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Non parametric estimation of the structural expectation

of a stochastic increasing function

J.-F. Dupuy · J.-M. Loubes · E. Maza

Abstract This article introduces a non parametric warping
model for functional data. When the outcome of an experi-
ment is a sample of curves, data can be seen as realizations
of a stochastic process, which takes into account the varia-
tions between the different observed curves. The aim of this
work is to define a mean pattern which represents the main
behaviour of the set of all the realizations. So, we define
the structural expectation of the underlying stochastic func-
tion. Then, we provide empirical estimators of this structural
expectation and of each individual warping function. Con-
sistency and asymptotic normality for such estimators are
proved.

Keywords Functional data analysis · Non parametric
warping model · Structural expectation · Curve registration

1 Introduction and main concept

When dealing with functional data, one main issue is how to
extract information from a sample of curves. Indeed, curves
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usually not only present amplitude variability (a variation in
the y-axis) but also time or phase variability (a variation in
the x-axis). In this case, the classical cross-sectional mean
does not make any sense, and defining a mean curve is even
not obvious. Giving a sense to the common behaviour of
a sample of curves, and finding a meaningful mean curve
in this context thus constitute important issues, also encoun-
tered in curve registration, or time warping problems (see for
example the engineering literature, Sakoe and Chiba 1978).

In this framework, we observe i = 1, . . . ,m curves fi :
[a, b] → R at discrete times tij ∈ [a, b], j = 1, . . . , n, taken,
for sake of simplicity, equally-spaced for all the individuals,
and for this, denoted tj . The data can thus be written as

Yij = fi(tj ), i = 1, . . . ,m, j = 1, . . . , n. (1)

The registration problem aims at finding a mean pattern f

and warping functions hi which align the observed curves
to the template f , i.e such that f = fi ◦ hi . Hence, each
curve fi is obtained by warping the original curve f using
the warping functions h−1

i .
The registration operator can be modeled using a random

warping procedure, which takes account of the variability of
the deformation as a random effect. For example, in Rønn
(2001), the author considers a model for randomly shifted
curves, where the shifts are assumed to be distributed ac-
cording to a known parametric distribution with mean 0 and
unknown variance. In Gervini and Gasser (2005), the au-
thors propose a random warping model where the warping
process is modeled through a known increasing function and
a parametric random effect. In our work, we aim at providing
a purely non parametric, and therefore more flexible model



for randomly warped curves. Let H be a warping stochastic
process defined as

H : Ä → C([a, b]),
w 7→ H(w, ·),

(2)

where (Ä, A,P) is an unknown probability space, and
(C([a, b]),‖ · ‖∞, B) is the set of all real-valued continu-
ous functions defined on the interval [a, b], equipped with
the uniform norm and with its Borel algebra. Consider
h1, . . . , hm as i.i.d. realizations of the process H . Then hi

warps a mean pattern f onto the i-th observation curve fi .
Hence, model (1) can be written as

Yij = fi(tj ) = f ◦ h−1
i (tj ). (3)

We point out that h−1
i is well defined since the warping

processes are assumed to be continuous increasing func-
tions.

Without any constraint on model (3), the problem of re-
covering f and H from the Yij has many solutions, since
model (3) is not identifiable. More precisely, the unknown
function f and the unknown warping process H cannot be
uniquely estimated. Indeed, if h̃ : [a, b] → [a, b] is an in-
creasing continuous function, then for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}, we have that Yij = f ◦ h̃−1 ◦ h̃ ◦ h−1

i (tj ).

Hence, the function f ◦ h̃−1, associated with the warping
process H ◦ h̃−1, is also a solution of model (3).

To solve this issue, one popular method consists of the
following two-stage procedure: (i) first align the curves to a
given template (the first curve or the mean of the observed
curves are usually chosen as the template) by warping the
time axis, (ii) take the mean of the sample of dewarped
curves. Such methods have become increasingly common
in statistics, and we refer to Ramsay and Silverman (2002)
for a review. A landmark registration approach is proposed
by Kneip and Gasser (1992) and further developed by Bigot
(2005), while a non parametric method based on local re-
gressions is investigated in Kneip et al. (2000) and Ram-
say and Li (1998). A dynamic time warping methodology
is developed by Wang and Gasser (1999). An alternative ap-
proach is provided by Gamboa et al. (2007) and Loubes et al.
(2006), where semi-parametric estimation of shifted curves
is investigated. But these methods all imply choosing a start-
ing curve as a fixed point for the alignment process. This
initial choice may either bias the estimation procedure, or
imply strong and restrictive identifiability conditions.

In this work, an alternative point of view is considered to
overcome the identifiability problem stated above. Precisely
we define, directly from the data, an archetype representing
the common behaviour of the sample curves, without stress-
ing any particular curve but taking into account the informa-
tion conveyed by the warping process itself. One advantage

Fig. 1 Classical and structural mean of a two-curves sample

of this method is that we do not assume any technical restric-
tion on the data, which enables us to handle a large variety
of cases. Letting φ be the expectation of the warping process
H , we define the structural expectation fES as

fES := f ◦ φ−1.

Note that each curve can be warped to this feature by taking,
for all i = 1, . . . ,m,

fi = fES ◦ φ ◦ h−1
i = fES ◦ h−1

ES,i .

Figure 1 illustrates the intuitive meaning of this definition,
and relates it to alternative points of view. Consider the case
of a two-curves sample. In the classical setting of curve reg-
istration, the curves would be aligned either onto the classi-
cal mean, or onto one of the two observed curves. Choosing
the usual mean curve as the representative feature leads to a
wrong pattern (the dotted line), which is estimated at a good
location. On the contrary, alignment onto the first or second
curve yields a good pattern, but does not take account of
the deformation. In our approach, the structural mean is ob-
viously representative of the information in the curve sam-
ple. Moreover, this approach also conveys information on
the warping process.

The structural expectation is obviously not the function
f , but the function f composed with the inverse φ−1 of the
expectation of H . Thus, it can be understood as the mean

warping of the function f by the stochastic process H . Note
that since φ is monotone, fES inherits the same pattern as f ,
and thus as the observed curves fi . The structural expecta-
tion therefore provides a sensible representation for the be-
haviour of the sample curves fi . The aim of this paper is to
properly define this new archetype, to study its properties,



and to propose and investigate estimators for both the struc-
tural expectation and warping paths h−1

ES,i = φ ◦ h−1
i .

The article is organized as follows. In Sect. 2, we de-
fine empirical estimators of the structural expectation and
of the individual warping functions. Asymptotic properties
of these estimators are investigated. Proofs are postponed
to Appendix. Section 3 investigates some extensions of the
proposed methodology, in particular to the case of noisy non
increasing functions. The results of a simulation study are
reported in Sect. 4. There, we also apply the proposed esti-
mators to a real dataset.

2 Theoretical study of a particular case: warping

of strictly increasing functions

First, consider the case where f is strictly increasing.
Hence, the inverse function f −1 exists and is also strictly
increasing. Moreover, a phase warping of the function f

(i.e. on the x-axis) corresponds to an amplitude warping of
the function f −1 (i.e. on the y-axis). We propose estimators
for the inverse of the structural expectation f −1

ES = φ ◦ f −1,

for the individual warping functions h−1
ES,i = φ ◦ h−1

i , i ∈
{1, . . . ,m}, and for the structural expectation fES = f ◦φ−1.

Note that all the asymptotic results are taken with respect
to m and n, so we recall that u(m,n) −→

m,n→∞
c if, and only

if, we have

∀ǫ > 0,∃(m0, n0) ∈ N2,∀(m,n) ∈ N2,m > m0 and

n > n0 ⇒ |u(m,n) − c| < ǫ.

In order to define a good registration procedure, we assume
that the warping process does not change the time line (time
inversion is not allowed), and leaves fixed the two extreme
points. Precisely, for almost all w ∈ Ä, we assume that

(i) H(w, ·) is an increasing function,
(ii) H(w,a) = a and H(w,b) = b.

The following proposition introduces respectively the ex-
pectation, second order moment and covariance functions
of H .

Proposition 2.1 Under (2), the expectation φ(·), the sec-

ond order moment γ (·) and the covariance function r(·, ·)
of the stochastic process H are well defined. φ and γ are

also continuous increasing functions. Moreover, we have

that φ(a) = a, φ(b) = b, γ (a) = a2 and γ (b) = b2. As a

consequence, we have that varH(·, a) = varH(·, b) = 0.

Proof The process H is bounded and increasing. As a con-
sequence, φ and γ exist. Moreover, H is a continuous in-
creasing process, which leads to continuous and increasing
first and second order moments. ¤

In order to prove asymptotic results, the following techni-
cal assumptions on the warping process H and on the func-
tion f are needed:

1. There exists a constant C1 > 0 such that for all (s, t) ∈
[f (a), f (b)]2, we have

E|H(s) − EH(s) − (H(t) − EH(t))|2 ≤ C1|s − t |2. (4)

2. There exists a constant C2 > 0 such that for all (s, t) ∈
[f (a), f (b)]2, we have

|f −1(s) − f −1(t)|2 ≤ C2|s − t |2. (5)

3. There exists a constant C3 > 0 such that for all ω ∈ Ä,
for all (s, t) ∈ [a, b]2, we have

|H−1(ω, s) − H−1(ω, t)|2 ≤ C3|s − t |2. (6)

These conditions ensure that the warping process H and the
unknown function f are sufficiently regular, so that the ob-
served functions fi do not behave erratically. Other contri-
butions to random models for warped curves (see Gervini
and Gasser 2005; Rønn 2001) also assume some conditions
(monotonicity, invertibility of the warping transformation)
that ensure a regular behaviour for the observed sample
curves. The conditions stated in our work thus provide a
reasonable setting for the investigation of randomly warped
curves.

2.1 Estimator of the structural expectation fES

Since fi = f ◦ h−1
i , we have f −1

i = hi ◦ f −1. Hence
E(f −1

i ) = E(H) ◦ f −1. Then, it seems natural to consider
the mean of the functions f −1

i , i ∈ {1, . . . ,m} in order to
estimate the inverse of the structural expectation. For all
y ∈ [f (a), f (b)], and for all i ∈ {1, . . . ,m}, define

ji(y) = arg min
j∈{1,...,n}

|Yij − y| and Ti(y) := tji (y). (7)

Then, the empirical estimator of the inverse of the structural
expectation is defined by

f̂ −1
ES (y) = 1

m

m∑

i=1

Ti(y). (8)

From (8) and (7), f̂ −1
ES is an increasing step function

with jumps occurring at K(m,n) points v1, . . . , vK(m,n) in
[f (a), f (b)], such that f (a) = v0 < v1 < · · · < vK(m,n) <

vK(m,n)+1 = f (b). Hence, for all y ∈ [f (a), f (b)]\(vk)k∈K,

K = {0, . . . ,K(m,n) + 1}, f̂ −1
ES (y) can be expressed as

f̂ −1
ES (y) =

K(m,n)∑

k=0

uk1(vk,vk+1)(y)



with a = u0 < u1 < · · · < uK(m,n)−1 < uK(m,n) = b. A nat-
ural estimator of the structural expectation fES is then ob-
tained by linear interpolation between the points (uk, vk).
For all t ∈ [a, b], let define

f̂ES(t) =
K(m,n)−1∑

k=0

(
vk + vk+1 − vk

uk+1 − uk

(t − uk)

)
1[uk,uk+1)(t)

+ vK(m,n)1{b}(t).

Note that by construction, this estimator is strictly increasing
and continuous on [a, b]. The following theorem states its
consistency.

Theorem 2.2 (Consistency of the estimator of the Structural
Expectation) Under the assumption (2), we have

∥∥f̂ES − fES

∥∥
∞

a.s.−→
m,n→∞

0.

Obtaining confidence bands for f −1
ES is useful for de-

scribing and visualizing the uncertainty in the estimate of
f −1
ES . This requires finding first the asymptotic behaviour

of f̂ −1
ES , and then providing an estimator of var(G(y)) =

γ ◦ f −1(y) − {f −1
ES (y)}2, y ∈ [f (a), f (b)]. The following

theorem states the consistency and asymptotic normality of
estimator (8).

Lemma 2.3 (Consistency of the inverse of the structural ex-
pectation) Under the assumption (2),

∥∥f̂ −1
ES − f −1

ES

∥∥
∞

a.s.−→
m,n→∞

0.

Moreover, let n = m
1
2+α with α > 0, and assume that condi-

tions (4) and (5) hold. Then,

√
m

(
f̂ −1
ES − f −1

ES

) D−→
m→∞

G,

where G is a centered Gaussian process with covariance

given by: for all (s, t) ∈ [f (a), f (b)]2,

cov(G(s),G(t)) = r
(
f −1(s), f −1(t)

)
.

Lemma 2.4 Let y ∈ [f (a), f (b)]. Let ̂γ ◦ f −1(y) =
1
m

∑m
i=1 T 2

i (y), with Ti(.) defined as in (7). Then

̂γ ◦ f −1(y) −
{
f̂ −1
ES (y)

}2 a.s.−→
m,n→∞

var(G(y)).

The proof of this lemma is given in Appendix. Combin-
ing this lemma with the asymptotic normality result stated in
Lemma 2.3 yields a pointwise asymptotic confidence band
for f −1

ES .

Corollary 2.5 An asymptotic (1− α)-level pointwise confi-

dence band for f −1
ES is given by

[
f̂ −1
ES (y) − u1− α

2

√
ˆvar(G(y))

m
,

f̂ −1
ES (y) + u1− α

2

√
ˆvar(G(y))

m

]
,

where ˆvar(G(y)) = ̂γ ◦ f −1(y) − {f̂ −1
ES (y)}2 and u1− α

2
is

the quantile of order 1− α
2 of the standard normal distribu-

tion.

Note that the construction of a simultaneous asymptotic
confidence band for f −1

ES would require the determination
of the distribution of supf (a)≤y≤f (b) |G(y)|. This, however,
falls beyond the scope of this paper.

2.2 Estimator of an individual structural warping function
h−1
ES,i

In a warping framework, it is necessary to estimate the mean
pattern, but also the individual warping functions. Indeed,
these functions show how far a given curve fi is from the
common mean pattern, and allow us understand the particu-
lar time-warping transformation that was applied to f , so as
to yield the observed fi .

Remember that we chose to align the curves to a mean
pattern which takes account of the mean warping, hence

fi = f ◦ h−1
i = f ◦ φ−1 ◦ φ ◦ h−1

i = fES ◦ h−1
ES,i .

Thus, as previously, we cannot directly estimate the func-
tions h−1

i , but only the functions h−1
ES,i = φ ◦ h−1

i , called
structural warping functions.

Let i0 ∈ {1, . . . ,m}. We want to compute T ⋆
i (t) = f −1

i ◦
fi0(t), for all i 6= i0. For this, define

j0(t) = arg min
j∈{1,...,n}

|ti0j − t |. (9)

This point is the observation time for the i0-th curve, which
is the closest to t . Note that the index j0(t) depends on i0,
but for the sake of simplicity, we drop this index in the nota-
tions. Then, for all t ∈ [a, b] and i ∈ {1, . . . ,m}\ i0, compute

Ti(t) = arg min
tj ∈{ti1,...,tin}

|Yij − Yi0j0(t)| (10)

as an estimate of T ⋆
i . Then, for a fixed i0, noting that T ⋆

i =
hi ◦ h−1

i0
, we can see that an empirical estimator of each in-

dividual warping function φ ◦ h−1
i0

is given by

̂
h−1
ES,i0

(t) = ̂
φ ◦ h−1

i0
(t) := 1

m − 1

m∑

i=1
i 6=i0

Ti(t). (11)



The following theorem asserts the consistency and asymp-
totic normality of this estimator.

Theorem 2.6 Under assumption (2),

∥∥ ̂
h−1
ES,i0

− h−1
ES,i0

∥∥
∞

a.s.−→
m,n→∞

0.

Let n = m
1
2+α (with α > 0) and assume that (4) and (6)

hold. Then
√

m(
̂
h−1
ES,i0

− h−1
ES,i0

) converges weakly to a cen-

tered Gaussian process Z,

√
m

( ̂
h−1
ES,i0

− h−1
ES,i0

) D−→
m→∞

Z,

with covariance function defined for all (s, t) ∈ [a, b]2 by

cov(Z(s),Z(t)) = r
(
h−1

i0
(s), h−1

i0
(t)

)
.

We may also compute confidence bands for φ ◦ h−1
i0

,

based on a consistent estimator of var(Z(t)) = γ ◦ h−1
i0

(t) −
{φ ◦ h−1

i0
(t)}2.

Lemma 2.7 Let t ∈ [a, b]. Let ̂
γ ◦ h−1

i0
(t) = 1

m

∑m
i=1 T 2

i (t),
with Ti(.) defined by (9) and (10). Then

̂
γ ◦ h−1

i0
(t) −

{ ̂
φ ◦ h−1

i0
(t)

}2 a.s.−→
m,n→∞

var(Z(t)).

The proof of this lemma relies on the same arguments
as the proof of Lemma 2.4, and is outlined in Appendix.
A pointwise asymptotic confidence band for φ ◦ h−1

i0
is now

given by

Corollary 2.8 An asymptotic (1− α)-level pointwise confi-

dence band for φ ◦ h−1
i0

is given by

[
̂

φ ◦ h−1
i0

(t) − u1− α
2

√
ˆvar(Z(t))

m
,

̂
φ ◦ h−1

i0
(t) + u1− α

2

√
ˆvar(Z(t))

m

]
,

where ˆvar(Z(t)) = ̂
γ ◦ h−1

i0
(t) − { ̂

φ ◦ h−1
i0

(t)}2.

3 Extensions to the general case

In the preceding part, we studied the asymptotic behaviour
of a new warping methodology. However, drastic restric-
tions over the class of functions are needed: boundary con-
straints, monotonicity of the observed functions, and a non
noisy model. In this section, we get rid of such assumptions,
and we provide a practical way of handling more realistic
observations.

3.1 Boundary constraints

First, we note that the assumptions H(a)
a.s.= a and H(b)

a.s.=
b imply that the observed measures fi(a) and fi(b) are re-
spectively equal for all individuals. These assumptions can
be weakened by assuming:

(ii′) H−1(·, a) and H−1(·, b) are compactly supported ran-
dom variables, with

sup
w∈Ä

H−1(w,a)
a.s.
< inf

w∈Ä
H−1(w,b).

Thus, the observed measures fi(a) and fi(b) can vary from
individuals to individuals. Obviously in that case, the pro-
posed estimator for the structural expectation fES is not
defined on the whole range [a, b], but on a smaller inter-
val ]a′, b′[⊂ [a, b], with a′ = f −1

ES (supi fi(a)) and b′ =
f −1
ES (infi fi(b)).

3.2 Breaking monotonicity

The main idea is to build a transformation G which turns a
non monotone function into a monotone one, while preserv-
ing the warping functions. For the sake of simplicity, the ob-
servation times will be taken equal for all the curves, hence
tij will be denoted tj . Hence, the observations

Yij = f ◦ f −1
i (tj ), i = 1, . . . ,m, j = 0, . . . , n,

are transformed into

Zij = G(f ) ◦ h−1
i (tj ) := g ◦ h−1

i (tj ),

i = 1, . . . ,m, j = 0, . . . , n, (12)

where g is a monotone function. Thus, estimating the warp-
ing process of the monotonized model can be used to esti-
mate the real warping functions, and then align the original
observations Yij to their structural mean.

For this, consider a non monotone function f : [a, b] →
{1, . . . ,m}, and let a = s0 < s1 < · · · < sr < sr+1 = b be
the various variational change points, in the sense that ∀k ∈
{0, . . . , r − 1},

∀(t1, t2) ∈]sk, sk+1[ ,∀(t3, t4) ∈]sk+1, sk+2[ ,

t1 < t2 and t3 < t4

⇒ (f (t1) − f (t2))(f (t3) − f (t4)) < 0. (13)

Thus, consider functional warping over the subset

F = {f : [a, b] → {1, . . . ,m} ⊂ R such that (13) holds}.

Let π : ]a, b[ \ {s1, . . . , sr } → {−1,1} be a tool function, in-
dicating whether around a given point t , the function f is



increasing or decreasing, and defined by

π : sl(t) < t < sl(t)+1

7→ π(t) =
{−1 if sl(t) − sl(t)+1 > 0,
1 if sl(t) − sl(t)+1 < 0,

with l(t) ∈ {0, . . . , r}.

Monotonizing operator For all f ∈ F , define the operator
G(., f ) : t ∈]a, b[ \ {s0, . . . , sr+1} → G(t, f ) by

G(t, f ) = f (t)π(t) −
r∑

k=0

π(t)f (sk)1]sk,sk+1[(t) + f (s0)

+
r∑

k=1

|f (sk−1) − f (sk)|1]sk,b[(t),

and for all k ∈ {0, . . . , r + 1}, by

G(sk, f ) = f (a) +
k∑

l=1

|f (sl−1) − f (sl)|,

with the notation
∑0

l=1 |f (sl−1) − f (sl)| = 0.
By construction, it is obvious that t → G(t, f ) is strictly

increasing. Moreover, the following proposition proves that
the warping functions remain unchanged.

Proposition 3.1 Consider f ∈ F and the warping func-

tions hi, i = 1, . . . ,m. For every i = 1, . . . ,m, set G(., fi) =
gi(.). We have gi = g ◦ h−1

i .

The discretization implies however that the Zij cannot
be directly computed, since the functions fi (i = 1, . . . ,m)

are known on the grid tj (j = 0, . . . , n), while the values sk
and si

k are unknown. Thus, we consider estimates for the Zij

values, which are defined as follows:

Z̃i0 = Yi0,

∀j ∈ {1, . . . , n}, Z̃ij = Z̃ij−1 + |Yij − Yij−1|.
(14)

The following proposition proves the consistency of this es-
timation procedure.

Proposition 3.2 For f ∈ F , i ∈ {1, . . . ,m} and t ∈ [a, b],
define a sequence j (n) such that

j (n)
n

−→
n→+∞

t . Then,

Z̃ij (n) − Zij (n)
a.s.−→

n→+∞
0.

As a conclusion, we can extend our results to the case
of non monotone functions, since we transform the prob-
lem into a monotone warping problem with the same warp-
ing functions. These functions hi , i = 1, . . . ,m, can be esti-
mated with our methodology, by using the new observations

Z̃ij , i = 1, . . . ,m, j = 0, . . . , n. The resulting estimator can
then be written in the form:

˜
φ ◦ h−1

i0 mn
(t) = 1

m − 1

m∑

i=1
i 6=i0

Tji
, (15)

with

Tji
= arg min

tj ∈{t0,...,tn}

∣∣Z̃ij − Z̃i0j0

∣∣

and

tj0 = arg min
tj ∈{t0,...,tn}

|tj − t |.

Other methods are also possible to break the monotonicity
assumption, see for instance Liu and Müller (2004). How-
ever, our approach preserves the warping functions (see
Proposition 3.1), which is crucial when building the struc-
tural expectation fES.

3.3 Dealing with noisy data

While the theoretical asymptotic results are only given in a
non noisy framework, we can still handle the case where the
data are observed in the standard regression model

Yij = f ◦ h−1
i (tj ) + εij , i = 1, . . . ,m, j = 0, . . . , n, (16)

with εij
i.i.d.∼ N (0, σ 2). To apply our algorithm, we first de-

noise the data. For this, we separately estimate each func-
tion fi, i = 1, . . . ,m, by a kernel estimator. The resulting
estimation procedure (to be used in the simulation study) is
described as follows:

1. For every i ∈ {1, . . . ,m}, fi is estimated as:

f̂i(t0) = 1

m

m∑

i=1

Yi0
a.s.−→

m→+∞
f (t0),

f̂i(tn) = 1

m

m∑

i=1

Yin
a.s.−→

m→+∞
f (tn).

Given a Gaussian kernel 8, for every j ∈ {1, . . . , n − 1},
fi(tj ) is estimated by

f̂i(tj ) =
∑n

k=0 Yik8(
tk−tj

νi
)

∑n
k=0 8(

tk−tj
νi

)
. (17)

The bandwidths νi are to be properly chosen.
2. The estimation procedure can be conducted using the de-

noised observations f̂i(tj ), leading to new estimates f̂ (t)

of the structural expectation f ◦ φ−1.



We point out that the efficiency of this procedure heavily re-
lies on a proper choice of the bandwidths νi, i = 1, . . . ,m.
Cross-validation techniques do not provide good results
since the aim is not to get a good estimation of the function,
but only a good separation of the different functions. Hence,
over-smoothing the data is not a drawback in this setting.
The smoothing parameters ν = νi , for all i = 1, . . . ,m are
thus obtained by minimizing the following matching crite-
rion over a grid L:

ν̂ = argmin
ν∈L

m∑

i=1

n∑

j=0

∣∣f̂i(tj ) − f̂ (tj )
∣∣. (18)

Practical applications of this algorithm are given in Sect. 4.

4 Numerical study

In this section, we estimate the structural expectation, using
both the proposed method and the analytic registration ap-
proach developed in Ramsay and Silverman (2002). The ba-
sic idea of this latter method is to find, for every function fi ,
a parameterized monotonic warping function hi , such that
fi ◦ hi closely matches a target function g in a penalized
least square sense:

argmin
hi

{
m∑

i=1

∫ 1

0
(fi(hi(t)) − g(t))2dt + λ

∫ 1

0
(h′′

i (t))
2dt

}
.

(19)

In the absence of any other information, the target function
g is an estimate of the cross-sectional mean of the func-
tions fi . Note that an alternative approach to analytic reg-
istration is provided by the so-called landmarks registration
approach (see Kneip and Gasser 1992), but this approach
requires the determination of landmarks (such as local ex-
trema), which can be difficult in our simulations. Therefore,
this method is not implemented here.

First, some results on simulated data are given, in order
to compare the two methods mentioned above. Then, an ap-
plication of our methodology is given for a real data set.

4.1 Simulations

Two simulation studies are carried out in this section. The
first involves a strictly increasing function, while the second
involves a non monotone function.

Warped functions Let f and g (see Figs. 2 and 3) be de-
fined by

∀t ∈ [0,1], f (t) = sin(3πt) + 3πt and

g(t) = sin(6πt)

6πt
.

These two functions will be warped by the following random
warping process.

Warping processes The stochastic warping functions Hi

(i = 1, . . . ,m) are simulated using the iterative process de-
scribed below.

Let ǫ > 0. First, for all i = 1, . . . ,m, let H
(0)
i be the

identity function. Then, the warping functions H
(k+1)
i ,

i = 1, . . . ,m, are successively carried out from functions
H

(k)
i , i = 1, . . . ,m, by iterating N times the following

process:

1. Let U be a uniformly distributed random variable on
[10ǫ,1 − 10ǫ].

2. Let Vi , i = 1, . . . ,m, be independent and identically
uniformly distributed variables on [U − ǫ,U + ǫ].

3. For all i = 1, . . . ,m, the warping function H
(k)
i is

warped as follows:

H
(k+1)
i = Wi ◦ H

(k)
i

where Wi is defined by

Wi(t) =
{

Vi

U
t if 0 ≤ t ≤ U ,

1−Vi

1−U
t + Vi−U

1−U
if U < t ≤ 1.

We point out that this iterative procedure generates
strictly increasing stochastic functions Hi : [0,1] → [0,1],
with the desired property that

∀t ∈ [0,1], E(Hi(t)) = φ(t) = t.

Note also that this warping process is centered, in the sense
that the structural expectation f ◦ φ−1 is equal to f . From
a practical point of view, we will never know if φ is the
identity function or not. Hence, this assumption seems quite
natural. Moreover, this simulation procedure enables us to
obtain very general classes of warping processes, and is not
restricted to parametric deformations.

Our simulated warping functions Hi , i = 1, . . . ,m, have
been carried out by using the above iterating process with
m = 30, N = 3000 and ǫ = 0.005. These processes are
shown on Figs. 2 and 3. In these figures, we can see the very
large phase variations. For example, point 0.2 is warped be-
tween approximately 0.05 and 0.35 for the first case, and
between approximately 0.00 and 0.40 for the second case.

Simulated data Finally, the simulated data are carried out
on an equally spaced grid as follows:

Yij = f
(
H−1

i (tj )
)

and

Yij = g
(
H−1

i (tj )
)
+ ǫij



Fig. 2 The function f is shown
in the top left figure (solid line).
The simulated warping
processes are shown in the top

right figure. The simulated
warped functions are shown in
the bottom left figure. The
classical mean of these
functions is drawn in the top left

figure (dotted line). Finally, the
estimates of f with the analytic
registration procedure (dashed
line) and our method
(dotted-dashed line) are shown
in the bottom right figure

Fig. 3 The function g is shown
in the top left figure (solid line).
The simulated warping
processes are shown in the top

right figure. The simulated
warped functions are shown in
the bottom left figure. The
classical mean of these
functions is drawn in the top left

figure (dotted line). Finally, the
estimates of g with the analytic
registration procedure (dashed
line) and our method
(dotted-dashed line) are shown
in the bottom right figure

with tj = j
n
, j = 0,1, . . . , n, n = 100 points, and ǫij i.i.d

from a Gaussian law with mean 0 and standard devia-
tion 0.01. The simulated warped functions are respectively
shown on Figs. 2 and 3.

Figures 2 and 3 show the functions f and g and the
mean functions of the warped curves. We can easily see
that the classical mean is not adapted to describe the data.
In particular, the mean function of the first simulated data
set does not reflect the flat component of the function f (in
the range [0.2,0.4]), which yet appears in each individual
warped function. In the same way, the mean function of the
second simulated data set does not reflect the structure of the

individual curves. The classical mean attenuates the curve
variations.

Results The estimated structural expectations with both
the analytic registration approach and the proposed method
are shown on Figs. 2 and 3 (bottom right figures). For noisy
data, we use the grid L = {0.005,0.006, . . . ,0.020} to esti-
mate our bandwidth by minimizing criterion (18). We obtain
ν̂ = 0.011.

We can easily see that the estimates obtained by using
our method are closer to the structural expectations f and g.
These results can be explained as follows:



• For the first simulated data set, the analytic registration
approach does not directly work on the strictly increasing
functions, but on the first derivatives. However, theoreti-
cally registering a given function data set is not the same
issue as the registration of the first derivatives of these
functions.

• The analytic registration approach uses the mean curve
to register all the functions. Due to the aforementioned
inappropriateness of the mean curve for dealing with large
deformations (for instance, in the second data set, where
the result is a very flat mean curve), the structural mean
approach provides better results.

• For both the simulated data sets, the analytic registration
approach works on estimated functions and not directly
on the given data, which implies an additional source of
error.

4.2 A concrete application: multiple referees and equity

The field of application of the results presented in this paper
is large. Here, we consider an example taken from the aca-
demic field: how can we ensure equality between the candi-
dates in an exam with several different referees?

Consider an examination with a large number of candi-
dates, such that it is impossible to evaluate the candidates
one after another. The students are divided into m groups,
and m boards of examiners are charged to grade these m

groups: each board grades one group of candidates. The
evaluation is performed by assigning a score from 0 to 20.

The m different boards of examiners are supposed to be-
have the same way, so as to respect the equality among the
candidates. Moreover it is assumed that the sampling of the
candidates is perfect in the sense that it is done in such a way
that each board of examiners evaluates candidates with the
same global level. Hence, if all the examiners had the same
requirement levels, the distribution of the ranks would be the

same for all the boards of examiners. Here, we aim at bal-
ancing the effects of the differences between the examiners,
gaining equity for the candidates. Our real data set is pro-
vided by the French competitive teacher exam Agrégation

de mathématiques.
The situation can be modeled as follows. For each

group i among 13 groups of candidates, let Xi = {Xi
l ∈

{1, . . . ,20}, l = 1, . . . , ni} denote the scores of the students
within this group. Let fi , i = 1, . . . ,13 be the empirical dis-
tribution function of the scores in the i-th group, defined
as

fi(t) = 1

ni

ni∑

l=1

1Xi
l ≤t .

Figure 4 shows the empirical functions corresponding to the
13 groups.

As a preliminary step in our analysis, we test the null
hypothesis H0 of homogeneity of the distributions of the
Xi , i = 1, . . . ,13. Testing for homogeneity of the distrib-
utions of any couple (Xi,Xj ) can be done using the follow-
ing homogeneity chi-square test (see for instance Bouroche
and Saporta 1980). For every score k = 1, . . . ,20, define
ni

k =
∑ni

l=1 1Xi
l =k , n

j
k =

∑nj

l=1 1
X

j
l =k

, and µ̂k = (ni
k + n

j
k)/

(ni + nj ). Finally, set d i
k = niµ̂k , d

j
k = nj µ̂k , and

Di
ni

=
20∑

k=1

(d i
k − ni

k)
2

d i
k

, D
j
nj

=
20∑

k=1

(d
j
k − n

j
k)

2

d
j
k

.

When ni and nj both tend to infinity, Di
ni

+ D
j
nj

converges
in distribution to a χ2(19) distribution under H0, and con-
verges almost surely to +∞ if the distributions of Xi and
Xj are different.

In our example, the total sample size
∑13

i=1 ni is equal
to N = 4000, hence the large sample approximation can be

Fig. 4 Empirical distribution
functions (left figure) and
structural expectation estimation
(right figure)



supposed to hold. In order to test the null hypothesis H0 of
homogeneity over the 13 groups of candidates, we simul-
taneously perform 13 × (13 − 1)/2 pairwise homogeneity
tests, and we control the level (here 5%) of the global test by
using the Bonferroni-type correction. This testing procedure
leads us to reject H0.

As a consequence the following procedure is proposed.
We aim at finding the average way of ranking, with respect
to the ranks that were given within the 13 bunches of candi-
dates. For this, assume that there is such an average empir-
ical distribution function, and that each group-specific em-
pirical distribution function is warped from this reference
distribution function by a random process. A good choice
is given by the structural expectation: since the functions
fi, i = 1, . . . ,13 are increasing, Lemma 2.3 may apply.

In order to obtain a global common ranking for the N

candidates, one can now replace the 13 group-specific rank-
ings by the sole ranking based on the structural expectation
(right panel of Fig. 4). To this end, consider a candidate in
the i-th group, who obtained a score equal to say, s. We
associate to this score the corresponding value fi(s) of the
empirical distribution function in the i-th group. Then, we
assign to this candidate the score corresponding to the same
probability on the structural expectation graph. As a result,
we obtain a new set of scores for the N candidates, which
can be interpreted as the scores that would have been ob-
tained, had the candidates been judged by an average board
of examiners.

As suggested by a referee, a statistically important ques-
tion for this dataset is to ask if the 13 group-specific warp-
ing processes are identically distributed or not: answering
this question may allow one detecting boards of examiners
who systematically mark the candidates in a different way
from the other boards. This question falls beyond the scope
of the present paper but definitely constitutes a stimulating
further problem, related to the notion of structural expecta-
tion.

In conclusion, structural expectation provides a data-
driven pattern, which plays the role of a reference pattern
to which all the different curves can be compared. We ap-
plied successfully this method to rescale the scores obtained
by candidates evaluated by different boards of examiners.
This use is not restrictive: the proposed method can be used
to provide mean patterns for other types of functional data,
in various fields such as econometry, biology or data traffic
for instance.

Appendix: Proofs and technical lemmas

In practice, the functions (fi)i∈{1,...,m} are evaluated on a
discrete interval of R, as is described in Sect. 1. In order to

prove Lemma 2.3 and Theorem 2.6, we first investigate the
asymptotic results for the theoretical continuous model, i.e.

fi(t) = f ◦ h−1
i (t), i ∈ {1, . . . ,m}, t ∈ [a, b], (20)

where H is defined in the same way as in model (3). In a sec-
ond step, we will extend the proofs to the discretized model,
and prove the results of Sect. 3.

Thus, consider that all the functions are measured on the
entire interval [a, b]. After the asymptotic results are proved
for this continuous model in Sect. A.1, we use these results
to prove Lemma 2.3 and Theorem 2.6 (and subsequently
Theorem 2.2) in Sect. A.2.

A.1 Asymptotic results for the continuous model

For the continuous model (20), we provide asymptotic re-
sults (analogous to Lemma 2.3 and Theorem 2.6) and their
proofs.

A.1.1 Estimator and asymptotic results of the inverse of the

structural expectation

Considering the continuous model (20), we define an empir-
ical estimator of the inverse of the structural expectation in
the following way. Set

f −1
ES = 1

m

m∑

i=1

f −1
i . (21)

The following theorem states the consistency and asymp-
totic normality of this estimator.

Theorem A.1 Under assumption (2), we have that f −1
ES

converges almost surely to f −1
ES

∥∥f −1
ES − f −1

ES

∥∥
∞

a.s.−→
m→∞

0.

Moreover, assume that assumptions (4) and (5) hold. Then,

we have that
√

m(f −1
ES − f −1

ES ) converges weakly to a zero-

mean Gaussian process G:

√
m

(
f −1
ES − f −1

ES

) D−→
m→∞

G,

where the covariance function of G is defined, for all (s, t) ∈
[f (a), f (b)]2, by

Cov(G(s),G(t)) = r
(
f −1(s), f −1(t)

)
.

Proof Almost sure convergence of the estimator f −1
ES is

directly deduced from Corollary 7.10 (p. 189) in Ledoux
and Talagrand (1991). This corollary is an extension of the
Strong Law of Large Numbers to Banach spaces.



For all i ∈ {1, . . . ,m}, the functions (f −1
i )i∈{1,...,m} are

obviously strictly increasing, hence f −1
ES is strictly increas-

ing, and we have

f −1
ES = 1

m

m∑

i=1

f −1
i = 1

m

m∑

i=1

(f ◦ h−1
i )−1

= 1

m

m∑

i=1

hi ◦ f −1.

For all i ∈ N∗, let

Xi = hi ◦ f −1 − f −1
ES ,

and, for all m ∈ N∗, let

Sm =
m∑

i=1

Xi .

The (Xi)i∈{1,...,m} are B-valued random variables, where
B = C([f (a), f (b)]) is a separable Banach space. More-
over, the dual space of B is the set of bounded measures
on [f (a), f (b)] (Rudin 1987). Hence, our framework cor-
responds to Chap. 7 of Ledoux and Talagrand (1991), and
we can thus apply Corollary 7.10. Indeed, we have

E(‖X1‖∞) < +∞ and E(X1) = 0,

then

Sm

m

a.s.−→
m→+∞

0,

which proves almost sure convergence.
We now turn to the weak convergence. From the mul-

tivariate CLT, for any k ∈ N∗ and fixed (y1, . . . , yk) ∈
[f (a), f (b)]k ,

√
m







f −1
ES (y1)

...

f −1
ES (yk)


 −




f −1
ES (y1)

...

f −1
ES (yk)







D−→
m→∞

Nk(0,Ŵ),

where the covariance matrix Ŵ = (Ŵij )i,j is given by Ŵij =
cov(F−1(yi),F

−1(yj )) = cov(H(f −1(yi)),H(f −1(yj ))),

i, j = 1, . . . , k. It remains to show that {√m(f −1
ES − f −1

ES )}
is tight. We verify the moment condition stated by Vaart and
Wellner (1996, Example 2.2.12).

E
[∣∣√m(f −1

ES (s) − f −1
ES (s))

−
√

m(f −1
ES (t) − f −1

ES (t))
∣∣2]

= E

[
m

∣∣∣∣∣
1

m

m∑

i=1

f −1
i (s) − EF−1(s)

−
(

1

m

m∑

i=1

f −1
i (t) − EF−1(t)

)∣∣∣∣∣

2]

= E
[∣∣F−1(s) − EF−1(s) −

(
F−1(t) − EF−1(t)

)∣∣2],

where the last equality follows from the fact that the hi ’s are
i.i.d. Then, from (4) and (5), we get that

E
[∣∣√m(f −1

ES (s) − f −1
ES (s)) −

√
m(f −1

ES (t) − f −1
ES (t))

∣∣2]

≤ C1C2|s − t |2,

which completes the proof. ¤

A.1.2 Estimator and asymptotic results of an individual

warping function

For the continuous model, we define an empirical estimator
of the individual warping function φ ◦ h−1

i0
(i0 ∈ {1, . . . ,m})

as follows. Conditional on Fi0 = fi0 , for all t ∈ [a, b], let

φ ◦ h−1
i0

(t) = 1

m − 1

m∑

i=1
i 6=i0

f −1
i ◦ Fi0(t). (22)

The following theorem states the consistency and asymp-
totic normality of this estimator.

Theorem A.2 Under assumption (2), we have that φ ◦ h−1
i0

converges almost surely to φ ◦ h−1
i0

:

∥∥φ ◦ h−1
i0

− φ ◦ h−1
i0

∥∥
∞

a.s.−→
m→∞

0.

Let n = m
1
2+α (with α > 0) and assume that (4) and (6)

hold. Then, we have that
√

m(φ ◦ h−1
i0

− φ ◦ h−1
i0

) converges

weakly to a zero-mean Gaussian process Z,

√
m(φ ◦ h−1

i0
− φ ◦ h−1

i0
)

D−→
m→∞

Z,

with covariance function defined for all (s, t) ∈ [a, b]2 by

Cov(Z(s),Z(t)) = r
(
h−1

i0
(s), h−1

i0
(t)

)
.

Proof Let i0 ∈ {1, . . . ,m}. Given Fi0 = fi0 ,

φ ◦ h−1
i0

= 1

m − 1

m∑

i=1
i 6=i0

f −1
i ◦ fi0 .

Noting also that φ ◦ h−1
i0

= f −1
ES ◦ fi0 , the consistency of

φ ◦ h−1
i0

follows by the same arguments as in the proof of
Theorem A.1.



We now turn to the weak convergence. From the multi-
variate CLT, for any k ∈ N∗ and fixed (t1, . . . , tk) ∈ [a, b]k ,

√
m







φ ◦ h−1
i0

(t1)

...

φ ◦ h−1
i0

(tk)


 −




φ ◦ h−1
i0

(t1)

...

φ ◦ h−1
i0

(tk)







D−→ Nk(0,Ŵ0),

where the covariance matrix Ŵ0 = (Ŵ0,ij )i,j is given
by Ŵ0,ij = cov(H(h−1

i0
(ti)),H(h−1

i0
(tj ))) = r(h−1

i0
(ti),

h−1
i0

(tj )), i, j = 1, . . . , k. It remains to show that

{√m(φ ◦ h−1
i0

− φ ◦ h−1
i0

)} is tight. Again, we verify the
moment condition stated by Vaart and Wellner (1996, Ex-
ample 2.2.12).

E
[∣∣√m(φ ◦ h−1

i0
(s) − φ ◦ h−1

i0
(s))

−
√

m(φ ◦ h−1
i0

(t) − φ ◦ h−1
i0

(t))
∣∣2]

= m

(m − 1)2
E

[∣∣∣∣∣

m∑

i=1
i 6=i0

(
f −1

i (fi0(s)) − Ef −1
i (fi0(s))

−
(
f −1

i (fi0(t)) − Ef −1
i (fi0(t))

))
∣∣∣∣∣

2]

= m

m − 1
E

[∣∣H(h−1
i0

(s)) − EH(h−1
i0

(s))

−
(
H(h−1

i0
(t)) − EH(h−1

i0
(t))

)∣∣2].

Now, from the assumptions (4) and (6), we get that

E
[∣∣√m(φ ◦ h−1

i0
(s) − φ ◦ h−1

i0
(s))

−
√

m(φ ◦ h−1
i0

(t) − φ ◦ h−1
i0

(t))
∣∣2]

≤ 2C1C3|s − t |2,

which completes the proof. ¤

A.2 Proofs of asymptotic results

We now use Theorem A.1 (given for the continuous model)
to prove Lemma 2.3.

Proof of Lemma 2.3 Let y ∈ [f (a), f (b)]. The n obser-
vation times are equidistant and for each i = 1, . . . ,m, fi

is almost surely increasing, hence f −1
i (y) − 1

n
≤ Ti(y) ≤

f −1
i (y) + 1

n
. This implies that almost surely,

f −1
ES (y) − 1

n
≤ f̂ −1

ES (y) ≤ f −1
ES (y) + 1

n
. (23)

Since
∥∥∥∥f −1

ES + 1

n
− f −1

ES

∥∥∥∥
∞

≤
∥∥f −1

ES − f −1
ES

∥∥
∞ + 1

n
,

we get that ‖f −1
ES + 1

n
− f −1

ES ‖∞
a.s.−→

m,n→∞
0, by Theorem A.1.

A similar argument holds for LHS (23) and finally, ‖f̂ −1
ES −

f −1
ES ‖∞

a.s.−→
m,n→∞

0.

Let n = m
1
2+α (α > 0). From (23), we get that almost

surely,

∥∥√
m(f̂ −1

ES − f −1
ES )

∥∥
∞ ≤ 1

mα
.

Since ‖√m(f̂ −1
ES − f −1

ES )‖∞ = ‖√m(f̂ −1
ES − f −1

ES ) −
√

m(f −1
ES − f −1

ES )‖∞, we get that ‖√m(f̂ −1
ES − f −1

ES ) −
√

m(f −1
ES −f −1

ES )‖∞ converges almost surely to 0 as m tends
to infinity. Combining Theorems A.1 and 4.1 in Billingsley

(1968), it follows that
√

m(f̂ −1
ES − f −1

ES )
D−→

m→∞
G.

We now turn to the proof of Lemma 2.4. ¤

Proof of Lemma 2.4 Consider first the continuous model
(20), and define

γ ◦ f −1 = 1

m

m∑

i=1

(
f −1

i

)2
.

Using similar arguments as in the proof of Theorem A.1, we

get that ‖γ ◦ f −1 − γ ◦ f −1‖∞
a.s.−→

m→∞
0.

Now, since |Ti(y) − f −1
i (y)| ≤ 1

n
, we obtain by straight-

forward calculations that almost surely,

−1

n
· 1

m

m∑

i=1

|f −1
i (y)|

≤ 1

m

m∑

i=1

Ti .f
−1
i (y) − γ ◦ f −1(y)

≤ 1

n
· 1

m

m∑

i=1

|f −1
i (y)|,

which implies that 1
m

∑m
i=1 Ti .f

−1
i (y) − γ ◦ f −1(y)

a.s.−→
m,n→∞

0, from which we deduce that 1
m

∑m
i=1 Ti .f

−1
i (y)

a.s.−→
m,n→∞

γ ◦ f −1(y).

From |Ti(y) − f −1
i (y)| ≤ 1

n
, we also get that

0 ≤ 1

m

m∑

i=1

T 2
i − 2

m

m∑

i=1

Ti .f
−1
i (y) + 1

m

m∑

i=1

(f −1
i (y))2

≤ 1

n2
,



that is, 0 ≤ ̂γ ◦ f −1(y)− 2
m

∑m
i=1Ti .f

−1
i (y)+γ ◦ f −1(y)≤

1
n2 , from which we deduce that ̂γ ◦ f −1(y)

a.s.−→
m,n→∞

γ ◦
f −1(y). Combining this with Lemma 2.3 completes the
proof. ¤

Proof of Theorem 2.2 For F an arbitrary function, let F−1

denote its generalized inverse, defined by F−1(t) = inf{y :
F(y) ≥ t}. By Lemma 2.3, for all y ∈ [f (a), f (b)],

f̂ −1
ES (y)

a.s.−→
m,n→∞

f −1
ES (y).

By Lemma 21.2 in van der Vaart (1998),

(f̂ −1
ES )−1(t)

a.s.−→
m,n→∞

(f −1
ES )−1(t)

at every t where (f −1
ES )−1 is continuous. Since f −1

ES is con-

tinuous and strictly increasing, (f −1
ES )−1 is a proper inverse

and is equal to f ◦ φ−1, hence for all t ∈ [a, b],

(f̂ −1
ES )−1(t)

a.s.−→
m,n→∞

f ◦ φ−1(t).

Now, for all t ∈ [a, b], (f̂ −1
ES )−1(t) can be rewritten as

(f̂ −1
ES )−1(t) = v01{a}(t) +

K(m,n)−1∑

k=0

vk+11(uk,uk+1](t),

and by construction, letting t ∈ (uk(m,n), uk(m,n)+1] (k(m,n)

∈ K), we have vk(m,n) ≤ f̂ES(t) ≤ vk(m,n)+1. Combining
this and the above equality yields that for all t ∈ (uk(m,n),

uk(m,n)+1], |f̂ES(t) − (f̂ −1
ES )−1(t)| ≤ vk(m,n)+1 − vk(m,n).

Since fES is continuous, vk(m,n)+1 − vk(m,n) −→
m,n→∞

0, and

|f̂ES(t)−(f̂ −1
ES )−1(t)| a.s.−→

m,n→∞
0. It follows that almost surely,

f̂ES(t) converges to fES(t). The uniform convergence finally
follows from Dini’s theorem. ¤

We now use Theorem A.2 (given for the continuous
model) to prove Theorem 2.6. A preliminary definition and
a lemma are needed.

Let define the modulus of continuity of H as

KH (δ) = sup
(s,t)∈[a,b]2

|s−t |≤δ

|H1 ◦ H−1
2 (s) − H1 ◦ H−1

2 (t)|

(δ ≥ 0),

where H1 and H2 are two independent copies of H .
Since for all δ ≥ 0, 0 ≤ KH (δ) ≤ b − a almost surely,
we can define L1

H (H2, δ) and L2
H (H2, δ) as L1

H (H2, δ) =
E[KH (δ)|H2] and L2

H (H2, δ) = E[K2
H (δ)|H2] (δ ≥ 0), and

we have L1
H (H2,0) = L2

H (H2,0) = 0. From the continu-
ity of H , it holds that L1

H (H2, ·) and L2
H (H2, ·) are right-

continuous at 0. Given H2 = h, this implies that for ǫ > 0,
there exists ηǫ > 0 such that L1

H (h, ηǫ) < ǫ. We shall use
this result in proving the following lemma:

Lemma A.3 Let t ∈ [a, b]. Under assumption (2), the fol-

lowing holds:

sup
t∈[a,b]

∣∣∣∣φ ◦ h−1
i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

∣∣∣∣
a.s.−→

m,n→∞
0.

Proof Letting t ∈ [a, b], one easily shows that
∣∣∣∣φ ◦ h−1

i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

∣∣∣∣

≤ 1

m − 1

m∑

i=1
i 6=i0

∣∣∣∣hi ◦ h−1
i0

(
t + 1

n

)
− hi ◦ h−1

i0
(t)

∣∣∣∣.

This in turn implies that

sup
t∈[a,b]

∣∣∣∣φ ◦ h−1
i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

∣∣∣∣

≤ 1

m − 1

m∑

i=1
i 6=i0

sup
(s,t)∈[a,b]2

|s−t |≤ 1
n

∣∣hi ◦ h−1
i0

(s) − hi ◦ h−1
i0

(t)
∣∣

= 1

m − 1

m∑

i=1
i 6=i0

K̃ i
H

(
1

n

)
,

where the K̃ i
H ( 1

n
) (i ∈ {1, . . . ,m}\i0) are independent ran-

dom variables distributed as KH ( 1
n
)|H2 = hi0 . Since KH (·)

is increasing, if n ∈ N is sufficiently large so that 1
n

< ηǫ , we
get that

sup
t∈[a,b]

∣∣∣∣φ ◦ h−1
i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

∣∣∣∣

≤ 1

m − 1

m∑

i=1
i 6=i0

K̃ i
H (ηǫ).

By the law of large numbers, we get that almost surely,

0 ≤ lim sup
m,n

sup
t∈[a,b]

∣∣∣∣φ ◦ h−1
i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

∣∣∣∣

≤ L1
H (hi0 , ηǫ) < ǫ.

This holds for any ǫ > 0, hence

sup
t∈[a,b]

∣∣∣∣φ ◦ h−1
i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

∣∣∣∣
a.s.−→

m,n→∞
0.

¤



Proof of Theorem 2.6 Let t ∈ [a, b]. For each i ∈ {1, . . . ,m},
fi is almost surely increasing, hence almost surely f −1

i ◦
fi0(tj0) − 1

n
≤ Ti ≤ f −1

i ◦ fi0(tj0) + 1
n
. Recall that tj0 =

argminj∈{1,...,n}
∣∣tj − t

∣∣, hence t − 1
n

≤ tj0 ≤ t + 1
n
. Thus,

combining the above two inequalities, we get that almost
surely f −1

i ◦ fi0(t − 1
n
) − 1

n
≤ Ti ≤ f −1

i ◦ fi0(t + 1
n
) + 1

n
,

from which we deduce:

φ ◦ h−1
i0

(
t − 1

n

)
− 1

n

≤ ̂
φ ◦ h−1

i0
(t) ≤ φ ◦ h−1

i0

(
t + 1

n

)
+ 1

n
. (24)

We shall focus on the upper bound in this inequality, since
the same kind of argument holds for the lower bound.
Straightforward calculation yields

sup
t∈[a,b]

∣∣∣∣φ ◦ h−1
i0

(
t + 1

n

)
+ 1

n
− φ ◦ h−1

i0
(t)

∣∣∣∣

≤ sup
t∈[a,b]

∣∣∣∣φ ◦ h−1
i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

∣∣∣∣ + 1

n

+
∥∥φ ◦ h−1

i0
− φ ◦ h−1

i0

∥∥
∞,

where the RHS of this inequality tends to 0 as m and n tend
to infinity, by Lemma A.3 and Theorem A.2 in Billingsley

(1968). It follows that ‖ ̂
φ ◦ h−1

i0
− φ ◦ h−1

i0
‖∞

a.s.−→
m,n→∞

0.

We now turn to the weak convergence. Assume that n =
m

1
2+α (α > 0). From (24), it holds

∥∥√
m

( ̂
φ ◦ h−1

i0
− φ ◦ h−1

i0

)∥∥
∞

≤ sup
t∈[a,b]

∣∣∣∣
√

m

(
φ ◦ h−1

i0

(
t + 1

n

)
− φ ◦ h−1

i0
(t)

)∣∣∣∣

+ sup
t∈[a,b]

∣∣∣∣
√

m

(
φ ◦ h−1

i0

(
t − 1

n

)
− φ ◦ h−1

i0
(t)

)∣∣∣∣ + 2

mα

≤ 2Zm + 2

mα
,

where Zm = √
m 1

m−1

∑m
i=1
i 6=i0

K̃ i
H ( 1

n
). Since

var(Zm) = m

m − 1

(
L2

H

(
hi0 ,

1

n

)

−
{
L1

H

(
hi0 ,

1

n

)}2)
−→
m→∞

0

(recall that n = m
1
2+α and that L1

H (hi0 , ·) and L2
H (hi0 , ·) are

right-continuous at 0), we get that

∥∥√
m

( ̂
φ ◦ h−1

i0
− φ ◦ h−1

i0

)∥∥
∞

P−→
m→∞

0,

hence by Theorem A.2 and Theorem 4.1 in Billingsley

(1968),
√

m(
̂

φ ◦ h−1
i0

− φ ◦ h−1
i0

)
D−→

m→∞
Z. ¤

Proof of Lemma 2.7 Consider first the continuous model
(20) and define, conditional on Fi0 = fi0 ,

γ ◦ h−1
i0

= 1

m − 1

m∑

i=1
i 6=i0

(
f −1

i ◦ fi0

)2
.

Using similar arguments as in the proof of Theorem A.2, we
get that

∥∥γ ◦ h−1
i0

− γ ◦ h−1
i0

∥∥
∞

a.s.−→
m→∞

0.

Now, from f −1
i ◦ fi0(t − 1

n
) − 1

n
≤ Ti ≤ f −1

i ◦ fi0(t +
1
n
) + 1

n
, we get the following inequality:

|Ti − f −1
i ◦ fi0(t)|

≤
∣∣∣∣f

−1
i ◦ fi0

(
t − 1

n

)
− f −1

i ◦ fi0(t)

∣∣∣∣

+
∣∣∣∣f

−1
i ◦ fi0

(
t + 1

n

)
− f −1

i ◦ fi0(t)

∣∣∣∣ + 2

n
.

Acting as in the proof of Lemma 2.4, it is fairly straight-
forward to show that for t ∈ [a, b], 1

m−1

∑m
i=1
i 6=i0

Ti .f
−1
i ◦

fi0(t)
a.s.−→

m,n→∞
γ ◦ h−1

i0
(t).

From the above inequality, we also obtain that

|Ti − f −1
i ◦ fi0(t)| ≤ 2K̃ i

H

(
1

n

)
+ 2

n
.

Summing over i ∈ {1, . . . ,m}\i0, and then using conver-

gence of 1
m−1

∑
i 6=i0

Ti .f
−1
i ◦ fi0(t), of γ ◦ h−1

i0
(t), together

with right-continuity of L1
H (hi0 , ·) and L2

H (hi0 , ·) at 0, yield
that ̂

γ ◦ h−1
i0

(t)
a.s.−→

m,n→∞
γ ◦h−1

i0
(t). This and the convergence

of ̂
φ ◦ h−1

i0
(t) complete the proof of Lemma 2.7. ¤

Proof of Proposition 3.1 For i ∈ {1, . . . ,m}, let us prove that
fi ∈ F . Using (13), consider the change points (sk)k=1,...,r

and set si
k = hi(sk). For k ∈ {0, . . . , r − 1}, consider

(t1, t2) ∈]si
k, s

i
k+1[, (t3, t4) ∈]si

k+1, s
i
k+2[/ t1 < t2 and

t3 < t4,

then,

(
fi(t1) − fi(t2)

)(
fi(t3) − fi(t4)

)

=
(
f ◦ h−1

i (t1) − f ◦ h−1
i (t2)

)

×
(
f ◦ h−1

i (t3) − f ◦ h−1
i (t4)

)
.



Since h−1
i is strictly increasing, we get sk < h−1

i (t1) <

h−1
i (t2) < sk+1 and sk+1 < h−1

i (t3) < h−1
i (t3) < sk+2.

Hence
(
fi(t1) − fi(t2)

)
(fi(t3) − fi(t4)) < 0,

which yields that fi ∈ F . Thus, define gi = G(fi). For all
t ∈]a, b[ \ {si

1, . . . , s
i
r }, we get

gi(t) = fi(t)5(t, fi) −
r∑

k=0

5(t, fi)fi(s
i
k)1]si

k,s
i
k+1[

(t)

+ fi(s0) +
r∑

k=1

∣∣fi(s
i
k−1) − fi(s

i
k)

∣∣1]si
k,b[(t).

But

fi(t) = f ◦ h−1
i (t),

5(t, fi) = 5(t, f ◦ h−1
i ) = 5(h−1

i (t), f ),

1]si
k,s

i
k+1[

(t) = 1]hi (sk),hi (sk+1)[(t) = 1]sk,sk+1[
(
h−1

i (t)
)
,

which implies that

gi = g ◦ h−1
i . ¤

Proof of Proposition 3.2 Set t ∈]a, b[ \{si
1, . . . , s

i
r }, and

l ∈ {0,1, . . . , r} such that t ∈]si
l , s

i
l+1[. Consider j (n),

j (n)
n

−→
n→+∞

t , then ∃n0 ∈ N/∀n ∈ N, n ≥ n0 ⇒ j (n)
n

∈]si
l , s

i
l+1[.

For all n ≥ n0, we have

Z̃ij (n) = Z̃ij (n)−1 + |Yij (n) − Yij (n)−1|

= Yi0 +
j (n)∑

k=1

|Yik − Yik−1|.

Moreover,

Zij (n) = g ◦ h−1
i (tj (n))

= fi(tj (n))5(tj (n), fi) + 5(tj (n), fi)fi(s
i
l )

+ fi(s0) +
l∑

k=1

∣∣fi

(
si
k−1

)
− fi

(
si
k

)∣∣,

which yields that

Zij (n) = 5
(
tj (n), fi

)(
Yij (n) − fi

(
si
l

))

+ Yi0 +
l∑

k=1

∣∣fi

(
si
k−1

)
− fi

(
si
k

)∣∣

=
∣∣Yij (n) − fi

(
si
l

)∣∣ + Yi0

+
l∑

k=1

∣∣fi

(
si
k−1

)
− fi

(
si
k

)∣∣

= A + Yi0 + B.

Write ∀k = 1, . . . , l + 1, si
k−1 ≤ tjk−pk

< · · · < tjk
≤ si

k, we
get that

∣∣fi

(
si
k−1

)
− fi

(
si
k

)∣∣

=
∣∣∣∣∣fi

(
si
k−1

)
− fi

(
tjk−pk

)

+
pk∑

q=1

(fi(tjk−q) − fi(tjk−q+1)) + fi(tjk
) − fi

(
si
k

)
∣∣∣∣∣

=
∣∣fi

(
si
k−1

)
− fi

(
tjk−pk

)∣∣

+
pk∑

q=1

|fi(tjk−q) − fi(tjk−q+1)| +
∣∣fi

(
tjk

)
− fi

(
si
k

)∣∣

=
∣∣fi

(
si
k−1

)
− Yijk−pk

∣∣

+
pk∑

q=1

|Yijk−q+1 − Yijk−q | +
∣∣Yijk

− fi

(
si
k

)∣∣.

Hence

B =
l∑

k=1

∣∣fi

(
si
k−1

)
− fi

(
si
k

)∣∣

=
l∑

k=1

∣∣fi

(
si
k−1

)
− Yijk−pk

∣∣ +
l∑

k=1

∣∣Yijk
− fi

(
si
k

)∣∣

+
l∑

k=1

pk∑

q=1

|Yijk−q+1 − Yijk−q |

=
l∑

k=1

∣∣fi

(
si
k−1

)
− Yijk−pk

∣∣ +
l∑

k=1

∣∣Yijk
− fi

(
si
k

)∣∣

+
jl∑

k=1

|Yik − Yik−1|

−
l−1∑

k=1

|Yijk+1−pk+1 − Yijk+1−pk+1−1| − |Yi1 − Yi0|.

With the same ideas, we can write

A =
∣∣Yij (n) − fi

(
si
l

)∣∣

=
pl+1+1∑

q=jl+1−j (n)+1

|Yijl+1−q+1 − Yijl+1−q |

+
∣∣Yijl+1−pl+1 − fi

(
si
l

)∣∣

− |Yijl+1−pl+1 − Yijl+1−pl+1−1|.



As a result,

Zij (n) − Z̃ij (n)

=
l+1∑

k=1

∣∣fi

(
si
k−1

)
− Yijk−pk

∣∣ +
l∑

k=1

∣∣Yijk
− fi

(
si
k

)∣∣

−
l∑

k=1

|Yijk+1−pk+1 − Yijk+1−pk+1−1| − |Yi1 − Yi0|.

By continuity of f , fi is also continuous, hence

Zij (n) − Z̃ij (n)
a.s.−→

n→+∞
0.

For t ∈ {si
0, . . . , s

i
r+1}, we get similar results, leading to the

conclusion. ¤
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