the

data.

The dataset (available from http://www.pbl.nl/en/

publications/2006/N2OAndNOEmissionFrom AgriculturalField-

sAndSoilsUnderNaturalVegetation) includes 1891 measurements

of N2O and NO emissions in natural and agricultural fields from

387 publications. As we focused on calculation of the emission

factor associated with fertilizer applications in agricultural fields

(EF), we excluded the following experiments from the initial

dataset: (i) 418 experiments carried out in natural areas, (ii) 360

experiments including measurements of NO emission only, (iii) 57

experiments on organic soils (not concerned by EF), (iv) 25

experiments including the use of chemicals or additives considered

to inhibit nitrification (also excluded by Stehfest and Bouwman

[10]), (v) 8 experiments in grazing systems (also excluded by

Stehfest and Bouwman [10]), (vi) 38 experiments in which the

amounts of applied N exceeded 500 kg N ha21 yr21 (given that

the maximum amounts of N applied to agricultural fields has been

estimated at 400 kg N ha21 [20,27,28]).

We finally worked with a dataset including 985 measurements

of N2O emission in agricultural fields extracted from 203

publications, corresponding to a set of experiments encompassing

various soil and climatic characteristics and types of fertilization

(Figs. 1 and 2).

The distribution of N2O measurements and amounts of applied

N are presented in Table 1 for the entire dataset and for each

continent separately. The largest amount of data was available for

the temperate-continental climate (460), followed by the temper-

ate-oceanic climate (258) and the tropics-warm humid climate

(104). Only 80, 44, 21, 12 and 6 data were collected for the

subtropical-summer rains, subtropical-winter rains, tropic-seas

dry, boreal and cool tropics climates, respectively.

Statistical Analysis

Statistical Models
Thirteen models relating N2O emission to the amount of

applied N were fitted to the data (Table 2). These models were

characterized by (i) the presence or absence of the explanatory

variable ‘‘applied N’’ (X), (ii) the function relating emission to

applied N (an exponential or linear function), (iii) fixed or random

background emission (i.e., emission for X = 0), and (iv) fixed or

random N effect.

The first 11 models (with L, NL, N, 0, F, and R standing for

linear, nonlinear, nitrogen effect, no nitrogen effect, fixed

parameter and random parameter, respectively) can be expressed

as:

Model NL-N-FF: (1) Yijk~ exp m0zm1Xij

� �
zeijk

with eijk,N 0,t2
� �

Model NL-0-R: (2) Yijk~ exp a0ið Þzeijk

with eijk,N 0,t2
� �

and a0i,N(m0,s2
0)

Model NL-N-RF: (3) Yijk~ exp a0izm1Xij

� �
zeijk

with eijk,N 0,t2
� �

and a0i,N m0,s2
0

� �

Model NL-N-FR: (4) Yijk~ exp m0za1iXij

� �
zeijk

with eijk,N 0,t2
� �

anda1i,N m1,s2
1

� �

Model NL-N-RR: (5) Yijk~ exp a0iza1iXij

� �
zeijk
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Figure 1. Fitted response curves obtained with the four selected nonlinear models (A) and the four selected linear models (B). Black
points correspond to N2O data (96.04% of available observations are displayed; the other data are too extreme for graphical presentation).
doi:10.1371/journal.pone.0050950.g001

Figure 2. Fitted response curves for four experiments (exp 1: (A–B), exp 2: (C–D), exp 3: (E–F) and exp 4: (G–H)). For each published-
experiment, mean response (solid black line) and experiment-specific response (dotted black line) were calculated with model NL-N-RR (A, C, E, G)
and model L-N-RR (B, D, F, H). Black points represent N2O data averaged over replicates.
doi:10.1371/journal.pone.0050950.g002
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with eijk,N 0,t2
� �

, a0i,N(m0,s2
0)and

a1i,N m1,s2
1

� �

Model L-0-F: (6) Yijk~m0zeijk

with eijk,N 0,t2
� �

Model L-N-FF: (7) Yijk~m0zm1Xijzeijk

with eijk,N 0,t2
� �

Model L-0-R: (8) Yijk~a0izeijk

with eijk,N 0,t2
� �

and a0i,N m0,s2
0

� �

Model L-N-RF: (9) Yijk~a0izm1Xijzeijk

with eijk,N 0,t2
� �

and a0i,N m0,s2
0

� �

Model L-N-FR: (10) Yijk~m0za1iXijzeijk

with eijk,N 0,t2
� �

and a1i,N m1,s2
1

� �

Model L-N-RR: (11) Yijk~a0iza1iXijzeijk

with eijk,N 0,t2
� �

, a0i,N m0,s2
0

� �
and

a1i,N m1,s2
1

� �

where Yijk is the N2O emission (kg N ha21 yr21) measured in the

Table 1. Minimal, maximal, median and mean values of nitrous oxide (N2O) and amount of applied N (N rate) for the world and for
North America, South America, Asia, Europe and Oceania.

Variable Continent/world min median mean max Number of data

World 0.003 1.07 2.4 46.44 985

Asia 0.01 0.53 1.11 15.60 124

Europe 0.004 1.25 2.53 31.73 453

N2O (kg N ha21 yr21) North America 0.004 0.93 2.16 26.9 306

Oceania 0.016 1.39 2.45 15 26

South America 0.003 1.56 4.67 46.44 76

World 0 100 124 500 985

Asia 0 120 139.8 423 124

Europe 0 100 132 500 453

N rate (kg N ha21) North America 0 92 115.3 450 306

Oceania 0 66 108.6 500 26

South America 0 0 90.96 360 76

doi:10.1371/journal.pone.0050950.t001

Table 2. Characteristics of the 13 statistical models for N2O emission.

Model name Linear
Amount of
N applied Intercept

Effect of the
amount of N
applied AIC % AIC BIC % BIC DIC

NL-N-FF No Yes Fixed Fixed 5513.1 23.0 5527.8 22.6 –

NL-0-R No No Random – 5091.9 13.6 5106.5 13.3 –

NL-N-RF No Yes Random Fixed 4553.9 1.6 4573.5 1.5 –

NL-N-FR No Yes Fixed Random 4598.9 2.6 4618.5 2.5 –

NL-N-RR No Yes Random Random 4482.7 0 4507.1 0 –

NL-N-RR-B No Yes Random Random – – – – 4196.71

L-0-F Yes No Fixed – 5653.9 20.5 5663.7 20.1 –

L-N-FF Yes Yes Fixed Fixed 5512.1 17.4 5526.8 17.2 –

L-0-R Yes No Random – 5268.5 12.3 5283.2 12.0 –

L-N-RF Yes Yes Random Fixed 5117.4 9.0 5136.9 8.9 –

L-N-FR Yes Yes Fixed Random 4698.0 0.1 4717.5 0 –

L-N-RR Yes Yes Random Random 4693.2 0 4717.6 0.002 –

L-N-RR-B Yes Yes Random Random – – – – 4421.63

Models were characterized by their response function (linear or exponential), the use of the explanatory variable ‘amount of applied N’, the use of random effects for the
intercept and/or the effect of the amount of N applied, values of the Akaı̈ke and Schwartz criteria (AIC and BIC), and of the deviance information criterion (DIC) for
Bayesian models. % AIC and % BIC indicate the percentage increase in AIC and BIC with respect to the best linear and nonlinear models.
doi:10.1371/journal.pone.0050950.t002
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ith published experiment (i = 1 … 203), the jth applied N dose (j = 1

… Ni), and the kth replicate (k = 1 … Kij), Xij is the jth applied N

dose (kg N ha21) in the ith published experiment, m0 is the mean

background emission, a0i is the published experiment-specific

background emission (random), m1 is the mean applied N effect,

a1i is the published experiment-specific applied N effect (random),

and eijk is the residual error term. The random terms a0i, a1i and

eijk were assumed to be independent and normally distributed.

Models including correlated a0i and a1i were also fitted to the data

but, as their outputs were very similar to the outputs of the models

with independent random parameters, they were not considered

further. Note that, in nonlinear models (1–5), the N2O response

does not follow a normal distribution, even if its parameters a0i

and a1i do, due to the use of an exponential function to relate

emissions to model parameters.

In the linear models (6–11), the parameter m1 corresponds to the

emission factor EF used by the IPCC. In the nonlinear models

based on an exponential function (1–5), N2O emission per unit of

applied N is not constant; instead, it increases as a function of X if

m1 is positive. In the models including one or two random

parameters (2–5 and 8–11), the response of N2O to the amount of

applied N is assumed to follow the same function (linear or

exponential) in all experiments, but the parameters of these models

(background emission a0i, effect of applied N a1i, or both) were

assumed to vary between experiments. Distributions of a0i and a1i

describe the between-experiment variability of background emis-

sion and N fertilizer effect. An intercept was included in all

statistical models to account for background anthropogenic N2O

emission [18]. The values of the m0, m1, s0, s1, and t parameters

of models 1–11 were estimated by an approximate maximum

likelihood method, with the nlme R statistical package [29].

Two additional models, NL-N-RR-B and L-N-RR-B, were

defined. These models were based on the equations of models NL-

N-RR and L-N-RR, respectively, but their parameters were

estimated by a Bayesian method implemented with a Markov

chain Monte Carlo algorithm (MCMC). Normal and independent

prior probability distributions were defined for m0 and m1; m0,

m1,N(0,1000). Uniform and independent prior probability

distributions were defined for t, s0, s1; t, s0, s1,U(0,100).

Under these assumptions, m0 and m1 had a prior mean of zero and

a prior standard deviation of 32, which is quite large given the

measured values, which ranged from 0.003 to 46.44 in our dataset.

These distributions represent a broad a priori distribution with

respect to the data obtained. For example, the 95% credibility

interval derived from the prior distributions ranged from 26272.3

to 6331.8 N2O kg N ha21 yr21 for X = 100 kg N ha21. Posterior

distributions of the parameters of models NL-N-RR-B and L-N-

RR-B were calculated with WinBUGS software [30], with three

chains of 100,000 MCMC iterations. Convergence was checked

with the Gelman-Rubin method [31].

Model Assessment and Uncertainty Analysis
The Akaike information criterion (AIC) and the Schwartz

criterion (BIC) [32,33] were calculated for the first 11 models, and

the deviance information criterion (DIC) [34] was calculated for

the two Bayesian models. Lower values of AIC, BIC or DIC are

considered to indicate better models. Note that the weighting of

the experiments according to their lengths did not reduce AIC,

BIC or DIC.

We calculated the 95% confidence intervals for each model by a

bootstrap method [35,36]; data were sampled, with replacement,

500 times, and each model was fitted to each of the generated

samples. For the two Bayesian models, 95% credibility intervals

for the predicted N2O emissions were calculated from the

parameter values generated by the MCMC algorithm.

The predictions generated by the three best non-Bayesian linear

models, the three best non-Bayesian exponential models (selected

with AIC and BIC criteria) and the two Bayesian models were

compared with the N2O emissions calculated by the IPCC-Tier1

method: Y = EF*X, where EF is taken as 0.01 [14]. The range of

uncertainty on predicted N2O emissions for the IPCC method was

calculated from the minimum and maximum values of EF (0.003

and 0.03, respectively) reported by the IPCC [14]. The emissions

due to applied N calculated with the IPCC method were

compared with the predictions of the eight selected models minus

the values predicted at X = 0.

This uncertainty range was then compared with each of the

confidence intervals for the eight selected models. We also

compared the lower limit of the IPCC uncertainty range with

the lowest of the eight 2.5 percentiles calculated for the eight

selected models, and the upper limit of the IPCC uncertainty

range with the highest of the eight 97.5 percentiles of the eight

selected models. The most extreme 2.5 and 97.5 percentiles

obtained with the eight selected models can be interpreted as best-

case and worst-case emission scenarios, respectively. They

correspond to the lowest and highest limits of the confidence

intervals calculated for the eight models.

The code used for statistical analysis is available, on request,

from the corresponding author.

Results

Parameter Values
The estimated value of parameter m0 (mean background

emission) ranged from 20.21 to 0.88 for nonlinear models and

from 0.69 to 2.78 for linear models (Table 3). The between-model

variability of the estimated values of m1 (mean applied N effect) was

small: estimated values ranged from 0.0033 to 0.0050 for

nonlinear models and from 0.0113 to 0.0138 for linear models.

For both linear and nonlinear models, the estimated values of m1

were lower when the effect of applied N was considered a random

Table 3. Estimated values of the parameters of the 13
models.

Model name m0 s0 m1 s1 t

NL-N-FF 0.25 (0.096) – 0.0042 (0.0003) – 3.96

NL-0-R 0.87 (0.077) 0.84 – – 2.84

NL-N-RF 20.068 (0.092) 0.83 0.0050 (0.0003) – 2.09

NL-N-FR 0.31 (0.068) – 0.0033 (0.0005) 0.0043 2.13

NL-N-RR 0.19 (0.09) 0.72 0.0037 (0.0004) 0.0025 1.94

NL-N-RR-B 20.21 (0.13) 0.92 0.0038 (0.0005) 0.0032 1.91

L-0-F 2.40 (0.14) – – – 4.26

L-N-FF 0.69 (0.19) – 0.0138 (0.0011) – 3.96

L-0-R 2.78 (0.27) 3.44 – – 2.91

L-N-RF 0.99 (0.28) 3.16 0.0130 (0.0010) – 2.67

L-N-FR 1.09 (0.11) – 0.0113 (0.0017) 0.0195 2.12

L-N-RR 1.04 (0.13) 0.70 0.0117 (0.0017) 0.0187 2.08

L-N-RR-B 1.04 (0.14) 0.76 0.0117 (0.0017) 0.0189 2.08

The standard deviations of the estimators of m0 and m1 are indicated in brackets.
doi:10.1371/journal.pone.0050950.t003
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effect (Table 3). For example, the estimated value of m1 was 0.005

for NL-N-RF, but only 0.0037 for NL-N-RR.

m0 was less accurately estimated than m1; the coefficient of

variation (standard deviation/estimated value) was lower for m1

than for m0. For a given type of function (linear or exponential)

estimates of s0 and s1 (between-experiment standard deviation of

background emission and applied N effects, respectively) were

similar between models. The estimated values of t (standard

deviation of model residuals) were lower for models with random

parameters and for those containing the explanatory variable X.

Model Selection
The lowest AIC and BIC values were obtained for the nonlinear

model including two random effects (NL-N-RR) (Table 2). Thus,

models based on an exponential function outperformed models

based on a linear function. This result was confirmed by the DIC

values obtained for the two Bayesian models: DIC was lower with

the exponential function.

AIC and BIC values were much higher in models in which

applied N (X) was not included as an explanatory variable. The

AIC and BIC values of the NL-0-R model were 5091.9 and

5106.5, respectively, whereas the AIC and BIC values of the NL-

N-RF model were 4553.9 and 4573.5, respectively (Table 2).

Models including one or two random effects outperformed those

including only fixed effects. The best linear model was L-N-RR on

the basis of AIC, and L-N-FR, on the basis of BIC. The NL-N-FF

(no random effect) model had an AIC of 5513.1 and a BIC of

5527.8, whereas both these values were much lower (AIC = 4482.7

and BIC = 4507.1) for the NL-N-RR (two random parameters)

model. Models including one or two random effects had similar

AIC and BIC values; the use of one random effect rather than two

did not increase AIC and BIC by more than 2.6% and 9% for the

nonlinear and linear models, respectively (Table 2).

The AIC and BIC values of models (1), (2), (6), (7) and (8) were

more than 10% higher than those for the best nonlinear and linear

models, and were therefore not considered further. We therefore

considered only models (3), (4), (5), (9), (10) and (11) and the two

Bayesian models in our subsequent estimations of N2O emission.

Estimation of N2O Emissions with the Selected Models
Figure 1 shows N2O emissions estimated with the eight selected

models. The rate of increase of N2O emissions with the amount of

N applied was greater with the NL-N-RF model (Fig. 1A) than

with the other two nonlinear models (NL-N-FR and NL-N-RR).

The predicted increase in the amount of N2O emitted per unit

increase in the amount of applied N was thus lower when the effect

of applied N was defined as a random effect. Similar results were

obtained for linear models, for which the highest rate of increase in

N2O emissions with the amount of N applied was obtained for the

L-N-RF model, which had a fixed slope (Fig. 1B). These results are

consistent with the estimated parameter values reported in Table 3.

The emissions predicted by the Bayesian model NL-N-RR-B

were the lowest for all values of applied N (Fig. 1A), due to the low

estimated value of the intercept for this model (Table 3). The

amounts of emission predicted by the L-N-RR model and its

Bayesian counterpart (L-N-RR-B) were very similar and were

essentially undistinguishable.

Figure 2 shows the fitted response curves obtained with the best

linear and nonlinear models, NL-N-RR and L-N-RR, for four

experiments. Considering experiment-specific responses, the non-

linear model better fitted the emissions measured at high N doses

in experiments 1, 2, and 4, and the emissions measured at low N

doses in experiments 3 and 4. Between-experiment variability was

high for N2O emissions (Figure 2) and could be accounted for by

the experiment-effects included in the mixed-effect models. The

residual standard error was lower with NL-N-RR than with L-N-

RR (see values of t in Table 3).

Comparison with the Emissions Estimated with the IPCC-
Tier 1 Method

We determined the ranges of N2O emissions (Fig. 3) covered by

the eight models considered in Figure 1, either taking into account

the uncertainty on the estimated parameter values (dark gray area)

or not taking this uncertainty into account (light gray area). The

final values predicted by the models were calculated by subtracting

the predicted value at X = 0 (background emission) from the value

actually predicted for a given amount of applied N. This graphical

presentation made it possible to compare our models with the

N2O emissions predicted with the IPCC-Tier 1 method. The

estimates of N2O emission obtained with an emission factor of 1%

(as used by the IPCC) were within the range of values covered by

the eight selected models (Fig. 3B), but the range of uncertainty for

emissions estimated with the IPCC-Tier 1 method was larger than

that for the eight selected models. The upper limit of the

uncertainty range for the IPCC method was much higher than

that defined by the highest value of the eight 97.5 percentiles of the

eight selected models, particularly for N applications below 300 kg

ha21, as generally practiced in farmers’ fields (Fig. 3). The lower

limits of the uncertainty ranges for the IPCC method and for our

models were more similar.

This result was confirmed (Fig. 4) by comparing the estimates of

N2O emissions due to applied N obtained with the eight models

with those obtained by the IPCC-Tier 1 method for four different

amounts of applied N. These amounts of applied N correspond to

the average amounts applied in western, eastern and southern

Africa, worldwide, Europe and eastern Asia [10]. The purpose of

Figure 4 was to compare model predictions for contrasted applied

N doses, not to calculate average emissions at the continental scale.

The uncertainty ranges obtained with the IPCC method were

indeed larger than those defined by the highest of the 97.5

percentiles and the lowest of the 2.5 percentiles for the eight

selected models (Fig. 4). The upper limits of the IPCC uncertainty

ranges were systematically higher than the highest 97.5 percentile

obtained with our models. We also found that the emissions

predicted by the IPCC method were very similar to those obtained

with the linear models, but systematically higher than the

emissions predicted by the nonlinear models (Fig. 3).

Discussion

Our analysis was carried out with the dataset of Stehfest and

Bouwman [10] because this dataset includes a large number of

data of N2O emissions in agricultural soils. These data were

collected under various conditions characterized by different

measurement methods (e.g. from short to long periods of

measurements), different soils, climates, and crops. The variability

of these conditions and their effects on N2O emission were taken

into account in our analysis using random parameter models. In

these models, the N2O emission was related to applied N using

linear or nonlinear functions including two random parameters

(a0i and a1i). The probability distribution of these parameters

describes the between-study variability of the parameter values due

to i) the heterogeneity of the experimental protocols (i.e. length of

the experiment and measurement frequency) and ii) the variability

of soil, climate, and crop characteristics. This approach accounts

for both the heterogeneity of the measurement protocols and the

variability of the environments.

Quantifying Uncertainties in N2O Emission
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Figure 3. Predicted N2O emissions and uncertainty ranges for our eight selected models and the IPCC-Tier 1 method. The light gray
area represents the uncertainty in the model equations and includes the mean values predicted by six models (A) or by eight models (6 non-Bayesian
models +2 Bayesian models) (B). The dark gray area represents the uncertainty in model equations and parameter values. The upper and lower limits
of the dark gray area indicate the worst-case and best-case scenarios, respectively, defined from six models (A) or from eight models (6 non-Bayesian
models +2 Bayesian models) (B). The solid black line and the dotted lines indicate the N2O emissions predicted with an EF of 1% and the uncertainty
range of the IPCC-Tier1 method, respectively.
doi:10.1371/journal.pone.0050950.g003

Figure 4. Predicted N2O emissions due to N fertilization and 95% confidence intervals (CI) for each model, and predicted values
and uncertainty ranges for the IPCC-Tier 1 method. The light gray area corresponds to the values covered by the 95% CI of our eight models.
The amounts of N applied were A) 16.62 kg N ha21, B) 93.6 kg N ha21, C) 130.74 kg N ha21, D) 149.58 kg N ha21 (average amounts of applied N for
western, eastern and southern Africa, worldwide, Europe, and eastern Asia respectively). N2O emissions were estimated by subtracting the value
corresponding to the application of no N from the value for each amount of N applied.
doi:10.1371/journal.pone.0050950.g004
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Exponential models outperformed linear models for the three

statistical criteria considered: AIC, BIC and DIC. However, the

differences were small. The AIC of the best linear model was only

4.7% higher than the AIC of the best exponential model. The use

of an exponential function rather than a linear model has an

important practical consequence: EF is not constant and increases

as a function of applied N.

Our results indicate that EF is lower than the estimated value

used by the IPCC-Tier 1 (i.e., 1% of applied N) if the amount of N

applied is below 160 kg N ha21 for the NL-N-RF model, 240 kg N

ha21 for the NL-N-FR model and 220 kg N ha21 for the NL-N-

RR model. According to Spiertz [27], farmers may apply amounts

of nitrogen fertilizer below these thresholds in ecological low-input

cropping systems and in some technological high-input systems.

Consequently, the use of an exponential model rather than a linear

model is likely to decrease estimates of N2O emissions in many

cases. According to Hoben et al. [23], the current IPCC-Tier 1

method could lead to an underestimation of N2O emission if the

true response is exponential. Our results suggest that this is the

case only for the application of large amounts of N fertilizer.

McSwiney and Robertson [22] suggested that the use of a

nonlinear model instead of a linear model leads to a greater

estimated reduction in N2O emission for a moderate reduction in

the amount of applied N, with little or no yield penalty. Our results

do not entirely support this statement, because little difference was

observed between the two types of models for doses of up to about

200 kg N ha21 (Fig. 1). For example, if the amount of applied N is

decreased from 150 kg N to 120 kg N (minus 20%), the resulting

reduction of N2O calculated with the NL-N-RR model is 0.22 kg

N ha21 yr21, slightly less than that calculated with the current

IPCC emission factor (0.01*30 = 0.3 kg N ha21 yr21). With the

same model, the reduction induced by a decrease from 350 kg N

ha21 to 280 kg N ha21 (minus 20%) is much larger, reaching 1 kg

N ha21 yr21; this value is higher than the reduction calculated

with the IPCC emission factor (0.01*70 = 0.7 kg N ha21 yr21).

The estimated reduction of N2O emission induced by a decrease

in the amount of applied N is greater with the nonlinear model

than with the linear model only for high N doses.

According to the AIC and BIC values obtained, models

including one or two random effects outperformed models

including fixed effects only. Mixed-effect models are commonly

used in meta-analysis studies [37] and are recommended for the

analysis of repeated measurements on the same individuals [38].

In the dataset of Stehfest and Bouwman [10], N2O emissions were

measured for several amounts of N applied in the same published-

experiment. It was therefore appropriate to estimate N2O

emissions with mixed-effect models including one or two random

effects in our study (Fig. 2). Models including one or two random

effects performed similarly (less than 10% difference in AIC and

BIC values), but the estimated effect of the amount of N applied on

the amount of N2O emitted tended to be lower when the amount

of N applied was considered as a random effect.

Several models had very similar performances. We therefore

used an ensemble approach based on eight models for the

estimation of N2O emissions and the definition of uncertainty

ranges. The confidence intervals obtained with the models were

used to define lower and upper limits, corresponding to the best-

case and worst-case scenarios, respectively. These confidence

intervals represent the uncertainty in average N2O emissions over

all experiments, but they do not describe the between-experiment

variability of N2O emission. The range of uncertainty defined here

is relevant for the Tier 1 method and useful for explorations of the

consequences of N applications for average N2O emissions, taking

into account the uncertainty due to model equations and

parameter estimations. The lower limit of our uncertainty range

is close to that defined by the IPCC-Tier 1, although our lower

limit is slightly higher than that of the IPCC for applications of

large amounts of N. Our upper limit is much lower than the upper

limit of the IPCC range, particularly for total N applications below

300 kg ha21, as commonly used in agriculture. Thus, the upper

limit of the IPCC range gives an estimated N2O emission of 9 kg

N ha21 yr21 for a dose of 300 kg N ha21, whereas the upper limit

of our uncertainty range (i.e., the highest upper limit of the

confidence intervals of the eight models considered) gave an

estimated emission value of only 4.7 kg N ha21 yr21. This result is

consistent with the findings of Leip et al. [12], suggesting that the

uncertainty on estimates of N2O emissions was overestimated

when derived from experimental data variances, which largely

compensate at large scales.

It is useful to compare our uncertainty ranges with other ranges

calculated with process-based models [39], top-down methods [40]

and hierarchical Bayesian models [16].

Our uncertainty range for the average N dose applied in North

America – 0.49–1.88 kg N ha21 yr21 – is similar to the 95%

confidence interval proposed by Del Grosso et al. [39] for the

United States (133–304 Gg N yr21 i.e. 0.99–2.27 kg N ha21 yr21

with the cropland area of North America reported by Stehfest and

Bouwman [10]).

Our uncertainty range for the average N dose applied at the

world scale (93.6 kg ha21 of applied N, as reported by Stehfest and

Bouwman [10]) (Fig. 4B) – 0.25–1.48 kg N ha21 yr21 – is lower

and narrower than the interval proposed by Crutzen et al. [40]

(2.8–4.68 kg N ha21 yr21). However, it is difficult to compare

these intervals, due to the use of a top-down method by Crutzen

et al. Furthermore, these authors did not consider direct emission

due to N fertilizer only, instead also taking into account indirect

emissions from leaching and atmospheric deposition [13].

The 95% confidence interval calculated by Berdanier and

Conant [16] with a hierarchical Bayesian linear model is similar to

our uncertainty ranges for the four regions of the world presented

in Figure 4. The two intervals overlap in all four regions, but our

intervals tend to have lower upper and lower limits. For example,

Berdanier and Conant [16] reported an interval of 0.05–0.46 for

Africa, for a N fertilizer dose of 16.62 kg N ha21 [10], whereas our

interval was 0.04–0.26 kg N ha21 yr21 for the average N fertilizer

dose reported for West, East and Southern Africa by Stehfest and

Bouwman [10].

When between-experiment variability was taken into account,

the experiment-specific N2O estimated with our models covered a

wider range of values. Thus, for applied N levels of 100 kg N ha21

and with the NL-N-RR model, the 90% percentile for N2O

emission was 1.79 kg N ha21 yr21, the 95% percentile was

2.52 kg N ha21 yr21 and the 99% percentile was 5.03 kg N

ha21 yr21, all these values being higher than the 1 kg N

ha21 yr21 of the IPCC-Tier 1 method. Thus, N2O emission has

1% chance to exceed 5 kg N ha21 yr21 for an N fertilizer dose of

100 kg ha21.

The nonlinear models presented in this paper should be used

with caution for estimating average N2O emissions at the country

and continental scales. The average output value of a nonlinear

model is not strictly equal to the output value obtained with the

average input value. In order to calculate the average N2O

emission in a given country with a nonlinear model, the best

approach is i) to determine the distribution of applied N fertilizer

doses in this country, ii) to run the model for all doses, and iii) to

take the average of all the model outputs. However, this approach

requires the knowledge of the distribution of N fertilizer dose.

Quantifying Uncertainties in N2O Emission
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We focused on the Tier 1 approach of the IPCC, but the

proposed exponential models could be extended to take several

other environmental variables, such as climatic characteristics, soil

types and fertilizer type, into account. This possibility has already

been explored by Lesschen et al. [13], who took several variables

into account (type of fertilizer, crop residues, atmospheric

deposition, land use, soil type and precipitation) and by Leip

et al. [12], who calculated the stratified emission factor as a

function of soil organic carbon content, fertilizer type (mineral

fertilizer or manure) and weather conditions. Such variables could

be included in our models, for the estimation of region-specific

N2O emissions, taking local characteristics into account.

Author Contributions

Conceived and designed the experiments: AP CL DM. Performed the

experiments: AP. Analyzed the data: AP DM. Contributed reagents/

materials/analysis tools: AP DM. Wrote the paper: AP CL DM.

References

1. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of

Working Group I to the Fourth Assessment Report of the IPCC. Cambridge:

Cambridge University Press.

2. Smith PD, Martino Z, Cai D, Gwary H, Janzen P, et al. (2007) Agriculture. In:

Climate Change 2007: Mitigation. Contribution of Working Group III to the

Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

Cambridge: Cambridge University Press.

3. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, et al. (2004)

Nitrogen cycles: past, present and future. Biogeochemistry 70: 153–226.

4. IPCC (2001) Climate Change 2001: The Scientific Basis: Contribution of

Working Group I to the Third Assessment Report of the IPCC. Cambridge:

Cambridge University Press. 881p.

5. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, et al. (1998) Closing

the global atmospheric N2O budget: nitrous oxide emissions through the

agricultural nitrogen cycle; OECD/IPCC/IEA Phase II Development of IPCC

Guidelines for National Greenhouse Gas Inventories. Nutrient Cycling in

Agroecosystems 52: 225–248.

6. Davidson EA (2009) The contribution of manure and fertilizer nitrogen to

atmospheric nitrous oxide since 1860. Nature Geoscience 2: 659–662.

7. Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse

gas emissions from crop production systems and fertilizer management effects.

Agriculture, Ecosystems & Environment 133: 247–266.

8. Rochette P (2008) No-till only increases N2O emissions in poorly-aerated soils.

Soil and Tillage Research 101: 97–100.

9. Rochette P, Tremblay N, Fallon E, Angers DA, Chantigny MH, et al. (2010)

N2O emissions from an irrigated and non-irrigated organic soil in eastern

Canada as influenced by N fertilizer addition. 61: 186–196.

10. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields

and soils under natural vegetation: summarizing available measurement data

and modeling of global annual emissions. Nutrient Cycling in Agroecosystems

74: 207–228.

11. Rochette P, Worth DE, Lemke RL, McConkey BG, Pennock DJ, et al. (2008)

Estimation of N2O emissions from agricultural soils in Canada. I. Development

of a country-specific methodology. Canadian Journal of Soil Science 88: 641–

654.

12. Leip A, Busto M, Winiwarter W (2011) Developing spatially stratified N2O

emission factors for Europe. Environmental Pollution 159: 3223–3232.

13. Lesschen JP, Velthof GL, de Vries W, Kros J (2011) Differentiation of nitrous

oxide emission factors for agricultural soils. Environmental Pollution 159: 3215–

3222.

14. IPCC (2006) Agriculture, Forestry and Other Land Use, Volume 4. In:

2006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan:

Institute for Global Environmental Strategies.

15. Lokupitiya E, Paustian K (2006) Agricultural soil greenhouse gas emissions.

Journal of Environment Quality 35: 1413–1427.

16. Bernadier AB, Conant RT (2012) Regionally differentiated estimates of

croplands N2O emission reduce uncertainty in global calculations. Global

Change Biology 18: 928–935.

17. IPCC (1999) N2O: Direct Emissions from Agricultural Soils. In: Background

Papers: IPCC Expert Meetings on Good Practice Guidance and Uncertainty

Management in National Greenhouse Gas Inventories. 361–380.

18. Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils.

Nutrient Cycling in Agroecosystems 46: 53–70.

19. Del Grosso SJ, Ojima DS, Parton WJ, Stehfest E, Heistemann M (2009) Global
scale DAYCENT model analysis of greenhouse gas emissions and mitigation

strategies for cropped soils. Global and Planetary Change 67: 44–50.
20. Roelandt C, Van Wesemael B, Rounsevell M (2005) Estimating annual N2O

emissions from agricultural soils in temperate climates. Global Change Biology

11: 1701–1711.
21. Freibauer A, Kaltschmitt M (2003) Controls and models for estimating direct

nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils
in Europe. Biogeochemistry 63: 93–115.

22. McSwiney CP, Robertson GP (2005) Nonlinear response of N2O flux to

incremental fertilizer addition in a continuous maize (Zea mays L.) cropping
system. Global Change Biology 11: 1712–1719.

23. Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP (2011) Nonlinear
nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the

US Midwest. Global Change Biology 17: 1140–1152.
24. Millar N, Robertson GP, Grace PR, Gehl RJ, Hoben JP (2010) Nitrogen

fertilizer management for nitrous oxide (N2O) mitigation in intensive corn

(maize) production: an emissions reduction protocol for US Midwest agriculture.
Mitigation and Adaptation Strategies for Global Change 15: 185–204.

25. Skiba U, Smith KA (2000) The control of nitrous oxide emissions from
agricultural and natural soils. Chemosphere Global Change Science 2: 379–386.

26. Food and Agricultural Organisation (2011) FAO statistic database (FAOSTAT).

Roma. Available: http://faostat.fao.org.
27. Spiertz JHJ (2010) Nitrogen, sustainable agriculture and food security. A review.

Agronomy for Sustainable Development 30: 43–55.
28. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural

sustainability and intensive production practices. Nature 418: 671–677.

29. Pinheiro J, Bates D (2000) Mixed-effects Models in S and S-PLUS. 2nd ed.
NewYork: Springer.

30. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS - a Bayesian
modelling framework: concepts, structure, and extensibility. Statistics and

Computing 10: 325–337.
31. Brooks SP, Gelman A (1998) General methods for monitoring convergence of

iterative simulations. Journal of Computational and Graphical Statistics 7: 434–

455.
32. Akaike H (1974) A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19: 716–723.
33. Burnham KP, Anderson DR (2002) Model selection and multimodel inference:

A practical Information-Theoretic Approach. New York: Springer. 2nd Ed.

34. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian
measures of model complexity and fit. Journal of the Royal Statistical Society:

Series B 64: 583–639.
35. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence

intervals and other measures of statistical accuracy. Statistical Science 1: 54–75.
36. Efron B, Tibshirani R (1993) An Introduction to the Bootstrap (Chapman &

Hall, London).

37. Philibert A, Loyce C, Makowski D (2012) Assessment of the quality of meta-
analysis in agronomy. Agriculture, Ecosystems & Environment 148: 72–82.

38. Davidian M, Giltinan DM (1995) Non linear mixed effect models for repeated
measurement data. Chapman & Hall. 359p.

39. Del Grosso SJ, Ogle SM, Parton WJ, Breidt FJ (2010) Estimating uncertainty in

N2O emissions from US cropland soils. Global Biogeochemical Cycles 24: 12pp.
40. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from

agro-biofuel production negates global warming reduction by replacing fossil
fuels. Atmospheric Chemistry and Physics 8: 389–395.

Quantifying Uncertainties in N2O Emission

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e50950


