
HAL Id: hal-01186414
https://hal.science/hal-01186414

Submitted on 14 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Lattice Boltzmann investigation of droplet inertial
spreading on various porous surfaces

Xavier Frank, Patrick Perre, Huai-Zhi Li

To cite this version:
Xavier Frank, Patrick Perre, Huai-Zhi Li. Lattice Boltzmann investigation of droplet inertial spreading
on various porous surfaces. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2015,
91 (5), �10.1103/PhysRevE.91.052405�. �hal-01186414�

https://hal.science/hal-01186414
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 91, 052405 (2015)

Lattice Boltzmann investigation of droplet inertial spreading on various porous surfaces

Xavier Frank*

IATE, INRA-CIRAD-UMII-SupAgro, 2 place Pierre Viala, 34060 Montpellier, France

Patrick Perré

École Centrale Paris, LGPM, Grande Voie des Vignes, 92290 Châtenay-Malabry, France

Huai-Zhi Li
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The spreading of liquid drops on solid surfaces is a wide-spread phenomenon of both fundamental and industrial

interest. In many applications, surfaces are porous and spreading patterns are very complex with respect to the

case on smooth surfaces. Focusing on the inertial spreading just before the Tanner-like viscous regime, this

work investigates the spreading of a low-viscosity droplet on a porous surface using lattice Boltzmann numerical

simulations. The case of a flat surface is first considered, and it reveals a dependence on the solid equilibrium

contact angle θ eq
s , which is in good agreement with published experimental data. We conducted numerical

experiments with various surfaces perforated by a regular pattern of holes of infinite length. The results show

that the global spreading dynamics is independent of the porosity morphology. Through the assumption that,

for wetting, the pores can be regarded as surface patches with a contact angle of θ eq
pore = 180◦, we deduce an

effective equilibrium contact angle θ
eq

eff on the porous surface from the Cassie-Baxter law. A spreading model is

then proposed to describe both a prefactor and an exponent that are similar to a flat surface whose equilibrium

contact angle is θ
eq

eff . This model compares satisfactorily with a large number of numerical experiments under

varying conditions.

DOI: 10.1103/PhysRevE.91.052405 PACS number(s): 68.08.−p, 47.55.dr, 47.55.nb, 47.56.+r

I. INTRODUCTION

The spreading of liquid drops on solid surfaces is of both

fundamental and industrial interest. In many applications,

surfaces are porous or covered with a thin porous layer.

The presence of a porous layer modifies the wettability of

the substrate and, hence, the spreading patterns [1,2]. The

spreading of liquid drops on porous media is a wide-spread

phenomenon [3] involved in natural and industrial processes

such as ink jet printing [4], adhesion, coating [5,6], lubrication,

detergency, plant treatment, composite manufacturing, paint-

ing, and oil recovery. This topic has received much attention

from researchers [7–13]. To the best of our knowledge, the un-

derstanding of the underlying mechanisms of drop spreading

on a porous surface remains limited, in particular with respect

to spreading on a smooth surface. Earlier investigations were

mainly devoted to viscous wetting, and most modeling and

simulation approaches were performed within the framework

of a continuous porous material, pore-scale approaches being

quite rare [14–16]. Long-term spreading dynamics, arising

from a competition between capillarity and viscosity both

inside and outside the porous material, are preceded by an

initially faster spreading. The spherical cap-shaped droplet

approximation fails to describe this short-term spreading.

Recently, both the inertial spreading dynamics and capillary

invasion of pores were investigated by means of numerical

simulations [15]. However, the dependence of spreading

dynamics on the porosity remains quite qualitative in this

study. The present paper aims to address this point with the
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help of lattice Boltzmann (LB) numerical experiments. We

will focus on simple porous substrate models, in which pore

space is made of parallel holes of infinite length.

II. NUMERICAL METHOD

The LB method is a computational fluid dynamics approach

derived from nonequilibrium statistical physics [17–20], and it

has been successfully applied to multiphase flows and wetting

problems since the early 1990s [21–25]. In the LB framework,

the fluid is described at the particle kinetics level. Particle

probability density functions (PPDFs) are defined, from which

hydrodynamic quantities can be deduced. The Navier-Stokes

equation can be recovered from the LB equation [18,26,27].

A no-slip boundary condition is imposed using the well-

known bouncing-back method, in which incoming particles

are reflected back toward the direction from which they

came. Among multiphase LB approaches, pseudopotential

methods are appealing due to their simplicity, and they

have provided valuable results in various fields, such as

droplet dynamics [28,29], capillary filling [25,30,31], porous

media [32], microfluidics [33,34], colloidal fluids [35], contact

line dynamics [36], complex fluid-fluid interfaces [37], and

wetting phenomena [38–41].

In the present study, gas-liquid flows are simulated with

the help of the well-known Shan-Chen pseudopotential ap-

proach [42]. The velocity used to compute equilibrium distri-

butions is modified according to a local fluid-fluid force that

emerges from interactions between neighboring fluid particles.

A liquid phase and a vapor phase emerge spontaneously within

this framework. Liquid density ρL, vapor density ρV , and

surface tension σ depend on the magnitude of fluid attraction
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FIG. 1. (Color online) Scheme of a droplet spreading numerical

experiment. A nonporous surface is used as an example. A: perspec-

tive view of the initial state. The solid surface is in the xy plane, and

both the xz and yz symmetry planes are shown. B1: definition of the

droplet radius R. B2: definition of the spreading radius r .

in the Chen-Shan model. An interface is located at the middle

of the transition from ρG to ρL, where density ρ reaches the

value ρM = (ρG + ρL)/2.

In this study, Martys and Chen’s fluid-solid pseudopoten-

tial [43] describes interactions between fluid particles and the

solid. The equilibrium contact angle θ
eq
s depends on the magni-

tude of both fluid-fluid and fluid-solid local interactions in the

Chen-Shan model. Please see the previous works [24,42,43]

for more details about the numerical approach.

III. NUMERICAL SETUP

We employ symmetries through the xz and yz planes to

reduce the demand for numerical resources (Fig. 1, panel A).

As a consequence, the initial position of the droplet center has

to be placed on the z axis. The initial z position of the droplet

center of mass is fixed to place the bottom of the liquid phase at

the middle of z range. Simulation box dimensions are fixed to

180 × 180 × 450, and the initial droplet diameter is set to 190.

Simulations are conducted without gravity, and the wettability

of the solid is defined using the solid equilibrium contact

angle θ
eq
s . First, the droplet is equilibrated during 10 000 LB

iterations without any solid node in the simulation box. The

equilibrated droplet radius R, which is slightly different from

the initial radius, has to be measured at the final state of this

equilibrating phase (Fig. 1, panel B1). Then, the solid nodes are

introduced in the simulation box, with a solid position adjusted

in such a way that the droplet interface slightly touches the

solid phase. To compute the radius of the droplet’s footprint

r (Fig. 1, panel B2), a density profile is extracted from a

z,x = const. line, just above the solid surface. This specific

position is chosen to extract the density profile only above the

solid, and not above the pores. Wetting simulation runs during

15 000 iterations, and the spreading radius r is computed and

saved at each time step.

IV. SPREADING ON FLAT SURFACES

First, numerical spreading experiments are conducted with

flat surfaces. As spreading dynamics can depend significantly

on liquid viscosity μL [44], it is crucial to compare the

magnitude of inertial and capillary forces with that of viscous

forces. In the present work, the value of the Laplace number

La = ρLσR

μL
2 is La = 135 (in other words, the Ohnesorge number

is Oh = 1/
√

La = 8.6 × 10−2), compared with the La values

in the Bird et al. study [45], which ranged from 130 to 72 000.

As La ≫ 1 we can then consider that the droplet is of low

viscosity in our simulations. In such a case, the three following

steps can be identified within droplet spreading dynamics [46]:

a first step, independent of wettability, in which the spreading

radius scales as r ≈ t1/2, a second step, in which the spreading

dynamics depend on the solid equilibrium contact angle

[45–47], and, finally, a slow viscous step [48]. The first step is

not observed in our numerical simulations, as a consequence

of grid resolution limits, and only the intermediate regime is

studied in the present work. Under such conditions, the inertial

dynamics of droplet spreading is dominated by the propagation

of a capillary wave from the bottom to the top of the droplet

interface [45]. As a consequence, the time scale τ of inertial

spreading is τ =
√

ρLR3/σ . The normalized spreading radius

r/R is deduced from r using R as the length scale, and it is

plotted as a function of t/τ for 5 values of the equilibrium

contact angle θ
eq
s (Fig. 2).

Strictly speaking, only the first inertial regime ( t
τ

� 0.04)

can be characterized by a power law [46], and the intermediate

regime (0.04 � t
τ

� 2) is a crossover between the early inertial

spreading and the viscous regime. However, as shown by Bird

et al., a power law is a good approximation for low viscosity
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FIG. 2. Normalized spreading radius on a flat surface as a

function of dimensionless time for various surface equilibrium contact

angles. Each curve is fitted using a power law [Eq. (1)]. Insets

are power law parameters as functions of the contact angle. Left

inset: power law prefactor, right inset: power law exponent. In each

inset, empty markers are experimental results from Bird et al. [45],

full markers are values deduced from our numerical simulations,

and lines are models of the power law prefactor and exponent,

C(θ eq
s ) = 1.468 − 0.00631 × θ eq

s and α(θ eq
s ) = 0.485 − 0.00102 ×

θ eq
s , respectively. The theoretical duration of inertial spreading is

underlined with a vertical line.
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FIG. 3. Pore lattices used. C-S: square lattice of circle-sectioned

pores, C-CS: centered square lattice of circle-sectioned pores, S-S:

square lattice of square-sectioned pores. A unit cell is underlined with

dashed lines. Both the pore period λ and pore size dpore are shown for

each case.

droplet spreading dynamics in this intermediate phase [45].

This power law approximation is expressed as

r

R
= C

(

t

τ

)α

, (1)

where α is the power-law exponent and C is the prefactor,

which is in good agreement with the experimental results [45].

The evolution of the power law prefactor C(θ
eq
s ) and exponent

α(θ
eq
s ) with θ

eq
s , shown in Fig. 2 as insets, has to be underlined

and compared with earlier experimental results. Both decrease

with θ
eq
s , which is in agreement with the experiments from

Bird et al. [45]. The duration of inertial spreading [49] can

be easily calculated from τ as T ≈ (ρLσR/μL
2)1/8τ . Bird

et al. showed that the duration of the inertial regime does not

depend significantly on the equilibrium contact angle [45]. In

the present study, the evaluation leads to T ≈ 1.84τ , which is

in good agreement with our numerical simulations (Fig. 2).

V. SPREADING ON POROUS SURFACES

We consider now surfaces perforated by a regular pattern

(square or centered square lattice) of holes of infinite length.

Between neighboring cylindrical pores, solid walls are effec-

tive to avoid any liquid communication. Surface porosity is

defined as ǫ = Spores/λ
2; Spores is the sum of the transversal

sections of all pores belonging to one lattice cell, and λ is

the lattice period. The higher is the porosity, the lower is the

driving force of spreading. As a consequence, the spreading

dynamics are expected to slow down as ǫ increases. However,

the porosity of a surface can be distributed in various ways:

small pores with high numerical density or larger pores with

lower numerical density, or various pore lattices and various

pore section shapes. Do these details matter or not? If this is

not the case, the spreading dynamics will depend only on ǫ

regardless of the pore section shape, the pore lattice unit cell

pattern, or the pore lattice period. To clarify this point, porous

surfaces are built up using various geometrical parameters

for both square and centered square lattices of circle-sectioned

pores, and the square lattice of square-sectioned pores (Fig. 3).

For each kind of lattice, the geometry of the porous surface

is completely defined by the pore size dpore (diameter for circle-

sectioned ones and side for square-sectioned ones) and spatial

period λ. Porosity ǫ is easily computed from dpore and λ.

Surface parameters are summarized in Table I. As an example,

a perspective view of one solid phase is shown in Fig. 4.

Numerical spreading experiments are conducted in the

same way as for flat surfaces. The surface porosity leads to

TABLE I. Parameters of pore lattices: pore lattice type, pore size

dpore, and pore period λ, which is deduced the surface porosity ǫ. Both

dpore and λ in lattice units (l.u.).

Pore lattice dpore λ ǫ

C-S 10 20 0.20

C-S 10 30 0.087

C-S 10 40 0.049

C-S 20 30 0.35

C-S 20 40 0.20

C-S 30 40 0.44

C-CS 10 30 0.18

C-CS 20 40 0.39

S-S 10 20 0.25

S-S 20 40 0.25

S-S 20 30 0.44

S-S 30 40 0.56

a greater complexity of the gas-liquid interface close to the

solid surface: the solid-liquid-vapor triple line is no longer

circular, but exhibits oscillations (Fig. 5). Liquid spreads

on the solid surface and crosses the pores. Imbibition can

start after the pore opening has been covered by the liquid

interface. As expected, pores are invaded when θ
eq
s < 90◦, not

when θ
eq
s > 90◦ (Fig. 6). Both droplet height evolution and

droplet volume variation emerge from a competing mechanism

between spreading on the solid phase of the surface and

capillary imbibition inside the porous medium. Such a point

was detailed in an earlier paper [15] and is not developed here.

The spreading dynamics are normalized as for flat surfaces,

by means of R and τ (Fig. 7). Compared with the case of

FIG. 4. (Color online) Perspective view of the solid phase. The

square lattice of circular section pores; the pore diameter is dpore =
20 l.u., and the pore lattice spatial period is λ = 30 l.u. A small part

of the solid phase is removed to facilitate the visualization.
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FIG. 5. (Color online) Snapshot of a droplet spreading simula-

tion on a porous surface. The square lattice of circular section pores;

the pore diameter is dpore = 20 l.u., the pore lattice spatial period

is λ = 30 l.u., and the intrinsic solid equilibrium contact angle is

θ eq
s = 77◦.

a flat surface, successive accelerations and decelerations can

be observed as the three-phase contact line crosses the pores.

Clearly, the spreading radius dynamics are similar to a power

law, despite these oscillating phenomena.

FIG. 6. (Color online) Snapshot of droplet spreading simulation

on a porous surface with two values of the intrinsic solid equilibrium

contact angle, the solid phase being removed. The square lattice of

circular section pores; the pore diameter is dpore = 20 l.u., and the

pore lattice spatial period is λ = 30 l.u.

0.2

2
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FIG. 7. Normalized radius of the wetted zone as a function of

dimensionless time during droplet spreading on two porous surface

pairs of porosity, ǫ = 0.20 and ǫ = 0.44, respectively, and with the

solid equilibrium contact angles θ eq
s = 41◦ and θ eq

s = 112◦. Both dpore

and λ in lattice units (l.u.).

As expected, spreading slows down when θ
eq
s increases for

a given porosity, or when porosity increases, θ
eq
s being fixed

(Fig. 7). Surprisingly, the global spreading dynamics do not

depend on how the porosity is distributed over the surface.

Increases in θ
eq
s and ǫ induce similar evolutions of spreading

dynamics, and a global model, including both parameters,

should be attainable.

The simplest approach to consider both the contact angle

and morphology of a complex surface in a single law is

to assume that the surface behaves as an equivalent smooth

surface. Such a description leads to the famous Cassie-Baxter

law [50]. Considering a composite surface involving two mate-

rials with two different equilibrium contact angles, the surface

is supposed to exhibit an effective homogeneous equilibrium

contact angle θ
eq

eff , depending on both the intrinsic equilibrium

contact angle and the proportion of basic materials. In the

present case, we have a solid phase with an equilibrium

contact angle θ
eq
s and a surface fraction (1 − ǫ), and a pore

phase with equilibrium contact angle θ
eq
pore and surface fraction

ǫ. Using these assumptions, an effective equilibrium contact

angle θ
eq

eff (θ
eq
s ,ǫ) could be deduced from the Cassie-Baxter law

as follows:

cos θ
eq

eff = (1 − ǫ) cos θ eq
s + ǫ cos θ eq

pore. (2)

Effective power-law parameters can stem from the computed

values of θ
eq

eff , as if the porous surface is an equivalent smooth

solid surface with equilibrium contact angle θ
eq

eff :

Ceff

(

θ eq
s ,ǫ

)

= C
(

θ
eq

eff

)

, (3)

αeff

(

θ eq
s ,ǫ

)

= α
(

θ
eq

eff

)

. (4)

The application of the Cassie-Baxter law to our case requires

θ
eq
pore to be fixed. A simple hypothesis can then be proposed:
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FIG. 8. Normalized spreading radius on various porous surfaces

with various intrinsic solid equilibrium contact angles vs the predic-

tion of the proposed effective spreading law with θ eq
pore = 180◦. Pore

lattices are square lattice of circle-sectioned pores (C-S), centered

square lattice of circle-sectioned pores (C-CS), and square lattice of

square-sectioned pores (S-S). Both dpore and λ in lattice units (l.u.).

For each of the 12 pore lattices, 5 values of θ eq
s were used (cf. Fig. 2),

which means a total of 60 curves.

as long as a pore is not invaded by liquid, it remains an

obstacle to global spreading. Thus, θ
eq
pore = 180◦ seems to be a

straightforward hypothesis.

To compare our effective law with the numerical results,

we plot the ratio r/R as a function of Ceff(t/τ )αeff , t/τ being

a curve parameter (Fig. 8). Concretely, for each simulation,

θ
eq

eff is computed as a function of both θ
eq
s and ǫ, and effective

power-law parameters Ceff and αeff are deduced from linear fits

of values extracted from the numerical simulation of droplet

spreading on a smooth surface (Fig. 2). Despite oscillations,

it is clear that the spreading radius dynamics from numerical

simulations are similar to a power-law whose prefactor and

exponent are predicted by the Cassie-Baxter law. Moreover,

various curves fit this simple effective law well, although the

proposed spreading law does not explicitly take into account

the distributed pattern of porosity on the surface. Only the pore

fraction matters whatever its distribution. The global behavior

of the droplet is very close to that on an equivalent smooth

surface.

Recently, Stapelbroek et al. conducted droplet spreading

experiments with various complex solid surfaces, such as

microtextured and chemically striped substrates [51]. In this

study, the data collapse of the crossover time between the

early inertial spreading and intermediate regime could be

achieved using only a single parameter, the effective contact

angle, regardless of the details of the substrate. Such result

corroborates our findings. To overcome the energy barriers in

the presence of topographic or chemical patterns that lead to

a spatial variation of the local surface energy, an additional

source of energy is required in the vicinity of the contact

line. This energy must come from the kinetic energy of

the flow inside the droplet. As a consequence, it could be

reasonably argued that the balance between the kinetic energy

of the spreading drop and the surface energies is a relevant

mechanism, and that the details of a complex surface play a

minor role in the inertial spreading global dynamics. Of course,

such a picture is no longer valid in the viscous regime [47].

VI. CONCLUSIONS

In summary, we have proposed a droplet spreading law on

porous surfaces, including both the intrinsic solid contact angle

and surface porosity. Lattice Boltzmann numerical simulations

were performed for smooth surfaces with various equilibrium

contact angles and the predicted power law for spreading

dynamics compares favorably with published experimental

results. Simulations with various porous surfaces and solid

equilibrium contact angles show that increasing porosity slows

down spreading in the same way as increasing the equilibrium

contact angle for smooth surfaces. Assuming that pores

are perfectly nonwetting patches, we deduced an effective

equilibrium contact angle of the surface, and both the power

law prefactor and exponent from an effective equilibrium

contact angle are in satisfactory agreement with the simulation.
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