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Sequential pattern mining on multimedia data

Corentin Hardy, Laurent Amsaleg, Guillaume Gravier,
Simon Malinowski and René Quiniou

IRISA/Inria Rennes, France

Abstract. Analyzing multimedia data is a challenging problem due to
the quantity and complexity of such data. Mining for frequently recurring
patterns is a task often ran to help discovering the underlying structure
hidden in the data. In this article, we propose audio data symbolization
and sequential pattern mining methods to extract patterns from audio
streams. Experiments show that this task is hard and that the symbol-
ization is a critical step for extracting relevant audio patterns.

1 Introduction

The amount of multimedia data grows from day to day with ever increasing
acquisition and storage capabilities. In turn, analyzing such complex data to
extract knowledge is a challenging problem. For instance, analysts are looking
for methods that could help to discover the underlying structure of multimedia
documents such as video or audio streams. Unsupervised extraction of recurrent
patterns and finding their occurrences in the data could provide such a seg-
mentation and could achieve a first step towards the automatic understanding
of multimedia data. In an audio stream, a word, a jingle, or an advertisement
could typically represent a pattern. However, the variability of audio motifs
makes pattern mining difficult, especially audio motifs related to words, since
the variability due to different speakers and channels is high.

Overall, the extraction of repeated motifs in time series is a very active
domain. Two kinds of approaches have been proposed: the first one consists in
working directly with the time series and in finding close sub-sequences based
on a distance measure such as the Euclidean or the Dynamic Time Warping
(DTW) [1] distances. The second one consists in transforming the time series
into sequences of symbols to then use sequential motif discovery algorithms [2].
Very few works have investigated the second approach; this preliminary work
thus explores how to use sequential pattern mining algorithms on audio data.

This paper is organized as follows. In Section 2, we review the related work
about motif discovery in audio data. In Section 3, we explain our proposed
approach. Section 4 presents preliminary results and section 5 concludes and
discusses future issues for this work.

2 Related work

Motif discovery relies either on raw time series processing or on mining a symbolic
version [3,4,5]. In the first kind of approaches, algorithms are mostly built on



the DTW distance which can deal with temporal distortions that often occurs
in audio signals [6]. Muscariello et al. [7] have proposed an extended version of
the DTW for finding the best occurrence of a seed in a longer subsequence. This
kind of approaches is efficient in terms of accuracy as the signal is completely
exploited but the computational cost of the DTW distance prevents its use on
very large databases.

Other approaches working with a symbolized version of the audio signal
mostly use algorithms from bioinformatics to extract motifs. In [8], the MEME
algorithm [9] is used to estimate a statistical model for each discovered motif.
In [10], the SNAP algorithm [11] is used to search by query near-duplicate video
sequences.

Some algorithms coming from bioinformatics are very efficient, but have been
optimized to work with alphabets of very small size (from 4 to 20). In this paper,
we consider the use of sequential pattern mining algorithms for discovering motifs
in audio data.

3 Pattern mining on audio data

In this section, we explain how we used sequential pattern mining algorithms
to discover repeating patterns in audio data. As pattern mining algorithms deal
with symbolic sequences, we present first how to transform time series related to
audio data into symbolic sequences. Then we show how to use sequential pattern
algorithms on symbolic sequences.

MFCC (Mel-frequency cepstral coefficients) is a popular method for repre-
senting audio signals. First, MFCC coefficients are extracted from the raw audio
signal (with a sliding window) yielding a 13-dimensional time series. Then, this
multivariate time series is transformed into a sequence of symbols. Many meth-
ods have been proposed for transforming time series into a sequence of symbols.
Here, we have chosen to use a method proposed by Wang et al. [12]. We have
also tried the very popular SAX approach [2]. SAX symbols contain very few
information about the original signal (only the average value on a window). This
symbolisation technique is less adapted to our problem and produced worse re-
sults.

To this end, each dimension of the 13-dimensional time series is divided into
consecutive non-overlapping windows of length λ. The 13 sub-series related to the
same window are then concatenated (respecting the order of the MFCC data).
The resulting vectors of size 13 × λ are then clustered by a k-means algorithm
for building a codebook, each word in the codebook corresponding to a cluster.
Finally, the original multivariate time series is coded into a sequence of symbols
by assigning to each window the symbol in the codebook corresponding to the
closest cluster centroid. This symbolization process is sketched in Figures 1a
and 1b.

The representation above could be too imprecise as it mixes coefficients of
very different order. To cope with this problem we propose to divide the 13
dimensions into 2 or more sub-bands of consecutive dimensions that represent
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(a) K-means clustering is performed on
the set of windows to build a codebook
(of size 6, here).

(b) Every window is labeled by the sym-
bol associated with the closest cluster
centroid.

EBACEDDCCA
I F F G J F HG J H

...

(c) Conversion of a 2 sub-band times series into a sequence of itemsets using 2 codebook
of size 5.

Fig. 1: Time series symbolization into a sequence of items (figures 1a and 1b)
and a sequence of itemsets (figure 1c).
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more closely related dimensions. The same transformation described above op-
erates on sub-bands and yields one codebook per sub-band. There are thus as
many symbolic sequences as there are sub-bands. Finally, the sub-band symbols
related to the same windows are grouped into itemsets in the Figure 1c.

Once the raw signal is transformed into a symbolic sequence of items or
itemsets, classical sequential motif discovery algorithms can be applied. Two
kinds of sequential pattern discovery algorithms have been proposed: algorithms
that process sequences of items and algorithms that process sequences of itemsets
(an itemset is a set of items that occur in a short time period). We have chosen
to evaluate one algorithm of each kind in this paper: MaxMotif [13] and CMP-
Miner [14] that process respectively sequences of items and sequences of itemsets.

Note that, in the classical setting of sequential pattern mining, a pattern oc-
currence may skip symbols in the sequence. For instance, acccb is an occurrence
of pattern ab in sequence dacccbe. Generally, algorithms provide means to put
constraints on extracted motifs, such as minimum and maximal motif length
and the allowed gaps; gaps are symbols that can be skipped when looking for a
pattern occurrence. In our application, it is crucial to allow gaps in motifs since
temporal distortions often occurs in audio signals.

MaxMotif enumerates all frequent (with respect to a given minimal support)
closed patterns in a database of item sequences. MaxMotif allows gaps in the
temporal domain (represented by the wildcard symbol −). For instance, pattern
(f − a) occurs in sequence (efcaefbaab) at positions 2 and 6.

CMP-Miner extracts all frequent closed patterns in a database of itemset
sequences. It uses the PrefixSpan projection principle [15] and the BIDE bidi-
rectional checking [16]. CMP-Miner allows gaps both in the temporal domain

and inside an itemset. For instance, pattern
(
b − c −
f − g j

)
occurs in sequence(

e b a c e b d c c a
i f f g j f h g j h

)
at positions 2 and 6.

The parameters of the two methods are described in Table 1.

Table 1: List of parameters
Methods Symbolization Parameters for mining
MaxMotif α, size of codebook. minSupport, minimal support.

λ, length of windows. maxGap, maximal gap between
2 consecutive items in a pattern.
maxLength, maximal pattern length.
minLength, minimal pattern length.

CMP-Miner α, size of codebook. minSupport, minimal support.
λ, length of windows. maxGap, maximal gap between

2 consecutive itemsets in a pattern.
β, number of bands. minItem, minimal number of items in itemsets.

maxLength, maximal pattern length.
minLength, minimal pattern length.
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4 Experiments

We present in this section some results from two experiments, one on a synthetic
dataset and the other on a real dataset.

4.1 Experiment on a synthetic dataset

In this first experiment, we have created a dataset composed of 30 audio sig-
nals corresponding to 10 utterances of the 3 words “affaires”, “mondiale” and
“cinquante” pronounced by several French speakers. Our goal is to evaluate the
impact of the codebook size on the extracted motifs. The two algorithms pre-
sented above have been applied on this dataset with the following parameters:
λ = 5, minSupport = 4, maxGap = 1, minLength = 4, maxLength = 20. For
CMP-Miner we set β = 3 and minItem = 2. These parameter settings were
chosen after extensive tests on possible value ranges.

First, sequential patterns are extracted. Then, we associate with each pattern
the word in the utterances of which this pattern most often occurs. For each
extracted pattern, a precision/recall score is computed. Figure 2a and 2b depict
the precision/recall score versus the codebook size for MaxMotif and CMP-
Miner. As can be seen, MaxMotif obtains the best efficiency. This figure also
shows that when the codebook size increases, the precision improves slightly but
not the recall.

Figure 2c shows the pattern length distribution for different codebook sizes
for MaxMotif. For small codebooks, many long patterns are extracted. How-
ever, they are not very accurate because, being general, they can occur in many
different sequences. For big codebooks, many pattern candidates can be found,
reflecting sequence variability. However, many candidates have a low support,
often under the minimal threshold, and, so, less patterns are extracted.

The symbolization step is crucial. Figure 2d shows five symbolic representa-
tions of the word “cinquante” for a codebook of size 15. These strings highlight
the two kinds of variability (spectral and temporal) that makes the task hard for
mining algorithms in this example. The same experiment was performed using
the SAX symbolization method [2] on each dimension of the multidimensional
times series. This representation revealed to be less accurate. Indeed, the results
obtained by CMP-Miner using the SAX representation were worse. There is no
space to detail these results here.

4.2 Experiment on a larger database

Now, we consider a dataset containing 7 hours of audio content. The dataset is
divided into 21 audio tracks coming from various radio stations. This experience
is closer to a real setting.

Only MaxMotif has been tested on this dataset. The parameters were: λ = 4,
α = 80, minSupport = 40, maxGap = 1, minLength = 5, maxLength = 20.
The codebook size is greater than in the previous experiment to deal with more
different sounds. Pattern extraction is very fast: less than 4 minutes for more
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(a) Precision/Recall curves for MaxMotif. (b) Precision/Recall curves for CMP-Miner
with 3 sub-bands.

(c) Pattern size distribution for different
size of codebook.

(d) Example of representation for
a codebook of size 15.

Fig. 2: Results of experience on synthetic data.

than one million of patterns. Some of them are interesting and correspond, for
instance, to crowd noises, jingle and music patterns or short silence. However,
similarly to the experiment on the synthetic dataset, only very few patterns
corresponding to repeated words could be extracted.

5 Conclusion

In this paper, we have presented a preliminary work investigating how to use
sequential pattern mining algorithms for audio data. The aim of this work was
to evaluate whether these algorithms could be relevant for this problem. The
experiments pointed out the difficulty to mine audio signals, because of temporal
and spectral distortion. Same words pronounced in different contexts and by
different speakers can be very different and yield very different patterns. The
results are promising but both symbolization and motif extraction should be
improved. For instance, to account for spectral variability, considering distances
between symbols should improve the overall performance of pattern extraction.
We have also noticed that all the dimensions of the MFCC times series are

6



not as important for the discovery. Selecting or weighting the dimensions of
multidimensional time series could improve the performance too.
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