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I. VELOCITY AUTOCORRELATION

FUNCTIONS

Figure 1 presents the transverse velocity autocorrela-
tion functions for different damping strengths, in the qui-
escent system.
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FIG. 1. Transverse velocity autocorrelation functions for par-
ticle mass m = 1 and different damping magnitudes ζ in (top)
quiescent systems, i.e., Ei = 0, at T0 = 0.16 and (bottom)
sheared systems, with Ei and T0 as indicated in the legend.
Note that the values of T0 used for the flows at ζ = 1 were
chosen to match the kinetic temperatures of the strongly un-
derdamped flows (ζ = 10−3) at the same rescaled shear rate
Ei. The dashed black line is an envelope fit with the function
exp( −t

0.1τvib
)

II. KINETIC ENERGY DISTRIBUTIONS

Figure 2 presents the distribution of the kinetic ener-
gies among the particles in the system.
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FIG. 2. Distribution of the kinetic energies eK = 1

2
mv2i of

the individual particles in the athermal and thermostatted
systems (as indicated in the legend). Solid black lines are fits

to Boltzmann distributions ∝ e−eK/TK

III. ROBUSTNESS OF OUR FINDINGS: TEST OF

A DIFFERENT THERMOSTAT

To test the robustness of our results, we subsitute
a Langevin thermostat for the Dissipative Particle Dy-
namics scheme used in the main text. Figure 3 proves
that, for low enough damping strength, the athermal
Langevin flow curve also becomes nonmonotonic, with
a rate-weakening region. More importantly, the ther-
mostatting procedure described in the main text is also
operational here, as evidenced in the figure. This con-
firms the connection between the underdamped rheology
and the extent of kinetic heating.
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FIG. 3. Flow curves obtained with a Langevin thermostat
(black) in an underdamped athermal system and (red) in the
associated (less underdamped) thermostatted system.

IV. QUALITATIVE EXPLANATION FOR THE

NONMONOTONIC FLOW CURVES IN THE

HIGHLY UNDERDAMPED REGIME

As can be seen in Fig. 2 of the paper, the flow curves
at large enough Q are nonmonotonic and thus display a
minimum (Eim,Σm), where Ei is the rescaled shear rate.
At this point, using the chain rule,
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(As a technical detail, note that, in practice, the second
partial derivative - at fixed kinetic temperature - can only

be calculated in a system with stronger damping ther-
mostatted to T0 = TK (Eim)). Thus, the presence of a
minimum results from a competition between two (an-
tagonistic) effects:

(i) an increase of the sample temperature with the
shear-rate, which bends the flow curve downwards

(ii) an intrinsic rate effect at large shear rates, whereby
the driving gets so strong that particles no longer remain
at the bottom of the energy wells (collisions, etc.).

When Q increases, i.e., when the damping weakens,
the temperature effect (i) gets stronger, so that the mini-
mum is expected to be deeper, which is indeed confirmed
by Fig. 2 of the main text.

V. DEVIATIONS FROM THE PREDICTED

BEHAVIORS OBSERVED AT HIGH KINETIC

TEMPERATURES

At high kinetic temperatures TK(i.e., in particular at
large shear rates and/or large values of Q), Figs. 2 and
3 of the main text show that deviations appear from
the Chattoraj-Lemaitre formula for the temperature-
dependence of the stress (Eq. 3), and, to a much lower
extent, from the scaling prediction represented in Fig. 3.

This is not surprising: Chattoraj and Lemaitre ex-
plicitly derived their for formula in the low-temperature
limit, and our scaling prediction was based on the hy-
pothesis that regions yield (undergo a plastic event) at
a local stress Σ0, whereas, owing to thermal activation,
the local stress at yield may be significantly lower at high
TK .


