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Highlights: 1 

• The ENAtool routine relies on an ensemble parameterization technique 2 

• It incorporates the uncertainty in EwE inputs into the calculation of ENA indices 3 

• The ENAtool routine was applied on the Bay of Biscay continental shelf Ecopath model 4 

• The previously ENA-derived structural and functional properties were strengthened 5 

• Ecosystem comparative studies will now integrate statistical analyses on ENA indices 6 
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Abstract 31 

Ecological network analysis (ENA) provides numerous ecosystem level indices offering a 32 

valuable approach to compare and categorize the ecological structure and function of ecosystems. 33 

The inclusion of ENA methods in Ecopath with Ecosim (EwE) has insured their continued 34 

contribution to ecosystem-based management. In EwE, ENA-derived ecological conclusions are 35 

currently based on single values of ENA indices calculated from a unique input flow matrix. 36 

Here, we document an easy-to-use routine that allows EwE users to incorporate uncertainty in 37 

EwE input data into the calculation of ENA indices. This routine, named ENAtool, is a suite of 38 

Matlab functions that performs three main steps: (1) import of an existing Ecopath model and its 39 

associated parameter uncertainty values in the form of uncertainty intervals into Matlab; (2) 40 

generation of an ensemble of Ecopath models with the same structure as the original, and with 41 

parameter values varying based on the prescribed uncertainty limits; and (3) calculation of a set 42 

of 13 ENA indices for each ensemble member (one set of flow values) and of summary statistics 43 

across the whole ensemble. This novel routine offers the opportunity to calculate ENA indices 44 

ranges and confidence intervals, and thus to perform quantitative data analyses. An application of 45 

ENAtool on a pre-existing Ecopath model of the Bay of Biscay continental shelf is presented, 46 

with a focus on the robustness of previously-published ENA-based ecological traits of this 47 

ecosystem when the newly-introduced uncertainty values are added. We also describe the 48 

sensitivity of the ENAtool results to both the number of ensemble members used and to the 49 

uncertainty interval set around each input parameter. Ecological conclusions derived from EwE, 50 

particularly those regarding the comparison of structural and functional elements for a range of 51 

ecosystem types or the assessment of ecosystem properties along gradients of environmental 52 

conditions or anthropogenic disturbances, will gain in statistical interpretability. 53 

 54 
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1. Introduction 58 

Marine ecosystems are affected by climate change (Beaugrand, 2004; Hoegh-Guldberg and 59 

Bruno, 2010) and by other natural or human-caused disturbances (Pauly et al., 1998; Borja et al., 60 

2010). Ecosystem models are useful to get a better understanding of the structure and function of 61 

a system and for predicting how it may change over time when facing single or multiple 62 

pressures (Plagànyi, 2007). Ecopath with Ecosim (EwE) is a widely-used modelling approach to 63 

represent marine food webs (Polovina, 1984; Christensen and Walters, 2004; Christensen et al., 64 

2008). Since its development in the early 1980s, about 400 EwE models representing a wide 65 

variety of ecosystems worldwide have been published (Colléter et al., 2013a; Colléter et al., 66 

2013b). Coupling EwE models to Ecological Network Analysis (ENA; Ulanowicz, 1986) was 67 

proposed as a relevant method to estimate energy flows and to characterize emergent properties 68 

of food webs, i.e. characteristics not directly observable that can only be detected by analysis of 69 

within-system interactions (Christensen and Pauly, 1992). ENA is a suite of tools that include 70 

input-output analysis, trophic structure analysis, pathway analysis, biogeochemical cycle 71 

analysis, and information analysis (Dame and Christian, 2006; Borrett and Lau, 2014). The main 72 

challenge for ENA is to capture the properties of entire food web in terms of a limited number of 73 

indices. In the scope of the European Marine Strategic Framework Directive (MSFD; 74 

http://ec.europa.eu; Directive 2008/56/EC), the EU Member States have to report on the 75 

environmental status of the seas under their jurisdiction and to work on achieving “Good 76 

Environmental Status” (GES) using food-web indicators as one possible metric. In this direction, 77 

nine food-web indicators are currently under evaluation as potential indicators of GES; the 78 

Ecological Network Analysis indices are among these candidate indicators (Rombouts et al., 79 

2013; Niquil et al., 2014). 80 
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The EwE network analysis plugin has been employed in many instances, notably to study the 81 

stability of ecosystems and their response to perturbations (Patricio et al., 2006; Lobry et al., 82 

2008; Baeta et al., 2011; Selleslagh et al., 2012) or, more recently, to assess the dynamical food-83 

web reorganization and redirection of energy flow pathways under environmental changes 84 

(Tomczak et al., 2013). Nonetheless, these holistic conclusions relied on single values of ENA 85 

indices which were derived from a single input data matrix with no specified uncertainty. 86 

Moreover, the ecological interpretation of these single values mostly relies on non-statistical 87 

comparisons with values obtained for ecosystems of the same type. Given that data 88 

uncertainties may translate to uncertainties in model outputs (e.g. Niiranen et al., 2012), it is 89 

generally agreed that important scientific questions should be scrutinized with as many models as 90 

possible (Fulton, 2010; Gårdmark et al., 2012). One method of incorporating uncertainty into 91 

Ecopath model analysis is to use an ensemble parameterization technique, building several 92 

Ecopath models each representing a potential manifestation of a food web and falling within the 93 

uncertainty ranges of the observed data (Aydin et al., 2007; Kearney, 2012). This approach 94 

results in distributions of parameters rather than specific values, while still meeting basic 95 

thermodynamic requirements. Kearney et al. (2012) provided a suite of Matlab functions to 96 

construct such a distribution of parameters based on an Ecopath model and its data pedigree, i.e. a 97 

quantification of the parameter certainty tied to the parameter’s origin. In this study, we extend 98 

the Kearney et al. (2012) code for generating this type of ensemble to feed into calculations of 99 

ENA indices. This work will allow parameter uncertainty to be incorporated into model-100 

derived ENA indices, and will also improve interpretation of these indices by allowing 101 

statistical analyses. When overhauling the EwE source code between the release of EwE 102 

versions 5 and 6, the EwE developers chose not to continue support of the Ecoranger 103 

module, which had allowed users to explore parameter uncertainty ranges in a Bayesian 104 
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context (Christensen et al., 2005). The code presented in this paper now offers an 105 

alternative method for analyzing this uncertainty. 106 

The aim of this software development is to provide an easy-to-use routine to EwE users to 107 

generate a set of values for key ENA indices by explicitly taking into account uncertainty in 108 

model input data. To this end, two characteristics are identified as important: (i) a routine that can 109 

be called by a single line of Matlab code and can be run on all commonly-used operating systems 110 

(recent Windows, Unix-based, and Mac platforms), independent of the EwE software versions 111 

used for the pre-existing ecosystem model construction, and (ii) a routine based on formulas of 112 

ENA indices currently in use in the last version of the EwE software. The present work is also the 113 

opportunity to harmonize ENA indices calculations derived from two main approaches for 114 

constructing ecological flow networks, i.e. EwE and linear inverse modelling (LIM; Vézina and 115 

Platt, 1988). Different formulas for the same index exist in the scientific literature and correspond 116 

to different interpretations of the same idea. We demonstrate the use of this tool by applying it to 117 

a pre-existing Ecopath model of the Bay of Biscay continental shelf (Lassalle et al., 2011) for 118 

which data quality is already categorized using Pedigree scores (Lassalle et al., 2014). ENA 119 

indices distributions derived from the ENAtool routine are compared with previous point 120 

estimate values obtained with this Ecopath model to test for robustness of ENA-derived 121 

ecological conclusions. Finally, we test sensitivity of ENA indices distributions to the number of 122 

balanced ensemble members underlying their calculation and to the level of uncertainty applied 123 

to specific Ecopath model parameters. 124 

 125 

2. Materials and Methods 126 

2.1 The Ecopath concept and equations 127 
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The Ecopath with Ecosim (EwE) modelling software enables the building and analysis of 128 

food-web models (Polovina, 1984; Christensen and Walters, 2004; Christensen et al., 2008). The 129 

full software package includes several modules (e.g. Ecopath, Ecosim, Ecospace) to explore 130 

food webs across both space and time. However, for this study, we will focus only on the 131 

Ecopath component, which calculates a static mass-balanced snapshot of the biomass and 132 

energy fluxes between functional groups in a food web. In this context, a functional group 133 

refers to a species or group of species that occupy a particular niche in the food web, and 134 

can range in resolution from a broad grouping (e.g. pelagic fish) to specific life stage of a 135 

species (e.g. juvenile herring). The Ecopath model calculation is based on two “master” 136 

equations. The first equation decomposes the production term of each functional group: 137 

Production = fishery catch + predation mortality + net migration + biomass accumulation + other 138 

mortality 139 

“Other mortality” includes natural mortality factors such as mortality due to senescence, diseases, 140 

etc. 141 

The second equation describes the energy balance within each functional group: 142 

Consumption = production + respiration + unassimilated food 143 

More formally, the two equations can be written as follows for functional group i and its 144 

predator j: 145 

 (1) 146 

and 147 

 (2) 148 

where the main input parameters are biomass density (B, here in kg C·km-2), production rate 149 

(P/B, year-1), consumption rate (Q/B, year-1), proportion of i in the diet of j (DCij; DC = diet 150 
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composition), net migration rate (Ex, year-1), biomass accumulation (Bacc, year-1), total catch (Y; 151 

kg C·km-2 year-1), respiration (R; kg C·km-2·year-1), amount of consumed food that is 152 

unassimilated (U; kg C·km-2·year-1) and ecotrophic efficiency (EE; amount of species production 153 

used within the system). 154 

 155 

2.2 The generalized intra-model ensemble routine: ENAtool 156 

In keeping with our goal to provide a single user-friendly tool for ENA index ensemble 157 

generation, we have packaged together a master Matlab script (ENAtool.m) and two data 158 

input templates, all of which are available via the Supplementary Materials. The 159 

ENAtool.m script grew out of, and now incorporates several sub-functions from, the 160 

Matlab implementation of Ecopath (Kearney, 2015; DOI:10.5281/zenodo.17837), with 161 

additional routines added to calculate ENA indices from the resulting model ensemble. The 162 

key calculations performed by this tool are as follows. All the Matlab functions called 163 

during the ENAtool routine operate only on Ecopath data. 164 

 165 

2.2.1 Import of a EwE model into Matlab 166 

ENAtool first imports data from EwE6 databases into Matlab, storing them in a variable format 167 

we will refer to as EwE input structures (Fig. 1). The original data import function, mdb2ewein, 168 

relies on the ‘mdbtools’ (http://mdbtools.sourceforge.net/) set of utilities to read data from the 169 

MS Access file format used by EwE. As an alternative for those unwilling or unable to compile C 170 

source code, we have provided a companion import function, excel2ewein, which relies on an 171 

Excel template to provide the necessary input data (Fig. 1). This function is based on a template 172 

(see Template A provided in Supplementary Material 2) that must be filled with key input 173 

parameters and other related information by first opening the pre-existing EwE model with a 174 
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database program such as Microsoft Access or OpenOffice Base. The template was provided as 175 

an Excel file and can be completed using any spreadsheet program (e.g. Microsoft Excel, 176 

OpenOffice Calc etc.) but must be in the end saved as an Excel file (.xlsx). Both functions 177 

import all necessary Ecopath data, including basic inputs, diet compositions, fleet catches 178 

and discards, and multi-stanza group parameters, to the EwE input structure. 179 

 180 

2.2.2 Generation of a set of balanced ensemble members 181 

This second step can be decomposed into two phases: first, the definition of uncertainty around 182 

input parameters and then the construction of an ensemble of balanced Ecopath models (Fig. 1). 183 

A probability distribution for all or certain input parameters (i.e. field biomasses (B), production 184 

over biomass ratios (P/B), consumption over biomass ratios (Q/B), ecotrophic efficiencies (EE), 185 

and diet compositions (DC)) in the EwE input structure has to be defined. To do so, a level of 186 

uncertainty around each single value entered in the EwE input structure needs to be fixed. 187 

Uncertainty values were assigned as a percentage of the point estimate of each parameter. 188 

Minimum and maximum values of the parameter distribution can then be calculated as follows: 189 

Limits = single value of the parameter +/- (percentage * single value of the parameter) (3) 190 

In the present work, the createpedigree function was developed to ease this step, particularly in 191 

the case of pre-existing EwE models for which Pedigree scores were already estimated (Fig. 1; 192 

Table 1). The Pedigree index (Funtowicz and Ravetz, 1990; Pauly et al., 2000) was designed to 193 

evaluate whether an EwE model was based on extensive field sampling performed within the 194 

boundaries of the system during specific dates. The Pedigree component in the EwE software 195 

allows marking/categorizing the data origin of each single input using pre-defined tables; the key 196 

criterion being that inputs from local data have the best confidence and the highest level in the 197 

scale (Christensen et al., 2005). In the pre-defined tables, each Pedigree score is associated with a 198 
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default level of uncertainty expressed as ±%. For example, a Pedigree score of 1 (e.g. for a local 199 

biomass value) indicates a 10% uncertainty value. The createpedigree function builds a table of 200 

uncertainties based on an Excel file which contains for each parameter and each functional 201 

group the level of uncertainty to be applied to the single value (see Template B in Supplementary 202 

Material 3). Again, this Excel file can be opened with any spreadsheet program but must be 203 

finally saved as an Excel file. This Excel file can be also an export of the Pedigree table from the 204 

EwE software. If the user has no estimate of the uncertainty surrounding the input parameters in 205 

the pre-existing EwE model, a level of uncertainty can be set and a matrix of the same dimension 206 

as the uncertainty table will be automatically generated. With no specification from the user, the 207 

default values will be 20% around single values (Richardson et al., 2006). 208 

As inputs, the createensemble function requires the uncertainty table built using the 209 

createpedigree function and the model imported into Matlab using mdb2ewein or excel2ewein 210 

(Fig. 1). The createensemble function generates a defined number of ensemble members that all 211 

fall within the prescribed uncertainty ranges. Parameter values can be sampled from a uniform 212 

distribution within limits fixed by the uncertainty table or a lognormal distribution with the mean 213 

and standard deviation set according to the uncertainty table. Both Latin hypercube and Monte-214 

Carlo sampling methods can be used for random sampling in this interval. In the present 215 

application case, parameter values were randomly sampled using a Monte Carlo method from a 216 

uniform distribution with bounds directly related to the level of uncertainty.  217 

The ecopathlite function called by the createensemble function is the one that reproduces the 218 

main calculations performed by the Ecopath module of the EwE software (Fig. 1). This function 219 

is a ‘stripped-down’ version of the Ecopath algorithms allowing an estimation of missing 220 

parameters by solving the system of n equations with n unknowns (see equations (1) and (2)). 221 

Users can also choose whether they want ensemble members that respect the biomass 222 
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conservation hypothesis, i.e. here, that met the ecotrophic efficiency balance requirements (EE 223 

<1). Combining createensemble and ecopathlite functions allows the user to compute a specific 224 

number (referred to henceforth as nset) of balanced ensemble members before calculating 225 

any ENA indices. For multi-stanza configurations, adjustments of parameters are made 226 

when calling subecopathens.m to calculate Ecopath values and check for balance. So the 227 

resulting ENA index values stemming from this code will incorporate the same multi-stanza 228 

relationships as in EwE. 229 

 230 

2.2.3 Calculation of an ensemble of values for ENA indices 231 

Finally, the indices function was developed in this present work to calculate a set of 13 ENA 232 

indices (Fig. 1; Table 2) for each ensemble member generated by the createensemble function. 233 

The mathematical formulas for these indices required a harmonization between the EwE and LIM 234 

ecosystem modelling communities. We compared the formulas in use in EwE with those 235 

currently in use by modelers working with linear inverse models (LIMs) in Matlab (Leguerrier et 236 

al., 2007; Johnson et al., 2009; Niquil et al., 2011; Saint-Béat et al., 2013) (Table 2). Most 237 

formulas were shared in common between both communities and were as such already available 238 

in Matlab. Ecological interpretations of ENA indices are summarized in Table 2. Full details 239 

regarding their links with ecosystem ecology theories can be found, for instance, in Ulanowicz 240 

(2004), Kones et al. (2009), and Saint-Béat et al. (2015). 241 

 242 

2.3 The ENAtool application 243 

2.3.1 Description of the Bay of Biscay Ecopath model 244 

A full description of the Bay of Biscay Ecopath parameterization can be found in Lassalle et al. 245 

(2011). The model considered for this zone was restricted to the central part of the shelf between 246 
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the 30-m and 150-m isobaths with a surface area of 102,585 km2 (Fig. 2). The model represented 247 

a typical year between 1994 and 2005, i.e. before the collapse of the European anchovy 248 

(Engraulis encrasicolus) and the subsequent five-year closure of the fishery for this species. 249 

Thirty-two functional groups were retained, including two seabirds, five marine mammals, nine 250 

fish, eight invertebrates, three zooplankton, two primary producers, one bacteria, discards from 251 

commercial fisheries, and pelagic detritus. Cephalopods were included in the form of two classes 252 

relating to their main oceanic domain (pelagic/benthic). The five main pelagic forage fish were 253 

given their own functional groups and demersal fish were divided into four multi-species 254 

functional groups on the basis of their diet regime. Marine mammals were included in the form 255 

of five mono-specific functional groups representing the small-toothed cetaceans most 256 

frequently encountered in the area. 257 

 258 

2.3.2 Summary of previous ENA-derived results 259 

Some insights regarding the Bay of Biscay structure and function have been derived from ENA 260 

indices calculated with the EwE model of Lassalle et al. (2011) (see Table 2 for single estimates). 261 

In this previous work, single point estimates were interpreted by comparison to those obtained for 262 

ecosystems of the same type or for other Ecopath models of the same ecosystem. The high Finn’s 263 

Cycling Index (FCI) value, which measures the relative importance of cycling to the total flow 264 

(Finn, 1980), highlighted the strategic position of detritus as a perennial reservoir of energy in the 265 

Bay of Biscay. The System Omnivory Index (SOI) was regarded as an index reflecting the 266 

complexity of the inner linkages within the ecosystem (Christensen and Pauly, 1992). It is 267 

correlated with system maturity, since the internal network organization is expected to increase as 268 

the system matures (Odum, 1969). The relatively moderate value for this output suggested a 269 

“web-like” food chain with an intermediate level of internal flow complexity. The Bay of Biscay 270 
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also appeared as relatively immature, as indicated by the Ascendency (A), and has a high 271 

resistance to external perturbations according to System Overhead (O). Ascendency (A) merges 272 

the quantification of the system activity and the degree of specialization of flows in the network 273 

(Ulanowicz, 1986; Ulanowicz and Wulff, 1991). During maturation, ecosystem structure evolves 274 

towards an increase in ascendency (Ulanowicz et al., 2006). System Overhead (O) represents the 275 

amount of development capacity that does not appear as organized structure or constraints 276 

(Ulanowicz, 1986) and as such it corresponds to the system reserves when facing perturbations 277 

(Heymans and Baird, 2000). 278 

 279 

2.3.3 The Bay of Biscay Ecopath ensemble and ENA ensemble 280 

The ENAtool routine was used to generate 1000 balanced ensemble members based on the 281 

uncertainty values assigned to each input parameter according to Pedigree scores (Table 1) 282 

(Lassalle et al., 2014); for this particular food web, the search for 1000 balanced ensemble 283 

members took between three and five days to run on a single-processor machine. For each ENA 284 

index listed in Table 2, the single value obtained with the EwE software was graphically 285 

compared to the 1000 values derived from the ENAtool routine as to whether it falls between the 286 

boxplot whiskers. Then, the coefficient of variation between the mean value and the single 287 

Ecopath estimate was calculated. 288 

The ‘balance’ constraint can move the parameter distribution of the balanced ensemble members 289 

away from the initial sampling distribution. It could make a crucial difference as to whether the 290 

ensemble experiment applied to the Bay of Biscay is simply adding error bars onto the input to 291 

the ENA index equations, or if it is adding error bars and shifting the mean/median value of the 292 

inputs variables. As such, an additional 1000-member ensemble based on the Bay of Biscay input 293 

dataset and Pedigree scores was generated, with keeping both balanced and unbalanced members. 294 

Author-produced version of the article published in Ecological modelling, 2015, 313, 23-40.  
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.ecolmodel.2015.05.036 

©. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 



16 

Then, the ensemble mean parameter values of these two ensembles were statistically compared 295 

using two-sample Kolmogorov-Smirnov goodness-of-fit tests (alpha = 0.05). 296 

 297 

2.3.4 The preliminary sensitivity study 298 

The ENAtool routine requires as main input arguments the number of ensemble members to 299 

generate and the level of uncertainty to be applied on B, P/B, Q/B, and DC. Therefore, it was 300 

important to study the influence of these arguments on the output variables, namely ENA indices. 301 

1. A first exercise was performed to assess in which proportions ENA indices distributions were 302 

impacted by the number of ensemble members to generate and by the uncertainty set around 303 

input parameters in the ENAtool routine. Values for nset of 1000, 100 and 10 were tested. The 304 

point value of each parameter was changed by 20/40/60% up or down following equation (3). All 305 

combinations of nset and levels of uncertainty were run for the pre-existing Ecopath model of the 306 

Bay of Biscay continental shelf. 2. A second exercise tested which type of input parameter (i.e. B, 307 

P/B, Q/B, and DC) influenced the ENA index distributions most strongly. To do so, the ENAtool 308 

routine was run with a nset of 1000 and a level of uncertainty of 20% alternatively applied to 309 

each input parameter type of the pre-existing Ecopath model of the Bay of Biscay continental 310 

shelf (Richardson et al., 2006). 311 

In both exercises, the variance of ENA indices distributions (i.e. standard deviation squared) was 312 

the metric used to analyze the sensitivity results through graphical representations. 313 

 314 

3. Results 315 

First, based on the exploratory statistical comparisons of the parameter distributions between the 316 

balanced ensemble and the mixed ensemble (i.e. balanced and unbalanced), 52 of the basic 317 

estimates parameters shifted mean and 169 of the non-zero diet components shifted too. 318 
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For the pre-existing Ecopath model of the Bay of Biscay continental shelf, the value derived from 319 

the EwE software for each ENA index was compared to the range of values obtained following 320 

the application of the ENAtool routine to this model with a nset of 1000 and levels of uncertainty 321 

in accordance with Pedigree scores (Table 3). For A, Ai/Ci, and MTL, the EwE single estimates 322 

fell within the range defined by the 1st (25%) and the 3rd (75%) quartile of ENA values (Fig. 3; 323 

Table 2 for the list of ENA indices with their abbreviations). For 9 of the 10 remaining ENA 324 

indices, the EwE single estimates fell in the upper boxplot whiskers calculated as 1.5 times the 325 

interquartile range. Regarding more specifically at the ENA indices used by Lassalle et al. 326 

(2011) in their assessment of the Bay of Biscay functioning, we calculated an FCI value with a 327 

mean of 33.09% across ensembles, compared to the single value of 34.61% obtained  by Lassalle 328 

et al. (2011) (Fig. 3). The System Omnivory Index (SOI) presented the broader difference 329 

between the Ecopath single estimate and the mean value, i.e. 0.195 versus 0.179 respectively 330 

(Fig. 3); the Ecopath SOI estimate being at the upper end of the distribution. The mean 331 

Ascendency (A) was of 846015 versus 860882 flowbits for the pre-existing Ecopath model. The 332 

mean Overhead (O) and the single Overhead estimate were of 2639671 and 2947325 flowbits, 333 

respectively. The coefficients of variation between the mean values and the single Ecopath 334 

estimates for those four indices were no greater than 10% (Table 3). 335 

The first sensitivity exercise performed on the outputs of the ENAtool routine showed that the 336 

number of ensemble members generated induced no trend on the variance of ENA indices 337 

calculated as the standard deviation squared (Fig. 4; Table 3). Indeed, for all of the three levels of 338 

uncertainty applied in the routine, i.e. 20, 40 and 60% on all parameters, and for all ENA indices, 339 

the variance of the distribution did not systematically increase with the number of ensemble 340 

members generated as first suspected (Fig. 4). On the contrary, when looking at a given number 341 

of ensemble members to generate, i.e. at a specific shade of grey, the variance of the distribution 342 
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systematically increased with the level of uncertainty applied to the input parameters (Table 3). 343 

This trend was particularly marked for the Total System Throughputs (TST) with variances that 344 

almost doubled when the level of uncertainty was changed from 40 to 60% (Fig. 4). These results 345 

were in line with the method, as parameters for the ensemble members were here randomly 346 

sampled from a uniform distribution with bounds directly related to the level of uncertainty; 347 

every value in the interval having the same probability of being picked. 348 

In the second sensitivity exercise, two input parameters appeared to be the most influential on 349 

ENA indices (Fig. 5). On the one hand, the Comprehensive Cycling Index (CCI), the Finn 350 

Cycling Index (FCI), the Mean Trophic Level of captures (MTL) and the System Omnivory 351 

Index (SOI) were the most sensitive to less constrained diet compositions (DC) (Fig. 5).On the 352 

other hand, the relative Ascendency (A/C), the Ascendency (A), the Capacity (C), the Averaged 353 

Path Length (APL), the Overheads (O) and the Total System Throughput (TST) were the most 354 

sensitive to uncertainty in the Biomass (B) parameter (Fig. 5). 355 

 356 

4. Discussion 357 

The present work provides EwE modellers, and more broadly ecosystem ecologists, with a 358 

routine that generates distributions of values for a set of well-known indices synthesizing 359 

structural and functional properties of ecosystems by taking into account uncertainty in model 360 

input parameters. In the first place, reanalyzing the Bay of Biscay continental shelf food web in 361 

the light of the most probable estimates of uncertainty around input parameters for this ecosystem 362 

supported the main ENA-derived ecological conclusions. Indeed, ENA index distributions all 363 

encompassed the single ENA values derived from the EwE software with mean values in the 364 

same range as the initial Ecopath estimates (Table 3). The Bay of Biscay ensemble approach as 365 

such supported and strengthened the main conclusion of a detritus-based, and relatively mature 366 
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ecosystem (Lassalle et al., 2011). In addition, when interpreting and using ENA distributions, it 367 

should be kept in mind that those values are derived from the propagation of parameter 368 

uncertainty forward but also, to some point, to the interplay in parameters required to keep the 369 

models balanced when any changes are made. 370 

The ENAtool routine was developed with the primary goal of strengthening ecological 371 

conclusions derived from comparative studies and before/after impact evaluations. 372 

Interpretation will no longer rely only on single value comparisons. The routine will permit 373 

one to test differences between ENA indices through statistical tests as performed in Saint-Béat et 374 

al. (2013) with LIM models. The LIM models have evolved in the last decade from a single-375 

solution method (Vézina and Platt, 1988) to statistical approaches with outputs composed of 376 

uncertainty intervals (density probability functions) of the flows and allowing the definition of 377 

uncertainty intervals of ENA indices. These methods first based on Monte Carlo approaches 378 

(Kones et al., 2006) are now used with a Monte Carlo Markov Chain routine (Kones et al., 2009). 379 

Several meta-analyses, based on a selection of EwE models, have been done, focusing either on 380 

theoretical ecology and ecological concepts, or on ecosystems and species of particular interest 381 

(see details in Colléter et al., 2013b), a growing proportion being based on ENA indices (e.g. 382 

Christensen, 1995; Pérez-España and Arreguı́n-Sánchez, 2001; Lobry et al., 2008; Coll and 383 

Libralato, 2012; Selleslagh et al., 2012). In the present work, complementary analyses were 384 

performed on the ENAtool routine to determine how much the ENA indices distributions were 385 

sensitive to the main routine arguments, namely the number of ensemble members to be 386 

generated (nset) and the level of uncertainty to apply on the EwE input parameters (Pedigree). 387 

The first induced no remarkable trend on the distributions whereas the latter was found positively 388 

related to the variance of the distributions (Table 3). As such, in future applications of the 389 

ENAtool routine, we recommend keeping the levels of uncertainty within a range compatible 390 
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with known uncertainties on parameters. If no Pedigree scores were filled for the EwE model, 391 

model builders or experts of the study area should be interviewed regarding the quality of data 392 

used during model construction. This was even more strongly suggested for field biomasses (B) 393 

and diet compositions (DC) that appeared as the most influential input parameters (Table 3). This 394 

last result can be also interpreted as an uncertainty analysis, showing that less constrained 395 

biomasses and diet compositions in input matrices both had a marked influence on ecosystem-396 

level EwE model outputs such as ENA indices. This reinforces the well-known need for extra 397 

care to be used when setting these two parameters in EwE models, and more importantly for 398 

better information to be collected on these key characteristics of biological taxa. In the particular 399 

case of the Bay of Biscay, biomasses and diet compositions were both associated with low levels 400 

of uncertainty in the pre-existing Ecopath model, meaning they were already relatively well 401 

constrained by data. Within the four ENA indices that were strongly influenced by variations in 402 

diet compositions, the Mean Trophic Level (MTL) and the System Omnivory Index (SOI) were 403 

directly linked to trophic levels of functional groups compared to the Finn Cycling Index (FCI) 404 

and the Comprehensive Cycling Index (CCI) for which interpretation of diet compositions 405 

influence was less intuitive. Nonetheless, FCI and CCI were both calculated from a matrix of 406 

internal exchanges that portrays the diet compositions of predators (Allesina and Ulanowicz, 407 

2004). Indeed, both of these indices include the term Tij (i.e. flow between functional groups i 408 

and j) in their definition, which is the same as Qij in Ecopath, with Qij = Bj • DCij. FCI, CCI and 409 

SOI were commonly used to assess key ecosystem structural and functional features such as 410 

system maturity (Christensen, 1995), complexity, and stability (Libralato, 2008). From an applied 411 

perspective, in a comparative study by Selleslagh et al. (2012), the SOI was also demonstrated to 412 

be positively correlated with the degree of anthropogenic perturbations in estuaries. In the context 413 

of the European Water Framework Directive, the development of more functional indicators 414 
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based on fluxes of matters and energy, and trophic networks at the scale of the ecosystem was 415 

recently listed as a critical way to improve the implementation of European policies (Reyjol et al., 416 

2014). In this scope, by using the ENAtool routine and by applying variations more specifically 417 

to the diet compositions, the robustness of this relationship ‘SOI/anthropogenic impacts’ is 418 

planned to be statistically tested in an upcoming comparative study before presentation as a 419 

potential indicator of “Good Environmental Status”. Attention will have to be paid to the 420 

topology and the degree of aggregation among functional groups in the compared models as 421 

these two factors were demonstrated to influence ENA values (Johnson et al., 2009). 422 

Application of the ENAtool routine is not strictly limited to the generation of ENA indices 423 

distributions for comparative studies; it can be also used to performed conventional uncertainty 424 

analyses. There is a need to assess parameter uncertainty of EwE outputs for decision 425 

making processes. In this scope, all balanced ensemble members derived from the resampling 426 

procedure in the ENAtool routine can be stored. And then, the various graphical representations 427 

proposed in the present work and more sophisticated statistical analyses can be performed to 428 

assess the influence of less constrained parameters on model estimates. Parameter uncertainty 429 

testing is also under development by the CEFAS (UK) where alternate balanced EwE 430 

models are generated to assess the impact of parameter uncertainty on fishing policies. A 431 

new R package, called ‘Rpath’, is currently under development and will address 432 

uncertainty in input parameters allowing for a creditable interval around model outputs 433 

(Lucey et al., 2014). 434 

 435 

5. Conclusion 436 
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ENA indices are increasingly considered as potential indicators of ecosystem status. They 437 

express, alone or in combinations, key structural and functional aspects of a given system. 438 

The ENAtool routine will help to go a step further in ecosystem-based fisheries 439 

management (EBFM) by communicating to natural resources managers the distribution 440 

and mean values of ecosystem-level indices surrounded by confidence intervals. Statistical 441 

comparison of ENA index distributions, either between neighboring ecosystems or under 442 

various management scenarios within a single ecosystem (i.e. before/after management 443 

action evaluations) can be performed using this tool, improving ecological diagnosis for a 444 

given system. Because the ENAtool routine is based on an ensemble parameterization 445 

technique, it will also contribute to the effort of the EwE community for parameter 446 

uncertainty testing. 447 
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Figure captions 459 

 460 

Figure 1: Schematic representation of the different Matlab functions that compose the ENAtool 461 

routine. The functions that were previously developed by Kearney (2012) are given in italics. In 462 

agreement with the developer, some modifications were made to these functions to enhance their 463 

applicability to all operating systems and to all EwE model versions. These modifications were 464 

specified in the name of the function by “_mod”. The functions that were specifically built for the 465 

present work were marked in bold. The origins of formulas used in the indices functions are 466 

listed in Table 2.  467 

 468 

Figure 2: Study area of the Bay of Biscay continental shelf and locations of the main rivers 469 

flowing into it. The shaded area corresponds to the French part of the continental shelf between 470 

30 and 150m depth, and represents the spatial extent of the Ecopath model. 471 

 472 

Figure 3: Boxplot of ENA indices values obtained from the ENAtool routine, run with a nset of 473 

1000 and a level of uncertainty specific to each input parameter according to Pedigree scores for 474 

the pre-existing Ecopath model of the Bay of Biscay continental shelf of Lassalle et al. (2011). A 475 

black circle corresponds to the mean of the 1000 ENA indices values. A black cross represents 476 

the single ENA indices values obtained from the pre-existing Ecopath model using the EwE 477 

software. A black triangle is used for the ENA indices values calculated after the importation of 478 

the pre-existing Ecopath model to Matlab with no change on the input parameters. Results are 479 

depicted for the 13 ENA indices. Graphics are organized following the order of Table 2. 480 

 481 
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Figure 4: Variance of ENA indices values obtained from the ENAtool routine run with every 482 

combinations of nset equal to 10 (light-grey bars), 100 (medium-grey bars) and 1000 (dark-grey 483 

bars) and levels of uncertainty of 20, 40 and 60% on the pre-existing Ecopath model of the Bay 484 

of Biscay continental shelf of Lassalle et al. (2011). Results are depicted for the 13 ENA indices. 485 

Graphics are organized following the order of Table 2. 486 

 487 

Figure 5: Variance of ENA indices values obtained from the ENAtool routine run with a nset 488 

equal to 1000 and a level of uncertainty of 20% alternatively applied on each key input 489 

parameter. The application case is the pre-existing Ecopath model of the Bay of Biscay 490 

continental shelf of Lassalle et al. (2011). For each histogram, from the left to the right, the field 491 

biomasses are modified by ±20%, then production to biomass ratios, consumption to biomass 492 

ratios, and finally diet compositions. Results are depicted for the 13 ENA indices. Graphics are 493 

organized following the order of Table 2. 494 

 495 
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Table 1: Uncertainty applied to input parameters of the pre-existing Ecopath model of the Bay of 496 

Biscay continental shelf by Lassalle et al. (2011) (i.e. term ‘percentage’ in equation (3)). Values 497 

were derived from pre-defined tables provided by Christensen et al. (2005) associating a Pedigree 498 

score to each given level of uncertainty for each basic input parameter. Blank cells correspond to 499 

parameters left to be estimated by the model, where the parameter did not apply (e.g. Q/B for 500 

primary producers), or where the EwE software did not allow setting Pedigree scores (e.g. P/B of 501 

primary producers). To run the ENAtool routine, blank cells were replaced by zeros. 502 

                                          503 

                    B      P/B     Q/B      DC  504 

Pursuit divers seabirds           0.1     0.9     0.5      0.8  505 

Surface feeders seabirds          0.1     0.9     0.5      0.8  506 

Striped dolphins              0.1     0.8     0.5      0.3  507 

Bottlenose dolphins            0.1     0.8     0.5      0.3  508 

Common dolphins             0.1     0.8     0.5      0.3  509 

Long-finned pilot whales          0.1     0.8     0.5      0.3  510 

Harbour porpoises             0.1     0.8     0.5      0.3  511 

Piscivorous demersal fish          0.1     0.5     0.5      0.4  512 

Piscivorous and benthivorous demersal fish  0.1     0.5     0.5      0.4  513 

Suprabenthivorous demersal fish       0.1     0.5     0.5      0.4  514 

Benthivorous demersal fish         0.1     0.5     0.5      0.4  515 

Mackerel                0.6     0.5     0.5      0.3  516 

Horse mackerel              0.6     0.5     0.5      0.3  517 

Anchovy                 0.1     0.5     0.5      0.3  518 

Sardine                 0.1     0.5     0.5      0.3  519 

Sprat                  0.1     0.5     0.5      0.3  520 

Benthic cephalopods                  0.8     0.8      0.5  521 

Pelagic cephalopods                  0.8     0.8      0.5  522 

Carnivorous benthic invertebrates      0.4     0.5            0.3  523 

Necrophageous benthic invertebrates     0.4     0.5            0.3  524 

Sub-surface deposit feeders invertebrates   0.4     0.5            0.3  525 

Surface suspension and deposit feeders inv.  0.4     0.5            0.3  526 

Benthic meiofauna            0.4     0.5            0.3  527 

Suprabenthic invertebrates         0.4     0.5            0.3  528 

Macrozooplankton             0.1           0.8      0.3  529 

Mesozooplankton             0.1           0.8      0.3  530 

Microzooplankton             0.1           0.8      0.3  531 

Bacteria                 0.1     0.1            0.3  532 

Large phytoplankton            0.1                     533 

Small phytoplankton            0.1                     534 

Discards                                       535 

Detritus                                       536 

 537 
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Table 2: Formulas to calculate the 13 ENA indices in the indices function of the ENAtool routine. Formulas and their origins are 538 

presented for EwE software v.6 as well as for the linear inverse modelling approach. For each ENA index, its single value calculated 539 

using the EwE model of the Bay of Biscay continental shelf of Lassalle et al. (2011) was presented. TLi is the trophic level of the ith 540 

functional group, Yi the captures (i.e. landings and discards) for functional group i, TSTc the sum of flows involved in cycles, Tij the 541 

magnitude of the unidirectional flow from i to j (inflow), Qi the consumption of functional group i, DCji the proportion of j in the diet 542 

of i and BQBi (or OIi) is the omnivory index for i. The internal ascendency Ai, internal capacity Ci and internal relative ascendency 543 

Ai/Ci were also calculated by only considering internal flows to the system and constitute indices 11, 12 and 13 respectively. 544 

Indices 
General 
interpretati
on 

EwE software formula 
Reference
s 

Single 
value 
of 
ENA 
index 

Linear inverse modelling 
formula 

Referenc
es 

Mean 
trophic level 
of captures 
(MTL) / no 
units 

Fishing 
down, up 
or through 
the food 
web 

 

Pauly et 
al. (1998) 

3.753 ~  

Total system 
throughput 
(TST) / kg 
C·km-2·year-
1 

Global 
activity of 
the system 

Sum of all flows, i.e. consumption, 
respiration, imports and exports 

Ulanowic
z (1986) 

93557
8 

~  

Finn cycling 
index (FCI) 
/ no units 

Proportion 
of flows in 
a system 
that is 
recycled 

 

Finn 
(1980) 

34.61 ~  
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Comprehens
ive cycling 
index (CCI) 
/ no units 

Proportion 
of all flows 
in a system 
that is 
recycled 

 

Allesina 
and 
Ulanowic
z (2004) 

39.53 ~  

Averaged 
path length 
(APL) / no 
units 

Average 
number of 
functional 
groups that 
an 
atom of 
carbon 
passes 
through 
between its 
entry into 
the system 
and its exit 

 

Finn 
(1980) 

4.857 
 

Kay et al. 
(1989); 
Baird et 
al. (1991) 

Ascendency 
(A) / 
flowbits 

Quantificati
on of the 
system 
activity in 
association 
with the 
degree of 
flows 
specializati
on 

 

Ulanowic
z (1986) 

86088
2 

~  

Capacity (C) 
/ flowbits 

Maximum 
potential 
ascendency  

Patricio et 
al. (2006) 

38082
06 

Ulanowic
z (1986) 

Relative 
ascendency 

Fraction of 
the system  

Ulanowic
z (1986) 

0.226 ~  
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(A/C) / no 
units 

that is 
organized 

Overheads 
(O) / 
flowbits 

Unorganize
d part of 
the system 

 
Ulanowic
z (1986) 

29473
25 

~  

System 
Omnivory 
Index (SOI) 
/ no units * 

Omnivory  
 

with s =  and 

 

Villy 
Christens
en, pers. 
comm. 

0.195 
 

Christens
en and 
Pauly 
(1993) 

*See http://sources.ecopath.org/trac/Ecopath/ticket/1348 for issues regarding calculation of OI when imports are set in the diet matrix 545 

in Ecopath with Ecosim v.6. 546 
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Table 3: Summary of results from the application of the ENAtool routine to the Bay of Biscay continental shelf ecosystem 547 

model and of results from the preliminary sensitivity analyses. ‘Global’ means that all input parameters were simultaneously 548 

changed according to the level of uncertainty and ‘Local’ that B, P/B, Q/B and DC were alternatively modified. 549 

 550 

Application of the ENAtool routine 
(nset of 1000 and levels of uncertainty based on 

pedigrees) 

Preliminary sensitivity analyses 
Global / All combinations of nset 

(10, 100, 1000) and levels of 
uncertainty (20, 40, 60%) 

Local / nset of 1000 and level of 
uncertainty of 20% 

• The single ENA indices values obtained from the pre-
existing Ecopath model using the EwE software all 
felt within the boxplot whisker intervals. 
 

• The coefficients of variation between the single ENA 
indices values obtained from the pre-existing 
Ecopath model using the EwE software and the 
mean distribution values were comprised between 
0.08 (MTL) and 11.45% (Ci). 

• No influence of nset on the 
variance of ENA indices 
distributions. 

 
• The variance of ENA indices 

distributions systematically 
increased with the level of 
uncertainty. 

• The variance of ENA indices 
distributions changed the 
most when variations were 
applied to B and DC. 
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