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Introduction

We consider a compact domain Ω ⊂ R n with boundary ∂Ω that splits R n into "hot" and "cold" media, Ω + = Ω and Ω -= R n \ Ω , characterized by (distinct) heat diffusion coefficients D + and D -(Fig. 1). On the boundary ∂Ω is also defined a function 0 ≤ λ(x) ≤ ∞ which describes the resistivity to heat exchange through the boundary.

We are interested in propagation of the heat content associated with the following 1 problem:

∂ t u ± -D ± ∆u ± = 0 x ∈ Ω ± , t > 0, (1) u 
+ | t=0 = 1, u -| t=0 = 0, (2) 
D - ∂u - ∂n | ∂Ω = λ(x)(u --u + )| ∂Ω , (3) 
D + ∂u + ∂n | ∂Ω = D - ∂u - ∂n | ∂Ω , (4) 
where ∂/∂n is the normal derivative directed outside the domain Ω .

A rigorous analysis of the problem ( 1)-( 4) for irregular boundaries requires its variational formulation in appropriate functional spaces (see Section 2). The variational problem is shown to have a unique weak solution with the desired trace properties on the boundary ∂Ω (see Section 2). The variational problem is equivalent to the problem ( 1)-( 4) for a piecewise Lipschitz ∂Ω according to the classical trace theorem. In turn, extensions of the trace theorem have to be used for fractal boundaries or, more precisely, d -sets (see Subsection 2.2).

Once a unique solution u ± of the problem (1)-( 4) is established, we study the asymptotic expansion of the heat content as t → 0

N(t) = R n \Ω u -(x, t)dx = Vol(Ω) - Ω u + (x, t)dx. (5) 
Ω + = Ω "hot" ). This boundary splits the plane into two complementary regions. At time t = 0 , the inner region Ω + = Ω is "hot" (functions on Ω + are denoted with subscript + ), while the outer region Ω -= R n \ Ω is "cold" (functions on Ω -are denoted with subscript -).

Ω -= R n \ Ω "cold" ∂Ω
Eqs. ( 1)-( 4) describe heat exchange between two media prepared initially at different temperatures and separated by a partially isolating boundary [START_REF] Carslaw | Conduction of Heat in Solids[END_REF][START_REF] Crank | The Mathematics of Diffusion[END_REF]. In fact, u(x, t) can describe how the distribution of (normalized) temperature evolves with time. The transmission boundary conditions [START_REF] Tanner | Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient[END_REF], [START_REF] Powles | Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers[END_REF] impose the continuity of the temperature flux across the boundary, and relate this flux to the temperature drop at the boundary due to thermal isolation. The growth rate of the heat content with time characterizes the efficiency of thermal isolation. Understanding this problem is relevant to improve heat exchangers, e.g., cooling of metallic radiators or thermal isolation of pipes and buildings. Depending on application, cooling rate has to be either enhanced (e.g., in the case of microprocessors or nuclear reactors), or slowed down (e.g., in the case of pipes and buildings). For these purposes, one can either modify the thermal isolation (i.e., the resistivity λ ), or the shape of the exchange boundary. It is therefore crucial to understand how the shape of the boundary influences heat exchange. In particular, would an irregular (e.g., fractal) boundary with a very large exchange area significantly speed up cooling?

Similar equations can describe molecular diffusion between two media across semipermeable membranes [START_REF] Tanner | Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient[END_REF][START_REF] Powles | Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers[END_REF]. In that case, u(x, t) represents the (normalized) concentration of molecules, while Eqs. ( 1)-( 4) can model the leakage of molecules from a cell ( Ω + ) to the extracellular space ( Ω -) or, more generally, the diffusive exchange between two compartments (e.g., oxygen or carbon dioxide exchange between air and blood across the alveolar membrane in the lungs). The resistance λ is related to the cellular membrane permeability. As for heat exchange, one may need to enhance or to slow down the molecular leakage, and the shape of the boundary may play an important role.

The discontinuity of the initial condition, of the diffusion coefficient, and of the solution u(x, t) across the boundary between two domains constitutes one of the mathematical difficulties to be treated. From a physical point of view, such discontinuities might appear unrealistic. For instance, the diffusive flux at the boundary at time t = 0 is infinite. For any physical setting of heat or molecular diffusion, there would be an intermediate layer between two media in which the material properties would change rapidly but continuously. When the thickness of this intermediate layer is much smaller than the size of the domain, the physical problem with continuously varying parameters can be approximated by the heat problem (1)- [START_REF] Powles | Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers[END_REF]. Such an approximation is applicable starting from a small cut-off time while understanding the heat exchange at smaller time scales would need either restituting an intermediate layer, or introducing nonlinear terms into the heat equation. Throughout this paper, we focus on the mathematical problem (1)- [START_REF] Powles | Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers[END_REF].

The physical properties of the two media Ω + and Ω -are supposed to be different: D + = D -. This implies the discontinuity of the metric on ∂Ω . The case of continuous metric ( g -| ∂Ω = g + | ∂Ω ) on smooth compact n -dimensional Riemannian manifolds with a smooth boundary ∂Ω was considered in Ref. [START_REF] Gilkey | Heat content asymptotics with transmittal and transmission boundary conditions[END_REF]. The case of continuous transmission boundary conditions for the expansion of the heat kernel on the diagonal was treated in Ref. [START_REF] Pirozhenko | Integral equations for heat kernel in compound media[END_REF] (see also Ref. [START_REF] Vassilevich | Heat kernel expansion: user's manual[END_REF] for a survey of results on asymptotic expansion of the heat kernel for different boundary conditions). The heat content asymptotic expansion with Dirichlet boundary condition was found

• up to the third-order term for a compact connected domain Ω ⊂ R n with a regular boundary ∂Ω ∈ C 3 (Refs. [START_REF] Van Den | Heat content asymptotics of a Riemannian manifold with boundary[END_REF][START_REF] Van Den | Mean curvature and the heat equation[END_REF]);

• up to an exponentially small error for a compact connected domain Ω ⊂ R 2 with a polygonal ∂Ω (Ref. [START_REF] Van Den | Heat flow and Brownian motion for a region in R 2 with a polygonal boundary[END_REF]) and for Ω ⊂ R 2 with ∂Ω given by the triadic Von Koch snowflake (Ref. [START_REF] Fleckinger | Heat equation on the triadic Von Koch snowflake: asymptotic and numerical analysis[END_REF]);

• up to the second-order term for the general case of self-similar fractal compact connected domains in R n (Ref. [START_REF] Levitin | Spectral asymptotics, renewal theorem, and the Berry conjecture for a class fractals[END_REF]).

In general, the boundary between two media can have some resistance to heat exchange, described by the function λ(x) ≥ 0 ( x ∈ ∂Ω ) that may account for partial thermal isolation. We outline three cases of boundary conditions according to λ :

1. If 0 < λ(x) < ∞ for all x ∈ ∂Ω , u is discontinuous on ∂Ω and we have:

λ(x)u --D - ∂u - ∂n | ∂Ω = λ(x)u + | ∂Ω , D + ∂u + ∂n | ∂Ω = D - ∂u - ∂n | ∂Ω .
2. If λ = +∞ for all x ∈ ∂Ω , u is continuous on ∂Ω due to the transmission condition and in this case

u + | ∂Ω = u -| ∂Ω , D + ∂u + ∂n | ∂Ω = D - ∂u - ∂n | ∂Ω .
3. If λ = 0 for all x ∈ ∂Ω , we have the Neumann boundary condition

∂u - ∂n | ∂Ω = ∂u + ∂n | ∂Ω = 0
that models the complete thermal isolation of ∂Ω and implies the trivial solution given by u -(x, t) = 0 and u + (x, t) = 1 for all time t ≥ 0 .

The main goal of the article is to develop the preliminary study [START_REF] Rozanova-Pierrat | Faster diffusion across an irregular boundary[END_REF] and especially to formalize the seminal approach by de Gennes [START_REF] De Gennes | Physique des surfaces et des interfaces[END_REF]. In the case λ = +∞ , de Gennes argued that as t → +0 , N(t) is proportional to the volume µ(∂Ω, √ D + t) of the interior Minkowski sausage of ∂Ω of the width equal to the diffusion length √ D + t :

µ(∂Ω, ℓ) = Vol {x ∈ Ω| dist(x, ∂Ω) < ℓ}
(see also Ref. [START_REF] Levitin | Spectral asymptotics, renewal theorem, and the Berry conjecture for a class fractals[END_REF]). In particular,

• for a regular boundary ∂Ω , N(t) is proportional to Vol(∂Ω) √ D + t ;

• for a fractal boundary ∂Ω of the Hausdorff dimension d , N(t) is proportional to

(D + t) n-d 2 .
The de Gennes scaling argument was further investigated in Ref. [START_REF] Rozanova-Pierrat | Faster diffusion across an irregular boundary[END_REF], both experimentally and numerically. It was shown that irregularly shaped passive coolers rapidly dissipate at short times, but their efficiency decreases with time. The de Gennes scaling argument was shown to be only a large scale approximation, which is not sufficient to describe adequately the temperature distribution close to the irregular frontier.

In the present paper, we provide a mathematical foundation and further understanding for the de Gennes approach. We obtain three results valid for all compact (ǫ, δ) -domains Ω in R n with connected boundary ∂Ω , presented by a closed d -set (see Section 2.2 for the definitions of (ǫ, δ) -domains and d -sets): the well-posedness of the problem (1)-( 4), the continuity of the solution on λ (see Section 2), and the asymptotic expansion of the heat content [START_REF] Gilkey | Heat content asymptotics with transmittal and transmission boundary conditions[END_REF]. In particular, these results hold for domains with a self-similar fractal boundary.

We show in Theorem 5 that the heat content N(t) is approximated by the volume of the interior Minkowski sausage of ∂Ω of the radius √ 4D + t :

N(t) = τ λ C λ (∂Ω)µ ∂Ω, 4D + t + O µ 2 ∂Ω, 4D + t , (6) 
where τ λ is equal to

1 if λ = ∞ and √ t if λ > 0 is finite.
Here C λ (∂Ω) is a constant depending only on the shape of ∂Ω and finiteness of λ (see Theorem 5 for the exact formulas). Formula ( 6) is the first approximation of Eqs (80), (82) given in Theorem 5, which allows to find N(t) up to terms of the order

τ λ O √ t µ ∂Ω, √ 4D + t .
Moreover, the asymptotic relation ( 6) remains valid even for mixed boundary conditions for three disjoint boundary parts, i.e. when λ = ∞ on one part of the boundary, λ = 0 on another part, and 0 < λ < ∞ on the remaining boundary (see Theorem 3). However, changes of the type of the boundary condition should be continuous (see Theorem 2) such that u remains a continuous function of λ . In this more general case, the coefficient C λ (∂Ω) in Eq. ( 6) is given either by Eq. (83) for 0 < λ < ∞ , or by Eq. ( 84) for λ = ∞ , or is equal to 0 for λ = 0 (the boundary with λ = 0 does not contribute to the short-time asymptotics of the heat content). Finding the asymptotics for mixed boundary conditions with a discontinuous jump from a finite λ to λ = ∞ is still an open problem.

As expected, the resistivity of the boundary to heat transfer makes heat diffusion slower due to the presence of the coefficient τ λ = √ t . For a fractal boundary we replace µ ∂Ω, √ 4D + t by the volume of the interior Minkowski sausage which scales as (4D + t) (n-d)/2 , where d is the fractal dimension [START_REF] Levitin | Spectral asymptotics, renewal theorem, and the Berry conjecture for a class fractals[END_REF].

In the fractal case the integral over ∂Ω should be understood by using the Hausdorff measure (see Ref. [START_REF] Kigami | Analysis on fractals[END_REF][START_REF] Giona | Contour integrals and vector calculus curves and interfaces on fractal[END_REF][START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]). The comparison between the asymptotic formula (6) and a numerical solution of the problem (1)-( 4) for the unit square and a prefractal domain is shown in Fig. 2 for a finite λ and in Fig. 3 for λ = +∞ . The numerical solution was obtained in FreeFem++ by a finite elements method with the implicit θ -schema, also known as Crank-Nicolson schema, for the time discretization with θ = 1 2 and ∆t = 10 -6 . The domain Ω was centered in a ball B of diameter (at least) twice bigger than the diameter of Ω . The Neumann boundary condition was imposed on the boundary of the ball. According to the principle "not feeling the boundary" [START_REF] Fleckinger | Heat equation on the triadic Von Koch snowflake: asymptotic and numerical analysis[END_REF] (see also Section 3), the heat content propagation in R 2 with a prescribed boundary ∂Ω can be very accurately approximated at small times by the heat content propagation computed in B . The accuracy of this approximation can also be checked by changing the diameter of the ball. In the case of the square domain Ω , the ball was replaced by a square with four times bigger edge. Each prefractal edge was discretized with 27 space points while 57 points were used in the external boundary of the ball. The mesh size was varied to check the accuracy of the presented numerical solutions. For the case of the discontinuous solution on the boundary (when 0 < λ < ∞ ) we apply the domain decomposition method and match the boundary Since the Hausdorff dimension of the boundaries of these domains is 1 (even for the prefractal case), Eq. ( 6) for a constant λ is reduced, according to Theorem 5, to

N(t) = 2 √ tC 0 λµ(∂Ω, √ 4D + t) + O(t 3 
2 ) with µ(∂Ω, √ 4D + t) ≃ √ 4D + t Vol(∂Ω) and C 0 given by Eq. (97). For plot (b), dashed line shows the fractal asymptotic (that would be exact for the infinite generation of the fractal) with de Gennes approximation of µ ∂Ω, √ 4D + t in Eq. ( 6) by (4D + t)

1 4 . This approximation is valid for intermediate times. 6) is reduced to Eq. (95), i.e., N(t) ∝ √ t . In turn, dashed line shows the fractal asymptotic (that would be exact for the infinite generation of the fractal) with de Gennes approximation of µ ∂Ω, √ 4D + t in Eq. ( 6) by 2.5(4D + t) 1 4 . This approximation is valid for intermediate times.

values of the respective solutions on ∂Ω by a Picard fixed point method. We consider therefore the numerical solution of heat propagation for small times as a reference, to which asymptotic formulas are compared with. In particular, deviations between the numerical solution and the asymptotic formulas observed at longer times illustrate the range of validity of the short-time expansion.

For the regular case ∂Ω ∈ C 3 , we obtain the heat content approximation up to the third-order term. The formulas are given in Theorem 6. For the case λ < ∞ , the coefficient in front of the second-order term ( t 3 2 ) in the asymptotic expansion depends on the mean curvature. In turn, for λ = ∞ , the second-order term (here, t ) in the asymptotic expansion vanishes:

N(t) = 2 1 -e -4 √ π √ D -D + √ D + + √ D - Vol(∂Ω) √ t + O(t 3 2 
).

The rest of the paper is organized as follows. In Section 2, we describe the class of irregular boundaries and prove the well-posedness of the model relying on the variational formulation of the problem. The boundary conditions are treated in the weak sense by generalizing the trace operator and the Green formula to fractals using fractal Besov spaces, B 2,2 β (∂Ω) and

B 2,2 -β (∂Ω) ( β = 1 -n-d 2 > 0 for a d -dimensional ∂Ω ) defined in A.
In Section 2 we also establish the continuity of u as a function of λ . In Section 3 we prove that the problem to find N(t) can be replaced by a heat problem localized in O( √ t) -interior Minkowski sausage of the boundary by a variant of the principle "not feeling the boundary" [START_REF] Fleckinger | Heat equation on the triadic Von Koch snowflake: asymptotic and numerical analysis[END_REF] in the general case in R n . This allows, due to the continuity of u on λ , to establish Theorem 3 for a mixed boundary condition including zero, finite, or infinite values of λ . Considering a regular ∂Ω (at least in C 3 ) and using the localization properties from Section 3, we rewrite in Section 4 the formula for N(t) in the terms of the local coordinates. Section 5 gives the approximation of the heat problem solution through the solution of one-dimensional constant coefficient problem. The heat content is calculated in terms of the volume of the interior Minkowski sausage of the boundary in Section 6. Firstly, to illustrate the technique of the proof on a simple case, we give the proof for the case of continuous diffusion coefficients D + = D -, just with discontinuity of the initial condition. In this case, all formulas given in Section 6 are valid for all types of the boundary introduced in Subsection 2.2. The calculation relies on the Green function of the problem with constant coefficients for Ω being a half-space (see B). We also obtain the Green function used in Section 7 for the proof of the asymptotic heat expansion up to the third-order term for a regular ∂Ω ∈ C 3 .

Well-posedness of the model

Let Ω be an open connected bounded subset of R n such that ∂Ω is closed with Vol(Ω) < ∞ . We denote by Ω + = Ω and Ω -= R n \ Ω (Fig. 1).

We are looking for the solution of the problem (1)-( 4), where

D + = D -, D + > 0 and D -> 0 , λ(x) ≥ 0 for all x ∈ ∂Ω . The boundary ∂Ω is divided into two disjoint parts: Γ ∞ = {x ∈ ∂Ω| λ(x) = +∞} and ∂Ω \ Γ ∞ = {x ∈ ∂Ω| 0 ≤ λ(x) < +∞} .
Each of the parts can be the empty set. We thus assume that λ ∈ L ∞ (∂Ω \ Γ ∞ ) .

Regular boundary: at least piecewise Lipschitz

Firstly, we consider the case when ∂Ω is regular (at least piecewise Lipschitz) and Γ ∞ is the empty set.

To prove the existence, the uniqueness, and the stability of a solution of the problem (1)-( 4), we proceed with its variational formulation.

We introduce the space H = L 2 (R n ) and the space

V = {f ∈ H| f + = f | Ω + ∈ H 1 (Ω + ), and f -= f | Ω -∈ H 1 (Ω -)} of functions f = f + 1 Ω + + f -1 Ω -defined on Ω + ∪ Ω -such that their restrictions f + = f | Ω + and f -= f | Ω -belong to H 1 .
We equip V with the norm:

u 2 V = D + Ω + |∇u + | 2 dx + D - Ω - |∇u -| 2 dx + Ω + ∪Ω - |u| 2 dx.
We notice that V is a Hilbert space, V ⊂ L 2 (Ω) , and V is dense in L 2 (Ω) . In addition,

V ⊂ L 2 (R n ) ⊂ V ′ , where V ′ is the dual space to V . Finally, since ∂Ω is regular, the inclusion V ⊂ L 2 (R n ) is compact.
Applying the usual trace theorem under the assumptions that Ω is bounded and ∂Ω is at least piecewise Lipschitz, the bilinear form

a(u, v) = D + Ω + ∇u + ∇v + + D - Ω - ∇u -∇v -+ ∂Ω + λ(x)(u + -u -)(v + -v -)dσ (8) is continuous, |a(u, v)| ≤ C( λ L ∞ (∂Ω) , D + , D -, Ω + ) u V v V (for a constant C > 0),
and coercive on V × V , i.e., a(u, u) = D + Ω + |∇u + | 2 dx + D - Ω - |∇u -| 2 dx + ∂Ω + λ(x)|u + -u -| 2 dσ ≥ u 2 V -u 2 L 2 (R n ) > 0.
Thus we conclude [START_REF] Lions | Non-Homogeneous Boundary Value Problems and Applications[END_REF] that the bilinear form a(u, v) defines an operator A :

V → V ′ by a(u, v) = Au, v . Moreover, -A| L 2 (R n ) with D(A) = {u ∈ V | Au ∈ L 2 (R n )} generates an analytical semigroup.
Remark 1 When Γ ∞ is not empty, the variational form [START_REF] Van Den | Heat content asymptotics of a Riemannian manifold with boundary[END_REF] is well adaptable to the case where u is continuous across the part Γ ∞ ⊂ ∂Ω of the interface. By convention we put on this part λ(x) = ∞ which implies u + = u -on Γ ∞ (see also Theorem 2).

For Γ ∞ = ∅ , we introduce V as the space of functions u ∈ L 2 (R n ) such that

u + = u| Ω + ∈ H 1 (Ω + ), u -= u -| Ω -∈ H 1 (Ω -), u + | Γ∞ = u -| Γ∞ ,
and, therefore, we consider the bilinear continuous and coercive form on

V × V a(u, v) = D + Ω + ∇u + ∇v + + D - Ω - ∇u -∇v -+ ∂Ω\Γ∞ λ(x)(u + -u -)(v + -v -)dσ. ( 9 
)
In particular, for

Γ ∞ = ∂Ω , we get V = H 1 (Ω + ∪ Ω -) and a(u, v) = D + Ω + ∇u + ∇v + + D - Ω - ∇u -∇v -.

Extension to d -sets (fractal case for d > n -1 )

Let us define a class of fractal domains to be considered. We will see that the existence and uniqueness results of a weak solution of the problem (1)-( 4) hold for a class of bounded (ǫ, δ) -domains [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF][START_REF] Jonsson | Function spaces on subsets of R n[END_REF][START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF]] Ω + such that ∂Ω is a d -set [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]: [START_REF] Jonsson | Function spaces on subsets of R n[END_REF][START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF][START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF]) Let Γ be a closed subset of R n and 0 < d ≤ n . A positive Borel measure m d with support Γ is called a d -measure of Γ if, for some positive constants c 1 , c 2 > 0 ,

Definition 1 ( d -set
c 1 r d ≤ m d (Γ ∩ U r (x)) ≤ c 2 r d , for ∀ x ∈ Γ, 0 < r ≤ 1,
where U r (x) ⊂ R n denotes the Euclidean ball centered at x and of radius r . The set Γ is a d -set if there exists a d -measure on Γ .

As it is known from Ref.

[ [START_REF] Martin | Lectures on hyponormal operators[END_REF], p.30], any two d -measures on Γ are equivalent.

Definition 2 ( (ǫ, δ) -domain [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF][START_REF] Jonsson | Function spaces on subsets of R n[END_REF][START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF]) An open connected subset Ω of R n is an (ǫ, δ) -domain, ǫ > 0 , 0 < δ ≤ ∞ , if whenever x, y ∈ Ω and |x -y| < δ , there is a rectifiable arc γ ⊂ Ω with length ℓ(γ) joining x to y and satisfying

1. ℓ(γ) ≤ |x-y| ǫ and 2. d(z, ∂Ω) ≥ ǫ|x -z| |y-z| |x-y| for z ∈ γ .
In particular, a Lipschitz domain Ω is an (ǫ, δ) -domain and also a n -set [START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF] (i.e., a d -set with d = n ). Self-similar fractals (e.g., von Koch's snowflake domain) are examples of (ǫ, δ) -domains with the d -set boundary [START_REF] Capitanelli | Asymptotics for mixed Dirichlet-Robin problems in irregular domains[END_REF][START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF], d > n -1 .

In order to describe irregular boundaries of fractal dimension d > n -1 , we define sets preserving Markov's inequality (Ref. [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] Ch. II):

Definition 3 A closed subset V in R n preserves Markov's inequality if for every fixed positive integer k , there exists a constant c = c(V, n, k) > 0 , such that max V ∩Ur(x) |∇P | ≤ c r max V ∩Ur(x)
|P | for all polynomials P ∈ P k and all closed balls U r (x) , x ∈ V and 0 < r ≤ 1 .

Examples of sets that preserves Markov's inequality are d -sets in R n , where d > n -1 , and self-similar sets that are not a subset of any (n -1) -dimensional subspace of R n (see Refs. [START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF][START_REF] Bodin | Characterisations of function spaces on fractals[END_REF]).

To extend the variational formulation introduced in Subsection 2.1 to fractal boundaries of the type of d -sets, we use the existence of the d -dimensional Hausdorff measure m d on ∂Ω (the d -measure from Definition 1) and the theorem which generalizes the usual trace theorem and the Green formula.

For example, for d = n -1 and a Lipschitz ∂Ω , we know [START_REF] Lions | Non-Homogeneous Boundary Value Problems and Applications[END_REF][START_REF] Marschall | The trace of Sobolev-Slobodeckij spaces on Lipschitz domains[END_REF] that the trace operator is linear continuous and surjective from H 1 (Ω) onto H 1 2 (∂Ω) , and the formula

Ω v∆udx = ∂u ∂ν , Trv ((H 1 2 (∂Ω)) ′ ,H 1 2 (∂Ω)) - Ω ∇v∇udx, holds whatever u ∈ H 1 (Ω) such that ∆u ∈ L 2 (Ω) and v ∈ H 1 (Ω) .
To generalize the trace operator and the Green formula to fractal boundaries, one introduces the Besov space B 2,2 β (∂Ω)

with β = 1 -n-d 2 > 0 (see A). Note that for d = n -1 , one has β = 1 2 and B 2,2 1 2 (∂Ω) = H 1 2 (∂Ω),
i.e., one recovers the above relations. In general,

1.

For an arbitrary open set Ω of R n , the trace operator Tr is defined [START_REF] Jonsson | Function spaces on subsets of R n[END_REF][START_REF] Bodin | Characterisations of function spaces on fractals[END_REF][START_REF] Lancia | A transmission problem with a fractal interface[END_REF] for

u ∈ L 1 loc (Ω) by Tru(x) = lim r→0 1 m(Ω ∩ U r (x)) Ω∩Ur(x) u(y)dy, (10) 
where m denotes the Lebesgue measure. The trace operator Tr is considered for all x ∈ Ω for which the limit exists.

2.

If Ω is a bounded (ǫ, δ) -domain in R n such that its boundary ∂Ω is a closed d -set preserving Markov's inequality, then [START_REF] Jonsson | Function spaces on subsets of R n[END_REF][START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF] (a) the trace operator Tr :

H 1 (Ω) → B 2,2
β (∂Ω) is linear continuous and surjective; (b) the Green formula holds (see also Refs. [START_REF] Lancia | A transmission problem with a fractal interface[END_REF][START_REF] Capitanelli | Mixed Dirichlet-Robin problems in irregular Comm[END_REF] for the von Koch case in R 2 ):

Ω v∆udx = ∂u ∂ν , Trv ((B 2,2 β (∂Ω)) ′ ,B 2,2 β (∂Ω)) - Ω ∇v∇udx, (11) 
where the dual Besov space

(B 2,2 β (∂Ω)) ′ = B 2,2 -β (∂Ω) is introduced in Ref. [23] (see A).
Let us also notice that the Green's formula [START_REF] Fleckinger | Heat equation on the triadic Von Koch snowflake: asymptotic and numerical analysis[END_REF] still holds whatever u ∈ H 1 (Ω) such that ∆u ∈ L 2 (Ω) and v ∈ H 1 (Ω) .

Well-posedness

The above preliminaries allow us to prove the following Proposition:

Proposition 1 1.
Let Ω = Ω + be a bounded domain in R n with a closed piecewise Lipschitz boundary ∂Ω and 0 < λ(x) ≤ +∞ be a given function defined on ∂Ω .

By Γ ∞ is denoted the part of ∂Ω such that ∀x ∈ Γ ∞ λ(x) = +∞, in the such way that λ ∈ L ∞ (∂Ω \ Γ ∞ ) . Then the bilinear form a(u, v) = D + Ω + ∇u + ∇v + + D - Ω - ∇u -∇v -+ ∂Ω\Γ∞ λ(x)(u + -u -)(v + -v -)dσ is continuous and coercive on V × V with V = {u ∈ L 2 (R n )| u + = u| Ω + ∈ H 1 (Ω + ), u -= u| Ω -∈ H 1 (Ω -), u + = u -on Γ ∞ }. ( 12 
)
2. Let Ω = Ω + be a bounded (ǫ, δ) -domain in R n with a closed d -set boundary ∂Ω and λ ∈ C(∂Ω) be a positive continuous function defined on ∂Ω . By m d is denoted the d -measure on ∂Ω (see Definition 1). Then the bilinear form

a(u, v) = D + Ω + ∇u + ∇v + + D - Ω - ∇u -∇v - + ∂Ω λ(x)Tr(u + -u -)Tr(v + -v -)dm d
is continuous and coercive on V × V ( V is defined in Eq. ( 12)).

3.

Let Ω = Ω + be a bounded (ǫ, δ) -domain in R n with a closed d -set boundary ∂Ω and λ(x) = +∞ for all x ∈ ∂Ω . Then the bilinear form

a(u, v) = D + Ω + ∇u + ∇v + + D - Ω - ∇u -∇v - is continuous and coercive on V × V with V = H 1 (R n ) .
Consequently, we obtain the following theorem:

Theorem 1 (Well-posedness) In all cases from Proposition 1 for all

u 0 ∈ H = L 2 (R n ) there exists a unique solution u ∈ C(R + t , L 2 (R n )) ∩ L 2 (R + t , V ) of the variational problem ∀v ∈ V d dt u, v H + a(u, v) = 0, u(x, 0) = u 0 ∈ L 2 (R n ), (13) 
where by •, • H is denoted the inner product in H . In addition, this solution verifies the energy equality:

1 2 R n |u(t)| 2 dx + t 0 a(u, u)ds = 1 2 R n |u 0 (x)| 2 dx. ( 14 
)
Remark 2 On one hand, any "smooth enough" solution of the problem (1)-( 4) gives the solution of Theorem 1. On the other hand, any solution from Theorem 1 satisfies the relations (1)-( 2) and, in a weak sense (in the sense of the duality presented above), satisfies the relations (3)-( 4).

Finally, we prove

Theorem 2 (Continuity of u λ on λ and the case λ = ∞ ) Let (λ k ) k∈N be a positive sequence converging to λ * in L ∞ (∂Ω) . Then the corresponding sequence of the solutions

(u λ k ) k∈N of the system (1)-(4) converges strongly to u * λ in C(R + t , L 2 (R n )) ∩ L 2 (R + t , V ) , i.e. , u λ is continuous as a function of λ . If λ k → ∞ in L ∞ (∂Ω) , then u λ k → u ∞ in C(R + t , L 2 (R n ))∩L 2 (R + t , V ) with (u ∞ ) + = (u ∞ ) -on ∂Ω . In this case, u ∞ ∈ C(R + t , L 2 (R n )) ∩ L 2 (R + t , H 1 (R n )) solves ∀v ∈ H 1 (R n ) R n ∂ t u ∞ vdx + R n D(x)∇u ∞ ∇vdx = 0, u ∞ (x, 0) = u 0 ∈ L 2 (R n ), (15) 
with

D(x) = 1 Ω + D + + 1 Ω -D -.
Proof. Firstly we suppose that λ * is a finite bounded function on ∂Ω ( λ * L ∞ (∂Ω) < ∞ ). Since u(0) = u 0 does not depend on λ , the equality [START_REF] De Gennes | Physique des surfaces et des interfaces[END_REF] implies that the sequence (u

λ k ) is bounded in C(R + t , L 2 (R n )) ∩ L 2 (R + t , V
) . Therefore, due to the unicity of the solution for λ * and the unicity of the weak limit, the convergence

λ k → λ * in L ∞ (∂Ω) implies u λ k ⇀ u λ * . Since u k | ∂Ω ∈ B 2,2 β (∂Ω) with β = 1 -n-d
2 > 0 , with the help of ( 13) and the coercive behavior of a(u, u) , a(u, u) > α u 2 V , for α > 0,

we conclude that u λ k → u λ * in C(R + t , L 2 (R n )) ∩ L 2 (R + t , V ) . In the case λ k L ∞ (∂Ω) → +∞ , we find from (14) that ∀k ∈ N ∂Ω λ k (x)Tr((u k ) + -(u k ) -) 2 dm d < ∞, ∂Ω Tr((u k ) + -(u k ) -) 2 dm d 1 2 ≤ 1 2 λ k L ∞ (∂Ω) R n |u 0 (x)| 2 dx.
Therefore, we obtain in this case that (u ∞ ) + = (u ∞ ) -on ∂Ω , where by u ∞ we denote the limit of u k as λ → +∞ . In addition, u ∞ (t, •) ∈ H 1 (R n ) and it is the solution of ( 15).

3 Heat content localization to a small neighborhood of the boundary s the initial condition is zero in R n \ Ω , we have

N(t) = Ω (1 -u(x, t))dx = Vol(Ω) - Ω u(x, t)dx, (16) 
or equivalently, in terms of the Green function of the problem (1)-( 4),

N(t) = Vol(Ω) - Ω Ω G(x, y, t)dydx.
Let us show that it is sufficient to integrate only on a small neighborhood of the boundary ∂Ω to obtain the desired heat content with an exponentially small error: 1)-( 4), associated with the Green function G(x, y, t) , 1. it holds

Lemma 1 Let F ⊂ Ω be a non-empty open bounded set in R n , such that dist(F, ∂Ω) = ǫ > 0 . Then for t → +0 and u = u + 1 Ω + u -1 R n \Ω the solution of (
F (1 -u + (x, t))dx = F 1 - Ω G(x, y, t)dy dx = O ǫ √ 4D + t n-2 e -ǫ 2 /(4D + t) . (17) 2. for ǫ > 2 √ D + t such that ǫ = O( √ t)
, there exists δ > 0 (a constant independent on time) such that the heat content N(t) can be expressed as

N(t) = R n \Ω u -(x, t)dx = Ωǫ 1 - Ωǫ G(x, y, t)dy dx + O e -1 t δ , ( 18 
)
where Ω ǫ is the ǫ -neighborhood of ∂Ω .

Proof. As it was shown, the problem ( 1)-( 4) has a unique solution

u = u + 1 Ω + u -1 R n \Ω . Let G(x, y, t) be the Green function so that u(x, t) = Ω G(x, y, t)dy.
Thus, using the properties of G such as G ≥ 0 for all (x, y, t

) ∈ R n × R n × R + and R n G(x, y, t)dy = 1 , we easily see that 0 ≤ Ω G(x, y, t)dy = u(x, t) ≤ R n G(x, y, t)dy = 1.
We notice that, by the assumption, λ(x) > 0 is a regular function on ∂Ω and all other coefficients are constant. By definition u + is the solution of the system

(∂ t -D + ∆) u + = 0, x ∈ Ω ⊂ R n , u + | t=0 = 1, u + | ∂Ω = u -- D - λ ∂u - ∂n | ∂Ω , λ > 0, which can be reformulated for v = 1 -u + (∂ t -D + ∆) v = 0, x ∈ Ω ⊂ R n , v| t=0 = 0, (1 -v)| ∂Ω = u -- D - λ ∂u - ∂n | ∂Ω ,
where 0 ≤ u -≤ 1 for all t . Moreover, as 0 ≤ v ≤ 1 , it follows that

0 ≤ u -- D - λ ∂u - ∂n | ∂Ω ≤ 1
and, as u -is increasing in time on ∂Ω , then v is decreasing in time on ∂Ω . Therefore, v ≤ v , where v is the solution of the following problem:

(∂ t -D + ∆) v = 0, x ∈ Ω ⊂ R n , v| t=0 = 0, v| ∂Ω = 1,
Thus, as in Ref. [START_REF] Falconer | Techniques of Fractal Geometry[END_REF] (p.231 Lemma 12.7) for n = 2 , but now in R n ( n ≥ 2 ), we find that for the ball Ω = U r (z) centered at z and of radius r , the solution satisfies as

t → +0 v(z, t) ≤ C r √ 4D + t n-2 exp - r 2 4D + t ,
with a constant C > 0 depending only on n ( C can be explicitly obtained by the integration by parts in the generalized spherical coordinates in R n , where the coefficient

r √ 4D + t n-2
corresponding to the leading term as t → +0 , appears from the integral

+∞ r √ 4Dt
e -w 2 w n-1 dw ). Consequently (see Ref. [START_REF] Falconer | Techniques of Fractal Geometry[END_REF] Corollary 12.8 p.232), for z ∈ int{Ω} and t → +0 we find

v(z, t) ≤ C dist(z, ∂Ω) √ 4D + t n-2 exp - dist(z, ∂Ω) 2 4D + t .
Then we immediately obtain Eq. ( 17) by integration.

For n = 2 we obtain directly the exponential decay in Eq. ( 17) for all ǫ > 0 . If n > 2 , we still have the exponential decay for a small constant α > 0 depending only on ǫ :

O ǫ √ 4D + t n-2 e -ǫ 2 /(4D + t) = O(e -α/t ).
Note that O e -ǫ 2 /(4D + t) gives an exponentially small remaining term iff ǫ = 2

√ D + t 1 2 -δ 0
for a constant δ 0 > 0 . For small enough δ 0 we have ǫ = O( √ 4D + t) , also knowing that ǫ > √ 4D + t .

So, for this ǫ , we split Ω in two parts: Ω ǫ , the neighborhood of ∂Ω such that dist(x, ∂Ω) ≤ ǫ , and

Ω \ Ω ǫ . For all F ⊆ Ω \ Ω ǫ , dist(F, ∂Ω) > ǫ > 2 √ D + t , we have F 1 - Ω G(x, y, t)dy dx = O e -c(F )/t δ(F ) ,
where c(F ) and δ(F ) are positive constants depending only on the distance between F and ∂Ω and the dimension n .

To complete the proof of the second statement, we first find that

N(t) = R n \Ω u -(x, t)dx = R n \Ω Ω G(x, y, t)dydx = R n Ω G(x, y, t)dydx - Ω Ω G(x, y, t)dydx = Vol(Ω) - Ω Ω G(x, y, t)dydx.
For

Ω = Ω ǫ ∪ (Ω \ Ω ǫ ) we can write Ω Ω G(x, y, t)dydx = Ωǫ Ω + Ω\Ωǫ Ω G(x, y, t)dydx = Vol(Ω \ Ω ǫ ) + Ωǫ Ω G(x, y, t)dydx + O e -1 t δ = Vol(Ω) -Vol(Ω ǫ ) + Ωǫ Ωǫ G(x, y, t)dydx + Ωǫ Ω\Ωǫ G(x, y, t)dydx + O e -1 t δ . Moreover, Ωǫ Ω\Ωǫ G(x, y, t)dydx = Ω Ω\Ωǫ G(x, y, t)dydx - Ω\Ωǫ Ω\Ωǫ G(x, y, t)dydx = Vol(Ω \ Ω ǫ ) + O e -1 t δ - Ω\Ωǫ Ω\Ωǫ G(x, y, t)dydx and since Ω\Ωǫ Ω\Ωǫ G(x, y, t)dydx -Vol(Ω \ Ω ǫ ) ≤ Ω\Ωǫ Ω G(x, y, t)dydx -Vol(Ω \ Ω ǫ ) = O e -1 t δ , we conclude that - Ωǫ Ω\Ωǫ G(x, y, t)dydx = O e -1 t δ
and finally

N(t) = Vol(Ω ǫ ) - Ωǫ Ωǫ G(x, y, t)dydx + O e -1 t δ
, that completes the proof. A variant of Lemma 1 for n = 2 can be found in Ref. [START_REF] Fleckinger | Heat equation on the triadic Von Koch snowflake: asymptotic and numerical analysis[END_REF], where the heat localization near the boundary is also called by the principle of "not feeling the boundary". In addition, we can consider the case of the distinct parts of the boundary:

Corollary 1 Let X and Y be different closed parts of ∂Ω such that dist(X, Y ) > 2ǫ , where ǫ = O( √ t) > 2 √ D + t . Let U r (X) = {x ∈ R n | d(x, X) < r} be the open
neighborhood of X of size r > 0 . Consider u + and û+ as the respective solutions of the following systems:

∂ t u + -D + △u + = 0, x ∈ Ω ⊂ R n , u + | t=0 = 1, u + | ∂Ω = u -- D - λ ∂u - ∂n | ∂Ω , λ > 0, ∂ t û+ -D + △û + = 0, x ∈ Ω ⊂ R n , û+ | t=0 = 1, û+ | ∂Ω∩U (X) = u -- D - λ ∂u - ∂n | ∂Ω∩U (X) , λ > 0 û+ | ∂Ω\(∂Ω∩U (X)) = 1,
where U(X) is an open neighborhood of X of a radius strictly greater than 2ǫ : U 2ǫ (X) ⊂ U(X) . Then there exists δ > 0 such that

Uǫ(X) |u + -û+ |dx = O e -1 t δ .
Moreover, if ũ+ is the solution of the system:

∂ t ũ+ -D + △ũ + = 0, x ∈ Ω ⊂ R n , ũ+ | t=0 = 1, ũ+ | Y = u -- D - λ ∂u - ∂n | Y , λ > 0 ũ+ | ∂Ω\Y = 1, then Uǫ(X) (1 -ũ+ )dx = Ω\Uǫ(Y ) (1 -ũ+ )dx = O e -1 t δ
.

The proof of Corollary 1 follows from the proof of the first statement of Lemma 1.

Note that the continuity of u on λ (see Theorem 2) and the localization of the heat content near the boundary allow one to consider mixed boundary conditions:

Theorem 3 Let Ω be a bounded (ǫ, δ) -domain (see Section 2) with a closed connected d -set boundary ∂Ω = Γ 0 ⊔ Γ λ ⊔ Γ ∞ . Let λ ∈ C(Γ 0 ⊔ Γ λ ) such that λ(x) =    0, x ∈ Γ 0 , 0 < f (x) < ∞, x ∈ Γ λ , +∞, x ∈ Γ ∞ and ǫ = O( √ t) > √ 4D + t .
We assume that the connection between different types of boundary is performed in the continuous way (see Theorem 2) such that the solution u remains continuous as a function of λ . We split the ǫ -interior Minkowski sausage of ∂Ω into disjoint subsets

Ω ǫ = Ω Γ 0 ǫ ⊔ Ω Γ λ ǫ ⊔ Ω Γ∞ ǫ such that each subset Ω Γ ǫ is contained in the ǫ -interior Minkowski sausage of Γ ( Γ ⊂ ∂Ω ).
Then, for δ > 0 from Lemma 1, the heat content of the problem (1)-(4),

N(t) = Ω (1 -u(x, t))dx = Ωǫ (1 -u(x, t))dx + O(e -1 t δ ),
can be found as a sum of two heat contents:

N(t) = Ω Γ λ ǫ (1 -u(x, t))dx + Ω Γ∞ ǫ (1 -u(x, t))dx + O(e -1 t δ ).
In order to locally approximate the solution of the problem ( 1)-( 4) by considering the problem with coefficients frozen on a fixed boundary point, according to Corollary 1, we also obtain the following proposition:

Proposition 2 Let σ be a fixed point of the boundary ∂Ω and let define

B lǫ,ǫ = U lǫ (σ) ∩ (Ω ǫ ∪ Ω -ǫ ) for l ∈ N, (19) 
where

U lǫ (σ) ⊂ R n is a ball of radius lǫ centered at σ , ǫ is defined in Corollary 1. Let φ σ ∈ C∞ (B 4ǫ,ǫ (σ)
) be a smooth cut-off function with a compact support on B 4ǫ,ǫ (σ) :

φ σ (x) =    1 x ∈ B 3ǫ,ǫ (σ), a smooth function 0 ≤ η < 1 x ∈ B 4ǫ,ǫ (σ) \ B 3ǫ,ǫ (σ), 0 x ∈ Ω \ B 4ǫ,ǫ (σ) ( 20 
)
If u is the solution of the problem ( 1)-( 4), then φ σ u is the solution of the following problem:

∂ t (φ σ u ± ) -D ± △ (φ σ u ± ) = -(1 -u ± )D ± △φ σ ) x ∈ B 4ǫ,ǫ (σ) \ B 3ǫ,ǫ (σ), 0 elsewhere in Ω, (21) 
(φ σ u ± ) | t=0 = 1 Ω (x)φ σ (x), (22) 
D - ∂(φ σ u -) ∂n | ∂Ω = λ(x)φ σ (x)(u --u + )| ∂Ω , (23) 
D + ∂(φ σ u + ) ∂n | ∂Ω = D - ∂(φ σ u -) ∂n | ∂Ω . (24) 
Therefore, there exists δ > 0 such that

B 2ǫ,ǫ (σ) |u -φ σ u|dx = O e -1 t δ
, and if φ σ u σ is the solution of the problem ( 21)-( 24) with frozen coefficients in the boundary point σ , then

Ω\Bǫ,ǫ(σ) φ σ (1 -u σ )dx = O e -1 t δ . ( 25 
)
4 Local coordinates for a regular ∂Ω ∈ C 3

In order to prove Eq. ( 6) for a large class of (ǫ, δ) -compact connected domains Ω in R n , we first prove it for the case of domains with regular boundary ∂Ω ∈ C ∞ or at least in C 3 . As Ω is compact, for all types of connected ∂Ω , the volume of Ω is finite and, therefore, the volume of the ǫ -neighborhood of ∂Ω in Ω is also finite and can be approximated by a sequence of volumes of Minkowski sausages with regular boundaries (the same argument was used in Ref. [START_REF] Fleckinger | Heat equation on the triadic Von Koch snowflake: asymptotic and numerical analysis[END_REF] p.378).

Let us consider the regular boundary ∂Ω ∈ C 3 . Given a positive ǫ > 0 provided in Lemma 1, we denote by Ω ǫ and Ω -ǫ the open ǫ -neighborhoods of ∂Ω in Ω and in R n \ Ω , respectively.

According to Eq. ( 18) and the regularity of the boundary ∂Ω , we can decompose Ω ǫ ∪ ∂Ω ∪ Ω -ǫ = I i=1 B i,ǫ ( I is a finite integer because Ω + ∪ Ω -ǫ is a compact domain) in such way that on each B i,ǫ it is possible to introduce the local coordinates. In addition, we assume that for all i = 1, . . . , I there exists σ i ∈ ∂Ω ∩ B i,ǫ such that B i,ǫ ⊂ B 2ǫ,ǫ (σ i ) (see Eq. ( 19) for the definition). Due to Proposition 2, the last assumption ensures that

B i,ǫ (1 -u)dx = B i,ǫ φ σ i (1 -u)dx + O e -1 t δ .
For all i we perform the change of the space variables (x 1 , . . . , x n ) ∈ B i,ǫ to the local coordinates (θ 1 , . . . , θ n-1 , s) by the formula

x = x(θ 1 , . . . , θ n-1 ) -sn(θ 1 , . . . , θ n-1 ) 0 < s < ǫ for x ∈ B i,ǫ ∩ Ω ǫ -ǫ < s < 0 for x ∈ B i,ǫ ∩ Ω -ǫ , (26) 
where x(θ 1 , . . . , θ n-1 ) ∈ ∂Ω and x , x and n are the vectors in R n such that

∂ x ∂θ 1 , . . . , ∂ x ∂θ n-1 , n is an orthonormal basis in R n .
In what follows we denote B i,ǫ ∩ Ω ǫ by Ω i,+ǫ and B i,ǫ ∩ Ω -ǫ by Ω i,-ǫ respectively. In each of two regions, Ω i,+ǫ and Ω i,-ǫ , the change of variables (x 1 , . . . ,

x n ) → (θ 1 , . . . , θ n-1 , s) is a local C 1 -diffeomorphism.
In local coordinates ∂Ω is described by s = 0 . Thus, Eq. ( 18) becomes

N(t) = I i=1 Ω i,+ǫ (1 -u(x, t))dx + O(e -1 t δ ). (27) 
Denoting θ = (θ 1 , . . . , θ n-1 ) , the integration domain Ω i,+ǫ in [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] becomes

Ω i,+ǫ = {0 < s < ǫ, θ ∈ ∂Ω ∩ Ω i,+ǫ },
which is actually a parallelepiped neighborhood (∂Ω ∩ Ω i,+ǫ )×]0, ǫ[. For this change of variables we have

|∇ x s| 2 = 1, ∇ x s∇ x θ i = 0, ∇ x θ j ∇ x θ i = δ ij (1 -sk i ) 2 for i, j = 1, . . . , n -1, ∇u ± ∇φ ± = ∂u ± ∂s ∂φ ± ∂s + n-1 i ∂u ± ∂θ i ∂φ ± ∂θ i 1 (1 -sk i ) 2 ,
and therefore, using twice the integration by parts and the notations

|J(s, θ)| = n-1 i=1 (1 -sk i ) (28) 
for the Jacobian and k i = k i (θ 1 , . . . , θ n-1 ) of the principal curvatures for ∂Ω curving away the outward normal n to ∂Ω like in the case of the sphere, we find that for all test functions φ = (φ

+ , φ -) ∈ V | B i,ǫ B i,ǫ ∂ t u |J(s, θ)| φ dsdθ 1 • • • dθ n-1 - Ω i,+ǫ ∂ ∂s D + |J(s, θ)| ∂u + ∂s + n-1 i=1 ∂ ∂θ i D + |J(s, θ)| (1 -sk i ) 2 ∂u + ∂θ i φ + dsdθ 1 • • • dθ n-1
-

Ω i,-ǫ ∂ ∂s D -|J(s, θ)| ∂u - ∂s + n-1 i=1 ∂ ∂θ i D -|J(s, θ)| (1 -sk i ) 2 ∂u - ∂θ i φ -dsdθ 1 • • • dθ n-1 + s=0 λ(θ)(u + -u -)(φ + -φ -)dθ = 0.
The regularity of the boundary ensures that the principal curvatures k i (θ) are at least in

C 1 (∂Ω ∩ ∂B i,ǫ ).
Therefore, the problem ( 1)-( 4) locally becomes

∂ ∂t u + -D + ∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u + = D + n-1 i=1 sk i (θ) 1 -sk i (θ) 1 + 1 1 -sk i (θ) ∂ 2 u + ∂θ 2 -D + n-1 i=1 k i (θ) + s n-1 i=1 k 2 i (θ) 1 -sk i (θ) ∂u + ∂s + D + |J(s, θ)| n-1 i=1 ∂ ∂θ i |J(s, θ)| (1 -sk i (θ)) 2 ∂u + ∂θ i , 0 < s < ǫ, θ ∈ (∂Ω ∩ Ω i,+ǫ ) (29) 
∂ ∂t u --D - ∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u -= D - n-1 i=1 sk i (θ) 1 -sk i (θ) 1 + 1 1 -sk i (θ) ∂ 2 u - ∂θ 2 -D - n-1 i=1 k i (θ) + s n-1 i=1 k 2 i (θ) 1 -sk i (θ) ∂u - ∂s + D - |J(s, θ)| n-1 i=1 ∂ ∂θ i |J(s, θ)| (1 -sk i (θ)) 2 ∂u - ∂θ i , -ǫ < s < 0, θ ∈ (∂Ω ∩ Ω i,+ǫ ), (30) 
u + | t=0 = 1, u -| t=0 = 0, (31) 
D - ∂u - ∂s | s=-0 = λ(θ)(u --u + )| s=0 , (32) 
D + ∂u + ∂s | s=+0 = D - ∂u - ∂s | s=-0 . ( 33 
)
We emphasize that the problem ( 29)-(33) should be considered as the trace of Eqs. ( 1)-( 4) on B i,ǫ in the sense of the problem ( 21)-( 24) with φ θ i ≡ 1 on B i,ǫ . Therefore, we can rewrite [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] in new coordinates and use the parallelepiped property of Ω i,+ǫ in the space of variables (s, θ) :

N(t) = I i=1 Ω i,+ǫ (1 -u(s, θ, t))|J(s, θ)|dsdθ + O(e -1 t δ ) = I i=1 ∂Ω∩Ω i,+ǫ dθ [0,ǫ] ds(1 -u(s, θ, t))|J(s, θ)| + O(e -1 t δ ).
Since this local representation holds for all i (the form of the problem ( 29)-( 33) is the same for all i ) and I i=1 ∂Ω∩Ω i,+ǫ dθ = ∂Ω dθ , we can formally write

N(t) = ∂Ω dθ [0,ǫ] ds(1 -u(s, θ, t))|J(s, θ)| + O(e -1 t δ ), ( 34 
)
where u is the solution of ( 29)-( 33) in ]ǫ, ǫ[×∂Ω in the local sense, as explained previously.

5 Approximation of the heat content by solutions of one dimensional problems (for a regular boundary)

We denote by G(s 1 , θ 1 , s 2 , θ 2 , t) the Green function of the problem ( 29)-(33) in ∂Ω×]ǫ, ǫ[ . Let us fix a boundary point (0, θ 0 ) . We denote by G θ 0 the Green function corresponding to the following constant coefficient problem, considered as a local trace problem, i.e. in the sense of the problem ( 21)- [START_REF] Martin | Lectures on hyponormal operators[END_REF] with φ θ i ≡ 1 on B i,ǫ :

∂ ∂t u + -D + ∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u + = 0, 0 < s < ǫ (35) ∂ ∂t u --D - ∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u -= 0, -ǫ < s < 0 (36) u + | t=0 = 1, u -| t=0 = 0, (37) 
D - ∂u - ∂s | s=-0 = λ(θ 0 )(u --u + )| s=0 , D + ∂u + ∂s | s=+0 = D - ∂u - ∂s | s=-0 . (38) 
Next, let

G θ 0 R n (s 1 , θ 1 , s 2 , θ 2 , t) = 1 {s 1 >0} G θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , t) + 1 {s 1 <0} G θ 0 -+ (s 1 , θ 1 , s 2 , θ 2 , t)
be the Green function of the constant coefficient problem in the half space, explicitly obtained in B. Then, according to Ref. [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF] p.48-49, due to Varadhan's bound property of Green functions, in U ǫ (0, θ 0 ) the difference between the Green function φ θ 0 G θ 0 of the problem (35)-( 38) and the analogous Green function in R n , G θ 0 R n , is exponentially small:

|(φ θ 0 G θ 0 -G θ 0 R n )| Uǫ(0,θ 0 )×Uǫ(0,θ 0 ) | = O e -1 t δ
.

Therefore, following the ideas of McKean and Singer [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF] (p.49), we approximate G by the Green function G θ 0 with the frozen coefficients on (0, θ 0 ) , whose replacement by G θ 0 R n yields only an exponentially small error.

For an abstract operator Cauchy problem

∂ ∂t u -Au = Ru, (39) 
u| t=0 = u 0 the solution u can be found by the Duhamel formula

u(t) = e -tA u 0 + t 0 e -(t-τ )A Ru(τ )dτ. (40) 
Therefore, by the Duhamel formula, locally, we have the following infinite expansion

u + (s, θ 0 , t) = Ωǫ dθ 1 ds 1 G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t) + t 0 dτ Ωǫ dθ 1 ds 1 G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t -τ ) • • Ωǫ dθ 2 ds 2 RG θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , τ ) + t 0 dτ Ωǫ dθ 1 ds 1 G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t -τ ) • • τ 0 dτ 1 Ωǫ dθ 2 ds 2 RG θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , τ -τ 1 ) • • Ωǫ dθ 3 ds 3 RG θ 0 ++ (s 2 , θ 2 , s 3 , θ 3 , τ 1 ) + . . . + O e -1 t δ (41) 
where the operator R is defined by

R = R s 1 (s 1 , θ 1 ) + R θ 1 (s 1 , θ 1 ), (42) 
R s (s, θ) = R(s, θ) ∂ ∂s = -D + n-1 i=1 k i (θ) + s n-1 i=1 k 2 i (θ) 1 -sk i (θ) ∂ ∂s , (43) 
R θ (s, θ) = n-1 i=1 D + sk i (θ) 1 -sk i (θ) 1 + 1 1 -sk i (θ) ∂ 2 ∂θ 2 i + D + |J(s, θ)| n-1 i=1 ∂ ∂θ i |J(s, θ)| (1 -sk i (θ)) 2 ∂ ∂θ i . (44) 
We substitute Eq. (41) into Eq. ( 34) with θ = θ 0 and prove the following theorem:

Theorem 4 Let û = û+ , 0 < s < ǫ û-, -ǫ < s < 0
be the solution of the one-dimensional problem

∂ ∂t û -D ± ∂ 2 ∂s 2 û = R s (s, θ 0 )û -ǫ < s < ǫ, θ ≡ θ 0 , (45) 
û| t=0 = 1 0<s<ǫ (s), D - ∂ û- ∂s | s=-0 = λ(θ 0 )(û --û+ )| s=0 , (46) 
D + ∂ û+ ∂s | s=+0 = D - ∂ û- ∂s | s=-0 , (47) 
obtained from ( 29)-(33) setting θ ≡ θ 0 ( R s (s, θ 0 ) is given by ( 43)). Then the heat content N(t) , defined in (34), satisfies

N(t) - ∂Ω dθ 0 [0,ǫ] ds (1 -û(s, θ 0 , t))|J(s, θ 0 )| = O(t 5 2 ), 0 < λ < ∞ O(t 2 ), λ = ∞ . ( 48 
)
If all principal curvatures of ∂Ω are constant, then

N(t) = ∂Ω dθ 0 [0,ǫ] ds (1 -û(s, θ 0 , t))|J(s, θ 0 )| + O(e -1 t δ ).
Moreover, if ûhom is the solution of the homogeneous constant coefficients problem

∂ t û -D ± ∂ 2 ∂s 2 û = 0, -ǫ < s < ǫ, θ ≡ θ 0 , (49) 
û| t=0 = 1 0<s<ǫ (s), D - ∂ û- ∂s | s=-0 = λ(θ 0 )(û --û+ )| s=0 , (50) 
D + ∂ û+ ∂s | s=+0 = D - ∂ û- ∂s | s=-0 , (51) 
then

N(t) - ∂Ω dθ 0 [0,ǫ] ds (1 -ûhom (s, θ 0 , t))|J(s, θ 0 )| = O(t 3 2 ), 0 < λ < ∞ O(t), λ = ∞ (52)
From B we get

G θ 0 (s 1 , θ 1 , s 2 , θ 2 , t) = 1 {s 1 >0,s 2 >0} G θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , t) + 1 {s 1 <0,s 2 >0} G θ 0 -+ (s 1 , θ 1 , s 2 , θ 2 , t).
Due to Eq. (34), we need to know only

G θ 0 ++ G θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , t) = h θ 0 + (s 1 , s 2 , t) -f θ 0 + (s 1 , s 2 , t) K(θ 1 , θ 2 , D + t),
with notations

h θ 0 + (s 1 , s 2 , t) = 1 √ 4πD + t exp - (s 1 -s 2 ) 2 4D + t +a(λ, 0, θ 0 ) exp - (s 1 + s 2 ) 2 4D + t , (53) 
f θ 0 + (s 1 , s 2 , t) = b(λ, 0, θ 0 ) λ(θ 0 ) D + exp λ(θ 0 )α √ D + (s 1 + s 2 ) + λ(θ 0 ) 2 α 2 t • Erfc s 1 + s 2 2 √ D + t + λ(θ 0 )α √ t , (54) 
where

a(λ, 0, θ 0 ) =    1, λ(θ 0 ) < ∞, √ D + - √ D - √ D + + √ D - , λ(θ 0 ) = ∞, b(λ, 0, θ 0 ) = 1, λ(θ 0 ) < ∞, 0, λ(θ 0 ) = ∞,
and

K(θ 1 , θ 2 , D ± t) is the heat kernel in R n-1 : K(θ 1 , θ 2 , D ± t) = 1 (4πD ± t) n-1 2 exp - |θ 1 -θ 2 | 2 4D ± t . (55) 
Since

N(t) = Ωǫ (1 -u ǫ (s, θ, t))|J(s, θ)|dsdθ + O(e -1 t δ ) = Vol(Ω ǫ ) - Ωǫ Ωǫ G(s, θ, s 1 , θ 1 , t)|J(s, θ)|dsdθds 1 dθ 1 + O(e -1 t δ ), (56) 
in what follows we use P (t) for the notation of the principal part of N(t) :

P (t) = Ωǫ Ωǫ G(s, θ, s 1 , θ 1 , t)|J(s, θ)|dsdθds 1 dθ 1 . (57) 
To prove Theorem 4 we need the following Lemma:

Lemma 2 The principal part P (t) of the heat content for the solution of the system ( 29)-(33), defined in Eq. (57), is given by

P (t) = Ωǫ Ωǫ G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t)|J(s, θ 0 )|dsdθ 0 dθ 1 ds 1 + G θ 0 ++ ♯(R θ 0 s +R θ 0 θ )G θ 0 ++ + G θ 0 ++ ♯(R θ 0 s + R θ 0 θ )G θ 0 ++ ♯(R θ 0 s + R θ 0 θ )u + + O(e -1 t δ ), (58) 
with notation

G θ 0 ++ ♯(R θ 0 s + R θ 0 θ )G θ 0 ++ = t 0 dτ Ωǫ dsdθ 0 |J(s, θ 0 )| Ωǫ G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t -τ ) • • Ωǫ (R θ 0 s 1 (s 1 , θ 1 ) + R θ 0 θ 1 (s 1 , θ 1 ))G θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , τ )dθ 2 ds 2 dθ 1 ds 1 . (59) 
Moreover, the following identities hold

M(t) = Ωǫ Ωǫ G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t)|J(s, θ 0 )|dsdθ 0 dθ 1 ds 1 = ∂Ω dθ 0 [0,ǫ] 2 ds 1 ds (h θ 0 + (s, s 1 , t) -f θ 0 + (s, s 1 , t))|J(s, θ 0 )|, (60) 
G θ 0 ++ ♯R θ 0 θ G θ 0 ++ = G θ 0 ++ ♯R θ 0 θ G θ 0 ++ ♯R θ 0 θ G θ 0 ++ = . . . = 0, (61) 
∂Ω

dθ 1 K(θ 0 , θ 1 , D + t) = ∂Ω dθ 1 ∂Ω dθ 2 K(θ 0 , θ 1 , D + (t -τ ))K(θ 1 , θ 2 , D + τ ) = . . . = 1 ∂Ω (θ 0 ). (62) 
Proof. Formula (58) is the direct corollary of the Duhamel formula (see ( 40) and ( 41)).

Let us start to prove (60). Indeed, we find that

M(t) = Ωǫ Ωǫ (h θ 0 + (s 1 , s 2 , t) -f θ 0 + (s, s 1 , t))K(θ 1 , θ 2 , D + (θ 0 )t)|J(s, θ 0 )|ds 1 dsdθ 1 dθ 0 = R n-1 R n-1 dθ 0 dθ 1 1 (4πD + t) n-1 2 exp - |θ 0 -θ 1 | 2 4D + t 1 ∂Ω (θ 0 )1 ∂Ω (θ 1 )Φ(θ 0 , t),
where

Φ(θ 0 , t) = [0,ǫ] 2 dsds 1 (h θ 0 + (s, s 1 , t) -f θ 0 + (s, s 1 , t))|J(s, θ 0 )|. ( 63 
)
With the change of variables

θ 1 → v = θ 0 -θ 1 √ 4D + t , M(t) becomes M(t) = R n-1 R n-1 e -|v| 2 π n-1 2 1 ∂Ω (θ 0 )1 ∂Ω+ √ 4D + tv (θ 0 )Φ(θ 0 , t)dvdθ 0 .
By our construction,

θ 0 ∈ ∂Ω and θ 1 = θ 0 -4D + tv ∈ ∂Ω, that implies 1 ∂Ω (θ 0 ) -1 ∂Ω (θ 0 )1 ∂Ω+ √ 4D + tv (θ 0 ) ≡ 0.
It can be interpreted in the following way: if we take a point on the boundary and move it along the boundary, we obtain another point which is still a boundary point.

Consequently, we find (60)

M(t) = R n-1 R n-1 e -v 2 π n-1 2 1 ∂Ω (θ 0 )Φ(θ 0 , t)dvdθ 0 = ∂Ω Φ(θ 0 , t)dθ 0 ,
which also implies the first part of (62):

∂Ω dθ 1 K(θ 0 , θ 1 , D + t) = 1 ∂Ω (θ 0 ).
Let us now prove that in the computation of P (t) all terms containing the derivatives over the transversal variable θ vanish.

For all terms in (29) containing a derivative over θ 1 , we calculate (see (44))

R θ 1 K(θ 1 , θ 2 , D + t) = n-1 i=1 D + s 1 k i (θ 1 ) 1 -s 1 k i (θ 1 ) 1 + 1 1 -s 1 k i (θ 1 ) • 1 2D + t (θ i 1 -θ i 2 ) 2 2D + t -1 K (θ 1 , θ 2 , D + t) - 1 |J(s 1 , θ 1 )| n-1 i=1 ∂ ∂θ i 1 D + |J(s 1 , θ 1 )| (1 -s 1 k i (θ 1 )) 2 (θ i 1 -θ i 2 ) 2D + t K(θ 1 , θ 2 , D + t).
Let us prove Eq. ( 61), noting that

G θ 0 ++ ♯R θ 1 G θ 0 ++ = t 0 dτ Ωǫ dsdθ 0 |J(s, θ 0 )| Ωǫ G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t -τ ) • • Ωǫ R θ 1 G θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , τ )dθ 2 ds 2 dθ 1 ds 1 .
We can schematically rewrite G θ 0 ++ ♯R θ 1 G θ 0 ++ in the following form:

G θ 0 ++ ♯R θ 1 G θ 0 ++ = = t 0 dτ R n-1 dθ 0 R n-1 dθ 1 R n-1 dθ 2 K(θ 0 , θ 1 , D + (t -τ ))R θ 1 K(θ 1 , θ 2 , D + τ ) •1 ∂Ω (θ 0 )1 ∂Ω (θ 1 )1 ∂Ω (θ 2 ) [0,ǫ] 3 dsds 1 ds 2 φ(s, s 1 , s 2 , t, τ, θ 0 ).
With the change of variables involving θ 0 :

θ1 = θ 0 -θ 1 0 2 D + (t -τ ) , θ 1 = θ 0 -2 D + (t -τ ) θ1 , ( 64 
) θ2 = θ 1 0 -θ 2 0 2 √ D + τ , θ 2 = θ 1 -2 D + τ θ2
, and so

θ 2 = θ 0 -2 D + (t -τ ) θ1 -2 D + τ θ2 , (65) 
and since for all θ 0 ∈ ∂Ω

1 ∂Ω (θ 0 ) -1 ∂Ω (θ 0 )1 ∂Ω+2 √ D + (t-τ ) θ1 (θ 0 ) • •1 ∂Ω+2 √ D + (t-τ ) θ1 +2 √ D + τ θ2 (θ 0 ) = 0,
we obtain the separation of variables on θ2 from (θ 0 , s 1 , θ1 ) :

G θ 0 ++ ♯R θ 1 G θ 0 ++ = t 0 dτ ∂Ω dθ 0 [0,ǫ] 3 dsds 1 ds 2 φ(s, s 1 , s 2 , t, τ, θ 0 ) • n-1 i=1 R d θi 1 e -( θi 
1 ) 2 √ π R d θi 2 e -( θi 2 ) 2 √ π C i 1 (2( θi 2 ) 2 -1) -C i 2 θi 2 ,
where C i 1 and C i 2 are the functions of s 1 , θ 0 , θ1 , but not of θ2 , and consequently

G θ 0 ++ ♯R θ G θ 0 ++ = 0.
By the same reason we have Eq. (61). Changing variables θ i to θi from ( 64)-( 65), we also obtain the last part of (62). Let us know prove Theorem 4. Proof. To find Eq. ( 48), we study Eq. ( 58) using proved relations (60)-(62). For instance, we have

G θ 0 ++ ♯(R θ 0 s + R θ 0 θ )G θ 0 ++ = G θ 0 ++ ♯R θ 0 s G θ 0 ++ = t 0 dτ Ωǫ dsdθ 0 |J(s, θ 0 )| Ωǫ G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t -τ ) • • Ωǫ R θ 0 s 1 (s 1 , θ 1 )G θ 0 ++ (s 1 , θ 1 , s 2 , θ 2 , τ )dθ 2 ds 2 dθ 1 ds 1 . As G θ 0 ++ (s, θ 0 , s 1 , θ 1 , t) = (h θ 0 + (s, s 1 , t) -f θ 0 + (s, s 1 , t))K(θ 0 , θ 1 , D + (θ 0 )t) , we have G θ 0 ++ ♯R θ 0 s G θ 0 ++ = (h θ 0 + -f θ 0 + )K♯R θ 0 s (h θ 0 + -f θ 0 + )K.
Now we perform the change of variables (64)-(65). Since locally k i (θ) ∈ C 1 , then for all θ 0 ∈ ∂Ω , for t → +0 we can develop

k i (θ 0 -2 D + (t -τ ) θ1 ) = k i (θ 0 ) -∇k i (θ 0 )2 D + (t -τ ) θ1 + O(t -τ ).
Consequently, by definition of R s 1 (s 1 , θ 1 ) in (43), which is a composition of the operator of the first derivative by s 1 and of a multiplication by a function of the class C 1 on θ 1 (locally, in the sense of local variables), we also have for t → +0

R s 1 (s 1 , θ 1 ) = R s 1 (s 1 , θ)[1 + O(t -τ )] -∇ θ R s 1 (s 1 , θ)2 D + (t -τ ) θ1 . As 2 D + (t -τ ) R d θ1 i e -( θ1 i ) 2 θ1 i = 0 , we obtain G θ 0 ++ ♯R θ 0 s G θ 0 ++ = t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| [0,ǫ] ds 1 [0,ǫ] ds 2 •(h θ 0 + -f θ 0 + )(s, s 1 , t -τ )R s 1 (s 1 , θ 0 ) [1 + O(t -τ )] (h θ 0 + -f θ 0 + )(s 1 , s 2 , τ ) • n-1 i=1 R d θ1 i e -( θ1 i ) 2 √ π R d θ2 i e -( θ2 i ) 2 √ π = t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| [0,ǫ] ds 1 • [0,ǫ] ds 2 (h θ 0 + -f θ 0 + )(s, s 1 , t -τ )R s 1 (s 1 , θ 0 ) [1 + O(t -τ )] (h θ 0 + -f θ 0 + )(s 1 , s 2 , τ ),
from which it follows

P (t) = ∂Ω dθ 0 [0,ǫ] ds [0,ǫ] ds 1 (h θ 0 + (s, s 1 , t) -f θ 0 + (s, s 1 , t))|J(s, θ 0 )| + [1 + O(t)] t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| [0,ǫ] ds 1 (h θ 0 + -f θ 0 + )(s, s 1 , t -τ ) • [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )(h θ 0 + -f θ 0 + )(s 1 , s 2 , τ ) + [1 + O(t)] 2 ∂Ω dθ 0 (h θ 0 + -f θ 0 + )♯R s (s, θ 0 )(h θ 0 + -f θ 0 + )♯R s (s, θ 0 )u + ǫ . ( 66 
)
We notice that the solution û(s, θ 0 , t) of the one-dimensional system (45)-( 47) is given by

û(s, θ 0 , t) = [0,ǫ] ds 1 (h θ 0 + (s, s 1 , t) -f θ 0 + (s, s 1 , t)) + t 0 dτ [0,ǫ] ds 1 (h θ 0 + -f θ 0 + )(s, s 1 , t -τ ) [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )(h θ 0 + -f θ 0 + )(s 1 , s 2 , τ ) +(h θ 0 + -f θ 0 + )♯R s (s, θ 0 )(h θ 0 + -f θ 0 + )♯R s (s, θ 0 )û.
To obtain (48) of Theorem 4 from formula (66), we estimate

NN 2 (t) = O(t) t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| • [0,ǫ] ds 1 (h θ 0 + -f θ 0 + )(s, s 1 , t -τ ) [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )(h θ 0 + -f θ 0 + )(s 1 , s 2 , τ ). (67) 
In fact, from (52), proven in what follows, it holds (see (68) for the definition of NN 1 (t) )

NN 2 (t) = O(t)NN 1 (t) = O(t) O(t 3 2 ), 0 < λ < ∞ O(t), λ = ∞ = O(t 5 2 ), 0 < λ < ∞ O(t 2 ), λ = ∞ .
To conclude, we note that if all principal curvatures k j (θ) on Ω ǫ are constant, then for all θ ∈ ∂Ω R s (s, θ) ≡ R s (s, θ 0 ), and thus

N(t) = ∂Ω dθ 0 [0,ǫ] ds (1 -û(s, θ 0 , t))|J(s, θ 0 )| + O(e -1 t δ ).
To show (52), we need to estimate

NN j (t) = j l=1 Γ θ 0 ++ ♯R s Γ θ 0 ++ ♯ . . . ♯R s Γ θ 0 ++ (l -fold), (68) 
where

Γ θ 0 ++ = (h θ 0 + -f θ 0 + ).
More precisely we want to prove that for all j ≥ 1

|NN j (t)| ≤ C t 1+j 2 µ(∂Ω, √ 4D + t), 0 < λ < ∞ t j 2 µ(∂Ω, √ 4D + t), λ = ∞ . ( 69 
)
Due to Lemma 2, we start with (see (66))

NN 1 (t) = t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| • [0,ǫ] ds 1 (h θ 0 + -f θ 0 + )(s, s 1 , t -τ ) [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )(h θ 0 + -f θ 0 + )(s 1 , s 2 , τ ).
Therefore, we have to estimate four terms:

NN 1 (t) = 4 j=1 MM j (t),
where

MM 1 (t) = t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| • [0,ǫ] ds 1 h θ 0 + (s, s 1 , t -τ ) [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )h θ 0 + (s 1 , s 2 , τ ), MM 2 (t) = - t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| • [0,ǫ] ds 1 f θ 0 + (s, s 1 , t -τ ) [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )h θ 0 + (s 1 , s 2 , τ ), MM 3 (t) = - t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| • [0,ǫ] ds 1 h θ 0 + (s, s 1 , t -τ ) [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )f θ 0 + (s 1 , s 2 , τ ), MM 4 (t) = t 0 dτ ∂Ω dθ 0 [0,ǫ] ds|J(s, θ 0 )| • [0,ǫ] ds 1 f θ 0 + (s, s 1 , t -τ ) [0,ǫ] ds 2 R s 1 (s 1 , θ 0 )f θ 0 + (s 1 , s 2 , τ ).
We aim to approximate R s 1 (s 1 , θ 0 ) = R(s 1 , θ 0 )∂ s 1 from Eq. ( 43) near the point (s, θ 0 ) . For t → +0 and 0 < s 1 < ǫ = O( √ t) , we find that

1 1 -s 1 k i (θ 0 ) = 1 + s 1 k i (θ 0 ) + O(s 2 1 ), which gives R(s 1 , θ 0 ) = -D + n-1 i=1 k i (θ 0 ) + s 1 n-1 i=1 k 2 i (θ 0 ) + O(s 2 1 ) .
Introducing the notations

C ± = s 1 ± s 2 , I s 1 ±s 2 (τ ) = exp - (s 1 ± s 2 ) 2 4D + τ , c = 1 8πD 2 + (0, θ 0 ) (t -τ )τ 3 2
, we find

h θ 0 + (s, s 1 , t -τ )R s 1 (s 1 , θ 0 )h θ 0 + (s 1 , s 2 , τ ) = -cR(s 1 , θ 0 ) (C -[I s-s 1 (t -τ )I s 1 -s 2 (τ ) +a(λ, 0, θ 0 )I s+s 1 (t -τ )I s 1 -s 2 (τ )] +a(λ, 0, θ 0 )C + [I s-s 1 (t -τ )I s 1 +s 2 (τ ) + a(λ, 0, θ 0 )I s+s 1 (t -τ )I s 1 +s 2 (τ )]) .
We now change s 1 to z 1 and s 2 to z 2 by the following change of variables:

• for P s 1 ∓s 2 (τ ) : z 2 = s 1 ∓s 2 2 √ D + τ and s 2 = ±s 1 ∓ 2 √ D + τ z 2 ,
• for P s∓s 1 (tτ ) :

z 1 = s∓s 1 2 √ D + (t-τ ) and s 1 = ±s ∓ 2 D + (t -τ )z 1 .
Let us notice that t is a constant parameter and, as τ takes its values between 0 and t , hence, z 1 and z 2 are in R + or R . But at the same time 2 D + (tτ )z 1 = s ± s 1 and 2 √ D + τ z 2 = s 1 ± s 2 are bounded to the interval [-ǫ, 2ǫ] and hence are of the order of

O( √ t) .
In what follows, we suppose that τ and tτ have the same order of smallness as t :

O(t) = O(τ ) = O(t -τ ).
Therefore, for 0

< s 1 = ±s ∓ 2 D + (t -τ )z 1 < ǫ we have R s 1 (s 1 , θ 0 ) = [φ(θ 0 ) ∓ ψ(s, z 1 , θ 0 )] ∂ ∂s 1 ,
where

φ(θ 0 ) = -D + n-1 i=1 k i (θ 0 ), ψ(s, z 1 , θ 0 ) = (s -2 D + (t -τ )z 1 )D + n-1 i=1 k 2 i (θ 0 ) + O (t) .
If we develop R in the neighborhood of (0, θ 0 ) , we find

R(s 1 , θ 0 ) = R(0, θ 0 ) + O( √ t) = φ(θ 0 ) + O( √ t). (70) 
For λ = ∞ on ∂Ω , we simply have

MM 2 (t) = MM 3 (t) = MM 4 (t) = 0,
and

|NN 1 (t)| = |MM 1 (t)| = |h θ 0 + ♯R s h θ 0 + | ≤ C t 0 dτ 1 √ τ ∂Ω dθ 0 ǫ 0 ds|J(s, θ 0 )| ≤ C √ tµ(∂Ω, 4D + t).
By iteration of the proof, we show that

|NN j (t)| ≤ Ct j 2 µ(∂Ω, √ 4D + t) for j ≥ 1 . Now, for λ < ∞ , MM 1 (t) = h θ 0 + ♯R s h θ 0 + = - t 0 dτ 1 √ τ ∂Ω dθ 0 π √ D + R ds|J(s, θ 0 )| R dz 1 e -z 2 1 • R dz 2 φ(θ 0 )z 2 e -z 2 2 4 i=1 χ i (s, z 1 , z 2 ) - t 0 dτ 1 √ τ ∂Ω dθ 0 π √ D + R ds|J(s, θ 0 )| • R dz 1 e -z 2 1 • R dz 2 ψ(s, z 1 , θ 0 )z 2 e -z 2 2 • 2 i=1 χ i (s, z 1 , z 2 ) - 4 i=3 χ i (s, z 1 , z 2 ) .
Here

for v + (z 1 ) = 2 D + (t -τ )z 1 1 R + (z 1 ) , v(z 1 ) = 2 D + (t -τ )z 1 , w + (z 2 ) = 2 √ D + τ z 2 1 R + (z 2 ) and w(z 2 ) = 2 √ D + τ z 2 χ 1 (s, z 1 , z 2 ) = 1 [0,ǫ] (s)1 [0,ǫ] (s -v(z 1 ))1 [0,ǫ] (s -v(z 1 ) -w(z 2 )), χ (s, z 1 , z 2 ) = 1 [0,ǫ] (s)1 [0,ǫ] (s -v(z 1 ))1 [0,ǫ] (-s + v(z 1 ) + w + (z 2 )), χ 3 (s, z 1 , z 2 ) = 1 [0,ǫ] (s)1 [0,ǫ] (-s + v + (z 1 ))1 [0,ǫ] (-s + v + (z 1 ) -w(z 2 )), χ 4 (s, z 1 , z 2 ) = 1 [0,ǫ] (s)1 [0,ǫ] (-s + v + (z 1 ))1 [0,ǫ] (s -v + (z 1 ) + w + (z 2 )).
Considering two formulas:

η = 1 [0,ǫ] (s) -1 [0,ǫ] (s -v)1 [0,ǫ] (s), and ζ = 1 [0,ǫ] (s)1 [0,ǫ] (-s + v + ),
we find that

η = 0 ⇐⇒ 0 < v < ǫ 0 < s < v -ǫ < v < 0 ǫ + v < s < ǫ (71) ζ = 0 ⇐⇒ 0 < v < ǫ 0 < s < v ǫ < v < 2ǫ v -ǫ < s < ǫ (72) 
It means that for

0 < v = v + < ǫ , it holds η(s) = ζ(s) = 1 [0,v + ] (s)
and for -ǫ < v < 0 and ǫ < v

+ = v + 2ǫ < 2ǫ it holds η(s) = ζ(s) = 1 [v + -ǫ,ǫ] (s) = 1 [ǫ+v,ǫ] (s).
Consequently, we found the formula

1 [0,ǫ] (s) -1 [0,ǫ] (s -v)1 [0,ǫ] (s) = 1 [0,ǫ] (s)1 [0,ǫ] (-s + v + ), (73) 
from which it follows

χ 1 = 1 [0,ǫ] (s)1 [0,ǫ] (s -v) -χ 2 , χ 4 = 1 [0,ǫ] (s)1 [0,ǫ] (-s + v + ) -χ 3 .
Therefore, we have

4 i=1 χ i (s, z 1 , z 2 ) = 1 [0,ǫ] (s) and χ 1 + χ 2 -χ 3 -χ 4 = 1 [0,ǫ] (s) -2 • 1 [0,v + (z 1 )] (s), which are independent of z 2 . Since R z 2 e -z 2 2 dz 2 = 0 and R (2z 2 2 -1)e -z 2 2 dz 2 = 0,
we obtain exactly

|MM 1 (t)| = |h♯R s h| = 0.
For MM 2 we find in completely analogous way

MM 2 (t) = 2 √ π t 0 dτ √ t -τ √ τ ∂Ω dθ 0 λ(θ 0 ) D + R ds|J(s, θ 0 )| • R + dz 1 e 2λ(θ 0 )αz 1 √ t-τ +λ(θ 0 ) 2 α 2 (t-τ ) Erfc(z 1 + λ(θ 0 )α √ t -τ ) • R dz 2 φ(θ 0 )z 2 e -z 2 2 (χ 3 (s, z 1 , z 2 ) + χ 4 (s, z 1 , z 2 )) + 2 √ π t 0 dτ √ t -τ √ τ ∂Ω dθ 0 λ(θ 0 ) D + R ds|J(s, θ 0 )| R + dz 1 •e 2λ(θ 0 )αz 1 √ t-τ +λ(θ 0 ) 2 α 2 (t-τ ) Erfc(z 1 + λ(θ 0 )α √ t -τ ) • R dz 2 ψ(s, z 1 , θ 0 )z 2 e -z 2 2 (χ 3 (s, z 1 , z 2 ) -χ 4 (s, z 1 , z 2 )).
Since

χ 3 (s, z 1 , z 2 ) + χ 4 (s, z 1 , z 2 ) = 1 [0,ǫ] (s)1 [0,ǫ] (-s + v + (z 1 )) = 1 [0,v + (z 1 )] (s), χ 3 (s, z 1 , z 2 ) -χ 4 (s, z 1 , z 2 ) = 2χ 3 (s, z 1 , z 2 ) -1 [0,ǫ] (s)1 [0,ǫ] (-s + v + (z 1 )),
the parts of MM 2 , which contain the integration over s on [0, 2 D + (tτ )z 1 ] , are equal to zero. In addition, for ℓ = 0, 1

R + dz 1 z ℓ 1 e 2λ(θ 0 )αz 1 √ t-τ +λ(θ 0 ) 2 α 2 (t-τ ) Erfc(z 1 + λ(θ 0 )α √ t -τ ) ≤ C.
As ψ is of the order O( √ t) and linear on z 1 , and ǫ = O( √ t) , we directly obtain

|MM 2 (t)| = 2 √ π t 0 dτ √ t -τ √ τ ∂Ω dθ 0 λ(θ 0 ) D + R ds|J(s, θ 0 )| R + dz 1 •e 2λ(θ 0 )αz 1 √ t-τ +λ(θ 0 ) 2 α 2 (t-τ ) Erfc(z 1 + λ(θ 0 )α √ t -τ ) • R dz 2 ψ(s, z 1 , θ 0 )z 2 e -z 2 2 2χ 3 (s, z 1 , z 2 ) ≤ C t 0 dτ √ τ ∂Ω dθ 0 ǫ 0 ds|J(s, θ 0 )| ≤ Ct
To estimate MM 3 we find

∂ s 1 f θ 0 + (s 1 , s 2 , τ ) = λ(θ 0 )α √ D + f θ 0 + (s 1 , s 2 , τ ) - λ(θ 0 ) D + 1 √ πD + τ exp - (s 1 + s 2 ) 2 4D + τ .
In our notations, using (70), we have

h θ 0 + (s, s 1 , t -τ )R s 1 (s 1 , θ 0 )f θ 0 + (s 1 , s 2 , τ ) = P s-s 1 + P s+s 1 4πD + (t -τ ) • •(φ(θ 0 ) + O( √ t)) λ(θ 0 )α √ D + f θ 0 + (s 1 , s 2 , τ ) - λ(θ 0 ) D + 1 √ πD + τ P s 1 +s 2 .
Changing variables s 1 to z 1 and s 2 to z 2 , we obtain χ 2 ± χ 4 for the area of s , which gives intervals (linearly) depending on the values of z 1 and z 2 . Thus, we majorate s by ǫ and estimate MM 3 :

|MM 3 (t)| ≤ C| t 0 dτ √ τ ∂Ω dθ 0 ǫ 0 ds|J(s, θ 0 )| • R dz 1 e -z 2 1 R + dz 2 (φ(θ 0 ) + O( √ t))f (z 2 , τ )|,
where

f (z 2 , τ ) = λ(θ 0 )α √ D + exp 2λ(θ 0 )αz 2 √ τ + λ(θ 0 ) 2 α 2 τ • Erfc(z 2 + λ(θ 0 )α √ τ ) - 1 √ πD + τ e -z 2 2 .
We see that

√ τ R + dz 2 (φ(θ 0 ) + O( √ t))f (z 2 , τ ) ≤ C.
Therefore, we have

|MM 3 (t)| ≤ Ctµ(∂Ω, 4D + t).
In the same way, since χ 4 depends on z 1 and z 2 at the same time, we have

|MM 4 (t)| ≤ C t 0 dτ τ (t -τ ) ∂Ω dθ 0 ǫ 0 ds|J(s, θ 0 )| • +∞ 0 dz 1 e 2λ(θ 0 )αz 1 √ t-τ +λ(θ 0 ) 2 α 2 (t-τ ) Erfc(z 1 + λ(θ 0 )α √ t -τ ) • +∞ 0 dz 2 (φ(θ 0 ) + O( √ t))f (z 2 , τ ) ≤ Ct 3 2 µ(∂Ω, 4D + t).
By iteration of the proof, we show for j ≥ 1 that

|NN j (t)| ≤ Ct 1+j 2 µ(∂Ω, 4D + t).

Relation of the heat content expansion with the interior Minkowski sausage

Let us start with a heat problem with just a discontinuous initial condition.

Particular case

D + = D -= const Lemma 3
Let Ω ⊂ R n be a compact connected bounded domain with a connected boundary ∂Ω of the Hausdorff dimension d and u is the solution of the following problem:

∂ t u -D△u = 0 x ∈ R n , t > 0, ( 74 
) u| t=0 = 1 Ω , (75) 
Then for t → +0 we have

N(t) = 2 0 e -z 2 √ π µ(∂Ω, 2 √ Dtz)dz + o t n-d 2 . ( 76 
)
Moreover, it can be approximated by

N(t) = β n-d µ(∂Ω, 2 √ Dt) + o t n-d 2 , (77) 
with the prefactor

β x ≡ 2 0 z x e -z 2 √ π dz = 1 2 √ π γ x + 1 2 , 4 (78) 
is expressed through the incomplete Gamma function.

Proof. Let us prove formula (76). By definition

N(t) = R n \Ω R n G(x, y, t)1 Ω dxdy,
where this time G is the heat kernel in R n G(x, y, t) = (4Dπt) -n 2 exp -|x -y| 2 4Dt .

Therefore, we have

N(t) = Vol(Ω) - R n R n 1 (4πDt) n 2 e -|x-y| 2 4Dt 1 Ω (x)1 Ω (y)dxdy = Vol(Ω) - R n 1 π n 2 e -|v| 2 R n 1 Ω (x)1 Ω (x + 2 √ Dtv)dx dv = R n 1 π n 2 e -|v| 2 Ω 1 Ω (x) -1 Ω-2 √ Dtv (x) dx dv, where 1 Ω-2 √ Dtv (x) = 1 Ω (x + 2 √ Dtv) and the notation Ω -2 √ Dtv means that Ω is shifted by the vector -2 √ Dtv ∈ R n .
Let us firstly suppose that ∂Ω is regular, i.e of the class C 3 . We see that for all points x ∈ Ω for which d(x, ∂Ω) ≥ 2 √ Dt v , it holds (x + 2 √ Dtv) ∈ Ω . Thus, it follows that for ǫ = 2 √ Dt v ,

1 Ω (x) 1 Ω (x) -1 Ω-2 √ Dtv (x) = 0 for all x ∈ Ω \ Ω ǫ . Therefore, only x belonging to Ω ǫ with v < ǫ 2 √
Dt contribute to N(t) and we can write:

N(t) = R n 1 π n 2 e -|v| 2 Ωǫ 1 Ωǫ (x) -1 Ωǫ-2 √ Dtv (x) dx dv + O e -1 t δ
, where the exponentially small error with a δ > 0 is defined by the integral

v > ǫ 2 √ Dt 1 π n 2 e -|v| 2 dv.
Since ∂Ω is regular, we introduce (see Section 4) the local coordinates x = (θ, s) and thus have x(θ) ∈ ∂Ω and x ∈ Ω ǫ iff 0 < s < ǫ . In this case,

χ 2 √ Dt,v (x) = 1 Ωǫ (x) -1 Ωǫ-2 √ Dtv (x) = 0 iff x ∈ Ω ǫ and x(θ) -sn(θ) + 2 √ Dtv /
∈ Ω. Moreover, with the notation (v, n) for the Euclidean inner product of two vectors in R n ,

(x(θ) -sn(θ) + 2 √ Dtv) • n(θ) = -s + 2 √ Dt(v, n).
We deduce that Dt(v,n) , we have 0 < (v, n) < 2 . Thus, the vector v can be locally decomposed in two parts: v = ((v, n), (v, x)) = (v n , v x) . Thus, returning to N(t) , we obtain with the error O(t) which comes from the Jacobian approximation (see |J(s, θ)| in Section 4)

χ 2 √ Dt,v (x) = 0 iff s -2 √ Dt(v, n) < 0. Consequently, if (v, n) < 0 , as s > 0 , it is not possible to have s -2 √ Dt(v, n) < 0 . In turn, if 0 < (v, n) then s ∈]0, 2 √ Dt(v,
N(t) = R n-1 1 π n-1 2 e -|v x| 2 dv x 2 0 1 √ π e -|vn| 2 Ωǫ χ 2 √ Dt,vn (x)dx dv n + O(t) = 2 0 e -z 2 √ π µ(∂Ω, 2 √ Dtz)dz + o(t n-d 2 ).
If ∂Ω is regular, then d = n -1 and o(t

n-d 2 ) = o( √ t)
, which, as it was mentioned, is actually O(t) . The last formula that depends only on a volume of the interior Minkowski sausage, holds for all types of connected boundaries described in Subsection 2.2.

The formula (77) follows from Eq. ( 76) and the relation

µ(∂Ω, ǫz) = z n-d µ(∂Ω, ǫ) + O(ǫ 2(n-d) ), (79) 
which, for a fixed z and ǫ → +0 , is evident for the regular case and can be proved by approximating the fractal volume by a converging sequence of the volumes for smooth boundaries. For d = n -1 in Eq. ( 77), one has β 1 = 1-e -4 

General case

Let us come back to the problem ( 1)-( 4).

According to Theorem 4 (Eq. ( 52)), the heat content can be found up to the terms either t 3 2 , or t (depending on values of λ ), by integrating over all boundary points θ of the solution ûhom of the homogeneous problem (49)-(51) with constant coefficients taken at a boundary point (0, θ) . Obviously, Eq. ( 52) is valid only for regular boundaries. Let us reformulate it to allow an explicit calculation of the heat content for all types of boundaries mentioned in Section 2.

For this purpose, given ǫ = O( √ t) , ǫ > √ 4D + t , we divide ∂Ω (which is still supposed to be regular) into J disjoint parts B j ( j = 1, . . . , J ) of the size δ n-1 with 0 < δ ≤ ǫ such that ∂Ω = ⊔ J j=1 B j . For t → +0 , δ → 0 and thus, due to regularity of ∂Ω on each B j ×]0, ǫ[ the local change of variables from Section 4 is a C 1 -diffeomorphism. In addition, since u continuously depends on λ (see Theorem 2), ûhom , considered as a function of θ , by the continuity of λ , is continuous on θ . Therefore, by the mean value theorem and due to the positivity of |J(s, θ)| , we deduce that for all j = 1, . . . J there exists θ j 0 ∈ B j such that

B j dθ [0,ǫ] ds(1 -ûhom (s, θ, t))|J(s, θ)| = [0,ǫ] ds(1 -ûhom (s, θ j 0 , t)) B j dθ|J(s, θ)|.
From Eq. (69), Eq. (52) becomes

N(t) - J j=1 [0,ǫ]
ds(1ûhom (s, θ j 0 , t))

B j dθ|J(s, θ)| = O(t µ(∂Ω, √ t)), 0 < λ < ∞ O( √ t µ(∂Ω, √ t)), λ = ∞ .

Hence we prove

Theorem 5 The heat content for the solution of the problem ( 1)-( 4) can be explicitly found for all types of boundaries ∂Ω (a connected boundary of a compact domain described in Subsection 2.2) using the following expressions:

1. for λ < ∞ on ∂Ω :

N(t) = 2 √ t √ D + Vol(∂Ω) µ(∂Ω, 4D + t) ∂Ω dσλ(σ) 2 1 dzf (σ, z, t) - 2 1 dzµ(∂Ω, 4D + t(z -1)) ∂Ω dσλ(σ)f (σ, z, t) - 1 0 dzµ(∂Ω, 4D + tz) ∂Ω dσλ(σ)f (σ, z, t) + O(tµ(∂Ω, √ t)), (80) 
where

α = 1 √ D - + 1 √ D + and f (σ, z, t) = exp 2λ(σ)α √ tz + λ(σ) 2 α 2 t Erfc(z + λ(σ)α √ t). (81) 
2. for λ = ∞ on ∂Ω :

N(t) = 2 √ D - √ D -+ √ D + 2 0 e -z 2 √ π µ(∂Ω, 4D + tz)dz + O( √ t µ(∂Ω, √ t)). (82) 
Formulas ( 80) and ( 82) can be approximated by 1. for λ < ∞ on ∂Ω :

N(t) = 2 √ t µ(∂Ω, √ 4D + t) √ D + Vol(∂Ω) ∂Ω dσλ(σ) 2 1 dzf (σ, z, t) - 2 1 dz(z -1) n-d ∂Ω dσλ(σ)f (σ, z, t) - 1 0 dzz n-d ∂Ω dσλ(σ)f (σ, z, t) + O( √ t µ(∂Ω, √ t) 2 ), (83) 
2. for λ = ∞ on ∂Ω :

N(t) = 2 √ D -β n-d √ D -+ √ D + µ(∂Ω, 4D + t) + O(µ(∂Ω, √ t) 2 ), (84) 
where β x was defined in Eq. (78).

Proof. Using Eqs. ( 56)-(60), N(t) becomes

N(t) -µ(∂Ω, ǫ) + J j=1 [0,ǫ] 2
ds 1 ds (h

θ j 0 + (s, s 1 , t) -f θ j 0 + (s, s 1 , t)) B j dθ|J(s, θ)| = O(t µ(∂Ω, √ 4D + t)), 0 < λ < ∞ O( √ t µ(∂Ω, √ 4D + t)), λ = ∞ .
1. for λ < ∞ on ∂Ω :

N(t) = J j=1 µ(B j , 4D + t) 2λ(θ j 0 ) √ t √ D + 2 1 f (θ j 0 , z, t)dz - J j=1 2λ(θ j 0 ) √ t √ D + 2 1 f (θ j 0 , z, t)µ(B j , 4D + t(z -1))dz - 1 0 f (θ j 0 , z, t)µ(B j , 4D + tz)dz + O(t µ(∂Ω, √ t)), (85) 
2. for λ = ∞ on ∂Ω :

N(t) = 2 √ D - √ D -+ √ D + J j=1 2 0 e -z 2 √ π µ(B j , 4D + t z)dz + O( √ t µ(∂Ω, √ t)). (86) 
It means that if the formulas for µ(B j , δ) are known, we get the approximation of N(t) up to terms of the order of t n-d+2 2 for λ < ∞ , and of the order of t 1+n-d 2

for λ = ∞ . Moreover, this approximation, depending only on the volume of ∂Ω , holds for all types of boundaries, even fractals (see Subsection 2.2 and p. 378 of Ref. [START_REF] Fleckinger | Heat equation on the triadic Von Koch snowflake: asymptotic and numerical analysis[END_REF] for a similar conclusion).

Let us now change the sum over j with the integral over z and make J → +∞ :

lim J→+∞ J j=1 C(z, t, θ j 0 )µ(B j , 4D + tz) = ∂Ω C(z, t, σ) dist(σ, 4D + tz)dσ,
where dσ is understood in the sense of the Hausdorff measure ( d -measure) defined on ∂Ω . Thus, again with the help of the mean value theorem, we have

∂Ω C(z, t, σ) dist(σ, 4D + tz)dσ = µ(∂Ω, √ 4D + t) Vol(∂Ω) ∂Ω C(z, t, σ)dσ,
from which Eqs. ( 80) and (82) follow. We use Eq. ( 79) to obtain formulas (83) and (84).

Regular case

In the case of a regular boundary we provide the asymptotic expansion of the heat content up to the third-order term.

In this case, we can approximate the solution of the system (29)-(33) by the solution v of the following problem (instead of ( 35)-(38), as previously)

∂ ∂t u + -D + ∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u + + D + n-1 i=1 k i (θ 0 ) ∂u + ∂s = 0, 0 < s < ǫ (87) ∂ ∂t u --D - ∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u -+ D - n-1 i=1 k i (θ 0 ) ∂u - ∂s = 0, -ǫ < s < 0 (88) u + | t=0 = 1, u -| t=0 = 0, (89) 
D - ∂u - ∂s | s=-0 = λ(θ 0 )(u --u + )| s=0 , D + ∂u + ∂s | s=+0 = D - ∂u - ∂s | s=-0 . (90) 
In this approximation the remainder terms of the system ( 29)-(33) contain only the coefficients of the order √ t (to compare with (70)):

R(s 1 , θ 0 ) = s 1 D + n-1 i=1 k 2 i (θ 0 ) + O(s 2 1 ), that gives R(s 1 , θ 0 ) = (s ∓ 2 D + (t -τ )z 1 )D + n-1 i=1 k 2 i (θ 0 ) + O(t) = O( √ t). (91) 
The basis of the parametrix is the Green function given by (see Section B.1)

h θ 0 + (s 1 , s 2 , t) = 1 √ 4πD + t exp - (s 1 -s 2 -tD + γ(θ 0 )) 2 4D + t +a(λ, 0, θ 0 ) exp - (s 1 + s 2 -tD + γ(θ 0 )) 2 4D + t , (92) 
f θ 0 + (s 1 , s 2 , t) = b(λ, 0, θ 0 ) λ(θ 0 ) D + • • exp λ(θ 0 )α √ D + (s 1 + s 2 -tD + γ(θ 0 )) + λ(θ 0 ) 2 α 2 t • • Erfc s 1 + s 2 -tD + γ(θ 0 ) 2 √ D + t + λ(θ 0 )α √ t , (93) 
where γ(θ 0 ) = n-1 i=1 k i (θ 0 ) . The estimate (69) becomes

N(t) - ∂Ω dθ 0 [0,ǫ] ds (1 -ûhom ǫ (s, θ 0 , t))|J(s, θ 0 )| = O(t 2 ), 0 < λ < ∞ O(t Theorem 6 Let Ω be a compact domain of R n with a connected boundary ∂Ω ∈ C ∞ (R n ) .
Then for λ = ∞ we have

N(t) = 2 1 -e -4 √ π √ D + D - √ D + + √ D - Vol(∂Ω) √ t + O(t 3 
2 ).

(95)

In the case of 0 < λ < ∞ , we have

N(t) = 4C 0 t ∂Ω λ(σ)dσ - 2 3 C 1 t 3 2 2 1 √ D + + 1 √ D - ∂Ω λ 2 (σ)dσ -D + (n -1) ∂Ω λ(σ)H(σ)dσ + O(t 2 ), ( 96 
)
where H is the mean curvature, and

C 0 = 1 + 3 2 erf(1) - 9 4 erf(2) + 1 √ π 1 e - 1 e 4 ≈ 0.2218, (97) 
C 1 = 1 √ π -6 + 5e -4 -4e -1 √ π -5 erf(1) + 11 erf(2) ≈ 0.5207. (98) 
Proof. Let us consider the case λ = ∞ . Using the Green function given in Eqs. ( 92) and (93), we obtain

N(t) = J j=1 β 2- √ tD + γ(θ j 0 ) 2 0 e -z 2 √ π µ(B j , 4D + tz + tD + γ(θ j 0 ))dz + O(t 3 2 ), (99) 
where

β = 2 √ D - √ D -+ √ D +
. In Eq. (99) the remainder term also contains the integrals

0 - √ tD + γ(θ j 0 ) 2
dz . From Eq. (99) we find

N(t) = J j=1 β 2- √ tD + γ(x j ) 2 0 e -z 2 √ π B j dθ 2 √ D + tz+γ(x j )D + t 0 ds(1 -s(n -1)H(θ)) +O(t 3 
2 ).

Therefore, we have

N(t) = √ t 2C D + J j=1 Vol(B j ) -t(n -1) J j=1 ξ Vol(B j )H(x j ) - B j H(σ)dσ + O(t 3 
2 ), (100) 
where

C = 1 -e -4 √ π √ D - √ D + + √ D - , ξ = 4 e -4 √ π -erf(2) D + √ D - √ D + + √ D - .
In addition, for all σ ∈ B j , the distance between x j (which also belongs to B j ) and σ goes to 0 as J → +∞ . Thus, since

|H(x j ) -H(σ)| ≤ H ′ (σ)|x j -σ| ≤ C Vol(B j ),
we have

lim J→+∞ J j=1 Vol(B j )H(x j ) - B j H(σ)dσ = 0.
Hence, from Eq. ( 100) we obtain Eq. ( 95). The case 0 < λ < ∞ can be treated in the similar way using in Eq. ( 85) the expansion of the f (σ, t, z) :

f (σ, t, z) = exp 2λ(σ)α √ tz + λ 2 (σ)α 2 (σ)t Erfc(z + λ(σ)α √ t) = Erfc(z) -2λ(σ)α √ t 1 √ π e -z 2 -z Erfc(z) + O(t).
The dual Besov space (B 2,2 β (∂Ω)) ′ = B 2,2 -β (∂Ω) is introduced in Ref. [START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF]. To give the definition of the Besov space B 2,2 -β (∂Ω) we need to define the atoms:

Definition 5 (Atom [START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF]) Let β > 0 , 1 ≤ p ≤ ∞ , and let W with W ∩ Γ = ∅ be a cube with edge length 2

-ν , ν ∈ N . A function a = a W ∈ L p (m d ) is a (-β, p) -atom associated with W if 1. supp a ⊂ 2W
, where 2W is the cube obtained by expanding W twice from its center, 2.

x γ a(x)dm d = 0 for |γ| ≤ [β] if ν > 0 , 3. a L p (m d ) ≤ 2 νβ . Let N ν (Γ) = {W ∈ N ν | W ∩ Γ =
∅} with the notation N ν of the net with mesh 2 -ν such that the origin is a corner of some cube in the net. Then we can define the Besov space with a negative parameter -β , B 2,2 -β (∂Ω) , which is actually [START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF] the dual Besov space of B 2,2 β (∂Ω) :

Definition 6 (Besov space B p,q -β (Γ), β > 0 , see Ref. [21]) The space B p,q -β (Γ), β > 0 , 1 ≤ p, q ≤ ∞ consists of functions f ∈ D ′ (R n ) which are given by ∀φ ∈ D(R n ) f, φ = ν∈N W ∈Nν (Γ) s W a W φdm d ,
where a W are (-β, p) -atoms and s W are numbers such that S = (S ν ) ν∈N ∈ ℓ q and S ν is defined by

S ν =   W ∈Nν(Γ) |s W | p   1 p .
The norm of f is defined by f B p,q -β (Γ) = inf S ℓ q , where the infimum is taken over all possible atomic decompositions of f :

f = ν∈N W ∈Nν(Γ) s W a W .
B Explicit computations for half space problem with constant coefficients

B.1 Case λ = ∞
The Green function of the one-dimensional problem (49)-( 51) with λ = ∞ and s ∈ R was treated in Ref. [START_REF] Pirozhenko | Integral equations for heat kernel in compound media[END_REF][START_REF] Carslaw | Conduction of Heat in Solids[END_REF] and it is given by

Γ(s, s 1 , t) = 1 {s>0, s 1 >0} Γ ++ (s, s 1 , t) + 1 {s<0, s 1 >0} Γ -+ (s, s 1 , t) with Γ ++ (s, s 1 , t) = 1 √ 4πD + t exp - (s -s 1 ) 2 4D + t + A exp - (s + s 1 ) 2 4D + t , (101) 
Γ -+ (s, s 1 , t) = B 1 √ πD + t exp    - s -s 1 D - D + 2 4D -t    , (102) 
where

A = √ D + - √ D - √ D + + √ D - and B = √ D + √ D + + √ D - .
Let us use this result to find the Green function Γ reg (s, s 1 , t) of the following onedimensional problem

∂ ∂t u + -D + ∂ 2 ∂s 2 u + + D + k ∂ ∂s u + = 0, s > 0 (103) ∂ ∂t u --D - ∂ 2 ∂s 2 u -+ D -k ∂ ∂s u -= 0, s < 0 (104) u + | t=0 = 1, u -| t=0 = 0, (105) 
u + | s=+0 = u -| s=-0 , D + ∂ ∂s u + | s=+0 = D - ∂ ∂s u -| s=-0 , (106) 
The constant coefficient problem .

∂ ∂t u -D ∂ 2 ∂s 2 u + Dk ∂ ∂s u = 0, s ∈ R, (107) 
u| t=0 = u 0 , (108) 
In addition [START_REF] Pirozhenko | Integral equations for heat kernel in compound media[END_REF], we know (see ( 101)-( 102)) the Green function for the constant coefficient problem

∂ ∂t u + -D + ∂ 2 ∂X 2 u + = 0 X > 0, ∂ ∂t u --D - ∂ 2 ∂X 2 u -= 0 X < 0, u + | t=0 = 1, u -| t=0 = 0, u + | X=+0 = u -| X=-0 , D + ∂ ∂X u + | X=+0 = D - ∂ ∂X u -| X=-0 .
Consequently, we perform the following change of variables in Eqs. ( 103)-( 106):

X = 1 s>0 (s) (s + tD + k) + 1 s<0 (s) D - D + s -tD -k
and obtain for z = D + D -X that

∂ ∂t u + -D + ∂ 2 ∂X 2 u + = 0 X > tD + k, ∂ ∂t u --D - ∂ 2 ∂z 2 u -= 0 z < tD + k, u + | t=0 = 1, u -| t=0 = 0, u + | X=+tD + k = u -| z=-tD + k , D + ∂ ∂X u + | X=+tD + k = D - ∂ ∂z u -| z=-tD + k .
Thus, 

Γ
( D + D -s -s 1 D + D -+ tD + k) 2 4D -t   • exp - |θ -θ 1 | 2 4D -t for s < 0, s 1 > 0, θ, θ 1 ∈ R n-1 .
For Γ and Γ reg we also have Varadhan's bounds [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF] 

We search the explicit solution of the problem [START_REF] Pirozhenko | Integral equations for heat kernel in compound media[END_REF] with G(s, s 1 , t) = G -+ , s < 0, s 1 > 0 G ++ , s > 0, s 1 > 0 .

We seek for G -+ and G ++ in terms of free heat kernel K(s, s 1 , D ± t) (see Eq. ( 55)) and single layer heat potentials for s 1 > 0 : . By the same way,

G ++ (s,
G -+ (s, s 1 , t) = λ √ D -D + exp λα √ D - -s + s 1 D - D + + λ 2 α 2 t • Erfc   -s + s 1 D - D + 2 √ D -t + λα √ t   .
We see that the Green function G ++ for λ = 0 becomes the Green function of the problem with the Neumann boundary conditions and in this case N(t) = 0 , as u -≡ 0 . This property, N(t) = 0 , can be also directly found using the Green function.

In R n for x = (s, θ) and y = (s 1 , θ 1 ) ∈ R × R n-1 we have

G ++ (s, θ, s 1 , θ 1 , t) R n = G ++ (s, s 1 , t) R K(θ, θ 1 , D + t) R n-1 , G -+ (s, θ, s 1 , θ 1 , t) R n = G -+ (s, s 1 , t) R K(θ, θ 1 , D -t) R n-1 .
Therefore in R n for Varadhan's bounds with x = y we have We also notice that for a fixed t > 0 for λ → +∞ we obtain G ++ (s, s 1 , t) → Γ ++ (s, s 1 , t) and G -+ (s, s 1 , t) → Γ -+ (s, s 1 , t).

lim

Figure 1 :

 1 Figure 1: Illustration of the heat content problem for a planar domain Ω with prefractal boundary ∂Ω presented by the third generation of the Minkowski fractal (of fractal dimension 3/2). This boundary splits the plane into two complementary regions. At time t = 0 , the inner region Ω + = Ω is "hot" (functions on Ω + are denoted with subscript + ), while the outer region Ω -= R n \ Ω is "cold" (functions on Ω -are denoted with subscript -).

Figure 2 :

 2 Figure 2: Comparison between the asymptotic formula (6) (solid line) and a FreeFem++ numerical solution of the problem (1)-(4) (circles) for two domains: (a) the unit square ( Vol(∂Ω) = 4 ) and (b) the third generation of the Minkowski fractal ( Vol(∂Ω) = 2 3 • 4 ), with D + = 1/100 , D -= 1 , and λ = 17 .Since the Hausdorff dimension of the boundaries of these domains is 1 (even for the prefractal case), Eq. (6) for a constant λ is reduced, according to Theorem 5, to N(t) = 2 √ tC 0 λµ(∂Ω, √ 4D + t) + O(t

Figure 3 :

 3 Figure 3: Comparison between the asymptotic formula (6) (solid line) and a FreeFem++ numerical solution of the problem (1)-(4) (circles) for two domains: (a) the unit square ( Vol(∂Ω) = 4 ), and (b) the third generation of the Minkowski fractal ( Vol(∂Ω) = 2 3 • 4 ), with D + = 0.4 , D -= 1 , and λ = ∞ . Since the prefractal boundary ∂Ω has the Hausdorff dimension 1 , Eq. (6) is reduced to Eq. (95), i.e., N(t) ∝ √ t . In turn, dashed line shows the fractal asymptotic (that would be exact for the infinite generation of the fractal) with de Gennes approximation of µ ∂Ω, √ 4D + t in Eq. (6) by 2.5(4D + t)

  n)[ . Considering only (v, n) > 0 , we can define ǫ = 2 √ Dt(v, n) and, since v = x-y √ 4Dt and x, y ∈ Ω 2 √

Figure 4 :

 4 Figure 4: Comparison between the asymptotic formula (77) (solid line) and a FreeFem++ numerical solution of the problem (74)-(75) (circles) for two domains: (a) the unit square (with Vol(∂Ω) = 4 ) and (b) the second generation of the Minkowski fractal, with Vol(∂Ω) = 2 2 • 4 . We set D + = D -= D = 1 .

,

  has the Green function of the formK(s, s 1 , t) = 1 √ 4πDt e -(s-y-tDk) 2 4Dtthat means that the change of variables s -tDk = X transforms (107) to

B. 2

 2 Case 0 < λ < ∞Let us consider the one-dimensional problem (49)-(51) with λ ≡ λ(θ 0 ) and s ∈ R . The associated problem for the heat kernel is then given by∂ t -D ± ∂ 2 s G(s, s 1 , t) = 0, G| t=0 = δ(s, s 1 ) for s > 0, D - ∂ ∂s G(-0, s 1 , t) = λ(G(-0, s 1 , t) -G(+0, s 1 , t)),

  + /D -]ss 1 D + /D -+ tD + k) 2 4D -tfor s < 0, s 1 > 0 . Now, to obtain the Green function of the multidimensional problem = 0, s < 0,θ i ∈ R u + | t=0 = 1, u -| t=0 = 0, u + | s=+0 = u -| s=-0 , D + ∂ ∂s u + | s=+0 = D - ∂ ∂s u -| s=-0 ,we apply the Fourier transform in s i variables and, due to the boundary conditions depending only on s , we obtain that Ĝ±+ , the Fourier transform of the Green function G ±+ , can be found by the formulaĜ±+ (s, s 1 , ξ, t) = e -D ± |ξ| 2 t Γ ±+ (s, s 1 , t),where Γ ±+ (s, s 1 , t) is the Green function of the corresponding one-dimensional problem.-s 1 -tD + k) 2 4D + t +A exp -(s + s 1 -tD + k) 2 4D + t exp -|θθ 1 | 2 4D + t for s, s 1 > 0, θ, θ 1 ∈ R n-1 ,Γ reg -+ (s, θ, s 1 , θ 1 , t) =

	reg ++ (s, s 1 , t) for s, s 1 > 0 , and Γ reg -+ (s, s 1 , t) = 1 √ πD + t ([D ∂ = 1 √ 4πD + t +A exp -(s + s 1 -tD + k) 2 exp -(s -s 1 -tD + k) 2 4D + t 4D + t B exp -∂t u + -D + ∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u + + D + k ∂ ∂s u + = 0, s > 0, θ i ∈ R, ∂ ∂t u --D -∂ 2 ∂s 2 + n-1 i=1 ∂ 2 ∂θ 2 i u -+ D -k ∂ ∂s u -This implies Γ reg ++ (s, θ, s 1 , θ 1 , t) = 1 (4πD + t) n 2 exp - (s B (4πD -t) n-1 2 √ πD + t exp  -

  where d(s, s 1 ) is the Riemannian distance between s and s 1 , which is equal here to the Euclidean distance, since D + and D -are constant in Ω + and Ω -respectively.

	d s, s 1 4D -D -D +	2	,

for s = s 1 lim t→0+ t ln Γ ++ (s, s 1 , t) = lim t→0+ t ln Γ reg ++ (s, s 1 , t) = -d(s,

s 1 ) 2 4D + , lim t→0+ t ln Γ -+ (s, s 1 , t) = lim t→0+ t ln Γ reg -+ (s, s 1 , t) = -

  s 1 , t) = K(s, s 1 , D + t) + D + t 0 K(s, 0, D + (tτ ))α + (s 1 , τ )dτ (s > 0), G -+ (s, s 1 , t) = D - D -(tτ ))α -(s 1 , τ )dτ (s < 0),where α ± (s 1 , τ ) are unknown densities to be determined. Considering the boundary conditions (109)-(110) and the jumps of the first derivatives ofG ±+ , -α -(s 1 , t) = -D + α + (s 1 , t) + 2D + ∂ ∂s K(0, s 1 , D + t), D -α -(s 1 , t) = 2λK(0, s 1 , D + t) + λ √ D + √ πFollowing the method from Ref.[START_REF] Pirozhenko | Integral equations for heat kernel in compound media[END_REF], we solve the system corresponding to α -(s 1 , t) and α + (s 1 , t) :D -α -(s 1 , t) + D + α + (s 1 , t) = 2D +We obtain therefore the Abel integral equation of the second kind for α -(s 1 , t) α -(s 1 , t) + γ

	Using the Laplace transform yields, after simplifications:
	G ++ (s, s 1 , t) =	1 √ 4πD + t	exp -	(s -s 1 ) 2 4D + t	+ exp -	(s + s 1 ) 2 4D + t
	where α = 1 √ D -	t G ++ | s=+0 = -0 λ ∂s D + exp λα √ D + (s + s 1 ) + λ 2 α 2 t Erfc 1 2 α + (s 1 , t) + ∂ ∂s K(0, s 1 , D + t), s + s 1 2 √ D + t K(s, 0, ∂ D + -+ 1 √	+ λα	√ t ,
			∂ ∂s	G -+ | s=-0 = -	1 2	α -(s 1 , t),
	we obtain two relations			
	D t 0 -λ √ D -√ π t 0 α -(s 1 , τ ) √ t -τ dτ.	α + (s 1 , τ ) √ t -τ	dτ
	D -α -(s 1 , t) +	λ	√ D -√ π	∂ ∂s α t K(0, s 1 , D + t), 1 + D -D + t 0 0 α -(s 1 , τ ) √ t -τ dτ = 4λ D -K(0, s 1 , D + t),
	where γ = λ √ πD -	1 + D -D + . Consequently,
	α -(s 1 , t) = +πγ 2 4λ D -0	4λ D -t e πγ 2 (t-τ ) K(0, s 1 , D + τ ) -γ K(0, s 1 , D + t) -γ 4λ D -t 0 K(0, s 1 , D + τ ) √ t -τ τ 0 K(0, s 1 , D + s) dτ √ τ -s	ds dτ.

-(s 1 , τ ) √ tτ dτ = 4λK(0, s 1 , D + t).

  Applying this framework to the same system but with the transmittal boundary condition for 0 < λ < ∞ , we obtainG ++ (s, θ, s 1 , θ 1 , t) = 1 (4πD + t)

	D -D + 4D -2 + d(θ, θ 1 ) 2 (s -s 1 -tD + k) 2 . 4D + t d(θ, θ 1 ) 2 exp -exp -4D + t (s + s 1 -tD + k) + λ 2 α 2 t • 2 √ λα (s + s 1 -tD + k) 2 4D + t (4πD + t) + exp --1 n-1 2 λ D + exp √ D + • Erfc s + s 1 -tD + k 2 √ D + t + λα t exp -d(θ, θ 1 ) 2 4D + t , G -+ (s, θ, s 1 , θ 1 , t) = 1 (4πD -t) n-1 2 λ √ D -D + • exp λα √ D --D + D -s + s 1 D + D -+ tD + k + λ 2 α 2 t Remark 3 n • Erfc   -D + D -s + s 1 D +  D -+ tD + k 2 √ D -t + λα √ t  exp -d(θ, θ 1 ) 2 4D -t	.

t→0+ t ln G ++ (x, y, t) R n = -d(x, y) 2 4D + , lim t→0+ t ln G -+ (x, y, t) R n = -d s, s 1

µ(∂Ω, 4D + t). Since µ(∂Ω, √ 4D + t) = C √ t for a regular boundary, then |MM 2 (t)| ≤ Ct 2 .

√ π ≈ 0.2769 . A comparison between the asymptotic formula (77) and a numerical solution of the problem (74)-(75) is illustrated in Fig.4(for a square and a prefractal domain).

), λ = ∞ (94)Consequently, for the regular case we have
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Let us calculate it explicitly. We start with the part

Changing variables as in the proof of Theorem 4, Nh j (t) becomes

Therefore, we obtain

Applying formula (73) with v = √ 4D + t z (see also Subsection 6.1), we find

Thus, for λ < ∞ Nh j (t) = µ(B j , ǫ) since a = 1 . We treat the second part in the same way,

which is equal to zero for λ = ∞ . For f (θ j 0 , z, t) from Eq. (81), we find that

Putting two results together, we obtain the following approximations for N(t) :

A Definitions of Besov spaces on fractals

Let us define the Besov space B 2,2 β (∂Ω) on a d -set ∂Ω (see Ref. [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] p.135 and Ref. [START_REF] Wallin | The trace to the boundary of Sobolev spaces on a snowflake[END_REF]).

There are many equivalent definitions [START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF][START_REF] Triebel | Fractals and spectra related to Fourier analysis and functions spaces[END_REF] of Besov spaces. To give one of them, we introduce [START_REF] Jonsson | Function spaces on subsets of R n[END_REF][START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF] a net N with mesh 2 -ν , ν ∈ N , i.e. a division of R n into half-open non-overlapping cubes W with edges of length 2 -ν , obtained by intersecting R n with hyperplanes orthogonal to the axes. In addition, we denote by P k (N ) the set of functions which on each cube W in the net N coincide with a polynomial of degree at most k . Definition 4 (Besov space B p,q β (Γ), β > 0 , see Ref. [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]) Let Γ be a closed subset of R n which is a d -set preserving Markov's inequality for 0 < d ≤ n and let m d be a fixed d -measure on Γ . We say that f ∈ B p,q β (Γ) , β > 0 , 1 ≤ p, q ≤ +∞ , if f ∈ L p (m d ) and there is a sequence B = (B ν ) ν∈N ∈ ℓ q such that for every net N with mesh 2 -ν , ν ∈ N there exists a function s(N ) ∈ P

The norm of f in B p,q β (Γ) is given by the formula f B p,q β (Γ) = f L p (m d ) + inf

where the infimum is over all such sequences B .