
HAL Id: hal-01186717
https://hal.science/hal-01186717v1

Submitted on 26 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring Pattern Structures of Syntactic Trees for
Relation Extraction

Artuur Leeuwenberg, Aleksey Buzmakov, Yannick Toussaint, Amedeo Napoli

To cite this version:
Artuur Leeuwenberg, Aleksey Buzmakov, Yannick Toussaint, Amedeo Napoli. Exploring Pattern
Structures of Syntactic Trees for Relation Extraction. International Conference in Formal Concept
Analysis - ICFCA 2015, Jun 2015, Nerja, Spain. pp.153–168, �10.1007/978-3-319-19545-2_10�. �hal-
01186717�

https://hal.science/hal-01186717v1
https://hal.archives-ouvertes.fr

Exploring Pattern Structures of Syntactic Trees
for Relation Extraction∗

Artuur Leeuwenberg, Aleksey Buzmakov, Yannick Toussaint,
and Amedeo Napoli

LORIA (CNRS – INRIA – Université de Lorraine)
Email:

t.leeuwenberg@gmail.com,firstname.lastname@loria.fr

Abstract

In this paper we explore the possibility of defining an original pattern
structure for managing syntactic trees. More precisely, we are interested
in the extraction of relations such as drug-drug interactions (DDIs) in
medical texts where sentences are represented as syntactic trees. In this
specific pattern structure, called STPS, the similarity operator is based on
rooted tree intersection. Moreover, we introduce “Lazy Pattern Structure
Classification” (LPSC), which is a symbolic method able to extract and
classify DDI sentences w.r.t. STPS. To decrease computation time, a
projection and a set of tree-simplification operations are proposed. We
evaluated the method by means of a 10-fold cross validation on the corpus
of the DDI extraction challenge 2011, and we obtained very encouraging
results that are reported at the end of the paper.
KEYWORDS: pattern structures; relation extraction; formal concept
analysis; DDI extraction

1 Introduction
When a doctor wants to prescribe a drug to a patient, he/she would like to know
when this drug interacts with other drugs that the patient may already take. A
lot of research has been done on each drug, resulting in a lot of articles (often
more than 1000 articles per drug). It would not be feasible for a human agent
to read all these articles. For this reason it could be interesting to automatically
find which drugs are interacting in these articles. Accordingly, in the extraction
of drug-drug interactions –DDIs in the following– the task is to find pairs of
drugs that are described as interacting in a sentence or a text.

∗The final publication is available at link.springer.com

1

t.leeuwenberg@gmail.com,firstname.lastname@loria.fr
http://link.springer.com/chapter/10.1007/978-3-319-19545-2_10

In 2011, for the first time, a challenge on this task was initiated [12]. Several
methods were proposed to perform this task [14, 3, 4, 2, 11, 7]. The best per-
forming system, i.e. the system with the highest F1-measure on the given test
set, combined several different subsystems in which information from different
feature spaces was exploited [14]. Their highest F1 on the test set was 65.7,
and their F1 for a document-wise 10-fold cross validation on the training data
was 60.6. Linguistics features were used, such as part-of-speech, together with
different tree kernels of the dependency parses, i.e. trees describing the gram-
matical dependencies between words, of the sentences. Another system that
was successful in the challenge was based on a union of two different machine
learning techniques [3]. The first machine learning technique is a feature-based
SVM using different words, morphosyntactic features (internal structural fea-
tures of words, like number and case) and contextual features (words in be-
tween the two considered drugs). The second machine learning technique is a
kernel-based method combining three different kernels, namely “shallow linguis-
tic information” (like part-of-speech and word-inflection information), “mildly
extended dependency trees” and “phrase structure”.

It appears that the most successful systems combine both deep linguistic in-
formation, such as dependency trees or phrase structures, and shallow linguistic
features, such as word features and morphological information. Thus, we pro-
pose to apply a symbolic method, based on pattern structures [6] and Formal
Concept Analysis (FCA), to deal with the phrase structure, i.e. the syntactic
level, in a different way. A pattern structure can manage a complex data type,
such as a tree, and allows one to build a hierarchy of elements of this data type,
in the present case a hierarchy of trees. Such a pattern structure comes with a
classification technique, called “Lazy Pattern Structure Classification” (LPSC)
[9], which classifies the syntactic trees containing drug-drug interactions. This is
one original application of pattern structures to syntactic trees and to the task
of text-mining (here the mining of DDIs). The method is novel and deserves
more research work but we already obtained substantial results showing that
the current approach is suitable and valuable.

The rest of the paper is organized as follows. Firstly we explain the pipeline
on which relies the proposed system. Then we define the pattern structure for
syntactic trees, namely STPS, and as well Lazy Pattern Structure Classification
(LPSC). After that, we introduce a projection related to STPS and a set of tree-
simplification operations to reduce computational time. Finally we evaluate the
method on the corpus of the DDI challenge 2011 [12].

2 The Data and the Pipeline
Our data consists of medical texts containing potential drug-drug interactions,
i.e. the training corpus of the DDI extraction challenge 2011 [12]. This corpus
consists of around 4200 sentences containing around 23000 potential interactions
of which a small portion (∼10%) is annotated as positive and the rest as nega-
tive. In these data drugs in the sentences are already tagged (see Example 1).

2

If we take a sentence from the data containing n drugs, there are
(
n
2

)
pairs

of drugs in the sentence that can potentially interact. Each such pair is repre-
sented by a separate sentence, where the two potentially interacting drugs in the
sentence are replaced with a drug_tag_r tag, and all other drugs by a drug_tag
tag (see Examples 2 and 3 where the corresponding tags are following the name
of the tagged drug).

Example 1. Antihistamines (drug) may enhance the effects of tricyclic_antide-
pressants (drug), barbiturates (drug), alcohol (drug), and other CNS_depres-
sants (drug).

Example 2. drug_tag_r may enhance the effects of drug_tag, drug_tag,
drug_tag, and other drug_tag_r.

Example 3. drug_tag may enhance the effects of drug_tag, drug_tag_r,
drug_tag, and other drug_tag_r.

Each such tagged sentence, representing a possible drug-drug interaction, is
parsed by the Stanford constituency parser v3.4 [13, 8]. The resulting trees are
simplified by means of operations that preserve the parts of the tree describing
the potential interaction as much as possible. Trees, representing drug-drug
pairs, can be considered as positive or negative. Trees are “positive” when an
interaction is described between the two drugs replaced by the drug_tag_r tag
(Example 2). Trees are “negative” when no such interaction is present (Exam-
ple 3). The positive simplified tree of Example 2 is shown in Figure 1.

s

vp

vp

np

pp

np

nn

drug_tag

cc

and

nn

drug_tag_r

in

of

np

nns

effects

dt

the

vb

enhance

md

may

np

nn

drug_tag_r

Figure 1: The simplified syntax tree from Example 2.

A pattern structure is defined on such syntactic trees, whose similarity op-
erator is based on unordered rooted tree intersection. The trees are interpreted
as unordered w.r.t the constituent order in the sentence in order to be able to
generalize over some grammatical structures (eg. conjunctions or enumerations)
without losing important grammatical relations (eg. verb argument relations,

3

prepositions) as they are also encoded in the hierarchy of the tree. To improve
the computational time of similarity, a projection is introduced, which can be
considered as a simplification of the similarity operator. Pattern structures,
similarity and projections are introduced and discussed here after.

The set of trees, obtained from parsing the tagged sentences, is split into
a “training set” and a “testing set” and LPSC is used to classify the trees. In
the experiments, different settings based on tree simplifications are evaluated.
Finally, a schematic view of the pipeline, starting from DDIs and going to LPSC
classification, is shown in Figure 2.

drug-drug pair in sentence

syntactic tree

simplified syntactic tree

projected branches

classification

parsing

projection

LPSC

tree-simplification

Figure 2: A schematic view of the pipeline.

3 A Pattern Structure for Syntactic Trees
Pattern Structures were introduced in [6] and are a generalization of Formal
Concept Analysis (FCA) [15]. From the pattern structure perspective, data
can be thought of as a set of objects (G) with corresponding records. Each
record is an object description, also called a pattern, in contrast to a set of
binary attributes, as in standard FCA. On the set of potential descriptions (D)
a similarity operator should be defined, which should be idempotent, associative
and commutative. In this way, the partial ordering on object descriptions is a
semilattice and can be used in a similar way as in Formal Concept Analysis to
extract (meaningful) concepts from an unstructured data set, in an unsupervised
way. More precisely, we have the following definitions.

Definition 1. Let G be a set of objects, let (D,u) be a meet-semilattice of po-
tential object descriptions, and let δ : G→ D be a mapping. Then (G, (D,u), δ)
is called a pattern structure, provided that the set

δ(G) := {δ(g)|g ∈ G}

generates a complete sub-semilattice (Dδ,u) of (D,u), i.e. every subset X of
δ(G) has an infimum uX in (D,u) and Dδ is the set of these infima [6].

4

On a pattern structure (G, (D,u), δ) a Galois connection can be defined,
linking sets of objects with set of descriptions.

A♦ :=
l

g∈A
δ(g) for A ⊆ G

d♦ := {g ∈ G|d v δ(g)} for d ∈ D

A concept (A, d) in (G, (D,u), δ) verifies A♦ = d and d♦ = A where A is the
extent and d the intent of the concept. The subsumption order (v) between
descriptions c and d is defined as follows:

c v d⇔ c u d = c

Concepts are maximal closed sets of objects and their corresponding de-
scriptions. Formal concepts form a concept lattice where the ordering between
concepts is given as usual by inclusion of concept extents. The meaning of
such a lattice depends on the similarity operator. The same data can be as-
sociated with different pattern structures. We look further into defining our
pattern structure on trees, in particular syntax trees based on natural language
sentences.

3.1 Objects and Object Descriptions
In the current case, the set of objects G in the considered pattern structure
(G, (D,u), δ) consists of drug-drug pairs, i.e. DDIs, extracted from the collection
of sentences. Then the set of object descriptions D is composed of “unordered
labeled trees”. The resulting pattern structure will be called “Syntactic Tree
Pattern Structure” or STPS for short.

Definition 2. An unordered labeled rooted tree t is a simple connected graph
t = 〈N,E〉, where N is a set of nodes, and E a set of ordered pairs from N×N ,
called edges. It should satisfy two conditions:

• t does not contain any cycle (it is a tree)

• t has one distinguished node r ∈ N , called the root node, that is an ancestor
of every node n ∈ N .

In unordered labeled rooted trees, nodes carry a label while there exists no
order between the children of each node. This means that the trees in Figure 3
are considered to be equivalent.

The mapping δ gives for each potential drug-drug pair the corresponding
unordered syntactic tree of the sentence in which it occurs, where the drugs are
replaced by the tags. Intuitively, one could think of δ as the function that parses
the sentence and simplifies the resulting tree.

5

np

np

nn

drug_tag

np

nn

drug_tag_r

dt

the

cc

and

np

np

dt

the

nn

drug_tag_r

cc

and

np

nn

drug_tag

Figure 3: Two equivalent unordered labeled rooted trees.

3.2 Similarity Operators
A similarity operator ut is defined on the set of object descriptions D. This
operator is based on rooted tree intersection. In [1], rooted tree intersection is
defined for unordered unlabeled trees and a corresponding algorithm is given.
Our definition and implementation follow those in [1], except that we consider
trees with labeled nodes.

To define our rooted tree intersection for unordered labeled trees we need to
define the notion of rooted subtree first.

Definition 3. Rooted tree t1 = 〈N1, E1〉 is a rooted subtree of rooted tree
t2 = 〈N2, E2〉 (from now written as t1 ⊆t t2) iff the following conditions hold:

• N1 ⊆ N2

• E1 ⊆ E2

• t1 and t2 have the same root.

Using this notion of subtree, we can define a rooted intersection operator on
trees.

Definition 4. The rooted tree intersection between tree t1 and t2, from now
written as t1 ∩t t2, is the set containing all maximal trees1 from

{t | t ⊆t t1} ∩ {t | t ⊆t t2}
i.e. the intersection between all subtrees of t1 and all subtrees of t2.

An example of such intersection is shown in Figure 4.
With the notion of rooted tree intersection we can define the similarity op-

erator of our pattern structure.

Definition 5. The similarity between a set of trees A and a set of trees B,
written as A ut B, is the subset of maximal trees from⋃

(a,b)∈A×B

a ∩t b

The corresponding subsumption operator is defined as mentioned previously.

A vt B ⇔ A ut B = A

1The maximal trees from a set X are all trees of X that are not a rooted subtree of another
tree in X.

6

vp

vp

vbn

altered

pp

np

nn

drug_tag_r

in

by

vbp

are
∩t

vp

vp

pp

vbn

impaired

np

nn

drug_tag_r

in

by

vbz

is
=

{
vp

vp

pp

np

nn

drug_tag_r

in

by

}

Figure 4: An example of rooted unordered tree intersection (∩t) of two syntactic
tree fragments. The tree on the right side is the maximal rooted subtree of both
trees on the left side.

3.3 The Projections for the Syntactic Tree Pattern Struc-
ture

Projections for pattern structures were introduced in [6]. A projection is used
for weakening the object descriptions and for allowing better performances in
computation. Moreover, “good” projections always try to minimize the loss of
information.

Definition 6. A projection of a pattern structure (G, (D,u), δ) is a mapping
ψ : D → D that replaces every object description d ∈ D by ψ(d), such that the
original pattern structure is replaced by (G, (D,u), ψ ◦ δ). It is required that ψ
is a kernel operation, i.e. ψ is

monotone: if x v y, then ψ(x) v ψ(y),

contractive: ψ(x) v x, and

idempotent: ψ(ψ(x)) = ψ(x).

Projections can be used efficiently to reduce computation time of the similar-
ity operator. For pattern structures of graphs several projections were already
proposed and applied in the chemical domain [10]. Here we propose a projection
that maps each tree description onto the set of its maximal branches.

Definition 7. Rooted tree t1 = 〈N1, E1〉 is a branch of rooted tree t2 = 〈N2, E2〉
iff the following conditions hold:

• t1 ⊆t t2

• Each node n1 ∈ N1 has at most one outgoing edge.

7

Definition 8. The branch projection of a set of rooted trees T , from now written
as ψb(T), is the set of maximal trees from⋃

t∈T
{b | b is a branch of t}

Thus, a tree t defined by a root with n leaves will be projected to a set of
size n, containing its branches (see Figure 5).

np

pp

np

nn

drug_tag_r

in

of

np

nn

administration

dt

the

ψb

np

np

dt

the

np

np

nn

administration

np

pp

in

of

np

pp

nn

nn

drug_tag_r

Figure 5: A tree and its maximal branches.

4 Classification based on Lazy Hypothesis Eval-
uation

Actually, the concept lattice resulting from the pattern structure which is de-
fined above has not to be built. Instead, we follow a (kind of) supervised classi-
fication method for determining objects whose description includes a syntactic
tree effectively representing a DDI, i.e. the drugs lying in the syntactic tree and
marked with drug_tag_r tags are interacting. We follow a “Lazy Pattern Struc-
ture Classification” (LPSC) introduced in [9]. LPSC can classify objects from a
given pattern structure in polynomial time w.r.t the cardinality of the set of ob-
jects G considered as training data. It is based on a set of positive examples G+

and a set of negative examples G−. In the current experiment, positive exam-
ples are sentences including interacting drug-drug pairs while negative examples
are sentences which do not include interacting drug-drug pairs.

In [9], the classification of a new object on is performed w.r.t. two questions:

(1.) Is there a “positive hypothesis” for on?

(2.) Is there a “negative hypothesis” for on?

A positive hypothesis is defined as a pattern intent in the pattern structure
(G+, (D,u), δ) that does not subsume any pattern from δ(G−), i.e. does not
subsume any negative example. A positive hypothesis for on is found iff:

∃g+ ∈ G+ ∀g− ∈ G− : (on u g�+) 6v g�−

8

1. 2. Classification

yes yes undefined
yes no positive
no yes negative
no no undefined

1. 2. Classification

yes yes positive
yes no positive
no yes negative
no no negative

Table 1: Criteria in Lazy Pattern Structure Classification according to [9] are
displayed on the left, and criteria in LPSC restricted to only positive hypotheses
evaluation –used in our experiments– are displayed on the right.

In other words, a positive hypothesis for on is found if and only if on is similar
to a positive example g+, i.e. the potential positive hypothesis, and on does not
share this similarity with any negative example g−. A negative hypothesis for
on is defined symmetrically, by switching the negative and positive examples.
How an object is classified depends on the answers for the questions (1.) and
(2.), as shown in Table 1.

Our classification criteria differ from that in [9] as we are only looking for
positive hypotheses and not for negative hypotheses. The underlying idea is
that we assume that typical syntactic trees containing a DDI have some char-
acteristic structures, while trees that do not contain any DDI do not have such
characteristic structures. Thus, we discriminate positive and negative hypothe-
ses w.r.t. the classification criteria, contrasting with [9] where there are also
unclassified objects. In our experiment, an object is classified as positive when
the first question is answered with “yes”, and by complementarity, an object is
classified as negative when this first question is answered with “no”. This kind
of classification was exclusively used in our experiments and is termed as “Lazy
Positive Hypothesis Classification” (LPHC) (see Table 1).

An example of a positive hypothesis that was found in the experiments
with LPHC is shown in Figure 6. This positive hypothesis was created when
classifying the tree corresponding to the potential DDI described in Example 4.
Moreover, the positive example from the training set is the tree corresponding
to Example 5.

Example 4. Antihistamines (drug_tag_r) may partially counteract the anti-
coagulation effects of heparin (drug_tag_r) or warfarin (drug_tag).

Example 5. Tricyclic_antidepressants (drug_tag_r) may block the antihyper-
tensive (drug_tag) action of guanethidine (drug_tag_r) and similarly acting
compounds.

The tree in Figure 6 materializes the similarity between Example 4 and
Example 5, and is not subsumed by any negative example in the training data.
For this reason it is classified as a positive hypothesis for Example 4.

9

s

vp

vp

np

pp

np

nn

drug_tag_r

in

of

np

nndt

the

vb

md

may

np

nn

drug_tag_r

Figure 6: A positive pattern found in the experiments, created from the two
sentences in Example 4 and Example 5. It should be noticed that, for the sake
of clarity, this pattern is represented as a tree respecting the word ordering, but
actually it is an unordered set of branches.

5 The Simplification of Syntactic Trees
When we looked manually at the sentences in the dataset, we remarked that
not all parts of some sentences seem to contain useful information about the
described DDIs. When a syntactic tree is large, it often takes more time to
compute similarity with other trees. Therefore, it is interesting to remove parts
of the sentence that are not required to find a DDI. Accordingly, we introduce
“tree simplification operations” which are described below.

Constituent simplification.

By means of manually checking the trees, we noticed that some of the con-
stituents are not very informative for describing a DDI in a sentence. In Exam-
ple 6, it can be seen that an interaction is described between two drug_tag_r
tags.

Example 6. In diabetic patients, the metabolic effects of drug_tag_r may de-
crease blood glucose and therefore drug_tag_r requirements.

However, it can be seen in Example 7 that some parts of the sentence can
be removed without altering the description of the interaction.

Example 7. The effects of drug_tag_r may decrease blood glucose and drug_tag_r
requirements

Usually, we can remove the constituents when the tree corresponding to the
constituent does not contain any of the possibly interacting drugs, i.e.. any of
the two drug_tag_r nodes.

10

The candidate constituent to be removed that we considered are: (i) adjec-
tives (JJ), (ii) prepositional phrases (PP), (iii) declarative clauses and clauses
introduced by a subordinate conjunction such as relative clauses (S, SBAR), (v)
adverbal phrases (ADVP) and (vi) parenthetical expressions (PRN). Subtrees
of all these six categories that do not contain any of the drug_tag_r nodes are
removed from the initial tree. The simplification of the tree corresponding to
Example 6 is given in Figure 7.

s

.

.

vp

vp

np

np

nns

requirements

nn

drug_tag_r

,

,

advp

rb

therefore

cc

and

np

nn

glucose

nn

blood

vb

decrease

md

may

np

pp

np

nn

drug_tag_r

in

of

np

nns

effects

jj

metabolic

dt

the

,

,

pp

np

nns

patients

jj

diabetic

in

in

Figure 7: The original syntactic tree associated with the sentence “In diabetic
patients, the metabolic effects of drug_tag_r may decrease blood glucose and
therefore drug_tag_r requirements.” The subtrees that will fall off after sim-
plification are indicated with dashed lines.

NEGVP renaming.

To deal on a simple level with negation, each VP-node, i.e. representing a verb
phrase, that directly contains a negating expression (not/no) is renamed as a
NEGVP node. In this way a normal VP will not be matched with, or considered
similar to, a negated VP.

Lowest-S simplification.

Because relations can sometimes be described very deep in a subordinate clause,
only the deepest S-node (i.e. declarative clause) containing both drug_tag_r
tags is considered, as shown in Figure 5. This makes sure that deeply nested
interaction descriptions can be compared in an easier way to surface interaction
descriptions. This way the lowest-S constituent in Example 8 (i.e. in the inner
brackets) can be compared to the sentence in Example 9.

Example 8. [S drug_tag: Clinical studies, as well as post marketing obser-
vations, have shown that [S drug_tag_r can reduce the drug_tag effect of
drug_tag_r and drug_tag in some patients].]

Example 9. [S drug_tag_r agents reduce the renal clearance of drug_tag_r
and add a high risk of drug_tag toxicity.]

However, this rule does not always preserve all crucial information about the
potential DDI. In some cases important information can be described at a meta
level.

11

s

drug_tag_r ... drug_tag_r

s

...

drug_tag_r ... drug_tag_r

s

Figure 8: Schematic view of lowest-S simplification.

Example 10. [S It is not known if [S drug_tag_r differ in their effectiveness
when used with drug_tag_r].]

In Example 10, both drug_tag_r tags occur in the S-constituent indicated by
the inner brackets. Thus, when using lowest-S simplification, only the expression
in the inner brackets is considered. However, the expression outside of the
brackets, i.e. “It is not known if. . . ” contains important information about
the DDI description inside. It weakens or even nullifies the interaction that is
described inside. For now, we do not have any clear solution to deal with such
cases and we ignored them.

Link contraction.

After applying the constituent simplification operation, a resulting tree might
contain branches that link nodes holding the same label with only one child.
Such cases can be considered as redundant and can be simplified by removing
the redundant non-branching duplicate nodes and linking the contracted new
node with its single child node. An example is given in Figure 9.

np

np

nns

patients

dt

the

np

nns

patients

dt

the

Figure 9: A tree and its contracted version.

If we apply all these tree simplifications on the trees obtained after parsing
the experiment dataset, the average number of nodes in each tree drops from
130 to 41 and the maximum number of nodes from 311 to 138. This shows that
the application of these simplification operations have a substantial impact on
the set of resulting syntactic trees.

12

6 Experiments and Discussion

6.1 The Experiment
In this experiment, different settings were evaluated. Each system classifies
the potential DDIs by means of lazy pattern structure classification (actually
positive hypothesis classification or LPHC). The underlying pattern structure
is the one which is described in Section 3, using the branch projection. The
settings are differing only in the tree simplifications that were applied.

For each setting, a 10-fold cross validation was performed on the data set.
The corpus that is used is the training corpus of the DDI extraction challenge
2011 [12].In this corpus, the drugs are annotated and the interactions are build
using the DrugBank, and then manually checked by a domain specialist.

We ran the experiments on a laptop with an i7 Intel processor (using 4 of
its 8 virtual cores). The algorithm was implemented in Python. On average,
each object classification took around 2 seconds. This long duration is primarily
due to the search for positive hypotheses for each classification. It could be also
possible to extract these positive hypotheses on a training set offline. Then
they could be used as features in a different classification paradigm, maybe
more optimized for a particular task. Here we did not do this as we were mostly
interested in increasing the quality of the patterns.

Simplifications P R F1

1. negvp, lowest-S, contraction 0.29786 0.48900 0.37022
2. negvp, contraction 0.32261 0.39044 0.35330
3. lowest-S, contraction 0.27073 0.49450 0.34990
4. negvp, lowest-S 0.33598 0.44712 0.38367
5. negvp, lowest-S, vp-map 0.35216 0.44585 0.39350
6. negvp, lowest-S, vp-map, prep-map 0.38556 0.41328 0.39894

Table 2: Results from 10-fold cross validation on the DDI 2011 data set. Per-
formance is measured in precision (P), recall (R) and F1-measure (F1). In all
conditions constituent simplification is applied.

The results from six settings we tested in the experiment are shown in Ta-
ble 2. When we look at condition 1 and 2 in Table 2, we can see that applying
lowest-S simplification strongly increases the recall, by 9.9%, but also reduces
precision by 2.5%. Overall, F1 increased by 1.69%. The reduction in precision,
is probably due to some cases where the interaction is not fully described in the
lowest declarative clause (lowest S-node). The increase in recall is probably due
to the fact that surface clauses can now be compared better to deeper ones.

Applying the link contraction seems to have a weaker but similar effect.
However, it decreases the F1-measure. This can be noticed if we compare setting
1 and 4. After applying link contraction, the precision reduces with 3.8%, while
the recall increases with 4,2% and the F1-measure decreases with 1.4%. It

13

appears that even if trees are non-branching, the hierarchy and its depth are
important. Furthermore, if we compare setting 1 and 3, we can see that the
NEGVP renaming has a positive effect on precision and only a minor negative
effect on recall. It increases the F1-measure with 2%.

Settings 5 and 6 are discussed below, in the error analysis.

6.2 Error Analysis
We manually looked both at false positives (i.e. negative trees classified as
positive) and false negatives (i.e. positive trees classified as negative). False
positives can be analyzed very precisely, because for each positively classified
tree, the positive hypothesis from the positive training examples can be exam-
ined as well. A few non-mutually exclusive error categories that we found are
the following.

1. Insufficient similarity: Sometimes, the similarity between the to be clas-
sified drug-drug pair and the positive hypothesis is too small to make a
proper classification. This can be due to data sparseness or lack of infor-
mation in the trees. Often in these cases the similarity between the to
be classified tree and its corresponding positive hypothesis does not even
contain a verb phrase node. Another frequent case is that the prepositions
in the to be classified tree and its positive hypothesis do not match. An
example of such poor similarity is given in Figure 10.

2. Non-sentences: Some mistakes seem to occur in phrases that are not full
sentences or that are not parsed as such. Often the parser considers these
phrases as noun phrases or as “fragments” (i.e. the root node is NP or
FRAG). A reason for errors to occur in this category can be that there is
not enough training data for these cases, or the parser made a mistake.
Again the pattern in Figure 10 is an example of a non-sentence (an NP).

3. Mistakes in annotation: In some cases, a misclassification is due to errors
in the drug annotations or in the interaction annotations. Examples of
such cases can be found in [14].

np

np

nn

drug_tag_r

np

nn

drug_tag_r

:

Figure 10: An example for error category 1 and 2. This pattern is clearly not
sufficient for classification. This is due to the lack of a negative example in the
training data that subsumes this pattern.

It can be noticed that some patterns may cause false positives, but can at
the same time be responsible for a lot of true positives. In our experiments, we

14

did not do any filtering directly based on performance. When the interest is
in pure performance, it could be interesting to filter patterns that do not cause
any true positives or those that cause more false positives then true positives.

6.3 Similarity Mappings
In error category 1, the similarity between the to be classified tree and its
positive hypothesis was too small to make a proper classification. To prevent
insufficient similarity, one could manually introduce some linguistically based
constraints on the hypotheses and exclude hypotheses that do not satisfy them.
We do this by mapping outputs of the similarity operator that do not fulfill
the constraints to the empty set, and therefore have no potential for being
a hypotheses. Based on the found errors, we introduce two types of similar-
ity mappings: (i) VP-mapping, which maps outputs of the similarity operator
that do not contain either a VP-node or a NEGVP-node to the empty set, (ii)
Prep-mapping, which maps outputs of the similarity operator that do contain a
prepositional phrase (PP-node) but not the exact preposition to the empty set.

Their result on performances can be found in Table 2. When we compare
settings 4 and 5, the “vp-mapping” seems to have a small positive effect on
precision (+ 1.6%), and hardly any effect on recall. When we compare settings
5 and 6, the “prep-mapping” also seems to have a positive effect on precision (+
3.34%). However, the recall seems to decrease as well (- 3.3%). A reason for
this could be that a side effect of the “prep-mapping” is that if two trees share
a PP-node, but do not share the same preposition, this is considered the same
as no PP-node match at all.

7 Conclusions and Future Work
In this paper we presented a new way of analyzing drug-drug interactions in
sentences based on FCA. We defined a pattern structure and introduced a pro-
jection for syntactic trees. Lazy pattern structure classification was also used
to discover informative syntactic patterns, i.e. including DDIs. Furthermore
we introduced a set of tree-simplification operations to reduce the size of the
syntactic trees. The whole method was evaluated on the training corpus of the
DDI extraction challenge 2011.

At present, it can be concluded that in terms of performance the system
in its current state does not achieve very high performance. This is probably
due to the rigid way the system deals with the found patterns. Furthermore,
it should be noticed that this is a single system, using only phrase structure
information.

However, from a qualitative point of view, many extracted syntactic pat-
terns seem quite promising. For example, it would be interesting to use these
extracted patterns as features in other classification paradigms and this could
be included in future research. Another important direction could be to apply
parse thickets [5] for the task of DDI detection. A parse thicket is a graph built

15

from the set of syntactic trees of a paragraph. This graph is enriched with the
semantic links such as pronoun redirections. The work in [5] is based on pattern
structures and, hence, can be adapted to our framework. Finally, other possible
future research work could include the search for negative hypotheses, and to
enrich the syntactic trees with semantic or morphological features.

References
[1] José L Balcázar, Albert Bifet, and Antoni Lozano. Intersection algorithms

and a closure operator on unordered trees. MLG, page 1, 2006.

[2] Jari Björne, Antti Airola, Tapio Pahikkala, and Tapio Salakoski. Drug-drug
interaction extraction from biomedical texts with svm and rls classifiers.
Proceedings of DDIExtraction-2011 challenge task, pages 35–42, 2011.

[3] Faisal Mahbub Chowdhury, Asma Ben Abacha, Alberto Lavelli, and Pierre
Zweigenbaum. Two different machine learning techniques for drug-drug in-
teraction extraction. Challenge Task on Drug-Drug Interaction Extraction,
pages 19–26, 2011.

[4] Md Faisal Mahbub Chowdhury and Alberto Lavelli. Drug-drug interaction
extraction using composite kernels. Challenge Task on Drug-Drug Interac-
tion Extraction, pages 27–33, 2011.

[5] BorisA. Galitsky, Dmitry Ilvovsky, SergeiO. Kuznetsov, and Fedor Strok.
Finding maximal common sub-parse thickets for multi-sentence search. In
Madalina Croitoru, Sebastian Rudolph, Stefan Woltran, and Christophe
Gonzales, editors, Graph Structures for Knowledge Representation and Rea-
soning, volume 8323 of Lecture Notes in Computer Science, pages 39–57.
Springer International Publishing, 2014.

[6] Bernhard Ganter and Sergei O Kuznetsov. Pattern structures and their
projections. In Conceptual Structures: Broadening the Base, pages 129–
142. Springer, 2001.

[7] Sandra Garcia-Blasco, Santiago M Mola-Velasco, Roxana Danger, and
Paolo Rosso. Automatic drug-drug interaction detection: A machine learn-
ing approach with maximal frequent sequence extraction. Challenge Task
on Drug-Drug Interaction Extraction, pages 51–58, 2011.

[8] Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 423–430. Association for Computational Lin-
guistics, 2003.

[9] Sergei O Kuznetsov. Fitting pattern structures to knowledge discovery in
big data. In Formal Concept Analysis, pages 254–266. Springer, 2013.

16

[10] Sergei O Kuznetsov and Mikhail V Samokhin. Learning closed sets of
labeled graphs for chemical applications. In Inductive Logic Programming,
pages 190–208. Springer, 2005.

[11] Anne-Lyse Minard, Lamia Makour, Anne-Laure Ligozat, and Brigitte
Grau. Feature selection for drug-drug interaction detection using machine-
learning based approaches. Challenge Task on Drug-Drug Interaction Ex-
traction, pages 43–50, 2011.

[12] Isabel Segura-Bedmar, Paloma Martınez, and Daniel Sánchez-Cisneros.
The 1st DDIExtraction-2011 challenge task: Extraction of drug-drug inter-
actions from biomedical texts. Challenge Task on Drug-Drug Interaction
Extraction, 2011:1–9, 2011.

[13] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng.
Parsing with compositional vector grammars. In In Proceedings of the ACL
conference. Citeseer, 2013.

[14] Philippe Thomas, Mariana Neves, Illés Solt, Domonkos Tikk, and Ulf
Leser. Relation extraction for drug-drug interactions using ensemble learn-
ing. Challenge Task on Drug-Drug Interaction Extraction, pages 11–18,
2011.

[15] Rudolf Wille. Restructuring lattice theory: an approach based on hierarchies
of concepts. Springer, 2009.

17

	Introduction
	The Data and the Pipeline
	A Pattern Structure for Syntactic Trees
	Objects and Object Descriptions
	Similarity Operators
	The Projections for the Syntactic Tree Pattern Structure

	Classification based on Lazy Hypothesis Evaluation
	The Simplification of Syntactic Trees
	Experiments and Discussion
	The Experiment
	Error Analysis
	Similarity Mappings

	Conclusions and Future Work

