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Abstract

Data obtained from ISSR amplification may readily be extracted but only allows
us to know, for each gene, if a specific allele is present or not. From this partial
information we provide a probabilistic method to reconstruct the pedigree corre-
sponding to some families of diploid cultivars. This method consists in determining
for each individual what is the most likely couple of parent pair amongst all older
individuals, according to some probability measure. The construction of this mea-
sure bears on the fact that the probability to observe the specific alleles in the child,
given the status of the parents does not depend on the generation and is the same
for each gene. This assumption is then justified from a convergence result of gene
frequencies which is proved here. Our reconstruction method is applied to a family
of 85 living accessions representing the common broom Cytisus scoparius.
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1 Introduction

A pedigree is a graph such that each vertex has indegree equal to 0 or 2 and any out-
degree. When it represents family relationships between living individuals, edges are
directed from parents to children. By reconstruction of the pedigree of a family of some
set of individuals, we mean a way to determine the most likely pedigree relating theses
individuals given some information such as phenotype, genotype, date of birth, data ob-
tained from professional breeders,... It may happen that this information is known only
for a part of the population or even that the number of missing individuals is unknown.
To each situation corresponds some specific methods. Deterministic methods based on
the maximum parsimony principle and using purely combinatorial arguments allow us to
reconstruct the minimal pedigree relating individuals in accordance with their types, see
Chapter 4 in [10], [11] or [2]. There are also numerous different stochastic methods of
reconstruction of pedigrees, see for instance [6], [13], [14], [2]. In any case, the method
consists in finding a ’nice’ probabilistic framework in which we may find the most likely
pedigree relating some set of individuals. Some models focus on the reconstruction of
the lineages by estimating transition probabilities between nodes. Reconstructing the
pedigree then comes down to the construction of a Markov chain. This method is quite
popular when making use of identity by descent (IBD) data, [6]. In this case, a statistical
inference based on Monte Carlo Markov chains and Bayesian statistics are used to infer
transition probabilities between nodes of the graph, [12] and [13]. Coalescence theory may
also prove to be a powerful tool in reconstruction of pedigrees, as observed in [15].

In the present work, we assume that the known information is of a genomic type and is
provided through ISSR amplification for diploid plant cultivars, which are vegetatively
propagated. ISSR amplification was popalurised by [16] and largely used in genetic diver-
stity assessment [8]. Because being vegetatively propagated, the available dataset contains
both descendants and ancestors in the pedigree, thus both terminal and internal nodes of
the graph, while most above listed methods use information from last generation descen-
dants (i.e. terminals in the graph). We know the same genotypic information for each
individual and we assume that there are no missing individuals in the set. ISSR data only
allows us to know, for each gene, if a specific allele is present or not. In particular, in the
case of presence, we do not know if this specific allele is present in both chromosomes (i.e.
at homozygotic state, and transmitted to all the descendants) or if it is present only in one
of them (i.e. at heterozygotic state and thus transmited to only half of the descendants).
It actually stems as if we observed the phenotypic expression of a dominant gene and our
model can also be applied to this kind of situation (see the discussion at the end of this
paper). Then from this partial information we provide a probabilistic method to recon-
struct the pedigree corresponding to some families of diploid plant cultivars. This method
consists in determining for each individual what is the most likely couple of parent pair
amongst all older individuals, according to some probability measure. More specifically,
if g1, . . . , gn are individuals ranked in their birth order, then for each i = 1, . . . , n, we are
looking for a couple of individuals possibly non distinct in the set {g1, . . . , gi−1} which is
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the most likely parent pair of gi according to some probability measure. The construction
of this measure bears on the fact that the probability to observe the specific alleles in the
child, given the status of the parents does not depend on the generation. It only depends
on the gene frequencies which are supposed to be constant in time. In order to justify
this assumption, we prove here that gene frequencies converge almost surely, as the num-
ber of crossbreeding increases, toward an equilibrium which satisfies the Hardy-Weinberg
condition.

Our reconstruction method is applied to a family of 85 living accessions representing the
common broom Cytisus scoparius and related cultivated hybrids (Cytisus x dallimorei,
Cytisus x boskoopi). The latter are diploid sexed plants whose crossbreedings have oc-
curred in the past 200 years from a set of founders which is to be specified by our model.
For each individual, 6 markers are used to highlight presence or absence of a particular
allele in a high number of distinct regions of the genome. These 6 markers provide a total
of more than 420 distinct bands for these 85 accessions, and each band has been treated as
present or absent for each individual. The results of our model applied to these particular
data are described in Section 3. Section 2 is devoted to the presentation of the model as
well as to the convergence result of gene frequencies which justifies its relevance. Then we
give some conclusions in Section 4, comparing our results to the existing literature and
highlighting some other frameworks where our method can be used.

2 Materials and Methods

2.1 Model overview

We represent a pedigree as a directed graph in which each vertex corresponds to an in-
dividual and each directed edge corresponds to a parent-child relationship, with the edge
going from parent to child. The individuals are partitioned into two sets, F and F {,
referred to as the founders and the non-founders respectively. The pedigree specifies, for
every non-founder individual, two (not necessarily distinct) individuals which, according
to some probabilistic model shortly defined, are the most likely parents.

We first define the law of reproduction in the population. Let n be the number of individ-
uals, denoted g1, . . . , gn and let m ∈ N be the number of genes for which we observe the
presence or absence of a specific allele. More specifically, when proceeding to the ISSR
amplification, for each gene, we receive from some marker, a binary response: either the
allele is present in at least one of the two chromosomes or it is absent in both. In partic-
ular, when the allele is present, we do not know if it is present on the two chromosomes.
Actually, it is equivalent to consider that the allele which is highlight by the marker is
dominant and that we only observe the phenotype of the individual. For each individual
gi and each gene ` ∈ {1, . . . ,m}, let x`(gi) ∈ {0, 1} be the indicator of band absences (0-
values) and presences (1-values) of individual gi obtained during the ISSR amplification
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process. Hence the apparent genotype of each individual g will be identified to the element
x(g) := (x1(g), x2(g), . . . , xm(g)) of {0, 1}m. Note that the event {x`(g) = 1} means ”one
observes the presence of the allele specific to gene ` in individual g” or equivalently ”the
allelic combination of gene ` in individual g is 01 or 11”.

Each individual g has an associated date of birth, denoted t(g). We set t(g) = 0 if
the individual g was obtained from the wild, in which case it will be considered as a
founder. Otherwise set t(g) equal to the date the individual was accessioned. We order
the individuals so that for i < j, t(gi) < t(gj), whenever t(gj) > 0 (it is assumed that
dates of birth are distinct from each other). The basic principles of our reconstruction
method are:

(a) a uniform prior on probability (gj, gk) are the parents of individual gi over all pairs
(gj, gk) with max(t(gj), t(gk)) < t(gi);

(b) no missing individuals, that is the parents of each non-founder individual gi belong
to the set {g1, . . . , gn} \ {gi}.

Let us denote by ĝ and ḡ the parents of the individual g. When they breed, the two
parents ĝ and ḡ with respective apparent genotypes x(ĝ) and x(ḡ) will give birth to the
individual g with apparent genotype x(g) according to the following rules:

(c) independence of the coordinates of x(g), that is, {x`(g) = 1} and {x`′(g) = 1} are
independent for all `′ 6= `;

(d) there are constants δ ∈ (−1/2, 1/2) and ε ∈ (0, 1/2) called the errors and for each `,
there are constants p` ∈ (3/4, 1) and q` ∈ (1/2, 1) such that for each individual g
and

– P({x`(g) = 1}| {x`(ĝ) = 1}, {x`(ḡ) = 1}) = min(p` − δ, 1),

– P({x`(g) = 1}| {x`(ĝ) = 0}, {x`(ḡ) = 1}) = min(q` − δ, 1),

– P({x`(g) = 1}| {x`(ĝ) = 0}, {x`(ḡ) = 0}) = ε .

Principles (a) and (b) should rather be considered as the most natural assumptions in the
absence of any particular constraint in the evolution of the population. Note that accord-
ing to (a), the father and mother can be the same individual, which is standard in plant
populations. Principle (c) means that the evolutions of different genes are independent
between each other. In our specific example we will select a particular set of genes whose
independence will be checked by means of a statistical test, see Section 3.

Let us now concentrate ourself on principle (d). Constants δ and ε are actually exper-
imental errors, so they do not depend on gene `. It appears that when the parents
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satisfy {x`(ĝ) = 1}, {x`(ḡ) = 1} (resp. {x`(ĝ) = 0}, {x`(ḡ) = 1}), the probability to
observe {x`(g) = 1} for the child is less than the theoretical probability p` (resp. q`),
that is p` − δ (resp. q` − δ). Similarly, it can happen that when the parents satisfy
{x`(ĝ) = 0}, {x`(ḡ) = 0} one observes {x`(g) = 1} for the child. This defines error ε. As
showed hereafter, we have p` ∈ (3/4, 1) and q` ∈ (1/2, 1), and the estimation from our
data, see Section 3, shows that δ and ε are actually of order 0.1.

Besides, we recall that despite the reproduction is sexed, since we are concerned with
plant populations, each individual can either be male or female, so that when referring to
the parents gj and gk of the individual gi, the mother and the father are not distinguished.
In particular we have P({x`(g) = 1}| {x`(ĝ) = 0}, {x`(ḡ) = 1}) = P({x`(g) = 1}| {x`(ĝ) =
1}, {x`(ḡ) = 0}).

We now focus on the computation of the conditional probabilities appearing in (d). In
order to compute the theoretical values p` and q`, let us assume that there is no exper-
imental error, i.e. δ = ε = 0, so that expressions in (d) are P({x`(g) = 1}| {x`(ĝ) =
1}, {x`(ḡ) = 1}) = p` and P({x`(g) = 1}| {x`(ĝ) = 0}, {x`(ḡ) = 1}) = q`. Let us now
compute p` and q` in terms of the gene frequencies. We will prove in the next section
that for each gene, the frequencies of the three genotypes 00, 01 and 11, converge toward
some equilibrium, as the number of crossbreeding increases. Let us denote respectively
by π00(`), π01(`) and π11(`) these frequencies. Then in our model, we assume that this
equilibrium is attained, so that:

(e) π00(`), π01(`) and π11(`) do not depend on time.

Note that here, by time, we mean a scale which is incremented by successive crossbreed-
ings. Assumption (e) will be justified in the next section. When no confusion is possible,
we will forget about the index ` in π00(`), π01(`) and π11(`). Let us compute p` and q` in
terms of π00, π11 and π01. For a pair of parents (ĝ, ḡ) chosen uniformly at random in the
sub-population {g′ : t(g′) < t(g)}, the probability to observe x`(ĝ) = 1 and x`(ḡ) = 1 is

P({x`(ĝ) = 1}, {x`(ḡ) = 1}) = π2
11 + 2π01π11 + π2

01 .

When they breed and give a child g, the probability to observe x`(g) = 1, x`(ĝ) = 1 and
x`(ḡ) = 1 is

P({x`(g) = 1}, {x`(ĝ) = 1}, {x`(ḡ) = 1}) = π2
11 + 2π01π11 + 3π2

01/4 .

We obtain that at any time, p` is given by

p` =
π2

11 + 2π01π11 + 3π2
01/4

π2
11 + 2π01π11 + π2

01

= 1− π2
01

4(π01 + π11)2
.

Then q` is obtained in the same way:

q` =
π01 + 2π11

2π01 + 2π11

.
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The frequencies π00, π01 and π11 belonging to (0, 1) it is easy to check from the above
expressions that p` ∈ (3/4, 1) and q` ∈ (1/2, 1). Furthermore, we have the relationship
p` = q`(2 − q`). In Theorem 1, we show that in fact the triplet of gene frequencies
(π00, π01, π11) satisfies the Hardy-Weinberg equilibrium, that is π01 = 2

√
π00π11 and using

this relation, we deduce that

q` =
1

1 +
√
π00

, p` =
1 + 2

√
π00

(1 +
√
π00)2

. (2.1)

We shall now define the set of probability measures µ from which the most likely pedigree
will be derived. This definition is based on the conditional probabilities:

P(x(g) = a |x(ĝ) = â, x(ḡ) = ā) =
m∏
`=1

P(x`(g) = a` |x`(ĝ) = â`, x`(ḡ) = ā`) ,

which are obtained from all acceptable triplets of individuals (g, ĝ, ḡ) and their appar-
ent genotypes a = (a1, . . . , am), â = (â1, . . . , âm) and ā = (ā1, . . . , ām) in {0, 1}m.
More specifically, the set of individuals {g1, . . . , gn} and their apparent genotype being
given, for all triples (i, j, k) ∈ {1, . . . , n}3 and for each gene `, we first define the agree-
ments/disagreements indicators between the genotype of an individual gi and this of the
possible couple of parents (gj, gk):

p
(`)
ijk = 1{x`(gj)=x`(gk)=x`(gi)=1} , p̄

(`)
ijk = 1{x`(gj)=x`(gk)=1 , x`(gi)=0} ,

q
(`)
ijk = 1{x`(gj)6=x`(gk) , x`(gi)=1} , q̄

(`)
ijk = 1{x`(gj)6=x`(gk) , x`(gi)=0} ,

εijk =
m∑
`=1

1{x`(gj)=x`(gk)=0 , x`(gi)=1} , ε̄ijk =
m∑
`=1

1{x`(gj)=x`(gk)=x`(gi)=0} .

Now define pδ,` = min(p`−δ, 1), qδ,` = min(q`−δ, 1), p̄δ,` = 1−pδ,`, q̄δ,` = 1−qδ,`, ε̄ = 1−ε
and

νi(j, k) =

{
εεijk · ε̄ε̄ijk

∏m
`=1 p

p
(`)
ijk

δ,` · p̄
p̄
(`)
ijk

δ,` · q
q
(`)
ijk

δ,` · q̄
q̄
(`)
ijk

δ,` , if j ≤ k < i ,

0 , otherwise.

Then for each i = 2, . . . , n, the probability measure µi on {1, . . . , n}2 is explicitly defined
in terms of x by

µi(j, k) =
νi(j, k)

zi
, j, k ∈ {1, . . . , n} ,

where zi :=
∑

j,k νi(j, k) is a normalising constant. We readily check that zi > 0 for all i
such that t(gi) > 0. Moreover, individuals gi such that t(gi) = 0 are necessarily founders
(i.e. gi ∈ F ), hence their parents do not belong to the current pedigree, so in this case,
we set

µ1(j, k) = 0 , j, k ∈ {1, . . . , n} .

Fix a threshold probability p ∈ (0, 1). Then an individual gi is in the set F { of non founder
individuals, only if there exists a pair (j, k) ∈ {1, . . . , n}2 such that µi(j, k) ≥ p with
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j ≤ k < i (it follows that the partitioning depends on the value of p).

For each individual gi ∈ F {, we wish to determine gj and gk (possibly equal), such that
the following two conditions are satisfied:

1. j ≤ k < i (gj and gk accessioned before gi);

2. µi(j, k) = maxj′,k′{µi(j′, k′) : j′ ≤ k′ < i} (gj and gk maximize the likelihood).

We remark that by definition of F {, it follows that if we have found such a pair gj and
gk, then µi(j, k) ≥ p.

Note also that the normalization of the probability measure µ is relevant only for the
comparison with the threshold probability. Steps 1. and 2. define the algorithm from
which we performed the program in R which provides the reconstructions of pedigrees,
see Section 3.

2.2 Convergence to equilibrium

In this subsection, we are interested in the dynamics of the frequencies of each genotype in
the population. As already mentioned in the previous section, our reconstruction method
strongly bears on the assumption that the frequencies π00, π01 and π11 of the types 00, 01
and 11 do not depend on time, that is condition (e) in subsection 2.1. We will show in the
present subsection that as the number of crossbreeding goes on, these frequencies converge
almost surely to some random equilibrium. This result actually justifies assumption (e).

From time n = 0, we rank the crossbreedings in increasing order as they occur. Since the
evolutions of genes are independent of each other, see assumption (c), we only need to
consider the dynamics of the frequencies of genotypes 00, 01, 11 for one gene. Then let
us denote by πn00, πn01 and πn11, the proportion of individuals g with genotype 00, 01 or 11
respectively, after the n-th crossbreeding. Let us assume that we start at time n = 0 with
two founders, so that after the n-th crossbreeding, n + 2 individuals are present in the
population. That assumes in particular that there is no death. Moreover we assume that
both alleles exist in the two founders. Then our reproduction law described in (a)-(d) of
the previous subsection may actually be represented as a generalized urn model in which
the probability of replacement depends on the proportion of individuals in the population,
see [7] and the references theirin. More specifically, at each step n (crossbreeding), con-
dition (a) tells us that we choose two individuals uniformly at random in the population.

Let us define the polynomial function F : {(x, y, z) ∈ [0, 1]3 : x+ y + z = 1} → R3 by

F (x, y, z) + (x, y, z) = (xy + x2 + y2/4, xy + yz + 2xz + y2/2, yz + z2 + y2/4) ,
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and denote by S = {(x, y, z) ∈ [0, 1]3 : F (x, y, z) = 0} the zero set of F .

We construct πn recursively. Write F = (F1, F2, F3). At each step n, two uniformly chosen
individuals from the population breed and the new frequencies of individuals with types
00, 01 and 11 become:

πn+1
00 =

(n+2)πn
00+1

n+3

πn+1
01 =

(n+2)πn
01

n+3
,

πn+1
11 =

(n+2)πn
11

n+3

with probability πn00π
n
01 + (πn00)2 + (πn01)2/4 = F1(πn),


πn+1

00 =
(n+2)πn

00

n+3

πn+1
01 =

(n+2)πn
01+1

n+3
,

πn+1
11 =

(n+2)πn
11

n+3

with probability πn00π
n
01 + πn01π

n
11 + 2π00π11 + (πn01)2/2 = F2(πn),


πn+1

00 =
(n+2)πn

00

n+3

πn+1
01 =

(n+2)πn
01

n+3
,

πn+1
11 =

(n+2)πn
11+1

n+3

with probability πn01π
n
11 + (πn11)2 + (πn01)2/4 = F3(πn) .

Let us make this construction more formal. First we define a stochastic process (δn)n with
values in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} in such a way that the law of δn+1 conditionally on
π0 = i0, . . . , π

n = in is F (in). Recall that the quantity (n+2)πn represents the population
size at time n. Then πn+1 is defined by

(n+ 3)πn+1 = (n+ 2)πn + δn+1 , n ≥ 0 .

Let us set
ηn = δn+1 − F (πn) ,

then we readily obtain the following equality

πn+1 = πn +
1

n+ 3
(F (πn)− πn + ηn). (2.2)

For u ∈ [0, 1]3, let fu : R+ ∪ {0} → [0, 1]3 be the solution to the ODE{
d
dt
fu(t) = F (fu(t)), t ≥ 0,

fu(0) = u.
(2.3)

The solution can be calculated explicitly and we easily check that with fu(t) = (xu(t), yu(t), zu(t))
and u = (x0, y0, z0), then

xu(t) =
(
x0 − (2x0+y0)2

4

)
e−t + (2x0+y0)2

4

yu(t) = −2
(
x0 − (2x0+y0)2

4

)
e−t − (2x0+y0)2

2
+ 2x0 + y0

zu(t) = 1 +
(
x0 − (2x0+y0)2

4

)
e−t + (2x0+y0)2

4
− 2x0 − y0.
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We aim to show almost-sure convergence of πn = (πn00, π
n
01, π

n
11) as n → ∞. The first

step in achieving this is to show almost-sure convergence of v(πn) as n → ∞, where
v(u) := limt→∞ fu(t). This is achieved in the following lemma.

Lemma 1. As n→∞, v(πn) converges almost surely.

Proof. We shall show that almost surely, (v(πn))n is a Cauchy sequence. We have

|v(πn+1)− v(πn)| ≤
∣∣∣∣v(πn +

1

n+ 3
F (πn)

)
− v(πn)

∣∣∣∣+

∣∣∣∣v(πn+1)− v
(
πn +

1

n+ 3
F (πn)

)∣∣∣∣ .
(2.4)

We provide upper bounds on each term appearing on the right-hand side. Firstly, using
the fact that v(x) = v(fx(t)) for any t ≥ 0,∣∣∣∣v(πn +

1

n+ 3
F (πn)

)
− v(πn)

∣∣∣∣ =

∣∣∣∣v(πn +
1

n+ 3
F (πn)

)
− v

(
fπn

(
1

n+ 3

))∣∣∣∣ .
We have the explicit form of v as

v(u) =

(
(2x0 + y0)2

4
,−(2x0 + y0)2

2
+ 2x0 + y0, 1 +

(2x0 + y0)2

4
− 2x0 − y0

)
,

for any u = (x0, y0, z0). The function v is clearly Lipschitz on [0, 1]3 and so there exists a
constant c such that∣∣∣∣v(πn +

1

n+ 3
F (πn)

)
− v

(
fπn

(
1

n+ 3

))∣∣∣∣ ≤ c

∣∣∣∣πn +
1

n+ 3
F (πn)− fπn

(
1

n+ 3

)∣∣∣∣
≤ O(1/n2),

since fπn(1/(n + 3)) = fπn(0) + 1
n+3

f ′πn(0) + O(1/n2) = πn + 1
n+3

F (πn) + O(1/n2). For
the second term on the right-hand side of (2.4), we have∣∣∣∣v(πn+1)− v

(
πn +

1

n+ 3
F (πn)

)∣∣∣∣ ≤ c

∣∣∣∣πn+1 − πn − 1

n+ 3
F (πn)

∣∣∣∣ ≤ c

n+ 3
|ηn − πn|,

by the definition of πn, see (2.2). However since F is bounded we deduce that we can upper
bound this term by O(1/n). Plugging the two bounds we have obtained into equation
(2.4) shows that the sequence (v(πn))n is indeed Cauchy (surely), and this completes the
proof.

We are now in a position to show almost-sure convergence of the stochastic process πn =
(πn00, π

n
01, π

n
11), n ≥ 1.
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Theorem 1. The random vector πn = (πn00, π
n
01, π

n
11), n ≥ 1 has the following asymptotic

behaviour:
πn

a.s.−→ (π00, π01, π11) , as n tends to +∞ ,

where (π00, π01, π11) is distributed on S. In particular, it satisfies the Hardy-Weinberg
equilibrium:

π01 = 2
√
π00π11 .

Proof. We first claim that almost surely, the L1 distance between πn and S tends to 0 as
n→∞. Recall that the L1 distance |πn − S| is defined as

|πn − S| := min
s∈S
{|πn − s|} := min

(x,y,z)∈S
{|πn00 − x|+ |πn01 − y|+ |πn11 − z|}.

In fact, this is a consequence of Theorem 2.2 in [9] which asserts that the limit set of
(πn) (i.e. the set of limits of subsequences of (πn)) is almost surely a connected compact
internally chain recurrent set for the flow associated to the ODE (2.3). In particular the
limit set of (πn) is included in S, which implies that the distance between πn and S tends
almost surely to 0.

Suppose x ∈ S so that F (x) = 0 by definition. Then d
dt
fx(t) = 0 for all t ≥ 0 and so

fx(t) = x for all t ≥ 0, and in particular v(x) = x. Since v is Lipschitz and v(S) = S we
have that, as x → S, |v(x) − x| → 0. But since v(πn) converges almost surely to some
limit random variable, we deduce that πn also converges almost surely and to the same
limiting random variable.

Finally, Hardy-Weinberg equilibrium follows readily from the fact that (π00, π01, π11) is
distributed on the set S, i.e. F (π00, π01, π11) = 0.

In this theorem, an additional information is brought by the Hardy-Weinberg principle
which provides a relationship between the allelic frequencies and the genotypic frequencies.
This equilibrium was predictable and is actually a natural consequence of the absence of
any evolutive forces.

Let us now consider the general case m ≥ 1. We denote by πG the frequency of a genotype
G = (G1, . . . , Gm) ∈ {00, 01, 11}m. If πi,00, πi,01 and πi,11, are respectively the limiting
gene frequencies of the i-th gene with alleles 0 and 1, then from the independence between
genes (see condition (c) in the previous subsection), the limiting frequency of the genotype
G at equilibrium is

πG = π1,G1π2,G2 . . . πm,Gm .

Remark 1. It is a quite challenging question to determine the exact distribution of the
limit triplet (π00, π01, π11). Actually our simulations show that it may have a diffuse dis-
tribution in the set {(x, y, z) ∈ [0, 1]3 : x+ y+ z = 1}, which depends on the initial values
π0

00, π0
01 and π0

11, see Figure 1.
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Figure 1: Empirical distribution functions of π00 (blue), π11 (red) and π01 (black). The
first figure is obtained with initial values π0

00 = 1, π0
01 = 2, π0

11 = 3 and the second one is
obtained with π0

00 = 1, π0
01 = 1, π0

11 = 0.
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Remark 2. A subsequent question to Theorem 1 concerns the speed of convergence of
(πn00, π

n
01, π

n
11). Some results in this direction are given in [3] and [4]. However, they

require some strong assumptions on the derivative of the function F at the limiting point
(π00, π01, π11), which are quite difficult to verify in our situation, mainly due to the fact that
we do not know the distribution of (π00, π01, π11). However, it is reasonable to expect that
a central limit type theorem holds, in which case, the speed of convergence of (πn00, π

n
01, π

n
11)

to (π00, π01, π11) would be of order
√
n.

3 Application of the model

Our model were tested on a population of 85 living accessions representing the common
broom Cytisus scoparius and three related interspecific hybrids. This dataset consists
in 62 vegetatively propagated cultivars obtained from various nurseries. These cultivars
belong to either Cytisus scoparius, Cytisus x dallimorei (hybrid between C. scoparius and
C. multiflorus), C. x praecox (hybrid between C. multiflorus and C. oromediterraneus),
or C. x booskopii (hybrid between C. x dallimorei and C. x praecox). In addition three
to nine individuals obtained from five wild populations have been included (3 individuals
of Cytisus oromediterraneus from France, 3 individuals of Cytisus scoparius from Italia,
3 from Poland, 4 from Angers, France and 9 from Ernée, France). For all these samples,
DNA extration use the Nucleospin R©Plant II kit from macherey-Nagel. IISR data was ob-
tained using six set of primers, namely ISSR5 (sequence: 5-CACACACACACACACARC-
3), ISSR7 (sequence : 5-CACACACACACACACART-3), ISSR13 (sequence:
5-GTGTGTGTGTGTGTGTYA-3), ISSR890 (sequence: 5-VHVGTGTGTGTGTGTGT-
3), ISSR891 (sequence : 5-HVHTGTGTGTGTGTGTG-3) and ISSRa (sequence: 5-
GCTCTCTCTCTCTCTC-3). Polymerase chain reaction (PCR) was done using the fol-
lowing parameters : 95oC for 2 min., then 39 cycles of 95oC for 30 sec., 50oC for 30 sec.,
72oC for 120 sec., followed by 10 min. of extension at 72oC. Electrophoresis was done on
5% acrylamide-bisacrylamide gel (mixing ratio : 29:1), with 7M urea, with a pre-run of
30 min at 80 W, then 2h30 at 60W. Staining use silver nitrate. Gels were scanned and
band manualy read.

Using data obtained from ISSR analysis, our present aim is to determine the most likely
pedigree relating these individuals. A code in language R has been written according to
the model described in the previous sections. The latter applied to our data provided
the pedigrees presented in figures 2, 3 and 4 below. The use of this method first requires
that the population we are dealing with satisfies principles (a)− (e) in Subsection 2.1 and
parameters ε, δ, p` and q` must be inferred from our data.

Breedings have occurred over time under the action of professional breeders or according
to natural phenomenons and with no more information, assumption (a) about uniform
prior distribution is reasonable. According to botanists, this is also the case of assumption
(b) which means that there are no missing individuals in the population. Then we need to
ensure the independence hypothesis (c) between the bands {x`(g) = 1}, ` ∈ {1, . . . ,m}.
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Depence may occur due to the selective sweep phenomenon which can associate together
several genes whose loci are close to each other along the chromosome. For such sets of
genes, recombination is not strong enough for them to be considered as independent in
the reproduction process. Then among the 424 bands, we have selected 168 of them which
are proved to be independent from a statistical test.

We also need to determine the values of ε, δ, p` and q` related to the present data, in order
to construct the probability measure which is defined in (d). First recall that in the ISSR
amplification, six markers allow us to test the presence or absence of those 168 bands,
each marker corresponding to a particular set of bands (34 bands for ISSR890, 22 for
ISSR 891, 31 for ISSRa, 32 for ISSR5, 27 for ISSR7 and 22 for ISSR13). For each of the
six markers used, in order to apply the above model, we need to estimate the values of δ
and ε (the errors probability, which can occur during the experiment). We achieve this by
repeatedly crossing two individuals (G017 Cytisus scoparius ’Lunagold’ and G010 Cytisus
x dallimorei ’Burkwoodii’ ) and performing marker analysis (using 5 of the 6 markers used
for the dataset) on the resulting offspring (n=33 plants). We are then able to estimate,
for each marker, the value of δ. Denoting by δm the error using marker m, we assume that
δm is a Gaussian random variable such that Var(δm) = Var(δm′) for all markers m, m′.
We obtained the following average errors:

E(δISSRa) = 0.16, E(δISSR890) = 0.16,

E(δISSR891) = 0.14, E(δISSR5) = 0.19, E(δISSR7) = 0.1.

For each pair of markers, m and m′, we ran a hypothesis test to determine whether
E(δm) = E(δm′) and we found that we do not reject this null hypothesis at a 95% confi-
dence level. We obtained a 95% confidence interval of (0.126, 0.195) for the error, under
the assumption that the errors from the different markers all came from the same distri-
bution. For the present reconstructions we have chosen the value δ = 0.15. The same
study for the error ε leads us to the choice of ε = 0.05.

In subsection 2.2 we proved convergence of gene frequencies and we will assume that the
population which is considered here has attained some equilibrium, that is principle (e).
As can be seen from equation (2.1), thanks to Hardy-Weinberg principle, the probabilities
p` and q` only depend on the probability π00. We emphasize that the latter probability is
actually the only one whose empirical value can be determined from the data. Indeed it
is not possible to distinguish the genotype 01 from the genotype 11 in ISSR data. In the
present case, we obtain the values of π00 and hence p` and q` for each band.

The probabilities µi(j, k) defined in the end of Subsection 2.1 may appear quite low once
computed from our dataset. However knowing that all individuals belong to the same
family, we are only concerned with their relative values. The pedigrees appearing in figures
2, 3 and 4 were obtained with the threshold probabilities 0.1 and 0.2 and 0.3 respectively.
Funders have been represented in black and individuals with no parent and children have
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not been represented. As expected, when the threshold probability p increases, the number
of relations between individuals decreases and more individuals are considered as founders.
Compared to the existing knowledge we have on the group (see [1]), several relationships
are congruent with historical information. For example, ’Zeelandia’ is reported as a
descendant of ’Burkwoodii’ and a C. x praecox. This relationhip appears with all threshold
probabilities. ’Liza’, ’Andreanus Select’, and ’Donard Seedling’ are all all historically
reported as sport (bud mutations) of ’Burkwoodii’, while ’Lena’ is supposed to be a
seedling of it. They are all linked under p = 0.1 and p = 0.2, while under higher threshold
probability ’Burkwoodii’, ’Liza’ and ’Andreanus Select’ are still linked, however, Donard
Seedling is treated as a seedling of ’Burkwoodii’ and Cytisus ardoinoi which may be
impossible (the sample used for representing this last species being wild collected). ’Firefly
is reported as a seedling of ’Andreanus’, which appears under all threshold probabilities.
Comparing to historical information, ’La Coquette’ appears here as founder, and as parent
of ’Roter Favorit’ while it was reported as a self-fecondation of ’Hollandia’, and half-
brother of ’Boskoop Ruby’. ’Hollandia’ is know to be a seedling from ’Burkwoodii’ and C.
x praecox, here, under p=0.1, it is a seedling between the same ’Burkwoodii’ but with C.
scoparius. Using the same ISSR data, Auvray in [1] points out the putative link between
’Apricot Gem’ and ’Dukaat’, as well as between ’Boskoop Ruby’ and ’Windlesham’. These
links are re-inforced here and second putative parents are provided (kewensis for ’Apricot
Gem’ and ’Hollandia’ for ’Windlesham’). Auvray [1] also point out a parentage between
’Moclard Pink’ and ’Minstead’ (the former being a putative seedling of the later), here
’Moclard Pink’ is always linked with ’Albus’, a point which needs consideration. Under
the various threshold probabilities, ’Luna’, ’Palette’ and ’Roter Favorite’ are linked, this
seems reasonably consistent with the fact that they all have been obtained form the
same nursery (Arnold, at Alreslohe near Holstein in Germany) around 1960. ’Jessica’,
linked to the same group under p = 0.1 is of unknown parentage, while ’Goldfinch’, also
linked under p = 0.1 is reported to be a seedling between ’Donard Seedling’ and ’Dorothy
Walpole’ (laking from the sampling). The links between ’Andreanus’, ’Firefly’, ’Golden
Sunlight’ ’Andreanus Splendens’, ’Golden Cascade’, ’Roter Favorite’ and ’Queen Mary’,
appearing under all threshold probabilities, reminds that all these cultivars are selection
of C. scoparius and not of any of the interspecific hybrids.

4 Discussion

We have set up a mathematical model of pedigree reconstruction whose basic principle is
to determine, for each individual, what is the most likely parent pair in the population,
according to the probability distribution which is defined in (d) of Subsection 2.1. The
robustness of this model mainly relies on the fact that gene frequencies have attained some
equilibrium. We show in Subsection 2.2 that indeed, in the absence of any evolutive forces,
gene frequencies converge toward a limit random vector which satisfies Hardy-Weinberg
equilibrium. From this model we derived an algorithm which is written in language R and
then we applied this model to ISSR data from a population of diploid plants. The results
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Figure 2: Threshold probability p = 0.1.
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Figure 3: Threshold probability p = 0.2.
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Figure 4: Threshold probability p = 0.3.

reveal that the pedigrees obtained from this method fit to the partial reconstructions based
on botanical data or other methods using dendograms obtained from matrix distances.
This additional source of information could also be used in order to improve the model by
constructing a new probability distribution giving a relative weight to each kind of data.

Greater power could also be given to our method by getting rid of assumption (b) on
non missing individuals. Indeed missing individuals in the population who would actually
have lots of family relationships could considerably distort the real pedigree. Then an
improvement would consist in determining how much the addition of one or several virtual
individuals with specific genomes increases the likelihood of the pedigree.

Principle (c) assumes that recombination is uniform, but this can be made more realistic
by determining how different sets of loci actually recombines from a preliminary statistical
inference. Then the model can easily be adapted.

Finally we emphasize that our model can be applied to phenotyped data. Indeed, as
already observed in Section 2, the knowledge of ISSR is equivalent to the knowledge of
the expression of a dominant gene. Hence our model can easily be tested from a population
about which we observe a specific set of phenotypical criteria and whose family relationship
are a priori known.
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