
HAL Id: hal-01186466
https://hal.science/hal-01186466v1

Submitted on 27 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of Developer Turnover on Quality in
Open-Source Software

Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C. Murphy, Jean-Rémy
Falleri

To cite this version:
Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C. Murphy, Jean-Rémy Falleri. Impact of
Developer Turnover on Quality in Open-Source Software. Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, Sep 2015, Bergamo, Italy. �10.1145/2786805.2786870�. �hal-01186466�

https://hal.science/hal-01186466v1
https://hal.archives-ouvertes.fr


Impact of Developer Turnover on Quality
in Open-Source Software

Matthieu Foucault
U. of Bordeaux, LaBRI, France

mfoucaul@labri.fr

Marc Palyart
UBC, Canada

mpalyart@cs.ubc.ca

Xavier Blanc
U. of Bordeaux, LaBRI, France

xblanc@labri.fr
Gail C. Murphy

UBC, Canada
murphy@cs.ubc.ca

Jean-Rémy Falleri
U. of Bordeaux, LaBRI, France

falleri@labri.fr

ABSTRACT
Turnover is the phenomenon of continuous influx and retreat
of human resources in a team. Despite being well-studied in
many settings, turnover has not been characterized for open-
source software projects. We study the source code repos-
itories of five open-source projects to characterize patterns
of turnover and to determine the effects of turnover on soft-
ware quality. We define the base concepts of both external
and internal turnover, which are the mobility of develop-
ers in and out of a project, and the mobility of developers
inside a project, respectively. We provide a qualitative anal-
ysis of turnover patterns. We also found, in a quantitative
analysis, that the activity of external newcomers negatively
impact software quality.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 [Software
Engineering]: Metrics—process metrics

Keywords
Mining software repositories, qualitative analysis, software
metrics

1. INTRODUCTION
Throughout the evolution of a project, the team con-

tributing to it evolves, with collaborators joining, leaving,
or changing their role in the project. This phenomenon of
continuous influx and retreat of human resources is called
turnover. Turnover has been studied in managerial science
and human-computer interaction research, with several the-
ories regarding its impact. The most common theory holds
that turnover has a negative impact on performance and on
the quality of the work, due to a loss of experience [22].
Other theories suggest that turnover has (1) a positive im-
pact since the most dissatisfied members leave the team, and

that only the most motivated ones stay in it [27], (2) helps
renew experience and knowledge on the team [40], and (3)
increases social interactions [10].

In the software development context, developer turnover
has been analyzed by Mockus [30] on one industrial project.
He found that developers leaving the project had a negative
impact on quality but that new members had no effect on
it. Our work extends these findings made on an industrial
software project by looking at five large open-source soft-
ware projects. These projects are interesting to study given
their extensive use and low barriers to entry and exit for
collaborators [15].

To study turnover in open-source, we introduce activity
metrics that measure external and internal turnover. By
splitting a software project into different modules, we are
able to measure not only the arrivals and departures of de-
velopers from the project (i.e. external turnover), but also
the movement of developers within the project (i.e. internal
turnover).

Based on the concepts we define in this paper, we quantify
the level of turnover, both external and internal, in open-
source software projects. We quantify turnover by measur-
ing the amount of changes performed in the source code by
newcomers or leavers, instead of measuring the actual num-
ber of developers joining or leaving, as there is a great dis-
parity between developers in open-source projects. We then
perform an empirical study on 5 large open-source projects
(Angular.JS, Ansible, Jenkins, JQuery and Rails) to pro-
vide insights on the relationship among developer turnover
and software quality, where quality was measured based on
the density of bug-fixing commits. The extraction process
for bug-fixing commits is performed manually, to reduce the
risk of errors produced by automatic approaches [5, 7, 21],
thus limiting the number of projects that can be considered
in this paper.

We provide the following contributions, for the five open-
source projects mentioned above:
• We provide a curated set of bugs.
• We provide metrics to measure turnover.
• We show the importance of the turnover phenomenon

in open-source projects.
• We observe several trends of internal and external turn-

over.
• We show that there is a relationship between turnover

and quality of software modules.
This paper is structured as follows: Section 2 presents the

theory and related work. Turnover metrics are defined in

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...

http://dx.doi.org/10.1145/2786805.2786870

829



Section 3. Our research questions are detailed in Section 4
and the methodology we used to build our dataset in Sec-
tion 5. Our results are then presented in Section 6. Section 7
presents an overview of the main threats to the validity of
these results, and finally, Section 8 concludes and presents
trails for future work. We produced a replication package
which allows to reproduce and extend the results presented
in this study. This package, which has been successfully
evaluated by the Replication Packages Evaluation Commit-
tee and found to meet expectations, is presented Section 10.

2. THEORY & RELATED WORK
As the literature contains different and sometimes contra-

dictory opinions on turnover, we first describe all its possible
interpretations. We then present existing work on turnover
in collaborative communities and finally research specific to
software development.

2.1 Turnover Perception
Member turnover, initially defined as the rate at which in-

dividuals leave a project, can be extended to all the changes
made to the development team of a project. These modifi-
cations of the team can be either external, (i.e., a member
leaves or joins the team) or internal (i.e., a member changes
her role in the team). Distinct theories regarding the impact
of turnover, whether it is external or internal, suggest that
it has both positive and negative aspects on a team.

2.1.1 External Turnover
The most common vision holds that external turnover neg-

atively impacts employee performance [22, 43]. Departures
lead to a loss of experience and knowledge, but also disrupt
the social network and environment of those who remain [4,
11]. Moreover, it induces devoting resources and time to
recruit and train new employees.

A second vision considers turnover as a good opportunity
for organizations, as leavers are those most dissatisfied with
the current organization, and those who remain enjoy better
conditions and performance [27].

A last perspective sees moderate levels of turnover as
the best organizational performance [3]. When there is no
turnover, experience and knowledge are not renewed, and
become obsolete and parochial [40]. Introduction of new
people is a solution to overcome this situation, as their vi-
sion is less established and less redundant with respect to
the knowledge possessed by the current team.

2.1.2 Internal Turnover
Internal turnover was defined in traditional organizations

as the number of employees who changed function within
an organization [20]. Motivations behind such actions are
opportunities for career moves to increase income and au-
tonomy as well as getting new responsibilities and express-
ing new skills [41]. Kanter et al. pointed out that members
had lower aspirations and involvements in their work when
mobility was blocked [26]. Thus, internal mobility is com-
monly supported to maintain members commitment to the
organization.

2.2 Turnover in Collaborative Platforms
Turnover has been studied in online communities and col-

laborative platforms where participants are free to enter
or leave at any moment without any cost. In the English

Wikipedia, high turnover is even the norm with sixty per-
cent of editors contributing only for a single day [32]. Rans-
botham et al. suggested that collaboration success can be
reached thanks to moderate levels of turnover [36], provided
that the level of novel knowledge exceeds the loss of existing
knowledge held by departing people. Similarly, Dabbish et
al. discovered that membership turnover might bring fresh
levels of activity and liveliness in a community which leads
to increased participation [10]. Inversely, Qin et al. observed
that departures of WikiProjects contributors has a negative
effect on the community and causes social capital losses [35].

2.3 Turnover in Software Development
Developer turnover in open-source software projects was

studied mainly to understand developers motivations to con-
tribute. Yu et al. suggested that personal expectation plays
a role in project retention, and that turnover is partially ex-
plained by dissatisfaction [45]. Hynninen et al. conducted
a survey with developers and suggested that their depar-
tures from a project can be a manifestation of low orga-
nizational commitment [23]. A study from Schilling et al.
unveiled that the level of development experience and knowl-
edge is strongly associated with retention [38]. According
to Sharma et al., past activity, age and size of a project
as well as developer tenures are important predictors of
turnover [39]. These observations are consistent with other
classical theoretical models related to job satisfaction [44].

Measures of knowledge loss were suggested by Izquierdo-
Cortazar et al [24]. These measures include the evolution of
orphan lines of code lastly edited by a developer who left the
team. They showed that while in some projects, developers
devote efforts to maintain code introduced by former devel-
opers, in others, they seek to eliminate such code. Robles
et al. designed a methodology to compute generations of
joining and leaving developers [37]. Finally, Fronza et al.
propose a wordle to visualize the level of cooperation of a
team and mitigate the knowledge loss due to turnover [17].

Hall et al. conducted a survey with practitioners to unveil
that turnover may be related to project success, but however
did not define turnover metrics computable by analyzing
the history of the project [19]. Mockus found that while
departures of members impact the software quality because
of the loss of knowledge and experience, newcomers are not
responsible for an increase of defects, possibly because they
are not assigned to important changes [30]. Mockus also
found a relationship between turnover and productivity in
commercial projects [29].

Mens et al. explored developer turnover in the Gnome
ecosystem with concepts and metrics similar as the ones we
use in this paper [28]. They looked at developer turnover
at a coarser grain: in their study, internal turnover refers to
the mobility of developers between projects of the Gnome
ecosystem, while external turnover in their case was associ-
ated to developers entering or leaving the Gnome ecosystem.
Our study differs from theirs as it we look at a finer gran-
ularity: we measure mobility of developer between modules
of a project, and in and out of a project. In their study they
sought for possible patterns of developer turnover, with the
conclusion that this is a highly project-specific phenomenon.
They did not, seek for a relationship between turnover and
code quality.

830



Alice Bob Jane Alan

m1 m1

m2 m2

P2P1 S0S-2 S-1

Figure 1: Example of fictive software project con-
taining two modules.

3. TURNOVER METRICS
A software project can have many kinds of turnover. To be

able to study different aspects of turnover, we introduce five
metrics that can be computed from the source code history
of a software project.

3.1 Setup and Requirements
In order to compute turnover metrics, we need to define

the periods over which turnover will be computed, as well
as how contributors are identified.

3.1.1 Period Selection
We compute developer turnover by comparing the contrib-

utors of software modules in two consecutive time periods:
P1 and P2. These two periods are therefore delimited by
three snapshots of the project history: S0, S−1 and S−2

such that P1 is delimited by S−2 and S−1 and that P2 is
delimited by S−1 and S0 (see Figure 1).

In practice, S0 is the snapshot for which we want to com-
pute turnover metrics. The selection of the two other snap-
shots can be based on different approaches. One could con-
sider either the prior releases of the software, snapshots such
that periods P1 and P2 have the same duration, or snapshots
such that periods P1 and P2 have the same overall activity
in the repository. We study in Section 5 the impact of these
choices on turnover computation.

3.1.2 Software Modules and Contributors
Developer turnover is relative to the software project’s

structure. A developer who has only worked on a few mod-
ules in the system that suddenly contributes to more, should
be considered as new, or inexperienced, as she moves to new
parts of the code base.

We therefore consider that a software project is composed
of a finite set M of software modules developed by a finite
set of developers who submit their code modifications by
sending commits to a shared code repository. Each module is
defined by a finite set of source code files. When a developer
modifies one of the files of a software module by committing
her work, she is contributing to that module. A developer
contributes to the software project as soon as she contributes
once to any module of the software.

To illustrate all our definitions, we rely on the fictitious
software depicted in Figure 1, which is composed of two
modules developed over two periods P1 and P2. A total
of four developers participated to this software between the
S−2 and S0 snapshots.

Given a module m, Dm,P is the set of developers who
made at least one contribution to m during the period P .

We obtain with our example Dm2,P1 = {Bob, Jane} and
Dm2,P2 = {Bob, Alan}.

Dt is the set of developers who made at least one contribu-

tion to the software during the period t, i.e. DP =
M⋃
m

Dm,P .

From our example, we have DP1 = {Alice, Bob, Jane} and
DP2 = {Bob, Jane, Alan}.

3.2 Turnover Actors and Metrics
We now provide formal definitions for the sets of develop-

ers involved in turnover, and the metrics associated to them.
We consider two kinds of developer turnover: external and
internal turnover. The developers involved in each kind of
turnover are considered to be either newcomers or leavers.
Finally, we define stayers, i.e. the developers contributing
to both studied periods.

We consider as newcomers the developers who joined the
team of a module in the period P2, whereas leavers are the
developers who left the team of a module within the period
P1. This difference between the periods is due to the fact
that the intent of our metrics is to evaluate the impact of
turnover on the quality of the software at the S0 snapshot.
Thus, newcomers of the P2 period may influence its quality
as their first contributions on a module were between S−1

and S0, and leavers of the P1 period may influence its qual-
ity as the loss of knowledge their departure induce will be
perceptible after they left, i.e., after the S−1 snapshot.

3.2.1 External Turnover
External turnover refers to the movement of developer in

and out of a project.
External newcomers of a module m are the developers

who contributed to the module between S−1 and S0, but
did not contribute to any module of the project between
S−2 and S−1 (i.e., during the P1 period). The set of external
newcomers is noted ENm,P1,P2 and is computed as follows:

ENm,P1,P2 = Dm,P2 −DP1

In Figure 1, we observe that Alan is a newcomer in m2,
and that he did not work on any module during P1. He
is therefore an external newcomer, and thus ENm2,P1,P2 =
{Alan}.

External leavers of a module m refer to developers who
worked on the module during P1 but did not contribute to
the project at all in P2. The set of external leavers is noted
ELm,P1,P2 and is computed as follows:

ELm,P1,P2 = Dm,P1 −DP2

We observe that only Alice contributed to m1 during P1

but was inactive on the project in P2. Consequently,
ELm1,P1,P2 = {Alice}.

3.2.2 Internal Turnover
Internal turnover refers to movements of developers inside

a project. Even though some developers contribute to a
project in both periods P1 and P2, they may not work on
the same modules in the two periods.

Internal newcomers are the developers who contributed
to m in P2, but not in P1. However, they contributed to
at least one other module than m in this period. They are
noted INm,P1,P2 and are computed as follows:

INm,P1,P2 = (Dm,P2 −Dm,P1) ∩DP1

831



Following the previous illustrations, we obtain here
INm1,P1,P2 = {Jane} and INm2,P1,P2 = ∅.

Internal leavers refer to developers who ceased to con-
tribute to a module m but are still active in the project.
This set is noted ILm,P1,P2 and is computed as follows:

ILm,P1,P2 = (Dm,P1 −Dm,P2) ∩DP2

We observe that only Jane modified m1 during P2 but
not in P1, while working on m2 during P1. Consequently,
ILm2,P1,P2 = {Jane}.

3.2.3 Stayers
Finally, stayers are the developers who contributed to a

module m in both P1 and P2. We define the set of stayers
for a given module as:

Stm,P1,P2 = Dm,P1 ∩Dm,P2

3.2.4 Metric Definitions
The intention of our metrics is to quantify the impact

that the different turnover actors may have on a module’s
quality at the snapshot S0 of the project. Due to the large
inequalities in the involvement of developers in open-source
projects, we cannot quantify turnover by counting the num-
ber (or ratio) of developer in each of the categories defined
above. Filtering the developers by considering only core or
paid contributors is not a viable alternative either. Indeed,
peripheral developers as a group still produce a significant
amount of contributions, and ignoring these contributions
may significantly impact our measurements. Therefore, to
measure the impact that each category of turnover actors
have on the source code, we use the activity of developers,
i.e., the amount of source code they produce.

For a given module m, developer d and period t, we define
Am,d,t as the activity of the developer, which we measure us-
ing the code churn, i.e. the number of lines of code added or
deleted by can be measured with the number of file modifi-
cations she performed on the module, or the code churn (i.e.,
the total number of lines added or deleted) of such modifica-
tions. In this paper we only present results obtained using
the code churn as an activity measure. However, results ob-
tained with the number of modifications are similar, and are
available online (see Section 9).

The five metrics we define are the internal and external
leavers activity (ILA and ELA, resp.), the internal and exter-
nal newcomers ratio (INA and ENA, resp.), and the stayers
activity (SA):

ILAm,P1,P2 =
∑

d∈ILm,P1,P2

Am,d,P1

ELAm,P1,P2 =
∑

d∈ELm,P1,P2

Am,d,P1

INAm,P1,P2 =
∑

d∈INm,P1,P2

Am,d,P2

ENAm,P1,P2 =
∑

d∈ENm,P1,P2

Am,d,P2 ,

StAm,P1,P2 =
∑

d∈Stm,P1,P2

avg(Am,d,P1 , Am,d,P2)

4. RESEARCH QUESTIONS
To the best of our knowledge we found no previous study

that looked at trends of developer turnover in open-source

software projects. Hence the first objective of our study is to
seek for such trends, starting with a global view of turnover
at the project level, and then focusing on developer turnover
on module thanks to the metrics previously defined.

More formally, we seek to answer the following two re-
search questions:

RQ1 Using the concepts of external newcomers and leavers
at the project level, is turnover an important phe-
nomenon (in terms of number of developers involved)
in open-source software projects?

RQ2 Looking deeply into the project at the module level,
is there any patterns regarding the contributions of
persistent, internal and external developers?

By answering the aforementioned research questions, we
provide an overview of developer turnover both at the project
and at the module levels. We then go further by exploring
the relationship between developer turnover at the module
level and software quality, which we measure based on bug-
fix information.

We then answer the following research question:

RQ3 Using the turnover metrics at the module level, is
there any relationship with the quality of the software
modules?

5. DATASET CONSTRUCTION
Although many automatic techniques are often used to

build large datasets, they are all imprecise to a certain ex-
tent. Instead of having a dataset with dozens of project
containing approximate measures, we chose to focus on the
reliability of the information extracted from the dataset. In
particular, to answer our research questions, our dataset
must meet several requirements:
• The author of each contribution must be clearly iden-

tified.
• The source code of the project must be organized into

modules.
• A measure of quality must be available for each mod-

ule.
Each of these criteria is addressed in current research, and

software engineering researchers are still developing tech-
niques to extract reliable information from software reposi-
tories, as we detail below.

5.1 Authors Identification

Centralized VCS.
The first issue regarding the identification of authors is

related to the version control system (VCS) used by the
project. In centralized VCSs such as Subversion, a developer
must enter her credentials to commit her code to the central
repository. Given the large number of contributors to open-
source projects, assigning credentials to each of them would
be unwieldy, and contributions are therefore submitted via
patches, and applied by core developers who have credentials
for the repository.

This issue is fixed by the use of decentralized VCSs such
as Git, which are able to distinguish the original author
of a commit and the developer who added it to the main
repository (i.e., the committer) [6]. However, automatically
selecting a large number of Git repositories (from hosting

832



platforms such as GitHub) would not be a suitable process
in our case as a non negligible amount of large Git repos-
itories are simply mirrors of Subversion repositories. Well
known examples of such repositories include the gcc com-
piler project, or most of the projects hosted by the Apache
Software Foundation (eg. the httpd server). Moreover, even
if a project currently uses Git as a VCS, it may not have been
so for all its development history. It is not uncommon for
a project, especially older projects, to migrate its code base
from one VCS to another throughout its history. This is the
case of two projects selected in our dataset, Rails and Jenk-
ins, which originally used Subversion and then migrated to
Git. We manually searched commit messages for contents
such as “Patch sent by Alice” to determine if at one point
these projects were still using Subversion or if they did mi-
grate to Git, and only include the history subsequent to this
migration in our analyses.

Identity Merging.
Even when the identity of each contribution’s author is

reliable, it is possible that a single developer has several
identities in the VCS, because of typos, changes in the con-
figuration of the Git client, or a change of email address
for instance. This issue is addressed by identity merging,
for which Goeminne and Mens address a comprehensive re-
view [18]. Following their recommendations, we use a semi-
automatic process which is based on their simple algorithm
which has a very high recall. To counter the low precision of
the algorithm, we manually review the results of the identity
merge algorithm and remove false positive merges.

5.2 Quality Measurement
Our study aims to evaluate the quality of project’ modules

for a given snapshot. In most software engineering studies
the quality of software projects is assessed by looking at the
number of bugs fixed by the developers.

Bug Fix Identification.
In order to measure the amount of these bugs, the state-

of-the-art technique used in studies mining software reposi-
tories consists in parsing the commit messages, looking for
the identifier of a bug stored in the project’s bugtracker
(e.g., ”Bug #42”) [46]. However, recent work raised concerns
regarding the precision and recall of this automatic process,
due to the misclassification of issues in the bugtrackers, or
imprecision of algorithms linking bugs to source code [21, 5,
7].

Some approaches remove these concerns by only consid-
ering information stored in the VCS, and assume that the
number of bug-fixing commits is a fair representation of the
actual number of bugs within a software module. Unfortu-
nately, to the best of our knowledge, no automatic approach
has a satisfactory precision to produce reliable statistics. For
instance, among the best automatic approaches, the ones
developed by Tian et al. [42] and Mockus et al. [31] have a
precision of only 53% and 61%, respectively, in the evaluated
benchmarks, which in our case would have unpredictable ef-
fect on the number of bug-fixing commits identified, and
would be a non-negligible bias to our study.

As we did not find a suitable automatic approach we chose
to manually analyze commits to constitute our dataset to
the detriment of the number of projects that we were able

to include in it. Our manual approach therefore aims to
identify commits that are true bugfixes.

Maintenance Branches.
To have measures which are representative of the quality

of the code at a given snapshot or release, we need to iso-
late post-release bugfixes from development bugfixes. Post-
release bugfixes for a snapshot S0 are commits that fix a bug
which was in the project’s code at the snapshot S0, while
development bugfixes performed after the snapshot S0 may
have been introduced between the snapshot S0 and the time
of the bugfix. If the development history of a project is linear
(i.e. if all the commits are performed on a single branch),
isolating one category of commits from the other may be
cumbersome and imprecise. Therefore, another constraint is
added to the projects to include in our dataset: the release
S0 must have a dedicated maintenance branch, sometimes
called long time support (or LTS) branch, where the only
commits performed in it aim to improve the code quality
of the release S0. These maintenance branches differ from
development branches. They usually do not contain new
features. The operations performed in such branches are
mainly bug-fixing, documentation, optimizations, or com-
patibility updates related to third party dependencies (e.g.,
the 2.3.x maintenance branch of Rails contains updates re-
lated to new versions of the Ruby programming language).
Moreover, we restrict our search to maintenance branches
where no commit was performed for the past six months,
in order to have branches where most of the bugs were had
time to get fixed.

Bug Fix Classification.
Our definition of a bug-fixing commit includes any se-

mantic changes to the source code which fixes an unwanted
behavior. The type of bugs considered includes any arith-
metic or logic bug (e.g., division by zero, infinite loops, etc.),
resource bugs (e.g., null pointer exceptions, buffer overflows,
etc.), multi-threading issues such as deadlocks or race con-
ditions, interfacing bugs (e.g., wrong usage of a particular
API, incorrect protocol implementation or assumptions of a
particular platform, etc), security vulnerabilities, as well as
misunderstood requirements and design flaws.

We identified bug-fixing commits manually, discarding com-
mits where new features are implemented. We choose to
ignore commits where performance optimizations are per-
formed, as we consider performance issues as a different as-
pect of code quality. Moreover, we also ignore commits that
resolve compatibility issues due to the evolution of a third-
party dependency, as these bugfixes are not due to the lack
of quality of the changed code, but to the modification of
an external requirement. Finally, it occurs that bug-fixing
commits are lated discarded by the developers due to a re-
gression introduced by the bugfix. In such cases, the devel-
opers perform a “revert” operation of such commits, and we
ignore both the “revert” and the “reverted” commits.

We consider that bug-fixing commits are atomic, in the
way that we do not consider the possibility that a bug-fixing
commit may in fact include two bug-fixes. Moreover, if a
bug-fixing commits affects two modules, the number of bug-
fixing commits will be incremented in both modules.

833



5.3 Code Modularization
In this study, we use metrics that target software modules.

Breaking a software system into modules is known to be a
hard task that requires some subjective choices [33]. We
consider two heuristics for determining software modules,
such as its organization within files and directories or the
co-change activity. We present here the different sets of
modules based on these heuristics.

5.3.1 Using the Directory Structure
The first modularization approach we consider is based

on the directory structure of the system, in which software
modules are defined to be either a file or a directory, with
the possibility to include or not its subdirectories. We chose
not to simply extract a modularization based on the direc-
tory structure, instead we manually inspected the directory
structure of each project to select a suitable level of granu-
larity so that a module includes similar features, based on
file and directories names, and on the information found in
projects configuration files. To overcome the bias of having
a single judge for the module decomposition, we asked three
members of our research group (three PhD students in soft-
ware engineering) to provide, for each of the five projects
in the corpus, a list of software modules. The three judges
then met to merge their results. They agreed on the gran-
ularity of most of the modules of projects such as JQuery,
Angular.JS and Ansible, while agreement on Jenkins and
Rails was initially reached by only two judges, the third
one having chosen a coarser granularity. As the decisions
made by the judges may be different than the developers
of the projects, we tried to contact their core developers to
confirm our decompositions, using the official mailing lists
and/or IRC channels of each project. Unfortunately, we did
not obtained any answers.

5.3.2 Using the Co-change Activity
The second modularization technique we use considers

that source code files that are changed together (i.e. in the
same commit) belong to the same module, regardless of the
directory structure of the project. We use an automated
process that consists in building the co-change graph of the
project, which is a weighted, undirected graph where each
vertex is a source code file of the project, and the weight
of an edge is equal to the number on commits where both
files were modified together. To determine the modules, we
used two algorithms aiming at building communities in a
graph [9, 34]. Both algorithms produced a relatively low
number of modules (less than ten) in the projects developed
in Javascript (Angular.JS and JQuery), which is due to the
fact that Javascript projects tend to have fewer, larger files
compared to projects in languages such as Java. Therefore,
these decomposition allow to produce statistical results on
only three projects. As the results obtained with this mod-
ularization algorithms are similar to the ones obtained with
the manual decomposition based on directories structure,
they are not presented in this paper. However, they are
available in our additional results online (see Section 9).

5.4 Periods Selection
The computation of turnover metrics for a snapshot S0

relies on the choice of two periods P1 and P2 (Figure 1).
To choose a suitable size for the periods P1 and P2, we

measured the impact of these periods on the sets of turnover

actors (i.e. internal and external leavers and newcomers).
The length of the periods P1 and P2 may impact the result-
ing sets of actors, especially if the periods are too short, in
which case we may consider as newcomers or leavers devel-
opers who stopped contributing to the project for a period of
time before re-starting. To assess the impact of this choice
we have tested four configurations for the lengths of the pe-
riods: one release-based configuration where S0, S−1 and
S−2 are three following releases of the project, and three
time-based configurations where P1 and P2 both last for 1,
3 and 6 months.

Using |P1| = |P2| may limit our vision in the past. This
may for example result in considering some developers as
newcomers because they were inactive for sometime, but the
length of P1 is not sufficient to see their previous contribu-
tions. On the other hand, if we looked at the whole history
of the project to check whether developers are newcomers or
leavers, we may consider as stayers developers who did not
contribute to the project for several years. To quantify the
impact of the length of P1 and P2, we compute two versions
of each turnover set:
• A version with limited visibility, where |P1| = |P2|.
• A version with full visibility, where:

– S−2 = is the beginning of the Git repository when
computing the sets of newcomers.

– S0 is the most recent release available in the project
when computing the sets of leavers.

To decide which period size is suitable for our analyses,
we chose to measure the similarity between sets of turnover
actors computed with limited and full visibility, using the
Sorensen-Dice quotient of similarity, which is equal to 1
when two sets are identical, and 0 when they are disjoint [12].
The selected period size is the first period size where the me-
dian Dice coefficient is, for all projects and actors sets, above
a threshold of 0.75.

The distributions of Dice coefficients obtained for each
project are available online (See Section 9). For each period
size |P |, project and category of turnover actors (e.g., exter-
nal newcomers), we have a distribution of Dice coefficient,
as we computed one Dice coefficient for each module. These
distribution show that, with a period of one month, several
sets of developers have large differences between limited and
full visibility, the worst case being with Angular.JS where
sets of external newcomers computed with limited visibility
have no intersection with sets computed with full visibility.
With |P | = 3 months, the distributions are closer to a dice
coefficient of 1, but there are still cases where the median
Dice coefficient is below the threshold of 0.75, especially with
internal turnover. With |P | = 6 months, most of the sets
of turnover actors are identical whether we use limited or
full visibility. Only few modules have a dice coefficient of
zero, and the median Dice coefficient for all projects and
categories of turnover actors is above the threshold of 0.75
The release period configuration is not stable as the length
of time between two releases depends on the roadmap of the
project and on the features that are developed.

Therefore, we chose to use the 6 months period for the
remainder of our analysis: all the results presented in this
paper consider that |P1| = |P2| = 6 months.

5.5 Resulting Dataset
Our dataset, listed in Table 1 includes five projects, writ-

ten in four different programming languages. The selected

834



Table 1: The projects included in our dataset.

Project Language Release #Bugfixes LoC #Modules
(S0)

Angular.JS JavaScript 1.0.0 147 11,041 26
Ansible Python 1.5.0 62 50,553 29
Jenkins Java 1.509 74 79,774 60
JQuery Javascript 1.8.0 46 5,306 23
Rails Ruby 2.3.2 390 33,919 46

releases are minor releases (i.e., no breaking changes have
been performed in the selected development period) in An-
sible, JQuery, and Rails. They are major release in An-
gular.JS and Jenkins. The selected releases are, with the
exception of the one in Ansible, considered to be long term
supported (LTS) releases. For these LTS releases, bug-fixing
commits are backported from the main development branch
even after subsequent releases are available. In Ansible, al-
though the maintenance of the 1.5.x releases stopped a cou-
ple of week before the availability of the 1.6.0 release, it was
performed simultaneously with the development of the 1.6.0
release. This dataset is available online (see Section 9) and
can be reused for future studies.

6. RESULTS

6.1 Turnover at the Project Level (RQ1)
In order to characterize developer turnover at the project

level we look at the number of external newcomers, external
leavers and stayers during the life of each project.

Developers Volatility.
Since we defined |P1| = |P2| = 6 months we compute the

different sets of actors by starting with S0= 12 months after
the earliest version of the project when we know that Git
was used as a VCS, and move S0 toward the end of the
project by steps of two weeks. The resulting numbers are
presented in Figure 2.

We can observe two types of phases during the life of a
project. The first phase that we call the “enthusiastic” phase
can only be seen in Angular.JS and Ansible since we are
missing the beginning of the other projects as we excluded
from the study the period when they were using SVN. Dur-
ing the “enthusiastic” phase (2011-2014 for Angular.JS and
2013-06/2014 for Ansible) the number of newcomers is con-
stantly superior to the number of leavers. At some point
projects switch to the second phase that we call the “al-
ternating” phase where either the number of newcomers or
leavers is higher than the other one.

In all projects, the number of newcomers and leavers is
quite high. Throughout the histories of these projects, at
least 80% of developers are either newcomers or leavers.
Overall this confirms that turnover in open-source software
projects is an important phenomenon.

Stayers Conversion and Motivations.
The number of stayers increase mainly during the “enthu-

siastic” phase and stay fairly stable during the “alternating”
phase. To further understand the evolution of the popula-
tion of stayers we use the notion of conversion rate that is
usually found in marketing. In our case the conversion rate

represents the proportion of newcomers that the project was
able to keep long enough so they could become stayers. It
is equal to the number of developers who were at least once
stayer divided by the number of developers in the whole
history of the project we look at. The conversion rates for
each project are between 8% (Ansible) and 19% (Jenkins
and JQuery). Even if it is not in the same proportion for
each project we observed that only a low ratio of newcomers
become stayers.

To better understand what make developers stay in their
project we looked at the top 10 stayers of each projects:
developers who were in the stayers set the highest number
of times over the project history. We searched their Github
and LinkedIn profiles as well as their personal web pages to
understand their motivation. We found four categories:
• Developers who are paid by the company that devel-

ops the project. For example 7 out of the top 10 stay-
ers of Angular.JS work at Google which maintains the
framework.
• Developers who are paid by a company that use the

project for their business. It is the case 6 times in the
top 10 stayers of Ansible.
• Developers who are consultants on the technology de-

veloped within the project. For example 5 out of the
top 10 stayers of Rails are consultants.
• Developers who contribute on their spare time without

direct or indirect financial interest. Out of the 50 top
stayers we looked at only 2 fit that category.

In conjunction to these categories developers were some-
times also the initial creators of the project (6 developers
out of 50).

6.2 Patterns of Contributions (RQ2)
The visualizations in Figure 3 represents the turnover met-

rics1 computed with |P1| = |P2| = 6 months and where the
S0 snapshots are the releases mentioned in Table 1 (these
releases are also indicated in Figure 2 via vertical lines). We
use these visualizations to observe the different patterns of
contributions.

In Angular.JS, most of the activity is due to stayer or ex-
ternal leavers. The high amount of external leavers activity
is in fact due to the contributions of a single developer, a
major contributor who was inactive in the six months prior
to the release of Angular.JS 1.0.0.

In Ansible, all categories of developers have similar lev-
els of activity, and all contributed to a wide range of mod-
ules. This differs from other projects, especially for exter-
nal newcomers: all but one module has external newcomers,
and these developers often have an important activity. We
looked more closely at the module where external newcom-
ers were the most active, which is the module containing
“cloud” plugins for Ansible. Among the newcomers making
the most contributions, one was hired at Ansible, Inc., and
two worked at Rackspace, a managed cloud computing com-
pany, and developed an Ansible plugin for the Rackspace
cloud storage. These developers were most probably paid
to do their contributions, which explains this high level of
activity, not present with most of the newcomers.

The last three projects, Jenkins, JQuery and Rails, ex-
hibit the same patterns. In these three projects, internal
newcomers are active in most of the modules, while exter-

1Figure 3 also contains information related to bugfixes,
which are discussed in the next research question.

835



2011 2012 2013 2014 2015

0
10
0

30
0

50
0

70
0

Angular.JS

2014 2015

0
10
0

30
0

50
0

70
0

Ansible

2012 2013 2014 2015

0
20

40
60

80
12
0

Jenkins

2011 2012 2013 2014

0
20

40
60

80

JQuery

2009 2011 2013 2015

0
20
0

40
0

60
0

80
0

Rails

Figure 2: Evolution of developer turnover. The plain blue line (on top) represents the total number of
developers, the plain purple line (on the bottom) the number of stayers, the green dotted line the number of
external newcomers and the red dashed line the number of external leavers.

T
ot

al
 A

IN
A

E
N

A

IL
A

E
LA S
tA

B
ug

F
ix

es

Angular.JS

T
ot

al
 A

IN
A

E
N

A

IL
A

E
LA S
tA

B
ug

F
ix

es

Ansible

T
ot

al
 A

IN
A

E
N

A

IL
A

E
LA S
tA

B
ug

F
ix

es

Jenkins

T
ot

al
 A

IN
A

E
N

A

IL
A

E
LA S
tA

B
ug

F
ix

es

JQuery

T
ot

al
 A

IN
A

E
N

A

IL
A

E
LA S
tA

B
ug

F
ix

es

Rails

Figure 3: Visualization of developers activity and the quantity of bugfixes for each module. Each horizontal
line of blocks represents a module. The darker the color, the higher the metric value.

nal newcomers and leavers are more focused, and do not
contribute to more than half of the modules.

Overall there is no module that was changed exclusively
by external newcomers. In all the projects of our corpus,
the external newcomers always contributed to modules with
either internal internal or permanent developers.

6.3 Developer Turnover and Software Mod-
ule Quality (RQ3)

To answer our third research question, related to the rela-
tionship between module turnover and software quality, we
use the bug-related information extracted from our dataset
(same configuration as RQ2 for P1 and P2). We perform
Spearman correlation tests between each turnover metric
and our quality metric. The quality metric we use is the
density of bugfixes per module (i.e., the number of commits
that fixed bugs divided by the size of the module). These
bugfixes are extracted from the maintenance branch asso-
ciated to S0, meaning that there is a high probability that
they indeed fix defects that occur in S0.

Table 2 presents the results of these correlation tests for
each project and metric. Correlation coefficients vary from
−1 to 1, which corresponds to a perfect negative and positive
correlation, respectively. Also, a correlation coefficient of 0
reveals an absence of correlation. We used bootstrap with
the BCa statistic to compute 95% confidence intervals of the
correlation coefficients [13, 14]. If both ends of a confidence
interval are either positive or negative (results highlighted in
bold), this means that there is a strong probability that there
is a positive or negative correlation, respectively, between
the turnover metric and the density of bug-fixing commits.

To have a deeper understanding of the observed corre-
lations, Figure 3 presents a graphical visualization of the
turnover metrics and the number of bugfixes. In that Fig-
ure, each project is presented by a matrix where each column
represents a metric, and each line represents a component
of the project. The cell of the matrix then represents the
value of the corresponding metrics and darker colors repre-
sent higher values.

836



Table 2: Spearman correlation coefficients between turnover metrics and the density of bug-fixing commits
per module. Confidence intervals are computed using bootstrap.

Project INA ILA ENA ELA StA Overall Activity

Angular.JS [-0.41 , 0.37] [-0.36 , 0.25] [0.12 , 0.69] [-0.56 , 0.16] [0.23 , 0.83] [-0.16 , 0.7]
Ansible [-0.27 , 0.73] [-0.31 , 0.65] [-0.21 , 0.68] [-0.3 , 0.7] [-0.15 , 0.76] [-0.27 , 0.75]
Jenkins [-0.3 , 0.28] [-0.18 , 0.42] [0.3 , 0.75] [-0.05 , 0.51] [0.05 , 0.63] [-0.01 , 0.6]
JQuery [-0.1 , 0.69] [0.13 , 0.81] [-0.02 , 0.73] [-0.4 , 0.44] [0.09 , 0.84] [0.14 , 0.8]
Rails [-0.01 , 0.52] [-0.24 , 0.3] [0.09 , 0.57] [-0.23 , 0.3] [0.14 , 0.58] [0.03 , 0.51]

The most important information in the results presented
in Table 2 is that there is a positive correlation between the
External Newcomer Activity and the density of bugfixes.
Almost all of the projects exhibit a quite strong correlation.
Only Ansible exhibits a weak correlation but, looking at
Figure 3, this is certainly due to the fact that external new-
comers contributed to almost all of the components, even to
the ones that were not the target of bugfixes. This is consis-
tent with the theories exposed in Section 2, which suggest
that external turnover has a negative effect on the quality
of a team’s work. External Leavers Activity on the other
hand do not show any statistically significant correlation
with bugfix density in Table 2, and the two columns seem
completely independent in Figure 3.

Although Table 2 shows three statistically significant cor-
relations between the Internal Leaver and Newcomer Activ-
ity and bugfixes, their interpretation when looking at Fig-
ure 3 is unclear. As discussed with the previous research
question, internal newcomers contribute to the majority of
the modules, even the ones without any bugfix.

Finally, as expected, there is a correlation between the
activity of persistent developers and the density of bugfixes.
This then raises the question of the relative importance of
the turnover metrics regarding the software quality, and es-
pecially for the External Newcomer Activity (ENA) metrics,
as there is no correlation of the internal turnover metrics.
To measure how important is ENA we therefore built mul-
tiple linear regression models including other metrics, such
as the size of modules or the number of developers who con-
tributed to it. Unfortunately, it did not produce exploitable
results, due to the low R-squared of the resulting models,
and multicollinearity issues exposed by high variance infla-
tion factors of the predictors. We therefore cannot provide
sound answer to that point.

7. THREATS TO VALIDITY
The validity of the results presented above is exposed to

several threats that we present here.

7.1 External Validity
The generalization of the results is our first concern. On

one hand, we selected projects that use different program-
ming languages and that have hundreds of developers. On
the other hand, the study was performed on only five projects
that were manually selected. To overcome this threat, fur-
ther studies have to be performed, to confirm and improve
the findings presented in this paper. A barrier to achieve
these studies is to build curated datasets, following the re-
quirements presented in Section 5.

7.2 Internal Validity
Our metrics assume that the only way developers con-

tribute to a project is by modifying its source code. This is
an approximation, as developers can modify other files such
as build and documentation files. A project is not confined
to its version control system: other types of repositories,
such as bug-tracking system or mailing lists, might reveal
that some developers considered as newcomers or leavers
might be in fact persistent contributors of the project. Turnover
metrics based on multiple kinds of repositories are left for
future work.

It should be noted that our results should not be inter-
preted as if external leavers and newcomers developers in-
troduced more bugs than internal. We do not provide or
have any information on who introduce bugs because there
is, to the best of our knowledge, no reliable algorithm that
can identify the author of a bug.

We did not find a reliable way to identify developers with
push rights to the repositories. Hence, we could not deter-
mine the impact of this feature on the different patterns of
turnover. However it should be noted that the projects in
our dataset mainly follow a pull-request workflow (a popular
approach on Github). With this workflow, even if a devel-
oper has push rights she will create a pull-request in the
project when making a contribution to benefit from the re-
view mechanism. Thus, except for the developers in charge
of merging the pull-requests the other core members do not
need to have push rights.

7.3 Construct Validity
In addition, we identify several threats to construct va-

lidity from the previous study. On GitHub, developers can
submit pull requests, so that the project leaders, who have
write permission on the repository, can add their contribu-
tions to the project. As the identity of the initial author
is maintained through the pull operation, she is identifiable
even though she does not have access to the main reposi-
tory. However, as shown in [25] it may happen that a de-
veloper discussed with a pull request author to agree on its
acceptance. Even though this developer spent time to fix or
improve the pull request content, all the credits will go to
the pull request author. This may also introduce a bias in
the results.

Identifying software modules in a project is not a straight-
forward task and might be subject to interpretation. Since
we could not get the confirmation from the different devel-
opment teams some modules in our decomposition might
be split or merged in comparison to what the development
teams would have defined.

Related to the same threat the quality of the software
architecture can have an impact on the metrics. Retention

837



could appear higher in well modularized systems than poorly
designed systems where one fix might require changes to
many modules. The fact that the results produced with the
decomposition based on co-change activity overlaps strongly
with the manual decomposition based on directories shows
that the impact is negligible for this dataset.

We deliberatively did not rely on the information pro-
vided by bugtrackers, as several studies showed that their
use can introduce an important bias [21]. The drawback
of our technique is that the number of bug-fixing commits
may not reveal the actual number of bugs that appeared
in the software modules. There may exists bugs that are
tedious to fix and remain to be resolved. In addition, the
manual analysis has some limits due to the subjective eval-
uation to decide whether or not a commit is a bug-fixing
commit. We only went through a maintenance branch to
collect such commits for each project, although it poten-
tially exists bug-fixing commits from the main development
branch that have not been backported to the maintenance
branch. Finally some bug-fixing commits may fix bugs that
were not introduced in the current release but in one of the
older releases.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose and investigate metrics to mea-

sure turnover in open-source software projects. Our met-
rics measure how the structure of a group of developers is
changing, both internally and externally, for a given period
of a software project. We used these metrics on five open-
source projects with two objectives: to observe the turnover
phenomenon, and to evaluate its relationship with software
quality.

We observed that the five open-source projects in our cor-
pus, chosen because of their popularity and success, have a
high turnover. This observation disagrees with the conclu-
sions of Hall et al. that recommend to control turnover to
improve the success of industrial projects [19]. Our results
then suggest that turnover and success may have a different
relationship in open-source projects.

Looking at the module level, we show some very inter-
esting turnover patterns. These patterns reveal that the
projects of our corpus act differently regarding turnover.
For instance, in some projects modules receive contributions
only by internal developers with no contribution from stay-
ers. These patterns also show that in all projects external
newcomers always work with either permanent or internal
developers, who hopefully supervise them. Such an observa-
tion opens the room for rules or guidelines that will define
how newcomers should be supervised, and how they should
contribute to modules of a project [8].

We also found that external turnover has a negative im-
pact on the quality of the modules. This result is consistent
with theories that suggest that external turnover has a nega-
tive effect on the quality of a team’s work. However, it differs
from the ones of Mockus [30], as in our case newcomers have
a relationship with quality and leavers do not have such re-
lationship, while it was the opposite in Mockus’ study. On
the other hand, internal turnover has almost no effect. Our
observations therefore do not confirm the theories that sug-
gest that internal turnover is beneficial. These findings can
be reused by researchers when using software metrics based
on the activity of developers on the source code: as the ac-
tivity of external newcomers has a stronger relationship with

quality than the activity of other categories of developers,
this may be the only activity worth considering.

Finally, our study and findings lead the way for many
kinds of future work:
• Our findings are based on observations made on software

modules, with manual observation of patterns and using
correlation between the density of bug-fixing commits and
the activity of the different categories of turnover actors.
As there are no related work that performed such obser-
vations on open-source projects, our study needs to be
replicated on more projects, which is facilitated by our
replication package (Section 10).
• The main limitation of our metrics is the fact that they

require a selection of periods. In particular, we shown
that the length of the chosen periods has a major impact
on the measures, and we therefore provide some insights
showing that a time period is adequate in the case of open-
source project, with good results with 6 months periods.
We then plan to overcome this limitation by developing
continuous metrics for turnover, where the discretization
of the history is not necessary.
• Our results regarding turnover patterns suggest that the

observed patterns are impacted by the motivation of de-
velopers, which mainly depends on the fact that they are
paid or not. This hypothesis can be evaluated only if it is
possible to distinguish paid contributors from volunteers.
We then plan to identify the employee of the developers,
and then to analyze its relationship with turnover metrics.
• Independently of whether developers are paid or volun-

teers, they may be core member of the projects, and thus
have a higher retention level than other developers, as
well as a higher level of activity in the project. Identify-
ing core members of a project may help us understanding
the impact of developer turnover on software quality.

9. AUXILIARY MATERIAL
Due to the space constraint of this paper, part of our

results are available online [2]. This page includes results
regarding the period selection, as well as more detailed ver-
sions of Figure 2 and Figure 3.

10. REPLICATION PACKAGE
The dataset built using the methodology presented in Sec-

tion 5, the code necessary to extract the metrics, as well as
additional results are available online, in a replication pack-
age that has been successfully evaluated by the Replication
Packages Evaluation Committee and found to meet expec-
tations [2]. We describe here the technical aspects of this
package, the data produced by the executed software and
the installation process of the replication package.

10.1 The Diggit Tool
The software of our replication package relies on the Diggit

tool, which supports analysis of Git repositories and which
helps manage the analysis process [1]. Diggit manages a set
of Git repositories. On each repository, Diggit applies sev-
eral user specified analyses. When all user-specified analy-
ses have been applied, Diggit applies global analyses (called
joins in the tool) that use the results of all the previously ap-
plied analyses to produce final results. Diggit is used within
a diggit folder, which contains various configuration files, in-
cluding the list of Git repositories to clone and analyse, the

838



list of analyses and joins to perform, and additional infor-
mation that may be used by analyses. This tool is developed
in Ruby by two of the authors of this paper; we used version
2.0.2.

10.2 Package Installation and Usage
The replication package is distributed as a VirtualBox vir-

tual machine image. This image is based on a minimal ver-
sion of a Linux Ubuntu on which only the requirements to
replicate the study were installed. The list of commands re-
quired to install our replication package from a fresh install
of a minimal Ubuntu is also available online.

The package consists of a set of diggit analyses, that are all
loaded in a diggit folder in the VM image (this folder can also
be generated with a script). The first step of the replication
is to clone the five Git repositories to be analyzed using the
dgit clone command. Then, the dgit analyses perform

command allows to run, for each of the cloned repositories,
the following analyses:
• Extraction of the number of lines of code of each file at

release S0, which is used to compute bug-fixing com-
mits density.
• Computation of the number of lines of code and the

number of bug-fixing commits of each module (the list
of modules is stored in a configuration file).
• Computation of the activity of each developer on each

module.
• Computation of the activity of developers at the project

level.
The data produced for each repository is then aggregated

by a global analysis that uses the R programming language
and produces all the results presented in this paper and in
the additional results available online.

10.3 Replication Data
Our replication package also provides data that can be

reused for future studies. It includes the information de-
scribed in Section 5 which is given as input to the analy-
ses described above, and activity information, which can be
reused to compute other metrics than developer turnover
(such as code ownership for instance [16]).

For each repository, the data provided as input of the
analyses is the following:
• The author renaming information.
• The lists of modules extracted with the different mod-

ularization techniques.
• The commit id of the S0 release.
• The commit ids of the bug-fixing commits performed

in S0 release’s maintenance branch.
This data is stored in a single JSON file and thus can be
easily reused.

Besides the final results provided by the global analysis
that are presented in this paper, each analysis produces in-
termediary results that are stored in a MongoDB database.
The data stored in this database consist in a monthly mea-
sure of activity (code churn) for each developer and module,
and each month prior to the S0 release up to the start of the
Git history of the repository.

11. REFERENCES
[1] The diggit git repository analysis tool.

https://github.com/jrfaller/diggit. Accessed:
2015-07-15.

[2] Replication package - impact of developer turnover on
quality in open-source software.
http://se.labri.fr/a/FSE15-foucault. Accessed:
2015-07-15.

[3] M. A. Abelson and B. D. Baysinger. Optimal and
dysfunctional turnover: Toward an organizational level
model. Academy of Management Review,
9(2):331–341, Apr. 1984.

[4] L. Argote and D. Epple. Learning curves in
manufacturing. Science, 247(4945):920–924, Feb. 1990.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced?: Bias in bug-fix datasets. In 7th joint
meeting of the European Software Engineering
Conference and the ACM SIGSOFT symposium on
The Foundations of Software Engineering
(ESEC/FSE), page 121–130, 2009.

[6] C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German,
and P. Devanbu. The promises and perils of mining
git. In 6th IEEE International Working Conference on
Mining Software Repositories, 2009. MSR ’09, pages 1
–10, May 2009.

[7] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang,
and L. Réveillère. Empirical evaluation of bug linking.
In Proceedings of the 17th European Conference on
Software Maintenance and Reengineering (CSMR
2013), pages 1–10, Mar. 2013.

[8] G. Canfora, M. Di Penta, R. Oliveto, and
S. Panichella. Who is going to mentor newcomers in
open source projects? In Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, page 44, 2012.

[9] A. Clauset, M. E. Newman, and C. Moore. Finding
community structure in very large networks. Physical
review E, 70(6):066111, 2004.

[10] L. Dabbish, R. Farzan, R. Kraut, and T. Postmes.
Fresh faces in the crowd: Turnover, identity, and
commitment in online groups. In Proceedings of the
ACM 2012 Conference on Computer Supported
Cooperative Work, CSCW ’12, page 245–248. ACM,
2012.

[11] G. G. Dess and J. D. Shaw. Voluntary turnover, social
capital, and organizational performance. Academy of
Management Review, 26(3):446–456, July 2001.

[12] L. R. Dice. Measures of the amount of ecologic
association between species. Ecology, 26(3):297, July
1945.

[13] B. Efron. Bootstrap methods: another look at the
jackknife. The Annals of Statistics, page 1–26, 1979.

[14] B. Efron. Better bootstrap confidence intervals.
Journal of the American Statistical Association,
82(397):171–185, 1987.

[15] K. Fogel. Producing Open Source Software: How to
Run a Successful Free Software Project. O’Reilly
Media, first edition, Feb. 2013.
http://www.producingoss.com/.

[16] M. Foucault, J.-R. Falleri, and X. Blanc. Code
ownership in open-source software. In Proceedings of
the 18th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’14, page
39:1–39:9. ACM, 2014.

839

https://github.com/jrfaller/diggit
http://se.labri.fr/a/FSE15-foucault


[17] I. Fronza, A. Janes, A. Sillitti, G. Succi, and
S. Trebeschi. Cooperation wordle using pre-attentive
processing techniques. In 2013 6th International
Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), pages 57–64, May
2013.

[18] M. Goeminne and T. Mens. A comparison of identity
merge algorithms for software repositories. Science of
Computer Programming, 78(8):971–986, 2013.

[19] T. Hall, S. Beecham, J. Verner, and D. Wilson. The
impact of staff turnover on software projects: The
importance of understanding what makes software
practitioners tick. In Proceedings of the 2008 ACM
SIGMIS CPR Conference on Computer Personnel
Doctoral Consortium and Research, SIGMIS CPR ’08,
page 30–39. ACM, 2008.

[20] D. S. Hamermesh, W. H. J. Hassink, and J. C. v.
Ours. Job turnover and labor turnover: A taxonomy of
employment dynamics. Open Access publications from
Tilburg University 12-86873, Tilburg University, 1996.

[21] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a
feature: How misclassification impacts bug prediction.
In Proceedings of the 2013 International Conference
on Software Engineering, page 392–401, 2013.

[22] M. A. Huselid. The impact of human resource
management practices on turnover, productivity, and
corporate financial performance. Academy of
Management Journal, 38(3):635–672, June 1995.

[23] P. Hynninen, A. Piri, and T. Niinimaki. Off-site
commitment and voluntary turnover in GSD projects.
In 2010 5th IEEE International Conference on Global
Software Engineering (ICGSE), pages 145–154, Aug.
2010.

[24] D. Izquierdo-Cortazar. Relationship between
orphaning and productivity in evolution and GIMP.
2008.

[25] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining GitHub. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
page 92–101. ACM, 2014.

[26] R. M. Kanter. The impact of hierarchical structures
on the work behavior of women and men. Social
Problems, 23(4):415–430, Apr. 1976.

[27] D. Krackhardt and L. W. Porter. When friends leave:
A structural analysis of the relationship between
turnover and stayers’ attitudes. Administrative Science
Quarterly, 30(2):242–61, Jan. 1985.

[28] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik.
Studying evolving software ecosystems based on
ecological models. In Evolving Software Systems, pages
297–326. Springer Berlin Heidelberg, Jan. 2014.

[29] A. Mockus. Succession: Measuring transfer of code
and developer productivity. In Proceedings of the 31st
International Conference on Software Engineering,
ICSE ’09, page 67–77. IEEE Computer Society, 2009.

[30] A. Mockus. Organizational volatility and its effects on
software defects. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, page
117–126. ACM, 2010.

[31] A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. In
Proceedings of the International Conference on
Software Maintenance (ICSM’00), ICSM ’00, page
120–. IEEE Computer Society, 2000.

[32] K. Panciera, A. Halfaker, and L. Terveen. Wikipedians
are born, not made: A study of power editors on
wikipedia. In Proceedings of the ACM 2009
International Conference on Supporting Group Work,
GROUP ’09, page 51–60. ACM, 2009.

[33] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, 1972.

[34] P. Pons and M. Latapy. Computing communities in
large networks using random walks. In Computer and
Information Sciences - ISCIS 2005, number 3733 in
Lecture Notes in Computer Science, pages 284–293.
Springer Berlin Heidelberg, 2005.

[35] X. Qin, M. Salter-Townshend, and P. Cunningham.
Exploring the relationship between membership
turnover and productivity in online communities.
2014.

[36] S. Ransbotham and G. C. Kane. Online communities:
Explaining rises and falls from grace in wikipedia. MIS
Q., 35(3):613–628, Sept. 2011.

[37] G. Robles and J. M. Gonzalez-Barahona. Contributor
turnover in libre software projects. In Open Source
Systems, number 203 in IFIP International Federation
for Information Processing, pages 273–286. Springer
US, Jan. 2006.

[38] A. Schilling, S. Laumer, and T. Weitzel. Who will
remain? an evaluation of actual person-job and
person-team fit to predict developer retention in
FLOSS projects. In 2012 45th Hawaii International
Conference on System Science (HICSS), pages
3446–3455, Jan. 2012.

[39] P. N. Sharma, J. Hulland, and S. Daniel. Examining
turnover in open source software projects using
logistic hierarchical linear modeling approach. In Open
Source Systems: Long-Term Sustainability, number
378 in IFIP Advances in Information and
Communication Technology, pages 331–337. Springer
Berlin Heidelberg, Jan. 2012.

[40] J. D. Shaw, N. Gupta, and J. E. Delery. Alternative
conceptualizations of the relationship between
voluntary turnover and organizational performance.
Academy of Management Journal, 48(1):50–68, Feb.
2005.

[41] J. D. Thompson. Organizations in action: Social
science bases of administrative theory. SSRN Scholarly
Paper ID 1496215, Social Science Research Network,
1967.

[42] Y. Tian, J. Lawall, and D. Lo. Identifying linux bug
fixing patches. In Software Engineering (ICSE), 2012
34th International Conference on, page 386–396, 2012.

[43] Z. Ton and R. S. Huckman. Managing the impact of
employee turnover on performance: The role of
process conformance. Jan. 2008.

[44] S. G. Westlund and J. C. Hannon. Retaining talent:
Assessing job satisfaction facets most significantly
related to software developer turnover intentions.

840



Journal of Information Technology Management,
19(4):1–15, 2008.

[45] Y. Yu, A. Benlian, and T. Hess. An empirical study of
volunteer members’ perceived turnover in open source
software projects. In 2012 45th Hawaii International
Conference on System Science (HICSS), pages
3396–3405, Jan. 2012.

[46] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In International
Workshop on Predictor Models in Software
Engineering, 2007. PROMISE’07: ICSE Workshops

2007, page 9, May 2007.

841


	Introduction
	Theory & Related Work
	Turnover Perception
	External Turnover
	Internal Turnover

	Turnover in Collaborative Platforms
	Turnover in Software Development

	Turnover Metrics
	Setup and Requirements
	Period Selection
	Software Modules and Contributors

	Turnover Actors and Metrics
	External Turnover
	Internal Turnover
	Stayers
	Metric Definitions


	Research Questions
	Dataset Construction
	Authors Identification
	Quality Measurement
	Code Modularization
	Using the Directory Structure
	Using the Co-change Activity

	Periods Selection
	Resulting Dataset

	Results
	Turnover at the Project Level (RQ1)
	Patterns of Contributions (RQ2)
	Developer Turnover and Software Module Quality (RQ3)

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Conclusion and Future Work
	Auxiliary Material
	Replication Package
	The Diggit Tool
	Package Installation and Usage
	Replication Data

	References

