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ABSTRACT: Recent advances in on-farm technol-
ogy now provide us with multiple time-series of reli-
ably measured indicators of animal performance and 
status at the level of the individual. This paper pres-
ents a smoothing approach for extracting biologically 
meaningful features from such time series using bovine 
milk yield data as an example. The main goal of this 
study was to illustrate how the method can be used to 
detect production deviations, extract quantifiable fea-
tures of the deviation profiles, and thus provide means 
to examine hypotheses concerning the nature of the de-
viations. The effectiveness of the method was assessed 
with complete lactation curves from 47 Holstein cows. 
Within their lactations, the cows were each subjected 
to 1 nutritional challenge for a period of 4 d (their 
standard diet: a maize silage-based total mixed ration 
was diluted with 60% wheat straw), which provoked a 
decline in the milk yield in all cows. The challenge was 
imposed between the same calendar days for all cows. 
Thus, the cows were at different stages of lactation: 
early (n = 14), mid (n = 15), and late (n = 18). Each 

milk-yield curve was decomposed into components that 
capture the short-term deviations of the cow such as 
the response to the nutritional challenge and describe 
the phenotypic potential yield function of that cow 
throughout its lactation. The difference between the 2 
components gives a measure of the milk loss. In all, 480 
deviations were detected from the complete lactations 
of 47 cows. The milk loss provoked by the feeding chal-
lenge (n = 47) was significantly related to the milk yield 
immediately before the challenge (r = 0.86, P < 0.01). 
The correlation between the rate of recovery and milk 
loss was (r = 0.94, P < 0.01). Further, there was no 
significant slope (P > 0.1) to the relationship between 
the ratio (rate of recovery/milk loss) and days from 
calving, indicating that the force of recovery was unaf-
fected by stage of lactation. These results suggest that 
differential smoothing can be a useful tool for quantify-
ing biological disturbances in animal performance and 
for extracting features that relate to the potential and 
robustness of an animal.
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INTRODUCTION

Traditionally, in agricultural research, smoothing has 
been used largely to reduce the variability or noise in 

data so as to make it easier to detect differences between 
treatments (e.g., feeds or other systematic factors). 
In such situations, the aim of smoothing is to remove 
short-term disturbances from the data. Rather than us-
ing smoothing to eliminate disturbances, an alternative 
approach is to use smoothing to capture them. Disease 
episodes often cause short-term disturbances (e.g., a 
decrease in milk yield followed by a recovery; Fourichon 
et al., 1999). Similarly, if an animal goes “off-feed,” this 
will disturb production traits, although in this case, the 
disturbance can be of longer duration (Bareille et al., 
2003). Being able to identify and quantify the extent 
of these disturbances has been shown to be of value for 
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health management (Friggens et al., 2007; Kamphuis et 
al., 2008a).

The deviation and severity of an animal response 
to a disturbance (e.g., disease challenge, nutritional 
shortage) reflects, to some degree, the capacity of that 
animal to respond. As such, these responses contain 
biologically meaningful information. Thus, a method 
for quantifying the features of such data may provide 
quantitative information about the phenotype of the 
animal at a functional level. Using smoothing to iden-
tify disturbances implies decomposing the time series 
in question into the underlying long-term trend and 
deviations from it. The aims of this study are to ex-
amine the issues involved in decomposing time-series 
data to capture biologically meaningful features and to 
evaluate the ability of this approach to detect (known) 
disturbances in the time series of milk production. To 
this end, we have chosen a smoothing method that is an 
example of a functional form, which facilitates the ex-
traction of features without compromising flexibility to 
fit different curve shapes. It is important to note that 
no assumption on the parameterization of the curve is 
needed.

MATERIALS AND METHODS

Experimental procedures involving animals were ap-
proved by the Danish Animal Experiments Inspector-
ate and complied with the Danish Ministry of Justice 
Law No. 382 (June 10, 1987) and Acts 739 (December 
6, 1988) and 333 (May 19, 1990) concerning animal ex-
perimentation and care of experimental animals.

Animals and Milking

In this study we analyzed the lactation curves from 
47 Holstein cows from the resident herd at the Danish 
Cattle Research Centre (Tjele, Denmark). The cows 
were housed in a loose-housing environment with free 
stalls containing mats of hard rubber material and saw-
dust as bedding. Cows had free access to water and to 
an automatic milking system [Voluntary Milking Sys-
tem (VMS), DeLaval, Tumba, Sweden]. Because the 
cows visit the VMS on a voluntary basis, the milking 
intervals (the time interval between successive milking 
events) are variable. The minimum milking interval 
permitted by the VMS was 5 h. Cows that had not pre-
sented to the VMS in the previous 18 h were brought 
to the VMS for milking.

In all, 39,962 milkings were recorded from all lacta-
tions of the 47 cows with an average milking interval of 
0.41 d (SD = 0.14 d). The milk yield per visit at the au-
tomatic milking system was converted to milk yield per 
day by dividing the measured milk yield by the milking 
interval, in days. Very short milking intervals, usually 
caused by premature removal of the milking set (i.e., 
those associated with incomplete preceding milkings), 
give rise to erroneously large yield values. Therefore, 
we adjusted the milking intervals shorter than 0.2 d to 
a value of 0.2 d. Similarly, very long milking intervals, 
usually caused by a cow being removed from the group 
for management reasons, can give rise to implausibly 
low yields, and we consequently set the maximum inter-
val to 0.8 d. These adjustments affected 203 short- and 
937 long-milking intervals.

Figure 1. An example of different degrees of smoothing applied to a lactation curve of milk-yield records. The different degrees of smoothing 
are obtained by imposing different weights on the roughness penalty term λ (see Eq. 1). Short-term disturbances in milk yield can be detected (λ 
= 100), as well as the general long-term trend (λ = 108; i.e., the natural changes in milk yield related to stage of lactation).
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Within their lactations, the cows were each subjected 
to 1 nutritional challenge for a period of 4 d. During 
this period, their standard diet (a maize silage-based 
total mixed ration) was diluted with 60% wheat straw. 
The challenge was imposed between the same calendar 
days for all cows, and thus the challenge occurred at 

different stages of lactation: early (n = 14), mid (n = 
15), and late (n = 18). All cows were healthy before 
and during the challenge trial. The complete lactations 
were used in this study and the effectiveness of the 
proposed method was particularly evaluated around 
the known challenge period. Other disease episodes, 

Figure 2. The use of residual filtering to offset bias in the yield records. An initial smoothing can indicate the data points that give large 
negative residuals (encircled points), which can be discarded from a second smoothing. A slightly increased and smoother curve is found with the 
retained points.

Figure 3. The use of quantile regression to offset bias in the yield records. The resulting curve (λ = 106) represents undisturbed phenotypic 
potential when smoothing using data points within 60 and 90% quantiles.
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whether known or unknown, were not thoroughly inves-
tigated. The undisturbed phenotypic potential of each 
cow (i.e., the estimated milk yield if free from chal-
lenges) was the self-reference baseline for quantifying 
the deviations in yield.

Smoothing Method

We adopted the smoothing approach described, and 
termed functional data analysis, by Ramsay and Silver-
man (2005).

Formally, the objective function f cMY ( )[ ] being mini-
mized is

 f c y x t x t tMY j j

L

j

N
( ) ( ) ( )= −



 + ∂
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where yj are N observed raw values in the time-series 
interval [0, L], and x(t) is the smooth function con-
structed from the set of basis functions ϕ( ),t  which are 
linearly combined with coefficients c. The scalar λ is a 
weighting term whose role is discussed in the following. 
We used B-spline basis functions, which can construct 
piece-wise polynomial functions joined at the knots 
(the points yj used in the fitting procedure). The rough-
ness penalty, in this case the curvature of the second 
derivatives, is controlled by the scalar λ. When λ = 0, 
x(t) fits the data as well as is possible in terms of the 
squared error. As λ increases, more weight is put on the 
penalty term and thus the second derivative converges 
to a straight line (zero curvature). Therefore, different 
values for λ give different degrees of smoothing in both 
the function itself, as well as in its derivatives.

It is important to note that no a priori assumptions 
constrain the shape of the curve or the distance be-
tween knots. That is, the raw data need not be equidis-
tantly sampled. Actually, it may be desirable to have 

Figure 4. Top panel: an example of differential smoothing to obtain an offset curve representing undisturbed phenotypic potential (quantile 
envelope) and the much rougher curve (λ = 2,500), which captures biological disturbances. First and second derivatives of the rough curve can be 
estimated at any time point along the lactation curve. These are shown in the middle and bottom panels, respectively.
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more knots at regions with sharp changes, and only a 
few knots are required where the curve is rather flat, 
and thus, focus the smoothing to capture finer details 
in specific regions of interest. In this study, to imitate 
real-life situations, we did not use the information 
about the known challenge period for choosing knots. 
With the data described in functional form (basis func-
tions, coefficients, and knots), the smooth curve can be 
estimated at any interior time point within the range 
of the data. This means that we can sample the curve 
with arbitrarily small resolution.

Having access to the derivatives of the function opens 
several possibilities: i) as they reflect rates of changes, 
they have intrinsic value in characterizing the dynamic 
behavior of the system under investigation; ii) deriva-

tives provide means to find points of interest (land-
marks) in the data (e.g., at peaks and troughs in the 
data, the first derivative is zero); and iii) landmarks 
can also be used to align and compare individual time 
profiles. Hence, several features can be extracted from 
the derivatives themselves, as well as from the timing 
and the amplitude of landmarks.

RESULTS

Differential Smoothing

By imposing different values of λ, which weights the 
roughness penalty, different degrees of smoothing can 
be readily obtained (Figure 1). Thus, it is possible to 

Figure 5. Possible features for detecting and quantifying deviations in milk yield. Each deviation profile has a trough (T), which splits it 
into pre- and post-trough periods that correspond to response and recovery periods in milk yield. The trough occurs where the first derivative 
crosses 0 from negative to positive. Two peaks (Ppre and Ppost) can be located on either side of T where the first derivative crosses 0 from positive 
to negative. The pre-trough inflection point (Ipre) corresponds to the minimum value of the first derivative (Vmin), and the post-trough inflection 
point (Ipost) corresponds to the maximum of the first derivative (Vmax). The extreme values of the second derivative of the smooth function are 
denoted by Amax, Aminpre, and Aminpost, respectively. The potential level (Q) from the quantile envelope is an estimate of what the milk yield would 
have been in the absence of the challenge.
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capture different aspects of the milk-yield curve. Using 
a small value of λ captures the finer details of the milk-
yield curve (e.g., λ = 100; Figure 1), which is useful 
for describing the short-term responses of the cow to, 
for example, infection or nutritional challenges. Using a 
larger value of λ provides a more stringent smoothing 
(e.g., λ = 108) that can reveal the long-term component 
of the yield curve (i.e., the natural changes in milk yield 
related to stage of lactation). The case with λ = 104 il-
lustrates an intermediate profile.

To quantify the short-term disturbances (in this case, 
milk loss) the sudden decline in milk yield needs to be 
related to another quantity (e.g., the long-term curve). 
However, it is desirable to relate the loss with respect 
to what the cow would have produced when free from 
biological and technical disturbances. Such a baseline, 
termed here the “phenotypic potential yield curve,” 
would provide more accurate measures of the biologi-
cal response and requires that the general long-term 
smoothed curve is adjusted for these disturbances. The 
rationale in constructing such a function is as follows: 
i) there is a likelihood of a systematic bias in random 
error (e.g., milking machine errors are mostly low read-
ings, mainly milk yields resulting from interrupted 
milkings), and ii) the majority of biological disturbanc-
es decrease milk yield. These 2 effects will create some 
degree of negative bias and an underestimate of the 
phenotypic potential curve, if ignored. Therefore, we 
need to positively offset the smoothed curve to obtain 

a curve that is representative of undisturbed pheno-
typic potential. A simple way of achieving this is by 
setting up asymmetric bounds for acceptable residu-
als, and then either exclude extreme values or down-
weight their contribution to the sum of squares. This 
can be done in several ways, and here we illustrate 2 
such alternatives. An initial smoothing can indicate the 
data points that give large negative residuals (>1 SD 
of all the residuals across lactation), which can be dis-
carded from a second smoothing. Such an offset curve, 
called here “residual filtered,” is illustrated in Figure 2. 
A second example, using quantile regression (Koenker, 
2005) with confidence limits of 90 and 60%, is shown in 
Figure 3. We call the resulting curve a quantile enve-
lope. For the actual calculation of the quantiles we used 
Koenker’s quantreg R package (http://cran.r-project.
org/web/packages/quantreg/). We chose a nonpara-
metric smoothing method with a penalty factor on 
the gradient, which gives piecewise linear fitted quan-
tile functions. Thus, the quantile envelope is derived 
from piecewise estimates of the residual variation (data 
points above the 90% and below the 60% quantiles are 
excluded from the smoothing fit). In both offsetting 
strategies, the adjustment accounts for the inherent 
variability in the original measures.

Examples of offset curves representing undisturbed 
phenotypic potential and the much rougher curve that 
captures biological disturbances are shown in Figure 4 
(top panel). In the subsequent analyses and results, we 
have chosen to use the quantile envelope method for 
deriving the undisturbed phenotypic potential because 
it is more internally consistent with the time-series ap-
proach as it accommodates the possibility of differences 
in residual variation at different times from calving.

For the purposes of the present paper, the choice 
of which method is used for off-setting the smooth fit 
to derive the undisturbed phenotypic potential is not 
important. What is important is to be clear that the 
choices of values for parameters such as λ, the num-
ber of knots in the fit, and the limits for the quan-
tile regression were not based on a rigorous statistical 
optimization of parameters. Because the objective of 
this approach is to provide a biologically meaningful 
differential smoothing of the data, these parameters 
were chosen to best capture (i.e., fit by eye) the biologi-
cal phenomena we wish to isolate. This “bio-logic” ap-
proach would be problematic if these parameters were 
adjusted for each individual curve being fitted because 
this would render invalid any comparison across cows. 
Thus, the same parameter values were used across all 
cows and, within the coefficients chosen, fitting was 
based on minimizing least squares and taking into ac-
count the distributions of residuals.

Feature Extraction: Quantifying Deviations 
and Deviation Profiles

In Figure 4, the middle and bottom panels are the 
first and the second derivatives of the rough curve (λ = 

Table 1. Summary of the profile features of deviations 
in milk yield provoked by the nutritional challenge in 
cows (n = 47) 

Item1 Mean SD

First derivative features, kg·d−2   
 Vmin 0.98 0.45
 Vmax 0.84 0.33
Second derivative features, kg·d−3   
 Aminpre 0.17 0.08
 Amax 0.28 0.10
 Aminpost 0.13 0.05
Timing features, d   
 Δt(Ipre, Ppre) 8.48 3.03
 Δt(T, Ppre) 15.73 7.49
 Δt(T, Ipre) 7.25 7.44
 Δt(Ipost, T) 5.62 1.33
 Δt(Ppost, Ipost) 11.80 7.43
 Δt(Ppost, T) 17.43 7.84
Milk yield loss,2 kg·d−1

 (Q − T) 7.52 2.38
1Each deviation profile has a trough (T), which splits it into pre- and 

post-trough periods that correspond to response and recovery periods 
in milk yield. Two peaks (Ppre and Ppost) and 2 inflection points (Ipre 
and Ipost) can be detected on either side of T. The extreme values of 
the first and second derivatives of the smooth curve are denoted by 
(Vmin and Vmax) and (Amax, Aminpre, and Aminpost), respectively. The 
timing features (Δt) are absolute time differences among the points of 
interest Ppre, Ipre, T, Ipost, and Ppost.

2Milk yield loss (Q − T) = the difference between the milk level at 
trough (T) and the corresponding potential level (Q) on the quantile 
envelope, which is a positively offset-smoothed curve that represents 
the undisturbed phenotypic potential yield.
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2,500). The derivatives can be useful features in their 
own right and also provide means to find relevant land-
marks of the smooth curve. At peaks and troughs in the 
data, the first derivative is 0, and at inflection points 
(where the function changes concavity), the second de-
rivative is 0. Figure 5 presents these features for 1 de-
viation profile (caused by the feed restriction imposed 
between 235 and 239 d from calving) in the smoothed 
milk yield curve shown in Figure 4. By detecting peaks 
and troughs, the deviation profile can be split into  
pre- and post-trough periods that correspond to re-
sponse and recovery periods in milk yield. A panel of 
features that relate to aspects of the deviation profile 
of the cow can then be extracted. Examples of such 
features to quantify the loss, the timing of the response, 
and other aspects of the deviation profile are shown 
in Figure 5. The trough (T) is located where the first 
derivative values cross 0 from negative to positive. 
The pre-trough peak (Ppre) and the post-trough peak 
(Ppost) are located where the first derivative values 

cross 0 from positive to negative. The pre-trough in-
flection point (Ipre) corresponds to the minimum value 
of the first derivative (Vmin) and the post-trough in-
flection point (Ipost) corresponds to the maximum of 
the first derivative (Vmax). The extreme values of the 
second derivative are denoted by (Amax, Aminpre, and 
Aminpost), respectively. The milk yield loss (Q − T) is 
the difference between the milk level (T) and the cor-
responding potential level (Q) on the quantile envelope, 
which is a positively off-set smoothed curve that repre-
sents the undisturbed phenotypic potential yield.

In addition to the absolute levels of the features, their 
relative timing can also be powerful profile descriptors. 
Thus, we can construct timing features (Δt) as abso-
lute time differences among the points of interest Ppre, 
Ipre, T, Ipost, and Ppost. For example, the response time 
Δt(Ppre, T) can be calculated as the difference between 
the absolute time(Ppre) − time(T). Similarly, the re-
covery time can be quantified by Δt(T, Ppost). Another 
example could be Δt(T, Ipost), which measures how fast 

Figure 6. The relationships between the different deviation profile features (Figure 5) in a principal components analysis. Each deviation pro-
file has a trough (T), which splits it into pre- and post-trough periods that correspond to response and recovery periods in milk yield. Two peaks 
(Ppre and Ppost) and 2 inflection points (Ipre and Ipost) can be detected on either side of T. The extreme values of the first and second derivatives 
of the smooth curve are denoted by (Vmin and Vmax) and (Amax, Aminpre, and Aminpost), respectively. The milk yield loss (Q − T) is the difference 
between the milk level (T) and the corresponding potential level (Q) on the quantile envelope, which is a positively offset-smoothed curve that 
represents the undisturbed phenotypic potential yield. A clear grouping can be observed along the first principal component (PC1): the timing 
features (Δt), which are absolute time differences among the points of interest Ppre, Ipre, T, Ipost, and Ppost and are well separated from the absolute 
milk levels (Ppre, Ipre, T, Q, Ipost, and Ppost) and from the derivative features (Vmin,Vmax, Amax, Aminpre, and Aminpost). The later 2 groups are well 
distinguished in the second principal component (PC2).
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a cow can reach the maximum recovery rate (because 
Vmax is at Ipost). The second derivative can also be used 
in a similar way to extract features from the rates of 
response (Figure 5). Table 1 gives a summary of the 
profile features of deviations in milk yield provoked by 
the nutritional challenge in the 47 cows. The absolute 
values of the rates of changes are shown (e.g., although 
Vmin is numerically negative, its absolute value denotes 
the rate of decrease, just like Vmax denotes the rate of 
increase).

Such a set of features can be seen as a panel of can-
didates for quantifying aspects of the ability of the cow 
to respond (i.e., her robustness; Friggens et al., 2010). 
Considering the post-trough recovery period, one can 
use these features to ask questions about how different 
animals recover. For example, the ability of the animal 
to respond could be modeled using the analogy of a 
spring or elastic band where the larger the deviation, 
the stronger the force of recovery to the original state. 
This model would suppose a positive correlation be-
tween the size of the decline in milk yield (Q − T), and 
the rate of recovery, Vmax. In contrast, it has been ar-
gued that excessive rates of change in milk yield may be 
a physiological stress for the animal, and thus, animals 
may seek a constant rate of recovery independent of the 

size of the milk-yield loss. In this study, the correlation 
between Vmax and (Q − T) was r = 0.94 (P < 0.01). 
Further, there was no significant slope (P > 0.1) to 
the relationship between Vmax/(Q − T) and days from 
calving, indicating that the force of recovery was unaf-
fected by stage of lactation. Thus, extracting response 
features provides a means to examine hypotheses con-
cerning the nature of responses.

This approach can be further extended using multi-
variate statistical exploration of data to generate new 
hypotheses. For example, Figure 6 shows clear groups 
of features in a principal components analysis. Along 
the first principal component (PC1), the timing fea-
tures Δt, which largely capture the shape of the devia-
tion profiles, are clearly distinct from the absolute milk 
levels (Ppre, Ipre, T, Q, Ipost, and Ppost) and from the de-
rivative features (Vmin,Vmax, Amax, Aminpre, and Aminpost). 
The latter 2 groups are well distinguished in the second 
principal component (PC2), and not surprisingly, (Q 
− T) is closer to the derivative than the absolute level 
features. By construction, (Q − T) is the instantaneous 
difference between the produced and the phenotypic 
potential yield curve. Therefore, we can conclude that 
the proposed estimation of the phenotypic potential 
yield is a suitable baseline for measuring disturbances.

Figure 7. Examples of milk yield curves from 3 cows with the off-feed challenge at different stages of lactation. The roughly smoothed curves 
clearly capture the decline in milk yield during the challenge period for each cow. Other deviations in milk yield can be observed throughout 
lactations.
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Effectiveness of Quantifying Deviations

One test of the differential smoothing approach, and 
the choice of parameters values, is to examine the ex-
tent to which the deviations in milk yield provoked by 
the feeding challenge can be distinguished from other 
deviations in the roughly smoothed (λ = 2,500) milk 
yield curve. Figure 7 illustrates such deviations in the 
milk yield curves from 3 different cows with the off-feed 
challenge at different stages of lactation. The roughly 
smoothed curves clearly indicate the decline in milk 
yield during the challenge period for each cow, and also 
exhibit other deviations with unknown cause or un-
related to the off-feed experiment. In all, 480 devia-
tions were detected from the complete lactations of the 
47 cows. As can be seen in Figure 8, the size of the 
unplanned deviations was largely independent of the 
Ppre. The average milk yield loss of these unplanned 
deviations was 2.73 kg·d−1 and the SD = 1.54 kg·d−1. 
In contrast, the size of the deviations provoked by the 
feeding challenge was significantly related to Ppre (r = 
0.86, P < 0.01). The residual SD of these feeding chal-
lenge-provoked deviations was 1.24 kg·d−1. Thus, with 
the parameter values indicated above, the differential 
smoothing method was clearly able to detect the feed-
ing challenge-provoked deviations.

DISCUSSION

Smoothing has largely been used to reduce the vari-
ability or noise in data to make it easier to detect differ-
ences between treatments or other systematic factors by 
removing short-term disturbances from the data. Tak-
ing weekly averages of daily measures or using group 
averages are simple forms of smoothing, but far more 
complex methods, such as using random components 
in regressions on time (e.g., Ingvartsen and Friggens, 
2005) or using Kalman filters (Kalman, 1960), are be-
coming increasingly common.

In this study, we used smoothing to identify distur-
bances rather than eliminating them. We illustrated the 
approach on milk production records from a controlled 
“off-feed” experiment, and the results indicate that dif-
ferential smoothing can be a useful tool for quantifying 
biological disturbances in animal performance. Further, 
biologically meaningful features can be extracted from 
the smoothed curves without the need for a priori as-
sumptions about the shape of the lactation curve. As 
presented here, the method is particularly suited for 
off-line usage (when complete deviation profiles are 
available). It provides a means to quantify the conse-
quences of disturbing factors, such as disease and feed-
ing disturbances, as well as allowing hypotheses about 
the biological nature of the response to be explored. 
If the primary goal is to develop on-line monitoring 
systems to detect when the physiological balance of an 
animal is being disrupted and intervention by the farm 
manager may be needed, additional capabilities such 
as dynamic update of the time series and forecasting 

are required. Forecasting can be simple (e.g., based on 
the difference between the latest measure and a roll-
ing baseline; Chagunda et al., 2006), or more complex 
(e.g., using nonparametric smoothing with latent factor 
models; Shen, 2009), or using multivariate measures to 
quantify degree of infection (Højsgaard and Friggens, 
2010).

The amount of time and money that a farmer should 
invest in treating or preventing a disease will depend, 
in part, on the economic losses that disease causes (i.e., 
the size and duration of the production disturbance; 
Fourichon et al., 2000). Further, if a method for quanti-
fying the disturbance is developed using clinical disease 
cases, then it may be extended to identify subclinical 
cases, which are by definition more difficult to iden-
tify from classical symptoms alone (Sloth et al., 2003). 
In this context, capturing disturbances (i.e., deviations 
from the underlying long-term trends) has been shown 
to provide early identification of onset of diseases, such 
as ketosis (Nielsen et al., 2005) and mastitis (Chagunda 
et al., 2006; Kamphuis et al., 2008b).

The approach of using the biological information in 
short-term disturbances has been greatly facilitated by 
the increasing availability of reliable, frequently mea-
sured, time-series data. It is now common for milk yield 
to be measured at every milking. Another example is 
the use of weigh platforms in milking systems that pro-
vide BW records 2 or more times a day. With this type 

Figure 8. Milk loss [defined as the difference between the milk 
level at the trough (T) of the deviation profile and the correspond-
ing potential level (Q) on the quantile envelope, which is a positively 
offset-smoothed curve that represents the undisturbed phenotypic po-
tential yield] vs. the milk yield at the preceding peak (Ppre in Figure 
5). Encircled cases are from the off-feed challenge experiment. The ■ 
is the first deviation in Figure 4 (at ~140 d from calving), which cor-
responds to a confirmed case of mastitis.
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of technology and high measurement frequency, it be-
comes possible to distinguish biologically related dis-
turbances from random measurement error.

Although demonstrated here using milk-yield data, 
the proposed approach is, in principle, generalizable to 
other biological time-series data. The increasing devel-
opment of in-line measurement technology on the farm 
both affords the opportunity to develop such tools and 
presents the challenge of extracting the key information 
from such large quantities of data.
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