Three notions of tropical rank for symmetric matrices
Résumé
We introduce and study three different notions of tropical rank for symmetric matrices and dissimilarity matrices in terms of minimal decompositions into rank 1 symmetric matrices, star tree matrices, and tree matrices. Our results provide a close study of the tropical secant sets of certain nice tropical varieties, including the tropical Grassmannian. In particular, we determine the dimension of each secant set, the convex hull of the variety, and in most cases, the smallest secant set which is equal to the convex hull.
Nous introduisons et étudions trois notions différentes de rang tropical pour des matrices symétriques et des matrices de dissimilarité, en utilisant des décompositions minimales en matrices symétriques de rang 1, en matrices d'arbres étoiles, et en matrices d'arbres. Nos résultats donnent lieu à une étude détaillée des ensembles des sécantes tropicales de certaines jolies variétés tropicales, y compris la grassmannienne tropicale. En particulier, nous déterminons la dimension de chaque ensemble des sécantes, l'enveloppe convexe de la variété, ainsi que, dans la plupart des cas, le plus petit ensemble des sécantes qui est égal à l'enveloppe convexe.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...