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We study the finite-shear-rate rheology of disordered solids by means of molecular dynamics
simulations in two dimensions. By systematically varying the damping strength ζ in the low-
temperature limit, we identify two well defined flow regimes, separated by a thin (temperature-
dependent) crossover region. In the overdamped regime, the athermal rheology is governed by the
competition between elastic forces and viscous forces, whose ratio gives the Weissenberg number
Wi ∝ ζγ̇; the macroscopic stress Σ follows the frequently encountered Herschel-Bulkley law Σ =
Σ0 + k

√
Wi, with yield stress Σ0 > 0. In the underdamped (inertial) regime, dramatic changes in

the rheology are observed for low damping: the flow curve becomes nonmonotonic. This change
is not caused by longer-lived correlations in the particle dynamics at lower damping; instead, for
weak dissipation, the sample heats up considerably due to, and in proportion to, the driving. By
thermostatting more or less underdamped systems, we are able to link quantitatively the rheology
to the kinetic temperature and the shear rate, rescaled with Einstein’s vibration frequency.

PACS numbers: 47.57.Qk, 83.10.Rs, 83.50.Ax

Inertia matters in liquid flows. Its presence in the
Navier-Stokes equations leads to a rich phenomenology
that vanishes in the overdamped limit of viscous flow.
However, the effect of damping is rarely heeded (let alone
analyzed) in the flow of disordered solids, so much so that
dense colloidal glasses often serve as model systems for
bulk metallic glasses (BMG) [1], even though they are
much more strongly damped. Here, we find that reducing
the damping can dramatically impact the macroscopic
rheology. In the inertial regime, the energy input dwells
longer in the particle momenta before its final dissipa-
tion into the heat bath, thus facilitating plastic flow. We
provide a quantitative account of this effect in terms of
simple kinetic heating of the underdamped solid, similar
to the one observed experimentally during the operation
of shear bands in BMG [2, 3].

The damping regime is not the only line of contrast
among disordered solids: atoms in BMG as well as small
colloids are heavily influenced by thermal fluctuations
whereas grains are quasi-athermal; foam bubbles are de-
formable whereas some colloids are close to perfect hard
spheres. Notwithstanding these contrasting features, vir-
tually all such solids deform similarly, i.e., mostly elas-
tically at small stresses while at larger shear plasticity
becomes dominant, with a succession of failures of micro-
regions, whose particles rearrange swiftly. These rear-
rangements are triggered by the loading or facilitated
by thermal activation [4, 5] and may interact via the
long-range elastic deformation that they induce in the
surrounding medium [5, 6]. Based on this generic sce-
nario, multiple simplified rheological models have been
proposed, generally focusing on the overdamped regime
[7–12] (nevertheless, the mesoscale elastic response has

been studied across the damping regimes [13, 14]). To
what extent does the presence of inertia alter the pic-
ture?

In the quasistatic limit, i.e., at vanishing shear rates γ̇,
recent numerical work by Salerno and Robbins has ascer-
tained that the statistics of avalanches fall into distinct

universality classes in the overdamped vs. underdamped
regimes [15, 16]. The difference is best illustrated by
considering the complex, rugged Potential Energy Land-
scape (PEL) in which the system evolves: it climbs up en-
ergy barriers in the phases of elastic loading and abruptly
slides downhills once the barrier is overcome. For over-
damped systems, this descent suffices to dissipate the en-
ergy stored during loading, while at lower damping the
inertial force may carry the system over several succes-
sive barriers. This process is then highly directional in
the PEL and strongly correlated in space and time, which
renders its modelling quite complex a priori. Some ad hoc

rules to include it in lattice-based models have been put
forward, such as lowering barriers or yield stresses for a
certain time after failure (see [17] and references in [16])
and their impact has been emphasized, but the validity
of these descriptions stands on shaky ground.

In this Letter, we focus on the steady-state shear
flow of two-dimensional disordered solids at finite driv-
ing rates and investigate the role of inertia in the vanish-
ing and low temperature limits, with molecular dynamics
(MD) simulations. We apply simple shear to the binary
Lennard-Jones glass used in Ref. [14]; it comprises 32,500
particles of type A and 17,500 particles of type B, all of
mass m, and has reduced density ρ = 1.2. The equations
of motion are based on the Dissipative Particle Dynamics
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(DPD) scheme [18] and read

{

dri
dt = vi

mdvi

dt = −
∑

i6=j
∂V(rij)
∂rij

+ fi
R + fi

D.
(1)

Here, rij ≡ ri − rj and V(rij) is the interaction po-

tential between particles i and j. The DPD forces fi
R,D

involve a cutoff function w(r) ≡ 1− r
rc

if r < rc ≡ 2.5σAA

and 0 otherwise; fi
R ≡ s

∑

j 6=i w (rij) θij
rij

rij
is a stochas-

tic force, based on the Gaussian white noise θij [18]
and due to the coupling to a heat bath maintained at
temperature T0 and fi

D ≡ −ζ
∑

j 6=i w
2 (rij)

vij·rij

r2ij
rij

is a damping force depending on the relative velocities
vij ≡ vi − vj . The strength s = 2ζkBT0 of the cou-
pling to the reservoir depends on the damping strength
ζ and T0, and is maintained even if the system departs
from thermal equilibrium. In the following, ζ, m, and T0

shall be varied, while the particle interactions are kept
constant.

The equations of motion, Eqs. 1, are integrated on
GPU with the velocity Verlet algorithm with a time step
between 0.001 and 0.005. They involve forces deriving
from four types of stresses:

(i) the elastic stress, of order ΣA ≡ ǫAA

σ2

AA
≡ 1,

(ii) the viscous stress, of order ηγ̇, where η ≈ ζ [14] is
the microscopic viscosity,

(iii) the inertial pressure, which, in a Bagnold-like pic-
ture [19], involves momentum transfers of order mσAAγ̇
at a rate ∝ γ̇, and is thus proportional to mγ̇2, and

(iv) the thermal pressure resulting from stochastic
forces of magnitude

√
ζT0.

Their relative magnitudes are quantified by dimension-
less numbers that characterize the flow regime. In partic-
ular, the importance of viscosity with respect to elasticity
is measured by the Weissenberg number,

Wi ≡ τdissγ̇ with τdiss ≡
ζ

ΣA
,

and the ratio of inertial over elastic stresses is given by
Ei2, where

Ei ≡ τvibγ̇ with τvib ≡
√

m

ΣA
.

In conjunction with T0, Wi and Ei fully characterize
the flow. Nevertheless, to describe the damping regime of
flow curves, irrespective of the shear rate, it is convenient
to also introduce

Q ≡ Ei

Wi
=

√
mΣA

ζ
=

τdamp

τvib
with τdamp ≡ m

ζ
;

if Eq. 1 is assimilated to a damped second-order har-
monic oscillator, Q is the (inertial) quality factor, i.e.,
the number of inertial oscillations in the damping time.
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FIG. 1. Athermal flow curves Σ(Wi, T0 = 0) in the over-
damped regime Q . 1, for various combinations [ζ,m]:
[ζ = 1, m = 1] (♦), [10, 1] (�), [10, 0.1] (△), and [1, 0.1] (▽).
The solid line represents Eq. 2. A flow curve at T0 = 0.2,
Q = 1 [1, 1] (�) is also shown. The thin dashed line is a best
fit to Eq. 3. Inset: Σ vs. γ̇.

Our numerical data confirm the relevance of such di-
mensional analysis: Figures 1 and 2 prove that, at T0 = 0,
the dependences of the macroscopic shear stress Σ on ζ,
m, and γ̇ can be condensed into a dependence on the pair
(Q,Wi), or equivalently (but more conveniently when
Q ≫ 1) (Q,Ei).

Overdamped dynamics. Let us start by investigating
the fully overdamped (Brownian or athermal) limit Q →
0. In the absence of inertia, γ̇ is best rescaled as Wi.
At T0 = 0, the flow curve, plotted in Fig. 1, is very well
described by the Herschel-Bulkley law

Σ(Wi, T0 = 0) = 0.72 + 2
√
Wi. (2)

Interestingly, this description remains very good at fi-
nite values of Q, up to Q ≈ 1. Thus, for all Q 6 1,
the macroscopic rheology is exclusively governed by the
competition between elastic and viscous forces.

Leaving the athermal regime, we observe that imposing
a finite bath temperature T0 > 0 leads to a decrease of Σ
at all shear rates. Regardless of the damping regime, this
thermal effect is explained by the premature occurrence
of plastic rearrangements owing to thermal activation:
the system at T0 > 0 hops over saddle-node points in
the PEL before the effective potential barriers have com-
pletely flattened under the influence of the driving, which
interrupts the elastic accumulation of strain; hence the
lower macroscopic stress [20, 21].

Perhaps less expectedly, we also find a narrowing of
the overdamped regime with T0, that is, the quality fac-
tor Qc(T0) marking the departure from the scaling with
Wi decreases with T0 (our data suggest Qc (T0 = 0) ≈ 1
whereas Qc (T0 = 0.2) < 1 but do not allow for greater
accuracy). A rather general explanation consists in allud-
ing to the excitation of higher-frequency modes at higher
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FIG. 2. Flow curves Σ(Q,Ei, 0) of athermal underdamped
systems and Σ(Q′,Ei, TK (Q,Ei)) of their thermostatted
counterparts (see text). Symbols are listed in Table I. Thin

dashed lines are the best fit to Eq. 3, Σ = 0.69+ 2
√
Ei −

0.17T
2/3
K ln

(

0.4T
5/6
K

Ei

)2/3

, where TK = 0.15Q · Ei.

temperature, these modes having larger specific quality
factors Q, or to the faster thermalization of the system
(see below).

Inertial dynamics. On increasing Q, past a small
crossover region around Qc(T0), one enters the under-
damped regime, where the rheology is a priori described
by the triplet (Q,Ei, T0). What role does the inertial
quality factor Q play in that regime?

In fact, at low damping, Q can no longer be inter-
preted as the number of not-too-damped inertial oscil-
lations within a particle’s cage. Indeed, localized ex-
citations spread in the glass and, owing to nonlineari-
ties, thermalize: their energy is redistributed across the
whole vibrational spectrum. This process occurs over a
time τth and expedites the decorrelation of the excitations
when the velocity damping time m/ζ becomes longer than
τth. As a result, the velocity autocorrelation functions,
which reflect single-particle dynamics, gain independence
from Q, in the quiescent system at T0 > 0 (in Fig. 1 of
the Supplementary Material, we observe τth ≈ 0.1τvib at
T0 = 0.16). Thus, one is lured into thinking that the un-
derdamped rheology is insensitive to Q, in the same way
as the equilibrium properties of liquids computed with
MD are independent of the (weak) damping [18, 22].

Contrary to this thought, the underdamped flow
curves, plotted in Fig. 2, exhibit dramatic changes at
large Q (and low T0), as they become nonmonotonic!

Clearly, the insensitivity to Q was a fallacy. In fact,
this parameter also controls energy dissipation in the
system. When the damping is too weak compared to
the energy input, the system heats up and strongly de-
parts from thermal equilibrium with the heat reservoir at
T0. This is not a numerical artifact: in experiments on
sheared granular matter, the “granular temperature” dif-

Q Q′ ζ m T0 symbol

102 10−2 1 0 ◦
10 0.1 1 TK(Q = 102,Ei) +

103 10−3 1 0 �

103 10−2 100 0 •
103 3 · 10−4 0.1 0 △

1 1 1 TK(Q = 103,Ei) ▽

1 10 100 TK(Q = 103,Ei) ♦

1 0.3 0.1 TK(Q = 103,Ei) D

10 0.1 1 TK(Q = 103,Ei) ×
104 10−4 1 0 N

1 1 1 TK(Q = 104,Ei) ∗

TABLE I. Parameters and symbols used in Figs. 2 and 3.
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FIG. 3. Shear contribution Tγ̇ = TK − T0 to the kinetic
temperature measured in underdamped samples vs. QEi.
(▽) Data at T0 = 0.2. The line represents Tγ̇ = 0.15 ·Q · Ei.

fers from room temperature [23]; temperature rises have
also been borne out experimentally in shear bands in
compressed BMG [2, 3] (incidentally, note that a negative
rate-dependence of the stress, known as “rate-weakening”,
has also been reported in these materials [24]). For “dry”
systems, heat is actually removed faster in simulations
than in experiments, where its extraction must proceed
through the boundaries [25]. Besides, nonmonotonic flow
curves are not a marginal effect of the DPD thermostat;
they were also observed by Salerno with a weak Langevin
thermostat (see Fig. 2.3 of Ref. [26]).

Taking into account the heating of the sample, we pro-
pose to substitute, in the triplet (Q,Ei, T0), the reservoir
temperature T0 with the actual kinetic temperature of
the sample, TK ≡ 1

2N

∑N
i=1 mv2i . To assess the contribu-

tion Tγ̇ of the driving to TK , we assume that the kinetic
energy is mainly generated by plastic rearrangements,
during which the elastic energy 1

2ρΣ0γy per particle is
first converted into kinetic energy and then gradually
dissipated, over a timescale τdamp ≡ m/ζ in the under-
damped regime. Thus, the density of simultaneous events



4

is m/ζ · γ̇/γy, and we arrive at

Tγ̇ ≈
(

1

2ρ
Σ0γy

)

mγ̇

ζγy
≈ Σ0

2ρ
·Q · Ei.

The scaling law with Q · Ei is in very good agreement
with the numerical data at T0 = 0, as shown in Fig. 3,
as long as Q ≫ 1. The predicted (0.29) and measured
(0.15) prefactors differ by a factor of 2 precisely, probably
because the released energy is actually equipartitioned
between the kinetic and elastic degrees of freedom, as
for a harmonic oscillator. Furthermore, we observe a
Boltzmann distribution, parametrized by Tγ̇ , of kinetic
energies among the particles (Fig. 2 of the Supplemen-
tary Material), which confirms the status of Tγ̇ as the
sample temperature. This is consistent with the “quasi-
equilibrium” situation (at TK) reported by Xu et al. in
strongly-sheared athermal systems [27]. At finite T0, we
expect TK ≈ T0 + Tγ̇ , which is entirely compatible with
our (limited) dataset (Fig. 3).

Coming back to the underdamped flow curves, Fig. 2
gives ample evidence that the athermal flow curves at
any Q ≫ Qc(0) can be quantitatively reproduced by
thermostatting a less underdamped (but still inertial)
system, at Q′ < Q, to the shear-rate-dependent tem-
perature TK (Q,Ei) of the original system; this holds
true at T0 > 0 (data at T0 = 0.2 not shown). Put
differently, Σ(Q,Ei, T0) collapses onto a master curve
Σ̃ (Ei, TK (Q,Ei)), irrespective of the value of Q. Thus, Q
does not impact the underdamped rheology as the inertial
quality factor, but only via its control of TK (Q,Ei). It
follows that inertial vibrations and thermal fluctuations
have an analogous effect on the rheology: both are “ag-
itation” forces that precipitate rearrangements, but the
former increase with the shear rate, hence the severe rate-
weakening observed in strongly underdamped systems.
We should mention that rate-weakening is generally as-
sociated with a flow instability leading to shear-banding
[28, 29], but here we have not seen any banding of the
velocity profiles. We believe that this is due to the ra-
pidity of equilibration through thermal diffusion in small
systems, which impedes the coexistence of bands sheared
at different rates, thus (here) at distinct temperatures.

Chattoraj et al. [21], building on previous work by
Johnson and Samwer [20], propounded the following for-
mula for the temperature dependence of the stress,

Σ(γ̇, T0) = Σ(γ̇, T0 = 0)−AT
2/3 ln

(

BT
5/6
0

γ̇

)2/3

, (3)

where A and B are adjustable parameters. Substituting
T0 with TK = T0 + 0.15Q ·Ei and γ̇ with Ei in Eq. 3, we
obtain predictions in broad agreement with our data, as
shown in Fig. 2, as long as the flow remains underdamped
and at low enough TK .

These results do not imply that in underdamped sys-
tems inertia can be discarded in favor of temperature.

Indeed, the collapse onto Σ̃ (Ei, TK (Q,Ei)) breaks down
for Q < Qc(T0), which highlights the operativeness of an
inertial mechanism at Q > Qc(T0), responsible e.g. for
the scaling of the inverse attempt frequency (multiplied
by γ̇) with Ei, and not Wi. Still, it is noteworthy that the
collapse holds down to values of Q in the crossover region;
in particular, systems at Q = 1 display a macroscopic
rheology close to the fully overdamped one at T0 = 0,
while a scan through their higher-temperature response
gives access to the strongly underdamped rheology.

In summary, the variations of the macroscopic rheology
of a model disordered solid with damping strength ζ (or
particle mass m) can be collapsed into two flow regimes.
When Q ≡ Ei/Wi is smaller than a threshold Qc(T0), the
system is overdamped. It is widely accepted that foams,
concentrated emulsions, and dense colloidal suspensions
belong in this regime. At fixed T0, in particular T0 = 0,
the flow curves only depend on Wi, which proves that the
competition between the elastic interactions imposed by
the PEL and dissipation forces dominates the rheology
of these systems. This is compatible with the rheological
models proposed by us and others in [10, 11, 30, 31], but
rules out all explanations based on the transverse sound
velocity cs (which affects Ei and Q, but not Wi).

Such explanatory scenarios based on cs could be
valid in the (moderately) underdamped regime, at Q &

Qc(T0). As a noteworthy example, Lemaître and Caroli
[32] suggested the following scenario, later taken up and
revised in [33, 34] : avalanches of plastic events spread
at speed cs and their spreading is limited by the driving,
which generates independent plastic events. The ensuing
incomplete plastic relaxation explains the increasing flow
curve. However, the athermal MD system used in [32]
appears similar to ours with Q ≈ 0.2 < Qc(T0 = 0).

For even more strongly underdamped systems, at Q ≫
102, the flow curve becomes nonmonotonic at low bath
temperature. Surprisingly, this transition has never been
analyzed before, although the threshold for Q does not
seem unrealistically large: a crude estimate for a suspen-
sion of frictionless grains (of density ρ and radius a) in

a solvent of viscosity η gives Q ≈ 0.1a
√
ρΣ0

η . We showed
that variations in the inertial properties of the material
played no role per se in the transition; instead, the lat-
ter originates from the insufficient energy dissipation at
large Q, which causes the sample to heat up (and hence,
relax stress) all the more as the driving is fast, with the
scaling law Tγ̇ ∝ Q · Ei.

This rate-weakening mechanism is analogous to that
producing a shear-banding instability in the Soft Glassy
Rheology (SGR)’s variant proposed by Fielding et al.
[35]. In SGR, material subunits possess a (widely dis-
tributed) energy barrier for yielding, which decreases as
the material is loaded. Yielding is then activated by an
effective mechanical temperature x. In the variant of
Ref. [35], x is coupled to the local plastic activity and
thus increases with the shear rate. In a similar fashion,
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in the Shear Transformation Zone theory, the strain may
localize via a coupling between the strain rate and the
“configurational disorder temperature” [36]. The major
conceptual divergence between these approaches and our
observations in severely underdamped systems is the (ef-
fective or kinetic) nature of the temperature.

This difference echoes a vast debate in the metallic
glass community regarding the origin of the softening of
shear bands: does the band persist by softening because
of heat production, hence, higher local temperatures, or,
perhaps more probably, because of local configurational
changes (in free volume or density), while the tempera-
ture rise is but a side-effect [2, 3, 25]? Our findings do
not contribute to settling this question, but they do cer-
tainly call for a clarification of the description of damping
in rheological models.

Acknowledgments. We are grateful to Mark Rob-
bins for first mentioning the nonmonotonic inertial
flow curves, we acknowledge discussions with Kirsten
Martens, Kamran Karimi, and Claus Heussinger. The
simulations were carried out using the LAMMPS molec-
ular dynamics software. JLB is supported by Insti-
tut Universitaire de France and by grant ERC-2011-
ADG20110209.

∗ Present address: CAB, 8400 S.C Bariloche, Argentina.
[1] C. P. Amann, M. Ballauff, S. U. Egelhaaf, S. Fritschi,

M. Fuchs, M. Krüger, M. Laurati, K. J. Mutch,
K. Samwer, M. Siebenbürger, et al., arXiv preprint
arXiv:1302.2030 (2013).

[2] J. Lewandowski and A. Greer, Nature materials 5, 15
(2006).

[3] Y. Zhang, N. Stelmashenko, Z. Barber, W. Wang,
J. Lewandowski, and A. Greer, Journal of materials re-
search 22, 419 (2007).

[4] P. Schall, D. Weitz, and F. Spaepen, Science (New York,
N.Y.) 318, 1895 (2007).

[5] C. E. Maloney and A. Lemaitre, Physical Review E 74,
016118 (2006).

[6] J. Chattoraj, C. Caroli, and A. Lemaitre, Physical Re-
view E 84, 011501 (2011).

[7] V. Bulatov and A. Argon, Modelling and Simulation in
Materials Science and Engineering 2, 167 (1994).

[8] M. L. Falk and J. S. Langer, Physical Review E 57, 7192
(1998).

[9] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates,
Physical Review Letters 78, 2020 (1997).

[10] P. Hébraud and F. Lequeux, Physical Review Letters 81,
2934 (1998).

[11] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Phys-
ical Review E 71, 010501 (2005).

[12] M. Fuchs and M. E. Cates, Physical Review Letters 89

(2002).
[13] F. Puosi, J. Rottler, and J.-L. Barrat, Physical Review

E 89, 042302 (2014).
[14] A. Nicolas, F. Puosi, H. Mizuno, and J.-L. Barrat, Jour-

nal of the Mechanics and Physics of Solids 78, 333 (2015).

[15] K. M. Salerno, C. E. Maloney, and M. O. Robbins, Phys-
ical Review Letters 109, 105703 (2012).

[16] K. M. Salerno and M. O. Robbins, Physical Review E
88, 062206 (2013).

[17] C. P. C. Prado and Z. Olami, Physical Review A 45, 665
(1992).

[18] T. Soddemann, B. Dünweg, and K. Kremer, Physical Re-
view E 68, 046702 (2003).

[19] R. A. Bagnold, in Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sci-

ences (The Royal Society, 1954), vol. 225, pp. 49–63.
[20] W. L. Johnson and K. Samwer, Physical Review Letters

95, 195501 (2005).
[21] J. Chattoraj, C. Caroli, and A. Lemaitre, Physical Re-

view Letters 105, 266001 (2010).
[22] D. Evans and G. Morriss, Chemical physics 87, 451

(1984).
[23] W. Losert, L. Bocquet, T. C. Lubensky, and J. P. Gollub,

Physical Review Letters 85, 1428 (2000).
[24] A. Dubach, F. Dalla Torre, and J. Löffler, Philosophical

magazine letters 87, 695 (2007).
[25] N. P. Bailey, J. Schiøtz, and K. W. Jacobsen, Physical

Review B 73, 064108 (2006).
[26] K. Salerno, Ph.D. thesis, The Johns Hopkins University

(2013).
[27] N. Xu and C. S. O’Hern, Physical review letters 94,

055701 (2005).
[28] J. Yerushalmi, S. Katz, and R. Shinnar, Chemical Engi-

neering Science 25, 1891 (1970).
[29] N. Spenley, X. Yuan, and M. Cates, Journal de Physique

II 6, 551 (1996).
[30] A. Nicolas, K. Martens, and J.-L. Barrat, EPL (Euro-

physics Letters) 107, 44003 (2014).
[31] Agoritsas, E., Bertin, E., Martens, K., and Barrat, J.-L.,

Eur. Phys. J. E 38, 71 (2015).
[32] A. Lemaitre and C. Caroli, Physical review letters 103,

065501 (2009).
[33] C. Fusco, T. Albaret, and A. Tanguy, The European

Physical Journal E 37, 1 (2014).
[34] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Proceedings

of the National Academy of Sciences 111, 14382 (2014).
[35] S. Fielding, M. Cates, and P. Sollich, Soft Matter 5, 2378

(2009).
[36] M. L. Manning, J. S. Langer, and J. M. Carlson, Physical

Review E 76, 056106 (2007).


