Christophe Desmonts 
  
Constructions of periodic minimal surfaces and minimal annuli in Sol 3

We construct two one-parameter families of minimal properly embedded surfaces in the Lie group Sol3 using a Weierstrass-type representation. These surfaces are not invariant by a oneparameter group of ambient isometries. The first one can be viewed as a family of helicoids, and the second one as a family of minimal annuli called catenoids. Finally we study limits of these catenoids, and in particular we show that one of these limits is a new minimal entire graph.

Introduction

The aim of this paper is to construct two one-parameter families of examples of properly embedded minimal surfaces in the Lie group Sol 3 , endowed with its standard metric. This Lie group is a homogeneous Riemannian manifold with a 3-dimensional isometry group and is one of the eight Thurston's geometries. There is no rotation in Sol 3 , and so no surface of revolution.

The Hopf differential, which exists on surfaces in every 3-dimensional space form, has been generalized by Abresch and Rosenberg to every 3-dimensional homogeneous Riemannian manifolds with 4-dimensional isometry group (see [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] and [START_REF] Abresch | Generalized Hopf differentials[END_REF]). This tool leads to a lot of works in the field of CMC surfaces in Nil 3 , P SL 2 (R) and in the Berger spheres. More precisely, Abresch and Rosenberg proved that the generalized Hopf differential exists in a simply connected Riemannian 3-manifold if and only if its isometry group has at least dimension 4 (see [START_REF] Abresch | Generalized Hopf differentials[END_REF]).

Berdinskii and Taimanov gave a representation formula for minimal surfaces in 3-dimensional Lie groups in terms of spinors, but they pointed out some difficulties for using this theory in the case of Sol 3 (see [START_REF] Dmitry | Surfaces in threedimensional Lie groups[END_REF]). Nevertheless, some explicit simple examples of minimal surfaces in Sol 3 have been constructed in the past decade. Masaltsev ([11]) and Daniel and Mira ([5]) gave some basic examples of minimal graphs in Sol 3 : x 1 = ax 2 +b, x 1 = ae -x3 , x 1 = ax 2 e -x3 and x 1 = x 2 e -2x3 (and their images by ambient isometries). López and Munteanu ([8,[START_REF] López | Minimal translation surfaces in Sol 3[END_REF][START_REF] López | Invariant surfaces in the homogeneous space Sol with constant curvature[END_REF]), López ([7]) and Masaltsev ([11]) studied minimal surfaces in Sol 3 invariant by a one-parameter group of ambient isometries. Finally, Ana Menezes constructed singly and doubly periodic Scherk minimal surfaces in Nil 3 and Sol 3 (see [START_REF] Menezes | Periodic minimal surfaces in semidirect products[END_REF]) and Minh Hoang Nguyen gave conditions for the Dirichlet problem for the minimal surface equation in Sol 3 to have solutions (see [START_REF] Hoang Nguyen | The Dirichlet problem for the minimal surface equation in Sol 3 with possible inifinite boundary data[END_REF]).

Thus, the method that we use in this paper is the one used by Daniel and Hauswirth (see [START_REF] Daniel | Half-space theorem, minimal annuli and minimal graphs in the Heisenberg group[END_REF]) in Nil 3 to construct minimal embedded annuli : we construct a first one-parameter family of embedded minimal surfaces called helicoids and we calculate its Gauss map g. A result of Inoguchi and Lee (see [START_REF] Inoguchi | A Weierstrass type representation for minimal surfaces in Sol[END_REF]) shows that this map is harmonic for a certain metric on C. Then we seek another family of maps g with separated variables that still satisfies the harmonic map equation, and we use a Weierstrass type representation given by Inoguchi and Lee to construct a minimal immersion whose Gauss map is g. We prove that these immersions are periodic, so we get minimal annuli. As far as the authors know, these annuli are the first examples of non simply connected minimal surfaces with finite topology (that is, diffeomorphic to a compact surface without a finite number of points) in Sol 3 .

The model we use for Sol 3 is described in Section 2. In the third section we give some properties of the Gauss map of a conformal minimal immersion in Sol 3 (see [START_REF] Daniel | Existence and uniqueness of constant mean curvature spheres in Sol 3[END_REF]). In the fourth section we construct the family (H K ) K∈]-1;1[ of helicoids, and finally we construct the family (C α ) α∈]-1;1[\{0} of embedded minimal annuli. The study of the limit case of the parameter of this family gives another example of minimal surface in Sol 3 , which is an entire graph. None of these surfaces is invariant by a one-parameter family of isometries.

Theorem There exists a one-parameter family (C α ) α∈]-1;1[\{0} of properly embedded minimal annuli in Sol 3 , called catenoids, having the following properties :

1. The intersection of C α with any plane {x 3 = λ} is a non-empty closed embedded convex curve ; 2. The annulus C α is conformally equivalent to C \{0} ; 3. The annulus C α has 3 symmetries fixing the origin : rotation of angle π around the x 3 -axis, reflection with respect to {x 1 = 0} and reflection with respect to {x 2 = 0}.

2 The Lie group Sol 3 Definition 1 The Lie group Sol 3 is R 3 with the multiplication * defined by

(x 1 , x 2 , x 3 ) * (y 1 , y 2 , y 3 ) = (y 1 e -x3 + x 1 , y 2 e x3 + x 2 , x 3 + y 3 )
for all (x 1 , x 2 , x 3 ), (y 1 , y 2 , y 3 ) ∈ R 3 . The identity element for this law is 0 and the inverse element of (

x 1 , x 2 , x 3 ) is (x 1 , x 2 , x 3 ) -1 = (-x 1 e x3 , -x 2 e -x3 , -x 3 ). The Lie group is non-commutative.
The left multiplication l a by an element a = (a 1 , a 2 , a 3 ) ∈ R 3 is given for all

x = (x 1 , x 2 , x 3 ) ∈ R 3 by l a (x) = a * x = (x 1 e -a3 + a 1 , x 2 e a3 + a 2 , a 3 + x 3 ) = a + M a x,
where

M a =    e -a3 0 0 0 e a3 0 0 0 1    .
For the metric (•, •) on Sol 3 to be left-invariant, it has to satisfy

(M a X, M a Y ) a * x = (X, Y ) x
for all a, x, X, Y ∈ R 3 . We define a left-invariant Riemannian metric for x, X, Y ∈ R 3 by the formula

(X, Y ) x = M x -1 X, M x -1 Y , (1) 
where •, • is the canonical scalar product on R 3 and x -1 is the inverse element of x in Sol 3 . The formula (1) leads to the following expression of the previous metric

ds 2 x = e 2x3 dx 2 1 + e -2x3 dx 2 2 + dx 2 3 , (2) 
where (x 1 , x 2 , x 3 ) are canonical coordinates of R 3 . Since the translations are isometries now, Sol 3 is a homogeneous manifold with this metric.

Remark 1 : This metric is not the only possible left-invariant one on Sol 3 . In fact, there exists a two-parameter family of non isometric left-invariant metrics on Sol 3 . One of these parameters is a homothetic one. The metrics that are non homothetic to (2) have no reflections ; see [START_REF] William | Constant mean curvature surfaces in metric Lie groups[END_REF].

By setting

E 1 (x) = e -x3 ∂ 1 , E 2 (x) = e x3 ∂ 2 , E 3 (x) = ∂ 3 ,
we obtain a left-invariant orthonormal frame (E 1 , E 2 , E 3 ). Thus, we have now two frames to express the coordinates of a vector field on Sol 3 ; we will use brackets to denote the coordinates in the frame

(E 1 , E 2 , E 3 ) ; then we have at a point x ∈ Sol 3 a 1 ∂ 1 + a 2 ∂ 2 + a 3 ∂ 3 =    a 1 a 2 a 3    =    e x3 a 1 e -x3 a 2 a 3    . (3) 
The following property holds (cf [START_REF] Daniel | Existence and uniqueness of constant mean curvature spheres in Sol 3[END_REF]) :

Proposition 1 The isotropy group of the origin of Sol 3 is isomorphic to the dihedral group D 4 and generated by the two isometries

σ : (x 1 , x 2 , x 3 ) -→ (x 2 , -x 1 , -x 3 ) and τ : (x 1 , x 2 , x 3 ) -→ (-x 1 , x 2 , x 3 ).
These two isometries are orientation-reversing, and σ has order 4 and τ has order 2.

For instance, the planar reflection with respect to {x 2 = 0} is given by σ 2 τ : (x 1 , x 2 , x 3 ) -→ (x 1 , -x 2 , x 3 ). The set of isotropies of (0, 0, 0) is :

(x 1 , x 2 , x 3 ) -→ (x 1 , x 2 , x 3 ) ; (x 1 , x 2 , x 3 ) σ -→ (x 2 , -x 1 , -x 3 )
: rotation around E 3 of angle 3π/2 composed with the reflection with respect to {x 3 = 0} ;

(x 1 , x 2 , x 3 ) τ -→ (-x 1 , x 2 , x 3 ) : reflection with respect to {x 1 = 0} ; (x 1 , x 2 , x 3 ) σ 2 -→ (-x 1 , -x 2 , x 3 ) : rotation of angle π around E 3 ; (x 1 , x 2 , x 3 ) σ 3
-→ (-x 2 , x 1 , -x 3 ) : rotation around E 3 of angle π/2 composed with the reflection with respect to {x 3 = 0} ;

(x 1 , x 2 , x 3 ) στ -→ (x 2 , x 1 , -x 3 ) : rotation of angle π around the axis {(x 1 , x 1 , 0)} ; (x 1 , x 2 , x 3 ) σ 2 τ -→ (x 1 , -x 2 ,
x 3 ) : reflection with respect to {x 2 = 0} ;

(x 1 , x 2 , x 3 )

σ 3 τ -→ (-x 2 , -x 1 , -x 3 ) : rotation of angle π around the axis {(x 1 , -x 1 , 0)}.
We deduce the following theorem :

Theorem 1 The isometry group of Sol 3 has dimension 3.

Finally, we express the Levi-Civita connection ∇ of Sol 3 associated to the metric given by the equation ( 2) in the frame (E 1 , E 2 , E 3 ). First, we calculate the Lie brackets of the vectors of the frame. The Lie bracket in the Lie algebra sol 3 of Sol 3 is given by

[X, Y ] = (Y 3 X 1 -X 3 Y 1 , X 3 Y 2 -Y 3 X 2 , 0) for all X = (X 1 , X 2 , X 3 ) and Y = (Y 1 , Y 2 , Y 3 ). Then we have [E 1 , E 2 ] = 0, [E 1 , E 3 ] = E 1 , [E 2 , E 3 ] = -E 2 .
Hence,

∇ E1 E 1 = -E 3 , ∇ E2 E 1 = 0, ∇ E3 E 1 = 0, ∇ E1 E 2 = 0, ∇ E2 E 2 = E 3 , ∇ E3 E 2 = 0, ∇ E1 E 3 = E 1 , ∇ E2 E 3 = -E 2 , ∇ E3 E 3 = 0.

The Gauss map

Let Σ be a Riemann surface and z = u + iv local complex coordinates in Σ. Let x : Σ -→ Sol 3 be a conformal immersion. We set

x =    x 1 x 2 x 3    and we define λ ∈ R * + by 2(x z , x z ) = x u 2 = x v 2 = λ.
Thus, a unit normal vector field is N : Σ -→ T Sol 3 defined by

N = - 2i λ x z ∧ x z :=    N 1 N 2 N 3    .
Hence we define

N : Σ -→ S 2 ⊂ R 3 by the formula M x -1 N = N , that is N =    e x3 0 0 0 e -x3 0 0 0 1       N 1 e -x3 N 2 e x3 N 3    =    N 1 N 2 N 3    .
Definition 2 The Gauss map of the immersion x is the application

g = σ • N : Σ -→ C ∪ {∞} = C,
where σ is the stereographic projection with respect to the southern pole, i.e.

N = 1 1 + |g| 2    2 (g) 2 (g) 1 -|g| 2    ; (4) 
g = N 1 + iN 2 1 + N 3 . (5) 
The following result is due to [START_REF] Inoguchi | A Weierstrass type representation for minimal surfaces in Sol[END_REF]. It can be viewed as a Weierstrass representation in Sol 3 .

Theorem 2 Let x : Σ -→ Sol 3 be a conformal minimal immersion and g : Σ -→ C its Gauss map. Then, whenever g is neither real nor purely imaginary, it is nowhere antiholomorphic (g z = 0 for every point for any local conformal parameter z on Σ), and it satisfies the second order elliptic equation

g zz = 2gg z g z g 2 -g 2 . ( 6 
)
Moreover, the immersion x = (x 1 , x 2 , x 3 ) can be expressed in terms of g by the representation formulas

x 1z = e -x3 (g 2 -1)g z g 2 -g 2 , x 2z = ie x3 (g 2 + 1)g z g 2 -g 2 , x 3z = 2gg z g 2 -g 2 (7)
whenever it is well defined.

Conversely, given a map g : Σ -→ C defined on a simply connected Riemann surface Σ satisfying the equation (6), then the map x : Σ -→ Sol 3 given by the representation formulas (7) is a conformal minimal immersion with possibly branched points whenever it is well defined, whose Gauss map is g.

Remark 2 :

1. There exists a similar result for the case of CMC H surfaces ; see [START_REF] Daniel | Existence and uniqueness of constant mean curvature spheres in Sol 3[END_REF].

2. The equation ( 6) is the harmonic map equation for maps g : Σ -→ (C, ds 2 ) equipped with the metric

ds 2 = |dω| 2 ω 2 -ω 2 .
This is a singular metric, not defined on the real and pure imaginary axes. See [START_REF] Inoguchi | A Weierstrass type representation for minimal surfaces in Sol[END_REF] for more details.

3. The equation ( 6) can be only considered at points where g = ∞. But if g is a solution of ( 6), i/g is a solution too at points where g = 0. The conjugate map g and every g • φ, with φ a locally injective holomorphic function, are solutions too. Moreover, if g is a solution nowhere antiholomorphic of ( 6), and x the induced conformal minimal immersion, then ig and 1/g induce conformal minimal immersions given by σx and τ x. Finally, g is the Gauss map of σ 2 τ x after a change of orientation.

Definition 3

The Hopf differential of the map g is the quadratic form

Q = qdz 2 = g z g z g 2 -g 2 dz 2 .
Remark 3 :

1. The function q depends on the choice of coordinates, whereas Q does not.

2. As mentioned in the introduction, the Hopf differential (or its Abresch-Rosenberg generalization) is not defined on Sol 3 . If we apply the definition of the Hopf differential of the harmonic maps on (C, ds 2 ), we get

Q = g z g z |g 2 -g 2 | dz 2 ,
but this one leads to a non smooth differential. Because g 2 -g 2 is purely imaginary on each quarter of the complex plane, the definitions are related by multiplication by i or -i, depending on which quarter we are. Thus, this "Hopf differential" is defined and holomorphic only on each of the four quarters delimited by the real and purely imaginary axes.

Construction of the helicoids in Sol 3

In this section we construct a one-parameter family of helicoids in Sol 3 : we call helicoid a minimal surface containing the x 3 -axis whose intersection with every plane {x 3 = constant} is a straight line and which is invariant by left multiplication by an element of Sol 3 of the form (0, 0, T ) for some T = 0 :

Theorem 3 There exists a one-parameter family (H K ) K∈]-1;1[\{0} of properly embedded minimal helicoids in Sol 3 having the following properties :

1. For all K ∈] -1; 1[\{0}, the surface H K contains the x 3 -axis ;

2. For all K ∈] -1; 1[\{0}, the intersection of H K and any horizontal plane {x 3 = λ} is a straight line ;

3. For all K ∈] -1; 1[\{0}, there exists T K such that H K is invariant by left multiplication by (0, 0, T K ) ;

4. The helicoids H K have 3 symmetries fixing the origin : rotation of angle π around the x 3 -axis, rotation of angle π around the (x, x, 0)-axis and rotation of angle π around the (x, -x, 0)-axis.

Let K ∈ ] -1, 1[ ; we define a map g : C -→ C by g(z = u + iv) = e -u e ib(v) e -iπ/4
, where b satisfies the following ODE :

b = 1 -K cos (2b), b(0) = 0. ( 8 
)
Proposition 2 The map b is well defined and has the following properties :

1. The function b is an increasing diffeomorphism from R onto R ;

The function b is odd ;

3. There exists a real number W > 0 such that Proof. We have

∀v ∈ R, b(v + W ) = b(v) + π ; 4. The function b satisfies b(kW ) = kπ, for all k ∈ Z. Proof. Since K ∈ ] -1, 1[, there exists r > 0 such that 1 -K cos (2b) ∈ ]r, 2 
b W 2 = b - W 2 + W = -b W 2 + π
which gives the formula for k = 1, then we conclude easily.

Proposition 3 The function g satisfies (g 2 -g 2 )g zz = 2gg z g z , and its Hopf differential is

Q = iK 8 dz 2 . ( 9 
)
Proof. A direct calculation shows that g satisfies the equation. Hence, the Hopf differential is given by

Q = g z g z g 2 -g 2 dz 2 = i(1 -b 2 ) 8 cos (2b) dz 2 = iK 8 dz 2 .
Thus the map g induces a conformal minimal immersion x = (x 1 , x 2 , x 3 ) such that

x 1z = e -x3 (g 2 -1)g z g 2 -g 2 = [1 + ie -2u e -2ib ](1 -b )e ib e iπ/4 4e -u cos (2b) e -x3 x 2z = ie x3 (g 2 + 1)g z g 2 -g 2 = - [1 -ie -2u e -2ib ]i(1 -b )e ib e iπ/4 4e -u cos (2b) e x3 x 3z = 2gg z g 2 -g 2 = i(b -1) 2 cos (2b) .
This map is an immersion since the metric induced by x is given by

dw 2 = x u 2 |dz| 2 = K 2 (1 + b ) 2 cosh 2 (u)|dz| 2 .
We obtain immediately that x 3 is a one-variable function and satisfies

x 3 (v) = 1 -b (v) cos (2b(v)) = K 1 + b (v)
.

Remark 4 : For K = 0, we get x 3 = constant, and the image of x is a point. In the sequel we will always exclude this case.

By setting x 3 (0) = 0, we choose x 3 among the primitive functions.

Proposition 4 1. The function x 3 is defined on R and is bijective ;

2. The function x 3 is odd ;

3. The function x 3 satisfies

x 3 (v + W ) = x 3 (v) + x 3 (W )
for all real number v.

Proof. The map x 3 is bijective on R since it is a primitive of a continuous function, and its derivative has the sign of K. The map b is odd then b is even so x 3 is even and x 3 is odd. Finally, we have

x 3 (v + W ) = x 3 (v)
and the result follows.

Hence, the functions

x 1 (u + iv) = √ 2 2 [cos b(v) -sin b(v)]x 3 e -x3 sinh (u) x 2 (u + iv) = √ 2 2 [cos b(v) + sin b(v)]x 3 e x3 sinh (u).
satisfy the equations above.

Theorem 4 Let K be a real number such that |K| < 1 and K = 0, and b the function defined by [START_REF] López | Surfaces with constant mean curvature in Sol geometry[END_REF]. We define the function x 3 by

x 3 = K 1 + b , x 3 (0) = 0,
Then the map

x : u + iv ∈ C -→       √ 2 2 [cos b(v) -sin b(v)]x 3 e -x3 sinh (u) √ 2 2 [cos b(v) + sin b(v)]x 3 e x3 sinh (u) x 3 (v)      
is a conformal minimal immersion whose Gauss map is g : u + iv ∈ C -→ e -u e ib(v) e -iπ/4 . Moreover,

(0, 0, 2x 3 (W )) * x(u + iv) = x(u + i(v + 2W )) (10) 
for all u, v ∈ R. The surface given by x is called a helicoid of parameter K and will be denoted by H K .

Proof. The equation [START_REF] López | Invariant surfaces in the homogeneous space Sol with constant curvature[END_REF] means that the helicoid is invariant by left multiplication by (0, 0, 2x 3 (W )).

Recall that we have the identity

x 3 (v + 2W ) = x 3 (v + W ) + x 3 (W ) = x 3 (v) + 2x 3 (W )
for all real number v. Thus we get the result for the third coordinate and we prove in the same way that e -2x3(W ) x 1 (u + iv) = x 1 (u + i(v + 2W )) and e 2x3(W ) x 2 (u + iv) = x 2 (u + i(v + 2W )).

Remark 5 :

1. The surface H K is embedded because x 3 is bijective. It is easy to see that it is even properly embedded.

2. The surfaces H K and H -K are related ; if we denote by an index K (resp. -K) the datas describing H K (resp.

H -K ), we get b -K (v) = b K (v + W/2) -π/2 x 3-K (v) = -x 3K (v + W/2) + x 3K (W/2).
In particular, x 3-K (W ) = -x 3K (W ) and both surfaces have the same period |x 3K (W )|. Finally,

x -K (u + iv) = (0, 0, x 3K (W/2)) * σ 3 x K (u + i(v + W/2)).
Thus, there exists an isometry of Sol 3 who puts H -K on H K .

Proposition 5 For every real number T , there exists a unique helicoid H K (up to isometry, i.e. up to K → -K) whose period is T .

Proof. We noticed that the period of the helicoid H K is

2x 3 (W ) := 2x 3K (W ) = 2 W 0 K 1 + b (s) ds = 2K π 0 du 1 -K cos (2u)(1 + 1 -K cos (2u))
with the change of variables u = b(s) and b(W ) = π. Seeing x 3K (W ) as a function of the variable

K, we get ∂x 3K (W ) ∂K = π 0 1 1 -K cos (2u) 3 du
(valid for K in every compact set [0, a] ⊂ [0, 1[, and so in [0, 1[). Then the function K -→ x 3K (W ) is injective. Moreover, we have x 30 (W ) = 0 and

x 31 (W ) = π 0 1 1 -cos (2u)(1 + 1 -cos (2u)) du = π 0 1 √ 2 sin (u)(1 + √ 2 sin (u)) du = 1 √ 2 ∞ 0 1 + t 2 1 + 2 √ 2t + t 2 dt = +∞, so x 3K (W ) is a bijection from ]0, 1[ onto ]0, +∞[.
The vector field defined by

N = 1 1 + |g| 2    2 (g) 2 (g) 1 -|g| 2    = √ 2 2 cosh (u)    cos (b) + sin (b) sin (b) -cos (b) √ 2 sinh (u)    .
is normal to the surface. We get

∇ xu N = -sin (2b) sinh (u) cosh (u) x u + 1 + b K cosh 2 (u) -cos (2b) x v , ∇ xv N = 1 + b K cosh 2 (u) -cos (2b) x u + sin (2b) sinh (u) cosh (u) x v ,
and thus the Gauss curvature is given by

K = -1 + 1 cosh 2 (u) 2(1 + b ) cos (2b) K - (1 + b ) 2 K 2 cosh 2 (u)
+ sin 2 (2b) .

In particular, the fundamental pieces of the helicoids have infinite total curvature since

KdA = - K 2 (1 + b ) 2 cosh 2 (u) + 2K cos (2b) 1 + b - 1 cosh 2 (u) + K 2 sin 2 (2b) (1 + b ) 2 dudv.
We notice that

x(-u + iv) =    -x 1 (u + iv) -x 2 (u + iv) x 3 (v)    = σ 2 x(u + iv),
where σ and τ are the isometries introduced in the first section : the helicoid H K is symmetric by rotation of angle π around the x 3 -axis, which is included in the helicoid as the image by x of the purely imaginary axis of C. On this axis we have

g(0 + iv) = -ie ib(v) .
Hence, the straight line {(x, x, 0) | x ∈ R} is included in the helicoid as the image by x of the real line. Along this line, we have g(u + i0) = e -u e -iπ/4 .

Then we notice that

x(u -iv) =    x 2 (u + iv) x 1 (u + iv) -x 3 (v)    = στ x(u + iv).
Thus, H K is symmetric by rotation of angle π around the axis {(x, x, 0) | x ∈ R}.

Remark 6 : The straight line {(x, x, 0) | x ∈ R} is a geodesic of the helicoid. It's even a geodesic of Sol 3 .

Since the function sinh is odd, we deduce that

x(-u -iv) =    -x 2 (u + iv) -x 1 (u + iv) -x 3 (v)    = σ 3 τ x(u + iv).
Thus, H K is symmetric by rotation of angle π around the axis {(x, -x, 0) | x ∈ R} (but this axis is not included in the surface).

The helicoid H K has no more symmetry fixing the origin ; indeed if it had, it would exist a diffeomorphism φ of C such that x • φ = σ 2 • x (we choose σ 2 as an example but it is the same idea for the other elements of the isotropy group of the origin of Sol 3 ). By composition, the surface would have the whole symmetries of the isotropy group. But if x • φ = τ x, the decomposition

φ = φ 1 + iφ 2 leads to    x 1 (φ 1 (u + iv) + iφ 2 (u + iv)) x 2 (φ 1 (u + iv) + iφ 2 (u + iv)) x 3 (φ 2 (u + iv))    =    -x 1 (u + iv) x 2 (u + iv) x 3 (v)    .
Because x 3 is bijective, we get, φ 2 (u + iv) = v for all u, v, and then we get at the same time sinh (φ 1 (u + iv)) = sinh (u) and sinh (φ 1 (u + iv)) = -sinh (u), which is impossible. v) , where ρ satisfies the following ODE :

g(z = u + iv) = -ie -u-γ(v) e iρ(
ρ = 1 -α 2 sin 2 (2ρ), ρ(0) = 0 ( 11 
)
and γ is defined by

γ = -α sin (2ρ), γ(0) = 0. ( 12 
)
Proposition 6 The map ρ is well defined and has the following properties :

1. The function ρ is an increasing diffeomorphism from R onto R ;

The function ρ is odd ;

3. There exists a real number V > 0 such that

∀v ∈ R, ρ(v + V ) = ρ(v) + π;
4. The function ρ satisfies ρ(kV ) = kπ for all k ∈ Z.

Proof. Since α ∈ ] -1, 1[, there exists r > 0 such that 1 -α 2 sin 2 (2ρ) ∈ ]r, 1] ; the Cauchy-Lipschitz theorem can be applied, and ρ is well defined. By [START_REF] Masaltsev | Minimal surfaces in standard three-dimensional geometry Sol 3[END_REF] we have ρ > 0 on its domain of definition, and √ r < ρ < 1. So ρ is bounded by two positive constants, then ρ is defined on R, and

lim v→±∞ ρ(v) = ±∞.
The function ρ : v -→ -ρ(-v) satisfies [START_REF] Masaltsev | Minimal surfaces in standard three-dimensional geometry Sol 3[END_REF] with ρ(0) = 0 ; hence ρ = ρ and ρ is odd. Finally, there exists V > 0 such that ρ(V ) = π ; Then the function ρ : v -→ ρ(v + V ) -π satisfies [START_REF] Masaltsev | Minimal surfaces in standard three-dimensional geometry Sol 3[END_REF] with

ρ(0) = 0 ; hence ρ = ρ. Corollary 2 1. We have ρ(kV /2) = kπ/2 for all k ∈ 2Z + 1 ; 2. We have ρ -v + V 2 = -ρ(v) + π 2 for all v ∈ R. In particular, ρ V 4 = π 4 and ρ 3V 4 = 3π 4 .
Proof.

1. We have

ρ V 2 = ρ - V 2 + V = -ρ V 2 + π,
which gives the formula for k = 1, then we conclude easily.

2. The functions ρ * : v -→ π/2 -ρ(-v + V /2) and ρ satisfy equation [START_REF] Masaltsev | Minimal surfaces in standard three-dimensional geometry Sol 3[END_REF] with ρ * (0) = ρ(0) = 0, so ρ * = ρ and

ρ(V /4) = ρ * (V /4) = π 2 -ρ π 2 - π 4 
and the result follows.

Proposition 7

The function g satisfies (g 2 -g 2 )g zz = 2gg z g z , and its Hopf differential is

Q = - α 4 dz 2 . ( 13 
)
Proof. A direct calculation shows that g satisfies the equation. Hence, the Hopf differential is given by

Q = i(1 -ρ 2 -γ 2 -2iγ ) 8 sin (2ρ) dz 2 = - α 4 dz 2 .
Thus the map g induces a conformal minimal immersion x = (x 1 , x 2 , x 3 ) such that

x 1z = e -x3 (g 2 -1)g z g 2 -g 2 , x 2z = ie x3 (g 2 + 1)g z g 2 -g 2 , x 3z = 2gg z g 2 -g 2 .
This application is an immersion since the metric induced by x is given by

dw 2 = x u 2 |dz| 2 = (F 2 + α 2 ) cosh 2 (u + γ)|dz| 2 = α 4 sin 2 (2ρ) (1 + ρ ) 2 + α 2 cosh 2 (u + γ)|dz| 2 = 2α 2 1 + ρ cosh 2 (u + γ)|dz| 2 ,
In particular,

x 3z = iρ -γ -i 2 sin (2ρ) , that is        x 3u = 2 (x 3z ) = - γ sin (2ρ) = α x 3v = -2 (x 3z ) = 1 -ρ sin (2ρ) = α 2 sin (2ρ) 1 + ρ .
Thus

x 3 (u + iv) = αu + α 2 v sin (2ρ(s)) 1 + ρ (s)
ds.

Here we have to choose an initial condition ; we set

F (v) = α 2 v 0 sin (2ρ(s)) 1 + ρ (s) ds
and define

x 3 (u + iv) = αu + F (v).
The function F is well defined on the whole R.

Proposition 8

The function F is even and V -periodic.

Proof. The function F is odd because ρ is odd and ρ is even, so F is even. Then we get

F (v + V ) = α 2 sin (2ρ(v) + 2π) 1 + ρ (v) = F (v),
so there exists a constant C such that F (v + V ) = F (v) + C for all v ∈ R. By evaluating at zero, we get C = F (V ), i.e.

C = α 2 V 0 sin (2ρ(s)) 1 + ρ (s) :=H(s) ds = α 2 V /4 0 H(s)ds + 3V /4 V /4 H(s)ds + V 3V /4
H(s)ds

:= 2 k=0 L k (α).
We can now do the change of variables u = sin (2ρ(s)) in each integral L k (α), with

du = 2ρ (s) cos (2ρ(s))ds = 2(-1) k (1 -α 2 u 2 )(1 -u 2 )ds.
Thus,

C = α 2 1 -1 u du (1 + √ 1 -α 2 u 2 ) (1 -α 2 u 2 )(1 -u 2 ) = 0
and F is V -periodic.

Proposition 9

The function γ is even and V -periodic.

Proof. We prove the proposition in exactly the same way as for the function F .

The two other equations become

x 1z = e -x3 (e -u-γ-iρ + e u+γ+iρ )(1 -ρ -iγ ) 4 sin (2ρ) 
x 2z = -e x3 (e u+γ+iρ -e -u-γ-iρ )(i -iρ + γ ) 4 sin (2ρ) .

Those equations lead to

x 1 = e -αu-F e u+γ 2(1 -α) (cos (ρ)F -α sin (ρ)) - e -u-γ 2(1 + α) (α sin (ρ) + cos (ρ)F ) ; x 2 = e αu+F -e u+γ 2(1 + α) (α cos (ρ) + F sin (ρ)) + e -u-γ 2(α -1) (α cos (ρ) -F sin (ρ)) .
Remark 7 : If α = 0, x(C) = {0}. This case will be excluded in the sequel.

Theorem 5 Let α be a real number such that |α| < 1 and α = 0, and ρ and γ the functions defined by [START_REF] Masaltsev | Minimal surfaces in standard three-dimensional geometry Sol 3[END_REF] and [START_REF] William | Constant mean curvature surfaces in metric Lie groups[END_REF]. We define the function F by

F (v) = α 2 v 0 sin (2ρ(s)) 1 + ρ (s) ds.
Then the map x : C -→ Sol 3 defined by v) . Moreover,

      e -αu-F e u+γ 2(1 -α) (cos (ρ)F -α sin (ρ)) - e -u-γ 2(1 + α) (α sin (ρ) + cos (ρ)F ) e αu+F -e u+γ 2(1 + α) (α cos (ρ) + F sin (ρ)) + e -u-γ 2(α -1) (α cos (ρ) -F sin (ρ)) αu + F       is a conformal minimal immersion whose Gauss map is g : u + iv ∈ C -→ -ie -u-γ(v) e iρ(
x(u + i(v + 2V )) = x(u + iv) (14) 
for all u, v ∈ R. The surface given by x is called a catenoid of parameter α and will be denoted by C α .

Proof. The periodicity of C α is an application of Propositions 6, 8 and 9.

Remark 8 : The surfaces C α and C -α are related ; if we denote by an index α (resp. -α) the datas describing C α (resp. C -α ), we get

     ρ -α = ρ α F -α = F α γ -α = -γ α
Thus, we get

x -α (-u + iv) = σ 2 x α (u + iv).
In particular, there exists an orientation-preserving isometry of Sol 3 fixing the origin who sends C α on C -α . Now we show that the catenoids are embedded :

Proposition 10 For all λ ∈ R, the intersection of C α with the plane {x 3 = λ} is a non-empty closed embedded convex curve.

Proof. This intersection is non-empty : x(λ/α + i0) ∈ C α ∩ {x 3 = λ}. We look at the curve in C defined by x 3 (u + iv) = αu + F (v) = λ, i.e. the curve

c : t ∈ R -→ λ -F (t) α , t .
Its image by x is

c : t ∈ R -→        e -λ e λ-F α +γ 2(1 -α) (cos (ρ)F -α sin (ρ)) - e -λ-F α -γ 2(1 + α) (α sin (ρ) + cos (ρ)F ) e λ -e λ-F α +γ 2(1 + α) (α cos (ρ) + F sin (ρ)) + e -λ-F α -γ 2(α -1) (α cos (ρ) -F sin (ρ)) c        (t)
The calculation leads to

c 1 (t) = e -λ α(1 -α 2 ) A(t) cosh λ -F α + γ + B(t) sinh λ -F α + γ , with          A = -F 2 cos (ρ) + αγ F cos (ρ) -α 2 ρ cos (ρ) + α 2 F sin (ρ) -α 3 γ sin (ρ) + α 2 F cos (ρ) -α 2 F ρ sin (ρ) B = αF sin (ρ) -α 2 γ sin (ρ) + αF cos (ρ) -αF ρ sin (ρ) -αF 2 cos (ρ) +α 2 γ F cos (ρ) -α 3 ρ cos (ρ)
We remark that B ≡ 0 after simplifications, and

A(t) = (F 2 (t) + α 2 )(α 2 -1) cos (ρ(t)).
Finally,

c 1 (t) = - e -λ α (F 2 (t) + α 2 ) cos (ρ(t)) cosh λ -F (t) α + γ(t) .
In the same way, we get

c 2 (t) = - e -λ α (F 2 (t) + α 2 ) sin (ρ(t)) cosh λ -F (t) α + γ(t) . Thus c 2 1 + c 2 2 = e -2λ α 2 (F 2 (t) + α 2 ) 2 cosh 2 λ -F (t) α + γ(t) > 0.
so the intersection C α ∩ {x 3 = λ} is a smooth curve ; moreover, it's closed since c(t + 2V ) = c(t) for all t ∈ R.

The planes {x 3 = λ} are flat : indeed, the metrics on these planes are e 2λ dx 2 1 + e -2λ dx 2 2 , so up to an affine transformation, we can work in euclidean coordinates, as we suppose in this proof since affinities preserve convexity.

To prove that c is embedded and convex, we consider the part of c corresponding to t ∈ (-V /2, V /2). On (-V /2, V /2), we have cos (ρ(t)) > 0 thanks to Proposition 6 and Corollary 2. So c 1 (t) < 0 if α > 0 (and c 1 (t) > 0 if α < 0) and c 1 is injective and decreasing if α > 0 (and increasing if α < 0). We get dc 2 dc 1 = tan (ρ(t)), so dc2 dc1 is an increasing function of t, and also of c 1 if α < 0 (and a decreasing function of the decreasing function c 1 if α > 0). In both cases, the curve is convex.

Then, the half of c corresponding to t ∈ (-V /2, V /2) is convex and embedded. Since c(t + V ) = -c(t), the entire curve is convex and embedded.

The following graphics show sections of the catenoid α = -0.6 with planes {x 3 = cte} : The vector field defined by

N = 1 cosh (u)    e -γ sin (ρ) -e -γ cos (ρ) sinh (u)    .
is normal to the surface.

We have

x(u + i(v + V )) =    -x 1 (u + iv) -x 2 (u + iv) x 3 (u + iv)    = σ 2 x(u + iv).
Thus, the surface C α is symmetric by rotation of angle π around the x 3 -axis.

Remark 9 : The x 3 -axis is contained in the "interior" of C α since each curve C α ∩ {x 3 = λ} is convex and symmetric with respect to this axis.

We get as well

x(u -iv) =    -x 1 (u + iv) x 2 (u + iv) x 3 (u + iv)    = τ x(u + iv),
and the surface C α is symmetric by reflection with respect to the plane {x 1 = 0}, and finally we have too

x(u + i(-v + V )) = σ 2 τ x(u + iv)
and C α is symmetric by reflection with respect to the plane {x 2 = 0}.

If C α had another symmetry fixing the origin, it would have every symmetry of the isotropy group of Sol 3 , and we prove as for the helicoid that it is impossible. In this part we consider to the limit surface of the catenoids C α when α goes to zero. For this, we do the change of parameters

u = u + ln (α) v = v.
In these coordinates, the immersion x given in Theorem 5 takes the form

       e α ln (α)-αu -F e u +γ 2α(1 -α) (cos (ρ)F -α sin (ρ)) - αe -u -γ 2(1 + α) (α sin (ρ) + cos (ρ)F ) e -α ln (α)+αu +F -e u +γ 2α(1 + α) (α cos (ρ) + F sin (ρ)) + αe -u -γ 2(α -1) (α cos (ρ) -F sin (ρ)) -α ln (α) + αu + F       
Letting α go to zero, we get

         ρ -→ Id F/α -→ 0 F /α -→ 0 γ -→ 0 and so the limit immersion is       - e u 2 sin (v ) - e u 2 cos (v ) 0      
.

Thus, we obtain a parametrization of the plane {x 3 = 0}, which is the limit of the family (C α ) when α → 0.

The case α = 1

We end by the study of the case α = 1 (the case α = -1 is exactly the same). We show that the limit surface is a minimal entire graph :

Proposition 12 Let x : R 2 -→ Sol 3 be defined by

x(u + iv) =    x 1 x 2 x 3    =      - tanh (v) 2 (1 + e -2u ) e 2u 4 - u 2 - cosh (2v) 4 u + ln (cosh (v))      .
Then x is a minimal immersion and there exists a C ∞ -function f defined on R 2 such that the image of x (called S) is the x 2 -graph of f given by x 2 = f (x 1 , x 3 ).

Proof. We show that this surface is (up to a translation) the limit surface of the family (C α ) α∈]-1,1[ when α goes to 1. For α = 1, the Gauss map is still given by g(z = u + iv) = -ie -u-γ(v) e iρ(v) , but ρ satisfies the following ODE :

ρ = cos (2ρ), ρ(0) = 0 , (15) 
and γ is still defined by

γ = -sin (2ρ), γ(0) = 0. (16) 
We have explicit expressions for these functions, which are given by ρ(v) = arctan (e 2v ) -π/4 = arctan (tanh (v))

γ(v) = - 1 2 ln (cosh (2v)).
Thus by setting Thus, we get g(u + iv) = -ie -u (cosh (v) + i sinh (v)) who satisfies the harmonic equation [START_REF] Inoguchi | A Weierstrass type representation for minimal surfaces in Sol[END_REF]. The metric induced by this immersion on the surface is This property is equivalent to the property that the translated surface (-1/2, 0, 0) * x(u + iv) is symmetric with respect to {x 1 = 0}. This translated surface is the image of the immersion x defined by x 1 λ (t) = tanh 2 (t) -1 2 -e -2λ 2 (cosh 2 (t) + sinh 2 (t)) < 0 for all t ∈ R. Thus, the curves are injective, so the surface S is embedded. Moreover, by the implicit function theorem, we deduce that for every λ ∈ R, there exists a function f λ such that

F (v) =
x 2λ = f λ (x 1λ ). Because the function x 1λ is a decreasing diffeomorphism of R, the function f λ is defined on R. This calculus is valid for all λ ∈ R, so there exists a function f : R 2 -→ R such that

x 2 = f (x 1 , x 3 ).
Finally, this function f coincides around every point with the local C ∞ -functions which give the local graphs, and so f is C ∞ .

As a conclusion, we can notice that, for a fixed x 3 :

• When x 1 -→ +∞, x 2 ≈ -x 1 e 2x3 ;

• When x 1 -→ -∞, x 2 ≈ x 1 e 2x3 .

Corollary 1

 1 [ ; the Cauchy-Lipschitz theorem can be applied, and b is well defined. By (8) we have b > 0 on its domain of definition, and √ r < b < 2. So b is bounded by two positive constants, then b is defined on R, and lim v→±∞ b(v) = ±∞. The function b : v -→ -b(-v) satisfies (8) with b(0) = 0 ; hence b = b and b is odd. Finally, there exists W > 0 such that b(W ) = π ; then the function b : v -→ b(v + W ) -π satisfies (8) with b(0) = 0 ; hence b = b. We have b(kW/2) = kπ/2, for all k ∈ 2Z + 1.
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  (2ρ(s)) ds, we obtain F (v) = ln (cosh (v)). Then, the immersion x is given by v)e -u -2 cosh (v)e -u 1 -e -2u cosh (2v)

ds 2 =

 2 (e -4u tanh 2 (v) + e 2u sinh 2 (u) + 1)|dz| 2 .This surface is symmetric by reflection with respect to the plane {x 1 = 1/2} since x(u + iv)
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Figure 9: The surface S with Maxima®