
HAL Id: hal-01186718
https://hal.science/hal-01186718v1

Submitted on 25 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Generation of Best Interval Patterns for
Nonmonotonic Constraints

Aleksey Buzmakov, Sergei O. Kuznetsov, Amedeo Napoli

To cite this version:
Aleksey Buzmakov, Sergei O. Kuznetsov, Amedeo Napoli. Fast Generation of Best Interval Patterns
for Nonmonotonic Constraints. Machine Learning and Knowledge Discovery in Databases, Sep 2015,
Porto, Portugal. pp.157-172, �10.1007/978-3-319-23525-7_10�. �hal-01186718�

https://hal.science/hal-01186718v1
https://hal.archives-ouvertes.fr

Fast Generation of Best Interval Patterns for

Nonmonotonic Constraints∗

Aleksey Buzmakov1,2 Sergei O. Kuznetsov2

Amedeo Napoli1

1LORIA (CNRS – Inria NGE – U. de Lorraine),
Vandœuvre-lès-Nancy, France

2National Research University Higher School of Economics,
Moscow, Russia

aleksey.buzmakov@inria.fr, skuznetsov@hse.ru,
amedeo.napoli@loria.fr

Abstract

In pattern mining, the main challenge is the exponential explosion
of the set of patterns. Typically, to solve this problem, a constraint for
pattern selection is introduced. One of the first constraints proposed in
pattern mining is support (frequency) of a pattern in a dataset. Fre-
quency is an anti-monotonic function, i.e., given an infrequent pattern,
all its superpatterns are not frequent. However, many other constraints
for pattern selection are neither monotonic nor anti-monotonic, which
makes it difficult to generate patterns satisfying these constraints. In this
paper we introduce the notion of “generalized monotonicity” and Σοφια
algorithm that allow generating best patterns in polynomial time for some
nonmonotonic constraints modulo constraint computation and pattern ex-
tension operations. In particular, this algorithm is polynomial for data
on itemsets and interval tuples. In this paper we consider stability and
Δ-measure which are nonmonotonic constraints and apply them to inter-
val tuple datasets. In the experiments, we compute best interval tuple
patterns w.r.t. these measures and show the advantage of our approach
over postfiltering approaches.
KEYWORDS: Pattern mining, nonmonotonic constraints, interval tu-
ple data

1 Introduction

Interestingness measures were proposed to overcome the problem of combina-
torial explosion of the number of valid patterns that can be discovered in a

∗The final publication is available at link.springer.com

1

http://link.springer.com/

dataset [17]. For example, pattern support, i.e., the number of objects cov-
ered by the pattern, is one of the most famous measures of pattern quality.
In particular, support satisfies the property of anti-monotonicity (aka “a pri-
ori principle”), i.e., the larger the pattern is the smaller the support is [11, 1].
Many other measures can be mentioned such as utility constraint [23], pattern
stability [9, 14], pattern leverage [18], margin closeness [12], MCCS [15], cosine
interest [4], pattern robustness [16], etc.

Some of these measures (e.g., support, robustness for generators [16], or
upper bound constraint of MCCS [15]) are “globally anti-monotonic”, i.e., for
any two patterns X v Y we have M(X) ≥ M(Y), where M is a measure.
When a measure is anti-monotonic, it is relatively easy to find patterns whose
measure is higher than a certain threshold (e.g. patterns with a support higher
than a threshold). In contrast some other measures are called “locally anti-
monotonic”, i.e., for any pattern X there is an immediate subpattern Y ≺ X
such that M(Y) ≥ M(X). Then the right strategy should be selected for
traversing the search space, e.g. a pattern Y should be extended only to patterns
X such that M(X) ≤M(Y). For example, for “locally anti-monotonic” cosine
interest [4], the extension of a pattern Y consists in adding only attributes
with a smaller support than any attribute from Y . The most difficult case for
selecting valid patterns occurs when a measure is not locally anti-monotonic.
Then, valid patterns can be retained by postfiltering, i.e., finding a (large set
of) patterns satisfying an antimonotone constraint and filtering them w.r.t. the
chosen nonmonotonic measure (i.e. neither monotonic nor anti-monotonic) [14,
12, 16], or using heuristics such as leap search [21] or low probability of finding
interesting patterns in the current branch [18].

Most of the measures are only applicable to one type of patterns, e.g., pat-
tern leverage or cosine interest can be applied only to binary data since their
definitions involve single attributes. “Pattern independent measures” usually
relies on support of the pattern and/or on support of other patterns from the
search space. In particular, support, stability [9], margin-closeness [12] and ro-
bustness [16] are pattern independent measures. In this paper we work with
interval tuple data, where only pattern independent measures as well as specific
measures for interval tuples can be applied. In addition, given a measure, it
can be difficult to define a good threshold. Thus various approaces for finding
K-top patterns were introduced [7, 20, 19], with the basic idea to automatically
adjust the threshold for a measure M.

In this paper we introduce a new algorithm Σοφια, i.e. Sofia, for “Searching
for Optimal Formal Intents Algorithm”, for extracting the best patterns of a
kind, e.g., itemsets, interval tuples, strings, graph patterns, etc. Σοφια algo-
rithm is applicable to a class of measures called “projection monotonic mea-
sures” or more precisely “measures monotonic w.r.t. a chain of projections”.
This class includes globally anti-monotonic measures such as support, locally
anti-monotonic measures such as cosine interest and some of the nonmonotonic
measures such as stability or robustness of closed patterns. We also introduce a
way of adjusting a measure threshold such that the number of generated patterns
is limited. This allows finding the best patterns w.r.t. a projection monotonic

2

measure in polynomial time modulo complexity of basic operations (i.e. inter-
secting and testing containment on descriptions, computation of a measure).
The main novelty of this paper is Σοφια, a new efficient polynomial algorithm
for finding best patterns of different kinds w.r.t. projection monotonic measures
which constitutes a rather large class of measures.

The remaining of the paper is organized as follows. The formalization of the
current approach is based on Formal Concept Analysis (FCA) [6] and pattern
structures [5] which are introduced in Section 2. Then, Σοφια algorithm is
detailed in Section 3 first for an arbitrary measure and second for the ∆-measure.
Experiments and a discussion are proposed in Section 4, before conclusion.

2 Data Model

2.1 FCA and Pattern structures

Formal Concept Analysis (FCA) is a formalism for modeling knowledge dis-
covery and data mining thanks to the design of concept lattices [6]. It is also
convenient for describing models of itemset mining, and, since [13], lattices of
closed itemsets (i.e. concept lattices) and closed descriptions are used for concise
representation of association rules. For more complex data such as sequences
and graphs one can use an extension of the basic model, called pattern struc-
tures [5]. With pattern structures it is possible to define closed descriptions and
to give a concise representation of association rules for different descriptions
with a natural order (such as subgraph isomorphism order) [10, 8].

A pattern structure is a triple (G, (D,u), δ), where G is a set of objects,
(D,u) is a complete meet-semilattice of descriptions and δ : G → D maps an
object to a description.

The intersection u gives similarity of two descriptions. Standard FCA can be
presented in terms of a pattern structure. A formal context (G,M, I), where G
is a set of objects, M is a set of attributes and I ⊆ G×M an incidence relation
giving information about attributes related to every object, is represented as a
pattern structure (G, (℘(M),∩), δ), where (℘(M),∩) is a semilattice of subsets
of M with ∩ being set-theoretical intersection. If x = {a, b, c} and y = {a, c, d},
then x u y = x ∩ y = {a, c}. The mapping δ : G → ℘(M) is given by δ(g) =
{m ∈ M | (g,m) ∈ I} and returns the description of a given object as a set of
attributes.

The following mappings or diamond operators give a connection between the
powerset of objects and descriptions:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

Given a subset of objects A, A� returns the description which is common
to all objects in A. Given a description d, d� is the set of all objects whose
description subsumes d. A partial order v (subsumption) on descriptions from

3

D is defined w.r.t. the similarity operation u: c v d ⇔ c u d = c, and c is
subsumed by d.

A pattern concept of a pattern structure (G, (D,u), δ) is a pair (A, d), where
A ⊆ G, called pattern extent and d ∈ D, called pattern intent, such that A� = d
and d� = A. Pattern extent is a closed set of objects, and a pattern intent is
a closed description, e.g., a closed itemset when descriptions are given as sets
of items (attributes). As shown in [10], descriptions closed in terms of counting
inference (which is a standard data mining approach), such as closed graphs [22],
are elements of pattern intents.

A pattern extent corresponds to the maximal set of objects A whose descrip-
tions subsume the description d, where d is the maximal common description
for objects in A. The set of all pattern concepts is partially ordered w.r.t. inclu-
sion on extents, i.e., (A1, d1) ≤ (A2, d2) iff A1 ⊆ A2 (or, equivalently, d2 v d1),
making a lattice, called pattern lattice.

2.2 Interval pattern structure

Another possible instantiation of pattern structures is interval pattern structures
introduced to support efficient processing of numerical data without binariza-
tion [8]. Given k numerical or interval attributes whose values are of the form
[a, b], where a, b ∈ R, the language of a pattern space is given by tuples of
intervals of size k. For simplicity, we denote intervals of the form [a, a] by a.

Figure 1a exemplifies an interval dataset. It contains 6 objects and 2 at-
tributes. An interval as a value of an attribute corresponds to an uncertainty in
the value of the attribute. For example, the value of m1 of g2 is known exactly,
while the value of m2 is somewhere in [1, 2]. Given this intuition for the intervals
it is natural to define similarity of two intervals as their convex hull, since by
adding new objects one increases the uncertainty. For example, for g1 the value
of m1 is 0, while for g6 is 1, thus given the set {g1, g6}, the uncertainty of m1 in
this set is [0, 1], i.e. the similarity of g1 and g6 w.r.t. m1 is [0, 1]. More formally,
given two intervals [a, b] and [c, d], the similarity of these two intervals is given
by [a, b]u [c, d] = [min(a, c),max(b, d)]. Given a tuple of intervals, the similarity
is computed component-wise. For example, g�1 u g�6 = 〈[0, 1]; [0, 2]〉.

The resulting concept lattice is shown in Figure 1b. Concept extents are
shown by indices of objects, intents are given in angle brackets, the numbers
on edges and on concepts are related to interestingness of concepts and will be
described in the next subsection.

2.3 Stability index of a concept

For real datasets, the number of patterns can be large. Different measures were
tested for selecting most interesting patterns, such as stability [9]. Stability
measures the independence of a concept intent w.r.t. randomness in data.

Given a concept C, concept stability Stab(C) is the relative number of subsets
of the concept extent (denoted Ext(C)), whose description, i.e. the result of (·)�

4

m1 m2

g1 0 0
g2 0 [1, 2]
g3 0 [1, 2]
g4 0 2
g5 1 [0, 2]
g6 1 [0, 2]

(a) An interval context.

(∅;>)[1]

(4; 〈0; 2〉)[0.5]

1

(1; 〈0; 0〉)[0.5]

1

(234; 〈0; [1, 2]〉)[0.75]

2

(1234; 〈0; [0, 2]〉)[0.44]

1

3
(56; 〈1; [0, 2]〉)[0.75]

2

(123456; 〈[0, 1]; [0, 2]〉)[0.7]

2

4

(b) An interval concept lattice with corresponding sta-
bility indexes. Objects are given by their indices.

Figure 1: A formal context and the corresponding lattice.

is equal to the concept intent (denoted Int(C)).

Stab(C) :=
|{s ∈ ℘(Ext(C)) | s� = Int(C)}|

|℘(Ext(C))|
(1)

Here ℘(P) is the powerset of P . The larger the stability, the more objects
can be deleted from the context without affecting the intent of the concept, i.e.
the intent of the most stable concepts is likely to be a characteristic pattern of
a given phenomenon and not an artifact of a dataset.

We say that a concept is stable if stability of it is higher than a given thresh-
old θ; a pattern p is stable if there is a concept in the lattice with p as the intent
and the concept is stable.

Example 1 Figure 1b shows a lattice for the context in Figure 1a. Concept
extents are given by their indices, i.e., {g1, g2} is given by 12. The extent of
the highlighted concept C is Ext(C) = {g2, g3, g4}, thus, its powerset contains 23

elements. Descriptions of 2 subsets of Ext(C) ({g4} and ∅) are different from
Int(C) = {m3}, while all other subsets of Ext(C) have a common set of attributes

equal to 〈0; [1, 2]〉. So, Stab(C) = 23−2
23 = 0.75. Stability of other concepts is

shown in brackets. It should be noticed, that stability of all comparable patterns
for Int(C) in the lattice are smaller than the stability of C, which highlights the
nonmonotonicity of stability.

Concept stability is closely related to the robustness of a closed pattern [16].
Indeed, robustness is the probability of a closed pattern to be found in a subset
of the dataset. To define this probability, the authors define a weight for every
subset given as a probability of getting this subset by removing objects from the
dataset, where every object is removed with probability α, e.g., given a subset
of objects X ⊆ G, the probability of the induced subset is given by p(Dα =
(X, (D,u), δ)) = α|X|(1 − α)|G\X|. Stability in this case is the robustness of
closed pattern if the weights of subsets of the dataset are equal to 2−|G|.

5

The problem of computing concept stability is #P-complete [9]. A fast
computable stability estimate was proposed in [3], where it was shown that this
estimate ranks concepts almost in the same way as stability does. In particular,
Stab(C) ≤ 1 − 2−∆(C), where ∆(C) = min

D≤C
|Ext(C) \ Ext(D)|, i.e., the minimal

difference in supports between concept C and all its nearest subconcepts. For a
threshold θ, patterns p with ∆(p) ≥ θ are called Δ-stable patterns.

Example 2 Consider the example in Figure 1. Every edge in the figure is
labeled with the difference in support between the concepts this edge connects.
Thus, Δ of a pattern is the minimum label of the edges coming down from the
concept. The value ∆(({g2, g3, g4}; 〈0; [1, 2]〉)) is equal to 2. Another example is
∆((G; 〈[0, 1]; [0, 2]〉)) = 2. For this example we can also see that Δ-measure is
not monotonic either.

Δ-measure is related to the work of margin-closeness of an itemset [12]. In
this work, given a set of patterns, e.g., frequent closed patterns, the authors rank
them by the minimal distance in their support to closest superpattern divided
over the support of the pattern. In our case, the minimal distance is exactly
the Δ-measure of the pattern.

2.4 Projections of Pattern Structures

The approach proposed in this paper is based on projections introduced for
reducing complexity of computing pattern lattices [5].

A projection ψ : D → D is an “interior operator”, i.e. it is (1) mono-
tonic (x v y ⇒ ψ(x) v ψ(y)), (2) contractive (ψ(x) v x) and (3) idempotent
(ψ(ψ(x)) = ψ(x)). A projected pattern structure ψ((G, (D,u), δ)) is a pattern
structure (G, (Dψ,uψ), ψ ◦ δ), where Dψ = ψ(D) = {d ∈ D | ∃d∗ ∈ D : ψ(d∗) =
d} and ∀x, y ∈ D,x uψ y := ψ(x u y).

Example 3 Consider the example in Figure 1. If we remove a column corre-
sponding to an attribute, e.g., the attribute m2, from the context in Figure 1a,
we define a projection, given by ψ(〈[a, b]; [c, d]〉) = 〈[a, b]; [− inf,+ inf]〉.

Given a projection ψ we call ψ(D) = {d ∈ D | ψ(d) = d} the fixed set of
ψ. Note that, if ψ(d) 6= d, then there is no other d̃ such that ψ(d̃) = d because
of idempotency of projections. Hence, any element outside the fixed set of the
projection ψ is pruned from the description space. Given the notion of a fixed
set we can define a partial order on projections.

Definition 1 Given a pattern structure P = (G, (D,u), δ) and two projections
ψ1 and ψ2, we say that ψ1 is simpler than ψ2 (ψ2 is more detailed than ψ1),
denoted by ψ1 < ψ2, if ψ1(D) ⊂ ψ2(D), i.e., ψ1 prunes more descriptions than
ψ2.

Our algorithm is based on this order on projections. The simpler a projection
ψ is, the less patterns we can find in ψ(P), and the less computational efforts

6

one should take. Thus, we compute a set of patterns for a simpler projection,
then we remove unpromising patterns and extend our pattern structure and the
found patterns to a more detailed projection. This allows us to reduce the size
of patterns within a simpler projection in order to reduce the computational
complexity of more detailed projection.

2.5 Projections of Interval Pattern Structures

Let us first consider interval pattern structures with only one attributem. Let us
denote by W = {w1, · · · , w|W |} all possible values of the left and right endpoints
of the intervals corresponding to the attribute in a dataset, so that w1 < w2 <
· · · < w|W |. By reducing the set W of possible values for the left or the right end
of the interval we define a projection. For example, if {w1} is the only possible
value for the left endpoint of an interval and {w|W |} is the only possible value
of the right endpoint of an interval, then all interval patterns are projected to
[w1, w|W |]. Let us consider this in more detail.

Let two sets L,R ⊂ W such that w1 ∈ L and w|W | ∈ R be constraints on
possible values on the left and right endpoints of an interval, respectively. Then
a projection is defined as follows:

ψm[L,R]([a, b]) = [max{l ∈ L|l ≤ a},min{r ∈ R|r ≥ b}] . (2)

Requiring that w1 ∈ L and w|W | ∈ R we ensure that the sets used for
minimal and maximal functions are not empty. It is not hard to see that (2)
is a projection. The projections given by (2) are ordered w.r.t. simplicity
(Definition 1). Indeed, given L1 ⊆ L and R1 ⊆ R, we have ψm[L1,R1] < ψm[L,R],
because of inclusion of fixed sets. Let us notice that a projection ψm[W,W] does
not modify the lattice of concepts for the current dataset, since we forbid no
interval that can be built for the value set W . Moreover, we can apply the
projections of type (2) independently to every attribute of a tuple of intervals
and the order on projections for tuples can be defined component-wise.

Example 4 Consider example in Figure 1. Let us consider a projection

ψm1[{0,1},{1}]m2[{0,2},{0,2}].

The fixed set of this projection consists of {[0, 1], 1} × {0, 2, [0, 2]}, i.e., 6 inter-
vals. Let us find the projection of (g2)� = 〈0; [1, 2]〉 in a component-wise way:
ψm1[{0,1},{1}](0) = [0, 1], since 0 is allowed on the left endpoint of an interval but
not allowed to be on the right endpoint of an interval; ψm2[{0,2},{0,2}]([1, 2]) =
[0, 2] since 1 is not allowed on the left endpoint of an interval. Thus,

ψm1[{0,1},{1}]m2[{0,2},{0,2}](〈0; [1, 2]〉) = 〈[0, 1]; [0, 2]〉 .

The lattice corresponding to this projection is shown in Figure 2.

7

(∅;>)

(4; 〈[0, 1]; 2〉)(1; 〈[0, 1]; 0〉) (56; 〈1; [0, 2]〉)

(123456; 〈[0, 1]; [0, 2]〉)

Figure 2: Projected lattice from example in Figure 1 by projection
ψm1[{0,1},{1}]m2[{0,2},{0,2}]. See Example 4.

3 Σοφια Algorithm

3.1 Monotonicity w.r.t. a Projection

Our algorithm is based on the projection monotonicity, a new idea introduced
in this paper. Many interestingness measures for patterns, e.g., stability, are not
(anti-)monotonic w.r.t. subsumption order on patterns. A measureM is called
anti-monotonic, if for two patterns q v p, M(q) ≥M(p). For simplicity in the
rest of the paper we skip the prefix “anti” and call such property monotonicity.
For instance, support is a monotonic measure w.r.t. pattern order and it allows
for efficient generation of patterns with support larger than a threshold [1, 11,
13]. The projection monotonicity is a generalization of standard monotonicity
and allows for efficient work with a larger set of interestingness measures.

Definition 2 Given a pattern structure P and a projection ψ, a measure M is
called monotonic w.r.t. the projection ψ, if

(∀p ∈ ψ(P))(∀q ∈ P, ψ(q) = p) Mψ(p) ≥M(q), (3)

where Mψ is the measure M of pattern p computed in ψ(P).

Here, for any pattern p of a projected pattern structure we check that a
preimage q of p for ψ has a measure smaller than the measure of p. It should
be noticed that a measure M for a pattern p can yield different values if M is
computed in P or in ψ(P). Thus we use the notation Mψ for the measure M
computed in ψ(P). The property of a measure given in Definition 2 is called
projection monotonicity.

It should be noticed that a classical monotonic measures are monotonic
w.r.t. any projection. Indeed, because of contractivity of ψ (ψ(p) v p), for
any anti-monotonic measure one has M(ψ(p)) ≥ M(p). This definition cov-
ers also the cases where a measure M is only locally monotonic, i.e., given a
pattern p there is an immediate subpattern q ≺ p such that M(q) ≥ M(p),
see e.g. the cosine interest of an itemset, which is only locally monotonic [4].
Moreover, this definition covers also some measures that are not locally mono-
tonic. As we mentioned in Examples 1 and 2 stability and Δ-measure are not
locally monotonic. However, it can be shown that they are monotonic w.r.t.

8

any projection [2]. Moreover, following the same strategy one can prove that
robustness of closed patterns from [16] is also monotonic w.r.t. any projection.
In particular, the robustness of closed patterns defines a monotonic constraint
w.r.t. any projection.

Thus, given a measure M monotonic w.r.t. a projection ψ, if p is a pattern
such that Mψ(p) < θ, then M(q) < θ for any preimage q of p for ψ. Hence, if,
given a pattern p of ψ(P), one can find all patterns q of P such that ψ(q) = p,
it is possible to find the patterns of ψ(P) and then to filter them w.r.t. Mψ

and a threshold, and finally to compute the preimages of filtered patterns. It
allows one to cut earlier unpromising branches of the search space or adjust a
threshold for finding only a limited number of best patterns.

3.2 Monotonicity w.r.t. a Chain of Projections

However, given just one projection, it can be hard to efficiently discover the
patterns, because the projection is either hard to compute or the number of
unpromising patterns that can be pruned is not high. Hence we introduce a
chain of projections ψ0 < ψ1 < · · · < ψk = 1, where a pattern lattice for ψ0(P)
can be easily computed and 1 is the identity projection, i.e., (∀x)1(x) = x.
For example, to find frequent itemsets, we typically search for small frequent
itemsets and then extend them to larger ones. It corresponds to extension to a
more detailed projection.

Definition 3 Given a pattern structure P and a chain of projections ψ0 < ψ1 <
· · · < ψk = 1, a measure M is called monotonic w.r.t. the chain of projections
if M is monotonic w.r.t. all ψi for 0 ≤ i ≤ k.

Example 5 Let us construct a chain of projections satisfying (2) for the ex-
ample in Figure 1. The value set for the first attribute is W1 = {0, 1} and the
value set for the second is W2 = {0, 1, 2}. Let us start the chain from a pro-
jection ψ0 = ψm1[{0},{1}]m2[{0},{2}]. This projection allows only for one pattern
〈[0, 1]; [0, 2]〉, i.e., the concept lattice is easily found. Then we increase the com-
plexity of a projection by allowing more patterns. For example, we can enrich
the first component of a tuple without affecting the second one, i.e., a projection
ψ1 = ψm1[{0,1},{0,1}]m2[{0},{2}]. This projection allows for 3 patterns, i.e., any
possible interval of the first component and only one interval [0,2] for the second
component. Let us notice that it is not hard to find preimages for ψ0 in ψ1(D).
Indeed, for any pattern p from ψ0(D) one should just modify either the left side
of the first interval of p by one value, or the right side of the first interval of p.

Then we can introduce a projection that slightly enrich the second com-
ponent of a tuple, e.g., ψ2 = ψm1[{0,1},{0,1}]m2[{0,1},{1,2}] and finally we have
ψ3 = ψm1[W1,W1]m2[W2,W2]. Finding preimages in this chain is not a hard prob-
lem, since on every set we can only slightly change left and/or right side of the
second interval in a tuple. Thus, starting from a simple projection and making
transitions from one projection to another, we can cut unpromising branches
and efficiently find the set of interesting patterns.

9

3.3 Algorithms

Data: A pattern structure P, a chain of projections
Ψ = {ψ0, ψ1, · · · , ψk}, a measure M monotonic for the chain Ψ,
and a threshold θ for M.

1 Function ExtendProjection(i, θ, Pi−1)
Data: i is the projection number to which we should extend

(0 < i ≤ k), θ is a threshold value for M, and Pi−1 is the set
of patterns for the projection ψi−1.

Result: The set Pi of all patterns with the value of measure M
higher than the threshold θ for ψi.

2 Pi ←− ∅;
3 /* Put all preimages in ψi(P) for any pattern p */

4 foreach p ∈ Pi−1 do
5 Pi ←− Pi ∪ Preimages(i,p)
6 /* Filter patterns in Pi to have a value of M higher than

θ */

7 foreach p ∈ Pi do
8 if Mψi(p) ≤ θ then
9 Pi ←− Pi \ {p}

10 Function Algorithm θ-Σοφια
Result: The set P of all patterns with a value of M higher than the

threshold θ for P.
11 /* Find all patterns in ψ0(P) with a value of M higher

than θ */

12 P ←− FindPatterns(θ, ψ0);
13 /* Run through out the chain Ψ and find the result

patterns */

14 foreach 0 < i ≤ k do
15 P ←− ExtendProjection(i, θ,P);

Algorithm 1: The θ-Σοφια algorithm for finding patterns in P with a
value of a measure M higher than a threshold θ.

Given a measure monotonic w.r.t. a chain of projections, if we are able to
find all preimages of any element in the fixed set of ψi that belong to a fixed
set of ψi+1, then we can find all patterns of P with a value of M higher than a
given threshold θ. We call this algorithm θ-Σοφια and its pseudocode is given
in Algorithm 1. In lines 11-12 we find all patterns for ψ0(P) satisfying the
constraint that a value ofM is higher than a threshold. Then in lines 13-15 we
iteratively extend projections from simpler to more detailed ones. The extension
is done by constructing the set Pi of preimages of the set Pi−1 (lines 2-5) and
then by removing the patterns that do not satisfy the constraint from Pi (lines
6-9).

The algorithm is sound and complete, since first, a pattern p is included

10

into the set of preimages of p (ψ(p) = p) and second, if we remove a pattern p
from the set P, then the value M(p) < θ and, hence, the measure value of any
preimage of p is less than θ by the projection chain monotonicity of M. The
worst case time complexity of θ-Σοφια algorithm is

T(θ-Σοφια) = T(FindPatterns(ψ0))+

+ k · max
0<i≤k

|Pi| · (T(Preimages) + T(M)), (4)

where k is the number of projections in the chain, T(X) is time for computing
operation X . Since projection ψ0 can be chosen to be very simple, in a typical
case the complexity of FindPatterns(θ, ψ0) can be low or even constant. The
complexities of Preimages andM depend on the measure, the chain of projec-
tions, and the kind of patterns. In many cases max

0<i≤k
|Pi| can be exponential in

the size of the input, because the number of patterns can be exponential. It can
be a difficult task to define the threshold θ such that the maximal cardinality
of Pi is not larger than a given number. Thus, we introduce Σοφια algorithm,
which automatically adjusts threshold θ ensuring that max

0<i≤k
|Pi| < L. Here L

can be considered as a constraint on the memory used by the algorithm. Σοφια
takes a pattern structure P, a chain of projections Ψ = {ψ0, ψ1, · · · , ψk}, a mea-
sure M monotonic for the chain Ψ, and a threshold L for the maximal number
of preserved patterns. As the result it returns the threshold θ ensuring that the
cardinality of the set P is bounded by L in any step of the algorithm and the
set P of all patterns with the value of measure M higher than the threshold θ.
The only difference of Σοφια algorithm w.r.t. θ-Σοφια is that after performing
an operation that changes the set P (lines 12 and 15 of the Algorithm 1) it
adjusts θ in such a way that the cardinality of P does not exceed the parameter
L. It can be seen from (4) that Σοφια has polynomial time complexity ifM and
Preimages are polynomial. In particular, for interval pattern structures Σοφια
has polynomial complexity modulo the measure computation operation.

3.4 Σοφια Algorithm for Interval Tuple Data

In this subsection we consider a pattern structure K = (G, (DI ,u), δ), where DI

is a semilattice of interval tuple descriptions. We say that every component of
a tuple p corresponds to an attribute m ∈ M , the size of any tuple in DI is
|M |, and for any attribute m ∈M we can denote the corresponding interval by
m(p). We also denote the value set of m by Wm. Since the set Wm is totally

ordered we also denote by W
(j)
m and W

(−j)
m the sets containing j smallest and

largest elements from Wm, respectively.
A projection chain for interval tuple data is formed in the same way as

discussed in Example 5. We start from the projection containing only one
pattern corresponding to the largest interval in each component, i.e., for an

attribute m the projection is of the form ψm[W
(1)
m ,W

(−1)
m]. Then to pass to

a next projection, we select the attribute m, and for this attribute we extend

the projection from ψm[W
(j)
m ,W

(−j)
m] to ψm[W

(j+1)
m ,W

(−j−1)
m]. Thus, there are

11

k = max
m∈M

|Wm| · |M | projections.

Finding preimages in this case is not hard, since to make a projection more
detailed one should just extend the corresponding interval in left and/or on right
end of the interval, i.e., there are only 4 possible preimages for a pattern when
passing from one projection no another in this chain. Thus, we have proved the
following

Proposition 1 The worst case complexity for θ-Σοφια algorithm for interval
tuple data is

T(θ-Σοφιαintervals) = max
m∈M

|Wm| · |M | · max
0<i≤k

|Pi| · T(M). (5)

.

In particular, the complexity of Σοφια for interval data is max
m∈M

|Wm| · |M | · L ·
T(M), i.e., it is polynomial modulo complexity of the measure.

3.5 Σοφια Algorithm for Closed Patterns

Closed frequent itemsets are widely used as a condensed representation of all
frequent itemsets since [13]. Here we show how we can adapt the algorithm for
closed patterns. A closed pattern in ψi−1(P) is not necessarily closed in ψi(P).
However, the extents of ψ(P) are extents of P [5]. Thus, we associate the closed
patterns with extents and then work with extents instead of patterns, i.e., a
pattern structure P = (G, (D,u), δ) is transformed into PC = (G, (DC ,uC), δC),
where DC = 2G. Moreover, for all x, y ∈ DC we have xuC y = (x�uy�)�, where
diamond operator is computed in P and δC(g ∈ G) = {g}. Hence, every pattern
p in DC corresponds to a closed pattern p� in D. A projection ψ of P induces
a projection ψC of PC , given by ψC(X ⊆ G) = ψ(X�)� with (·)� for P.

3.6 Δ-measure and Σοφια Algorithm

In this subsection we show that ∆ is monotonic for any projection; it is a stronger
condition than the one required by Definition 3. Δ-measure works for closed
patterns, and, hence, we identify every description by its extent (Subsection 3.5).

Proposition 2 ∆ is monotonic for any projection ψ.

Proof. By properties of a projection, an extent of ψ(P) is an extent of P [5]. Let
us consider an extent E and an extent of its descendant in ψ(P). Let us suppose
that Ep is a preimage of E for the projection ψ. Since Ec and Ep are extents in
P, the set Ecp = Ec ∩ Ep is an extent in P (the intersection of two closed sets
is a closed set). Since Ep is a preimage of E, then Ep 6≤ Ec (otherwise, Ep is a
preimage of Ec and not of E). Then, Ecp 6= Ep and Ecp ≤ Ep. Hence, ∆(Ep) ≤
|Ep\Ecp| ≤ |E \Ec|. So, given a preimage Ep of E, (∀Ec ⊆ E)∆(Ep) ≤ |E \Ec|,
i.e., ∆(Ep) ≤ ∆(E). Thus, we can use Δ-measure in combination with Σοφια.

12

Table 1: Patterns found for every projection in a chain for the example in
Figure 1. Patterns are grey if they are removed for the corresponding projetion
and they are labeled with “–” if they have not yet been found.

Pattern Ext.
Δ-measure

ψ0 ψ1 ψ2 ψ3

1 {g1, g2, g3, g4, g5, g6} 6 2 2 2
2 {g1, g2, g3, g4} – 4 1 1
3 {g5, g6} – 2 2 2
4 {g1} – – 1 1
5 {g2, g3, g4} – – 3 2
6 {g4} – – – 1

3.7 Example of Δ-Stable Patterns in Interval Tuple Data

Let us consider the example in Figure 1 and show how we can find all Δ-stable
patterns with a threshold θ = 2. The chain of projections for this example is
given in Example 5, it contains 4 projections:

ψ0 = ψm1[{0},{1}]m2[{0},{2}] ψ1 = ψm1[{0,1},{0,1}]m2[{0},{2}]

ψ2 = ψm1[{0,1},{0,1}]m2[{0,1},{1,2}] ψ3 = ψm1[{0,1},{0,1}]m2[{0,1,2},{0,1,2}]

Since we are looking for closed patterns, every pattern can be identified by
its extent. In Table 1 all patterns are given by their extents, i.e., by elements
of DC . For every pattern Δ-measure is shown for every ψi. A cell is shown in
grey if the pattern is no more considered (the value of Δ less than 2). A cell has
a dash “–”, if a pattern in the row has not been generated for this projection.

For the example in Figure 1 the global process is as follows. At the beginning
ψ0(DI) contains only one element corresponding to pattern extent 123456 (a
short cut for {g1, g2, g3, g4, g5, g6}) with a description 〈[0, 1]; [0, 2]〉. Then, in
ψ1(G, (DI ,u), δ) possible preimages of 123456 are patterns with descriptions
〈0; [0, 2]〉 and 〈1; [0, 2]〉 given by pattern extents 1234 and 56, respectively. Then
we continue with these three patterns which are all Δ-stable for the moment.
The pattern extents 123456 and 56 have no preimages for the transition ψ1 →
ψ2, while the pattern extent 1234 has two preimages with descriptions 〈0; [0, 1]〉
and 〈0; [1, 2]〉 for this projection, which correspond to pattern extents 1 and
234. The first one is not Δ-stable and thus is no more considered. Moreover,
the pattern extent 1234 is not Δ-stable (because of 234) and should also be
removed. Finally, in transition ψ2 → ψ3 only extent-pattern 234 has a preimage,
a pattern extent 4, which is not Δ-stable. In such a way, we have started from
a very simple projection ψ0 and achieved the projection ψ3 that gives us the
Δ-stable patterns of the target pattern structure.

13

4 Experiments and Discussion

In this section we compare our approach to approaches based on postfiltering.
Indeed, there is no approach that can directly mine stable-like pattern, e.g.
stable, Δ-stable or robust patterns. The known approaches use postfiltering to
mine such kind of patterns [14, 12, 2, 16]. Recently it was also shown that it
is more efficient to mine interval tuple data without binarization [8]. In their
paper the authors introduce algorithm MinIntChange for working directly with
interval tuple data. Thus we compare Σοφια and MinIntChange for finding Δ-
stable patterns. We find Δ-stable concepts by Σοφια and then adjust frequency
threshold θ such that all Δ-stable patterns are among the frequent ones.

The experiments are carried out on an “Intel(R) Core(TM) i7-2600 CPU @
3.40GHz” computer with 8Gb of memory under Ubuntu 14.04 operating system.
The algorithms are not parallelized and are coded in C++.

4.1 Dataset Simplification

For interval tuple data stable patterns can be very deep in the search space,
such that neither of the algorithms can find them quickly. Thus, we join some
similar values for every attribute in an interval in the following way. Given a
threshold 0 < β, two consequent numbers wi and wi+1 from a value set W are
joint in the same interval if wi+1−wi < β. In order to properly set the threshold
β, we use another threshold 0 < γ < 1, which is much easier to set.

If we assume that the values of the attribute m are distributed around several
states with centers w̃1, · · · , w̃l, then it is natural to think that the difference
between the closest centers abs(w̃i − w̃i±1) are much larger than the difference
between the closest values. Ordering all values in the increasing order and
finding the maximal difference δmax can give us an idea of typical distance
between the states in the data. Thus, γ is defined as a proportion of this
distance that should be considered as a distance between states, i.e., we put
β = γ · δmax. If the distance between closest values in W are always the same,
then even γ = 0.99 does not join values in intervals. However, if there are two
states and the values are distributed very closely to one of these two states,
then even γ = 0.01 can join values into one of two intervals corresponding to
the states.

4.2 Datasets

We take several datasets from the Bilkent University database 1. The datasets
are summarized in Table 2. The names of datasets are given by standard ab-
breviations used in the database of Bilkent University. For every dataset we
provide the number of objects and attributes and the threshold γ for which
the experiments are carried out. For example, database EM has 61 objects, 9
numeric attributes, and the threshold γ is set to 0.3. Categorical attributes and
rows with missing values, if any, are removed from the datasets.

1http://funapp.cs.bilkent.edu.tr/DataSets/

14

http://funapp.cs.bilkent.edu.tr/DataSets/

Table 2: Runtime in seconds of Σοφια and MinIntChange for different datasets.

DS # Objs # Attrs γ ∆ # Ptrns θ tΣοφια tMIC
EM 61 9 0.3 3 3 21 < 0.1 57
BK 96 4 0.3 4 50 46 < 0.1 11
CN 105 20 0.8 2 5362 30 2.4 28
CU 108 5 0.3 5 4 27 < 0.1 1.5
FF 125 3 0.3 6 3 48 < 0.1 1
AP 135 4 0.01 5 1 19 < 0.1 34
EL 211 12 0.3 6 33 83 < 0.1 34
BA 337 16 0.5 4 736 91 1.5 32
AU 398 7 0.3 7 17 234 0.7 73
HO 506 13 0.8 10 1 340 0.7 57
QU 2178 25 0.3 40 1 659 1.3 28
AB 4177 8 0.3 46 3 1400 11 86
CA 8192 21 0.3 85 6 2568 112 24
PT 9065 48 0.3 2 1 2 45 14

4.3 Experiments

In Table 2 we show the computation time for finding the best Δ-stable pattern
(or patterns if they have the same value for Δ-measure) for Σοφια and for
MinIntChange. The last algorithm is abbreviated as MIC. Since MinIntChange

algorithm sometimes produces too many patterns, i.e., we do not have enough
memory in our computer to check all of them, we interrupt the procedure and
show the corresponding time in grey. We also show the number of the best
patterns and the corresponding threshold ∆. The support threshold θ for finding
the best Δ-stable patterns is also shown. For example, dataset CN contains 5362
best Δ-stable patterns, all having a Δ of 2. To find all these patterns with a
postfiltering, we should mine frequent patterns with a support threshold lower
than 30 or 30

105 = 30%. Σοφια computes all these patterns in 2.4 seconds, while
MinIntChange requires at least 28 seconds and the procedure was interrupted
without continuation.

As we can see, Σοφια is significantly faster than MinIntChange in all datasets.
In the two datasets CA and PT, MinIntChange was stopped before computing
all patterns and the runtime did not exceed the runtime of Σοφια. However, in
both cases, MinIntChange achieved less than 10% of the required operations.

5 Conclusion

In this paper we have introduced a new class of interestingness measures that
are monotonic w.r.t. a chain of projections. We have designed a new algorithm,
called Σοφια, which is able to find the best patterns w.r.t. such interestingness
measures in polynomial time for interval tuple data. The experiments reported
in the paper are the witness of the efficiency of the Σοφια algorithms compared
to indirect approaches based on postfiltering. Many future research directions
are possible. Different measures should be studied in combination with Σοφια.

15

One of them is robustness, which is very close to stability and can be applied to
nonbinary data. Moreover, the choice of a projection chain is not a simple one
and can affect the algorithm efficiency. Thus, a deep study of suitable projection
chains should be carried out.

Acknowledgments: this research was supported by the Basic Research Program at

the National Research University Higher School of Economics (Moscow, Russia) and

by the BioIntelligence project (France).

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Proc. 20th int. conf. very large data bases, VLDB,
volume 1215, pages 487–499, 1994.

[2] Aleksey Buzmakov, Elias Egho, Nicolas Jay, Sergei O. Kuznetsov, Amedeo
Napoli, and Chedy Räıssi. On Projections of Sequential Pattern Structures
(with an application on care trajectories). In Proc. 10th Int. Conf. Concept
Lattices Their Appl., pages 199—-208, La Rochelle, France, 2013.

[3] Aleksey Buzmakov, Sergei O. Kuznetsov, and Amedeo Napoli. Scalable Es-
timates of Concept Stability. In Christian Sacarea, Cynthia Vera Glodeanu,
and Mehdi Kaytoue, editors, Form. Concept Anal., volume 8478 of Lecture
Notes in Computer Science, pages 161–176. Springer Berlin Heidelberg,
2014.

[4] Jie Cao, Zhiang Wu, and Junjie Wu. Scaling up cosine interesting pattern
discovery: A depth-first method. Inf. Sci. (Ny)., 266(0):31–46, 2014.

[5] Bernhard Ganter and Sergei O. Kuznetsov. Pattern Structures and Their
Projections. In Harry S. Delugach and Gerd Stumme, editors, Concept.
Struct. Broadening Base, volume 2120 of Lecture Notes in Computer Sci-
ence, pages 129–142. Springer Berlin Heidelberg, 2001.

[6] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathemat-
ical Foundations. Springer, 1st edition, 1999.

[7] Jiawei Han, Jianyong Wang, Ying Lu, and P Tzvetkov. Mining top-k
frequent closed patterns without minimum support. In Data Mining, 2002.
ICDM 2003. Proceedings. 2002 IEEE Int. Conf., pages 211–218, 2002.

[8] Mehdi Kaytoue, Sergei O. Kuznetsov, and Amedeo Napoli. Revisiting Nu-
merical Pattern Mining with Formal Concept Analysis. In IJCAI 2011,
Proc. 22nd Int. Jt. Conf. Artif. Intell. Barcelona, Catalonia, Spain, July
16-22, 2011, pages 1342–1347, 2011.

[9] Sergei O. Kuznetsov. On stability of a formal concept. Ann. Math. Artif.
Intell., 49(1-4):101–115, 2007.

16

[10] Sergei O. Kuznetsov and Mikhail V. Samokhin. Learning Closed Sets of
Labeled Graphs for Chemical Applications. In Stefan Kramer and Bern-
hard Pfahringer, editors, Inductive Log. Program. SE - 12, volume 3625 of
Lecture Notes in Computer Science, pages 190–208. Springer Berlin Hei-
delberg, lecture no edition, 2005.

[11] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Efficient Algo-
rithms for Discovering Association Rules. In Knowl. Discov. Data Min.,
pages 181–192, 1994.

[12] Fabian Moerchen, Michael Thies, and Alfred Ultsch. Efficient mining of all
margin-closed itemsets with applications in temporal knowledge discovery
and classification by compression. Knowl. Inf. Syst., 29(1):55–80, 2011.

[13] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient
Mining of Association Rules Using Closed Itemset Lattices. Inf. Syst.,
24(1):25–46, 1999.

[14] Camille Roth, Sergei A. Obiedkov, and Derrick G. Kourie. On succinct
representation of knowledge community taxonomies with formal concept
analysis. Int. J. Found. Comput. Sci., 19(02):383–404, April 2008.

[15] Eirini Spyropoulou, Tijl De Bie, and Mario Boley. Interesting pattern
mining in multi-relational data. Data Min. Knowl. Discov., (April):1–42,
2013.

[16] Nikolaj Tatti, Fabian Moerchen, and Toon Calders. Finding Robust Item-
sets under Subsampling. ACM Trans. Database Syst., 39(3):1–27, October
2014.

[17] Jilles Vreeken and Nikolaj Tatti. Interesting Patterns. In Charu C Aggar-
wal and Jiawei Han, editors, Freq. Pattern Min., pages 105–134. Springer
International Publishing, 2014.

[18] Geoffrey I. Webb. Self-sufficient itemsets. ACM Trans. Knowl. Discov.
Data, 4(1):1–20, January 2010.

[19] Geoffrey I. Webb. Filtered-top-k association discovery. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov., 1(3):183–192, 2011.

[20] Dong Xin, Hong Cheng, Xifeng Yan, and Jiawei Han. Extracting
redundancy-aware top-k patterns. In Proc. 12th ACM SIGKDD Int. Conf.
Knowl. Discov. data Min. - KDD ’06, page 444, New York, New York,
USA, August 2006. ACM Press.

[21] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant
graph patterns by leap search. In Proc. 2008 ACM SIGMOD Int. Conf.
Manag. data - SIGMOD ’08, pages 433–444, New York, New York, USA,
June 2008. ACM Press.

17

[22] Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining Closed
Sequential Patterns in Large Databases. In Proc. SIAM Int’l Conf. Data
Min., pages 166–177, 2003.

[23] Hong Yao and Howard J Hamilton. Mining itemset utilities from transac-
tion databases. Data Knowl. Eng., 59(3):603–626, 2006.

18

	Introduction
	Data Model
	FCA and Pattern structures
	Interval pattern structure
	Stability index of a concept
	Projections of Pattern Structures
	Projections of Interval Pattern Structures

	 Algorithm
	Monotonicity w.r.t. a Projection
	Monotonicity w.r.t. a Chain of Projections
	Algorithms
	 Algorithm for Interval Tuple Data
	 Algorithm for Closed Patterns
	-measure and Algorithm
	Example of -Stable Patterns in Interval Tuple Data

	Experiments and Discussion
	Dataset Simplification
	Datasets
	Experiments

	Conclusion

