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Abstract:  A solution to improve the formability of aluminium alloy sheets can consist in 

investigating warm forming processes. The optimization of forming process parameters needs a 

precise evaluation of material properties and sheet metal formability for actual operating 

environment. Based on the analytical M-K theory, a Finite Element (FE) M-K model was proposed 

to predict Forming Limit Curves (FLCs) at different temperatures and strain rates. The influences of 

initial imperfection value (f0) and material thermos-viscoplastic model on the FLCs are discussed in 

this work. The flow stresses of AA5086 were characterized by uniaxial tensile tests at different 

temperatures (20, 150 and 200°C) and equivalent strain rates (0.0125, 0.125 and 1.25 s−1). Three 

types of hardening models (power law model, saturation model and mixed model) were proposed 

and adapted to correlate the experimental flow stresses. The three hardening models were 

implemented into the FE M-K model in order to predict FLCs for different forming conditions. The 

predicted limit strains are very sensitive to the thermo-viscoplastic modeling of AA5086 and to the 

calibration of the initial geometrical imperfection which controls the onset of necking. 

Keywords: Sheet forming; Forming Limit Curves (FLCs); FE M-K model; Thermo-viscoplastic 

modeling; Aluminium alloys   
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1. Introduction 

Due to their high specific strength and stiffness, lightweight materials such as aluminium 

alloys have received a full attention to improve fuel economy in transportation industry. However, 

the poor formability of these materials at ambient temperature greatly limits their applications, 

especially for the manufacturing of components with complex shapes. Thanks to innovative warm 

forming techniques, the formability can be improved at elevated temperatures. During sheet metal 

forming process, the formability may depend on many factors like material properties and process 

conditions (strain path, strain rate, temperature,...). From literature, aluminium alloys become 

generally strain-rate dependent materials when temperature increases from ambient conditions to 

high values, above 150°C. Hence, characterizing the sheet metal formability at elevated 

temperatures and for a wide range of strain rates is essential for an efficient optimization of the 

forming process parameters. 

The prevalent technique to evaluate the sheet metal formability is the forming limit diagram 

(FLD). In the FLD, the forming limit curve (FLC) is a combination of minor and major strains 

corresponding to the onset of through-thickness necking localizations for different linear strain 

paths. The determination of FLCs has always been a worrying topic in the last decades with the 

development of experimental, analytical or numerical approaches. Two kinds of standard 

formability tests are proposed in the international standard: Nakazima (out-of-plane) stretching and 

Marciniak (in-plane) stretching tests. By forming specimens with different widths, the whole FLC 

with the limit strains covering the strain paths from uniaxial tension through plane strain tension to 

equibiaxial tension can be obtained. 



4 

 

In the literature, very few experimental works about the formability of aluminium alloy sheets 

combining both temperature and strain rate effects can be found. Naka et al. [1] established the 

FLCs of AA5083-O under different forming speeds (0.2 to 200 mm/min) and forming temperatures 

(20 to 300°C) with a Marciniak test setup. It was proved that the formability increased with the 

increasing temperatures and decreasing forming speeds. The formability (in terms of elongation) of 

AA5754, AA5182 and AA6111-T4 was studied by Li and Gosh [2] under different temperatures 

(200 to 350°C) and strain rates (0.015 to 1.5s-1). The total elongation in uniaxial tension was found 

to increase with temperature and decrease with increasing strain rate. In another work of Li and 

Ghosh [3], the formability of the above three aluminium alloys was studied from 200 to 350°C, at a 

strain rate of 1s-1. A positive temperature effect on the sheet formability was observed, but the 

intensity of the improvement depended on the alloy series. The Limit Drawing Ratio (LDR) of 

AA5754-O was investigated by Palumbo and Tricarico [4]. By comparing with ambient 

temperature, a noteworthy increase of LDR (44%) was obtained at a punch speed of 1 mm/min and 

at a temperature of 110°C in the blank center. The deep drawing and stretch formability of AA7075 

was investigated by Hui et al. [5] through the limiting drawing ratio test and the limit dome height 

test. It was found that the sheet formability could be significantly improved when the blank was 

heated to 140 - 220 °C while it began to decrease with temperatures over than 260 °C. 

The experimental evaluation of formability is a very time consuming procedure. Many 

predictive models of FLCs work at ambient temperature but very few studies concern the 

temperature and strain rate effects. A very extensive work was done by Abedrabbo et al. to develop 

a temperature-dependent anisotropic material model associated with a temperature and strain 

rate-dependent hardening model, for use in a coupled thermo-mechanical finite element analysis. 
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The model was developed for aluminium alloys AA3003-H111 [8], AA5182-O and AA5754-O [10]. 

With a user material subroutine, temperature-dependent Barlat YLD96 and Barlat YLD2000-2d 

yield functions were used to carry out a finite element analysis of stamping with hemispherical 

punch. Failure criteria used in the analysis were based on FLCs. The M-K model was used to 

calculate the different FLCs ([9], [10]) but only temperature was considered. Strain rate effect on 

FLCs was not evaluated. It was shown that two hardening models (power law and Voce) can give 

very different FLCs for the same imperfection value. The choice of the imperfection value was not 

discussed since the predictive FLCs were not compared with experimental ones. A constitutive 

model was chosen by Khan and Baig [7] to predict FLCs for AA5182 with temperature and strain 

rate effects but the study remains on the theoretical aspect, and without experimental validation and 

details concerning the calibration of the M-K model with the imperfection value. Recently, Chu et 

al. [6] have investigated experimentally the AA5086 formability at different temperatures (20 to 

200°C) and strain rates (from 0.02 to 2s-1) to discuss the validity of the well-known predictive M-K 

model. It was shown that a calibration step is essential to give a reliable prediction of this model. 

Indeed, the results are strongly dependent on the initial imperfection value which is defined to cause 

the onset of necking. Moreover, the model must include the thermo-viscoplastic behaviour of the 

material in order to give the reliable predictive FLCs. 

Over recent years, several thermo-viscoplastic constitutive models have been developed for 

computational mechanics. These models have been classified into two major groups: physical based 

models and phenomenological based models. For physical based models (Zerilli and Armstrong 

[11], Bergström [12], Nemat-Nasser and Li [13], Voyiadjis and Abed [14] or Rusinek and 

Klepaczko [15]), although they are derived from microstructure observation (e.g. dislocation 
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evolution theory), the material parameters are usually identified from macroscopic material tests. 

Considering the high number of material constants to be determined, their applications are limited. 

For the thermo-viscoplastic behavior of aluminium alloys, a modified physical based Bergström 

model was proposed by van den Boogaard and Bolt [16] to describe the flow stresses of AA5754-O 

under different temperatures (100, 175 and 250°C) and strain rates (0.002, 0.02s-1). The predictions 

agreed well with experimental data obtained from monotonic tensile tests. Vegter et al. [17] have 

presented an extended Bergström model to study the prediction of strain distribution on AA5182 

stretch forming parts. This extended model was also adopted by Palumbo and Tricarico [4] to study 

the formability of AA5754-O. Good correlation between numerical and experimental punch loads 

was obtained. An extended R-K model was used by Rusinek and Rodríguez-Martínez [18] to 

describe the negative strain rate behavior of AA5083-H116 at different strain rates (from 0.0004 to 

1300s-1) at ambient temperature. 

The phenomenological models provide a definition of the material flow stress based on 

experimental observations. Compared to physical based models, they usually present simple 

expressions with a reduced number of material constants. Their implementation into Finite Element 

(FE) codes is generally easy. Although their validity can be limited to a range of temperatures and 

strain rates due to their empirical nature, these models are widely used. They are usually based on a 

multiplicative formulation which includes strain, strain rate and temperature functions. Power law 

type models and saturation type (Voce’s type) models are frequently used for aluminium alloys. 

Abedrabbo et al. [9] have proposed a modified power law model to study the flow stresses of 

AA3003-H111 in a thermo-forming analysis at different temperatures (25 to 260°C) and strain rates 

(0.001 to 0.08s-1). The coefficients of the power law model were fitted as functions of temperature 
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and this model gave accurate punch load curves. By fitting uniaxial tensile test results, different 

formulations of Voce’s models were used to describe the flow stresses of three aluminium alloys 

(AA6016-T4, AA5182-O and AA5182) by Aretz [19]. Good correlations were obtained compared 

to experimental results. The true stress-strain response of AA5182-O was modeled by Khan and 

Baig [7] with a modified KHL model over a wide range of strain rates (10-4 to 1s-1) and 

temperatures (23 to 200°C). In all these studies, hardening laws are typically identified from simple 

tensile tests due to the difficulties in carrying out advanced tests at high strains (bulge tests, ...) for 

these conditions of temperature and strain rate. Limit homogeneous equivalent strain observed in 

tensile tests is generally below 20%, so a significant uncertainty remains on the identified law 

ability to describe behavior of the material for high strain levels and especially for forming limit 

predictions (up to 50%). 

In this work, to study the effect of the identified material hardening model uncertainty on the 

prediction of FLCs for an aluminium alloy 5086-H111, three very different constitutive models (a 

power law, a saturation and a mixed model) are chosen. Based on the flow stresses obtained from 

uniaxial tensile tests for a defined range of temperature and strain rate, the fitting parameters of the 

three models are identified. The hardening models are then implemented into a Finite Element 

model of the geometrical M-K model to determine FLCs for the same range of temperatures and 

strain rates. The numerical results are then compared to experimental FLCs obtained for the same 

conditions. Finally, the role of the hardening models coupled with the procedure of calibration of 

geometrical imperfection values of the M-K model is discussed. 

 

2 Identification of the AA5086 thermo-viscoplastic behaviour 
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2.1 Hardening models 

In order to describe the thermo-viscoplastic behaviour of AA5086, three very different types of 

hardening models are selected: a power law (Ludwick’s type) model, a saturation (Voce’s type) 

model and a mixed type (H-V) model. The H-V model, proposed by Sung et al. [20], incorporates a 

linear function ( )Tα  which gives power law a high weight for low temperatures and a predominant 

role of saturation behaviour at elevated temperatures. Based on the experimental stress-strain curves 

and by considering the evolution of the related parameters with forming temperatures and speeds, 

the final proposed hardening models are shown in Eq. 1 to Eq. 3. 

Ludwick’s model:  

( ) ( )0 1 0 1exp
0 0 1( ) ( ) n n T m m T

p pT K K Tσ σ ε ε−= + − &          (1) 

Voce’s model:  

( ) ( )( ) ( )2 3exp
0 3 4 5 6( ) exp 1 exp exp m m T

p pT K K T K K Tσ σ ε ε= + − − − &  (2) 

H-V model:  
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 Where pε and pε&
 
are respectively the equivalent plastic strain and the equivalent plastic 

strain rate. ( )0..9iK i = , ( )0..2in i =  and ( )0..5im i =  are material constants. 

0( )Tσ is the initial yield stress varying with temperatures. Its expression is given by: 

0 0( ) 1 exp 1 m
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   = − −   
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    (4) 

 Where 0σ =134.6MPa is the initial yield stress at ambient temperature, mT = 627°C is the 
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melting temperature andQ=0.556. 

2.2 Identification results 

To identify the AA5086 hardening behaviour, uniaxial tensile tests were carried out at different 

temperatures (20, 150 and 200°C) and tensile speeds (1, 10 and 100 mm/s). The details of the 

uniaxial tensile tests were introduced in [6]. The tested specimen has a gage length of 80mm, a 

width of 10mm and a thickness of 2mm. The tests were carried on a servo-hydraulic testing 

machine equipped with a dedicated heating device. Experimental results are shown in Figure 1 to 

Figure 3. For AA5086, depending on the forming conditions (for low temperatures and strain rates), 

Portevin-Le Chatelier (PLC) bands were observed which manifest as serrations in the hardening 

curves. To facilitate the reading of Figure 1 to Figure 3, experimental curves have been smoothed 

but the parameter identification has been performed with raw data, without smoothing. With the 

selected specimen, the three tensile speeds permit to reach a range of equivalent strain rates from 

0.0125 to 1.25s-1. By comparing the experimental flow stresses (Figure 1 to Figure 3), it is 

noticeable that the mechanical response of AA5086 is not only dependent on temperature but also 

on strain rate level. As an example, for a strain level close to 20% and for a temperature of 200°C, 

the flow stress increases from 245MPa at 1mm/s (Figure 1) to 280MPa at 100 mm/s (Figure 3). For 

these conditions, the increase of flow stress with strain rate is close to 15%. The temperature has a 

softening effect on flow stress of AA5086. Flow stress decreases with the increase of temperature 

and the softening effect is emphasized for low forming speeds. The increase of flow stress with 

forming speed is weak at ambient temperature (for a strain level close to 20%, flow stress value is 

stable and is about 320MPa at 1mm/s (Figure 1) and 100 mm/s (Figure 3)) but, as seen before, it 

begins to play an active role when the temperature reaches the value of 200°C. 
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According to uniaxial tensile test results at different temperatures and strain rates, an initial set 

of parameters was chosen for each forming condition. The final set of optimized parameters for the 

whole forming conditions was obtained by using a gradient based optimization algorithm by 

minimizing the gap between the experimental flow stresses and the predicted flow stresses. Based 

on the optimization procedure, the final optimized parameters were determined together according 

to the whole experimental flow stresses curves as shown in Table 1 to Table 3.  

The comparisons between experimental data and predicted flow stresses with the three models 

are shown in Figure 1 to Figure 3. All the three identified hardening laws give a reasonable flow 

stress description for all the testing conditions within the measured strain range (below~18% for 

uniaxial tensile tests). However they exhibit very different extrapolations for high strain levels 

which are frequently encountered in FLDs. For Ludwick’s hardening model, the predicted flow 

stresses all exhibit a monotonic increasing character while the Voce’s and H-V models both show a 

saturation stress state at high strain levels, especially at high temperature and low tensile speed. 

Because the parameters are generally identified from uniaxial tensile tests, a clear uncertainty exists 

when hardening modeling is required for the prediction of FLCs at high strain levels. This point will 

be discussed in the following section. 

3 M-K predictive model 

3.1 FE M-K model 

The classical M-K model assumes an infinite sheet with a planar macroscopic imperfection 

region where heterogeneous plastic flow develops and localizes. Plastic flow localization is 

accelerated by nucleation, growth and coalescence of microcavities at the microstructure scale and 

these phenomena are then considered by introducing a macro-planar defect with maximum porosity 
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[21]. Due to the difficulties for the mathematical implementation of constitutive models, the 

implemented yield functions and hardening laws are generally simplistic in classical approaches and 

not always representative of the actual behaviour of the studied material. Based on the analytical 

M-K theory, a FE model of the geometrical model was proposed by Zhang et al. [22] to determine 

numerical FLCs. Due to the symmetry, only half of the entire model is presented. The model is 

meshed with hexahedral elements. The elasticity behaviour of the material is defined with a 

Young’s modulus of 64000MPa and a Poisson’s ratio of 0.3. For the material properties, the three 

identified hardening behaviours are tested for different strain rates which correspond to the 

measured strain rates of the Marciniak setup, results are discussed in the next section. Isotropic and 

anisotropic (Hill48) yield criteria are introduced, the influence of the criterion is also discussed 

hereafter. For the following results, the isotropic Mises criterion is used. As shown in Figure 4, the 

initial imperfection value is defined by two different thicknesses in zone a (ta) and zone b (tb). In 

this study, tb is set to 1 mm, different initial imperfection values of f0= tb / ta can be obtained by 

changing the value of tb. 

Due to the initial thickness imperfection, different equivalent plastic strain evolutions are 

measured in zone a and zone b. When the equivalent plastic strain increment in imperfection region 

is 7 times greater than in homogeneous zone ( 7B A
p pε ε∆ ∆ ≥ ), localized necking is assumed to 

occur and the corresponding principal strains of element A ( )22 11,A Aε ε  at that moment constitute one 

limit point of the FLC. To cover the whole FLD, the limit strains with different strain paths can be 

obtained by imposing different displacement ratios in the in-plane directions. By means of 

ABAQUS user-defined subroutines, advanced hardening laws and yield functions can be 

implemented into the FE M-K model for a precise description of the material behaviour. 
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3.2 Influential parameters 

Many research works about the theoretical M-K analysis show that the predicted forming limit 

strains depend on several factors, such as the imperfection orientation 0ψ  (Figure 4), the 

imperfection value f0 and the constitutive model of the sheet material. The critical angle 0ψ  must 

be chosen for determining the minimum limit strains for the negative strain path in the left hand 

side of the FLD. The effect of imperfection value and constitutive model will be widely discussed 

in the last section of this work. 

4 Results and discussion 

To compare and validate the predicted FLCs, reliable experimental results are essential. The 

experimental FLCs for AA5086 at different temperatures (20, 150 and 200°C) and equivalent strain 

rates (0.02, 0.2 and 2s-1) have been determined from a Marciniak device set up on a servo-hydraulic 

machine. The punch diameter is 40mm and the die radius is 5mm. The pictures at different times 

were captured with a high speed camera and the strains at the specimen surface were calculated 

from the DIC technique. By this method, the strain rate is not directly controlled by the machine, it 

was impossible to have a real-time feedback of the strain measure. The punch speed is controlled 

during the test and strain rate in the sample is measured after the test. The tested equivalent strain 

rates (0.02, 0.2 and 2s-1) are calculated by performing an average on the time period between the 

middle and the end of the test. The details of the specimens, the heating equipment and the 

procedure to carry out the Marciniak tests at elevated temperatures were introduced in details in [6].  

4.1 Predicted FLCs with a constant f0 value 

In the literature, the imperfection value f0 is defined at room temperature and remains constant 

for all the forming conditions. From the framework of microstructure, Barlat and Richmond [21] 
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have adopted a value of 0.996 for f0.
 The same value was also used by Abedrabbo et al. [10] for the 

FLC prediction of AA5182-O between 25 and 260°C. Hence, for a first approach, this very classical 

value is tested here. With the Ludwick’s hardening model (Eq. 1) and the constant value of 0.996 

for f0, the comparison between experimental and predictive results is shown in Figure 5. 

The predicted FLCs show a good tendency for the temperature sensitivity. But the predicted 

FLCs deviate from experimental results, especially at 20 and 150°C. An overestimation of all the 

predicted FLC0 (major strain value under plane strain condition) values is found. Besides, to 

evaluate the strain rate influence on the FLCs with the FE M-K model, the FLC0 have been 

determined by Ludwick’s model with different f0 values at 200°C (Figure 6) for different forming 

speeds. Whatever imperfection value is, a positive strain rate effect on the FLC0 at 200°C is found, 

which is not consistent with the experimental results. Indeed, a negative effect of strain rate on 

formability is systematically observed for this aluminium alloy [6]. 

At first sight, it seems to be difficult to find a constant value for the imperfection for all the 

tested forming conditions. It could be interesting to determine the appropriate imperfection factor 

value for each condition and for each hardening law to discuss the validity of the M-K model and 

the influence of thermo-viscoplastic behaviour modeling of AA5086. 

4.2 Calibration strategy 

The calibration of the geometrical imperfection f0 has been formulated as an inverse problem 

and explained with more details in the previous work [6]. The calibration method is based on the 

specific point in plane strain conditions (FLC0) which is frequently critical for the forming of 

industrial parts. Moreover, in the M-K model, this point is not sensitive to the choice of the yield 

criterion. The evolutions of the predicted FLC0 values at different temperatures with the f0 
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calibrated at the three experimental temperatures, for a strain rate of 2s-1, are shown in Figure 7. The 

predicted values give a rather good evolution tendency with the forming temperature. The minimum 

FLC0 is found between 100 and 150°C which coincides globally with experimental observations 

made at different forming speeds. Once more, for the Ludwick’s law, a calibration is required for 

each temperature and a constant imperfection value does not permit to reproduce the experimental 

results.  

4.3 Influence of the hardening law 

In this section, from the three identified hardening models, the validity of the predicted FLCs 

determined with f0 values calibrated under each forming condition is discussed. The first objective 

is to evaluate the correlation between the whole calibrated FLCs and the experimental ones, and the 

second is to verify if a calibration is really necessary for each forming condition, irrespective of 

hardening law. 

4.3.1 FLCs predicted with the Ludwick’s hardening model 

The calibrated f0 values with Ludwick’s hardening model under each forming condition are 

shown in Table 4. Clearly, the calibrated f0 values vary with temperature and strain rate. With these 

calibrated values, the predicted FLCs at different temperatures and strain rates are shown in Figure 

8 to Figure 10. Good formability predictions are observed over the tested temperature and strain rate 

ranges, especially for the left hand side of the Forming Limit Diagram. The results prove that the 

FE M-K model could be an efficient tool to predict the FLCs under different temperatures and strain 

rates on condition that the initial imperfection is calibrated for each forming condition but with only 

one point (FLC0). 
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4.3.2 FLCs predicted with the Voce’s hardening model 

The calibrated f0 values with Voce’s hardening model under each forming condition are shown 

in Table 5. Unfortunately, it cannot give reasonable predictions of FLCs for high temperatures and 

low forming speeds, even though the initial imperfection is almost set to 1. The predicted FLCs are 

presented in Figure 11. 

For a strain rate of 2s-1, the Voce’s hardening model gives a good prediction of FLCs over the 

tested temperature range. Compared with the FLCs predicted by Ludwick’s model for the same 

magnitude of strain rate (Figure 12), the Voce’s model gives a better prediction for the right hand 

side of the FLD. The trend of the Ludwick’s law is to underestimate the experimental results while 

the Voce’s law leads to an overestimation of these results. This difference can be explained by the 

two different characters of the hardening laws but also by the choice of the yield function. Indeed, 

the yield function affects only the right hand side of the FLD. To illustrate this purpose, the 

comparison of the predicted FLCs from Ludwick’s and Voce’s hardening models associated with 

two yield functions are shown in Figure 13, at 20°C and 2s-1. The anisotropy of this alloy is 

relatively low in the plane of the sheet and does not present abnormal behaviour (for AA5086, its 

biaxial yield stress is larger than uniaxial yield stress), so Hill48 yield criterion can give an 

acceptable description of this anisotropy even if a criterion with two linear transformation tensors 

(Bron and Besson) was shown to be better for this material [23]. Temperature effect is included in 

the yield stress definition (Eq. 4) but we suppose that the shape of the yield function is not affected 

by temperature, which is confirmed by the 2D-plots with normalized stresses for different 

temperatures in [8]. It is found that for the right hand side of the FLCs, the Ludwick’s hardening 

model associated with Hill48 (Table 6) yield function gives a very good prediction, while for 
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Voce’s hardening model, the isotropic von Mises yield function gives the best predictions. For the 

right hand side of the FLCs, the choice of the yield function remains strongly coupled with the 

choice of the hardening model. Depending on the hardening model, the use of the anisotropic Hill48 

criterion on forming limits, can improve or degrade the numerical predictions. A complex and more 

adapted yield function will give better results only if a precise hardening model is adopted. The 

effects of yield function are the same for the other forming conditions, not presented here.  

4.3.3 FLCs predicted with the H-V hardening model 

The calibrated f0 values with H-V hardening model under each forming condition are shown in 

Table 7. The predicted FLCs at 2s-1 are presented in Figure 14. A rather good correlation is 

observed at 20°C, while for high temperatures, the predicted FLCs show an overestimation in the 

right hand side, especially for equibiaxial strain paths. Similarly to the Voce’s hardening model, the 

mixed H-V model is not able to predict AA5086 formability at high temperatures and low forming 

speeds.  

As mentioned above, uncertainties exist for the identified parameters based on the uniaxial 

tensile test data, especially at high strain levels. These uncertainties are responsible for an 

overestimation of the saturation effect of the Voce and H-V models at high temperatures and low 

forming speeds (Figure 1). With an overestimated saturation, premature necking will develop, 

which explains that the imperfection must be very small to delay the onset of necking. For these 

specific conditions, whatever the size of the imperfection is, it was impossible to correlate the 

predicted and experimental forming limits by adjusting the imperfection value. The different strain 

hardening characters and the parameter uncertainty of the proposed models lead to very different 

calibrated imperfection values of the M-K model under the same forming conditions. Uniaxial 
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tensile tests are inappropriate to characterize the material hardening behaviour for forming 

applications. The identification of hardening parameters must be completed from experimental data 

achieved at high strain levels. Bulge tests or biaxial tensile tests with cruciform specimens are more 

appropriate since the measured equivalent strain level can be two times larger than the one in 

uniaxial tensile test.  

5. Conclusion 

Hardening behaviour of metallic sheets is usually identified from uniaxial tensile tests. The 

main purpose of this work was to evaluate the uncertainty on the forming limit predictions when the 

classical uniaxial tensile test is used to evaluate the thermo-viscoplastic behaviour of an aluminium 

alloy for different forming conditions. Then, based on uniaxial tensile test results at different 

temperatures and strain rates, three very different hardening models have been proposed to correlate 

the experimental curves. All the three hardening models give a good flow stress correlation for the 

whole temperature and strain rate ranges, for an equivalent strain level below 20%. Due to the low 

homogeneous strain level reached in uniaxial tensile test, great differences of flow stress 

extrapolation appear at high strain levels between the three models. 

With the identified hardening models, predicted FLCs are determined from the FE M-K model 

and are compared to experimental FLCs. For a given hardening law, the calibrated imperfection 

values f0 of the M-K model vary with the forming conditions which limits significantly the use of 

the predictive M-K model without any experimental data. Nevertheless, only one test in a plane 

strain state for each condition is sufficient to calibrate precisely the model and to give an accurate 

estimation of the whole FLC. For given forming conditions, the imperfection value depends on the 

choice of the hardening law: for example, at ambient temperature and for a strain rate of 2s-1, 
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f0=0.95 for Ludwick’s model, 0.99 for Voce model and 0.975 for H-V model. For some conditions 

(high temperatures and low forming speeds), the saturation effect of Voce and H-V models is 

overestimated which leads to premature necking and strong difficulties in adjusting the imperfection 

value of the M-K model. As shown, the choice of the yield function remains strongly coupled with 

the choice of the hardening model. As an example, the use of the anisotropic Hill48 criterion, 

instead of the isotropic Mises criterion, can improve (Ludwick’s model) or degrade (Voce’s model) 

the predicted forming limits. 

In order to remove the strong uncertainty on the choice of the hardening model, tests at high 

strain levels are required. This can be achieved with bulge tests or biaxial tensile tests with 

cruciform specimens. A work is in progress and will be published soon with the last device, for the 

same material. The results presented on the two extreme laws (Ludwick and Voce) show that it 

would be difficult to keep a constant value f0 for all the forming conditions. Maybe, this can be 

explained by the definition of the macro-imperfection of the M-K model which is directly linked to 

the behaviour of the microstructure. Complex phenomena at the microstructure scale are certainly 

affected by the forming temperature or strain rate and a solution should consist in expressing the 

imperfection factor with temperature and strain rate in order to make reliable the model on a wide 

range of forming conditions with limited calibration steps. 
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Table captions 

 

Table 1 

Optimized parameters of the proposed Ludwick’s model 

Table 2 

Optimized parameters of the proposed Voce’s model 

Table 3 

Optimized parameters of the proposed H-V model 

Table 4 

Calibrated f0 values for the different forming conditions by Ludwick’s hardening model 

Table 5 

Calibrated f0 values for the different forming conditions by Voce’s hardening model 

Table 6 

Parameter values of Hill48 yield function for AA5086 

Table 7 

Calibrated f0 values for the different forming conditions by H-V hardening model 
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Table 1: Optimized parameters of the proposed Ludwick’s model 

( )0K MPa  ( )1 /K MPa C°  0n  ( )1 1/n C°  0m  ( )1 1/m C°  

537.41 0.975 0.567 0.00072 0.000088 0.0319 

 
 
 
 
 
 

Table 2: Optimized parameters of the proposed Voce’s model 

 ( )3K MPa    ( )4 1/K C°  5K    ( )6 1/K C°   2m    ( )3 1/m C°  

485.96   0.00453   0.943   0.009   0.000092   0.0315 

 

 

 

Table 3: Optimized parameters of the proposed H-V model 

1α  ( )2 1/ Cα °   ( )7K MPa  2n  

0.683 0.00253 633.11 0.613 

( )8K MPa  9K  4m  ( )5 1/m C°  

136.82 28.14 0.000093 0.0319 
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Table 4: Calibrated f0 values for the different forming conditions by Ludwick’s hardening model 

Temperature (°C) Strain rate (1/s) Calibrated  f0 

20 2 0.9507 

150 2 0.97 

200 2 0.9927 

150 0.2 0.99 

200 0.2 0.99985 

150 0.02 0.99985 

 

 

 

 

Table 5: Calibrated f0 values for the different forming conditions by Voce’s hardening model 

Temperature (°C) Strain rate (1/s) Calibrated  f0 

20 2 0.9908 

150 2 0.997 

200 2 0.99999 
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Table 6: Lankford’s coefficients and Hill48 yield parameters for AA5086 

r0 r45 r90 F G H L M N 

0.57 0.52 0.62 0.7 0.636 0.363 1.5 1.5 1.494 

 

 

 

 

Table 7: Calibrated f0 values for the different forming conditions by H-V hardening model 

Temperature (°C) Strain rate (1/s) Calibrated  f0 

20 2 0.975 

150 2 0.999 

200 2 0.99995 
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Figure captions 

Figure 1: Flow stresses predicted by different hardening models with equivalent strain up to 50% 

and comparison with experimental data at 1 mm/s. 

Figure 2: Flow stresses predicted by different hardening models with equivalent strain up to 50% 

and comparison with experimental data at 10 mm/s. 

Figure 3: Flow stresses predicted by different hardening models with equivalent strain up to 50% 

and comparison with experimental data at 100 mm/s. 

Figure 4: FE M-K model. 

Figure 5: Predicted FLCs by Ludwick’s model with constant f0=0.996 and a strain rate of 2s-1. 

Figure 6: FLC0 with different values of f0 by Ludwick’s model at 200°C. 

Figure 7: Evolution of FLC0 with Ludwick’s model and for a calibration at different temperatures 

(strain rate of 2s-1). 

Figure 8: Predicted FLCs at 20°C with Ludwick’s model. 

Figure 9: Predicted FLCs at 150°C with Ludwick’s model. 

Figure 10: Predicted FLCs at 200°C with Ludwick’s model. 

Figure 11: Predicted FLCs by Voce’s model at different temperatures and for a strain rate of 2s-1. 

Figure 12: Predicted FLCs by Ludwick’s model at different temperatures and for a strain rate of 

2s-1. 

Figure 13: FLCs predicted from Ludwick’s and Voce’s models with different yield functions at 

20°C and 2s-1. 

Figure 14: Predicted FLCs by H-V model at different temperatures and for a strain rate of 2s-1. 
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Figure 1: Flow stresses predicted by different hardening models with equivalent strain up to 50% 

and comparison with experimental data at 1 mm/s. 

 

 

Figure 2: Flow stresses predicted by different hardening models with equivalent strain up to 50% 

and comparison with experimental data at 10 mm/s. 
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Figure 3: Flow stresses predicted by different hardening models with equivalent strain up to 50% 

and comparison with experimental data at 100 mm/s. 

 

 

 

Figure 4: FE M-K model. 
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Figure 5: Predicted FLCs by Ludwick’s model with constant f0=0.996 and a strain rate of 2s-1. 

 

 

Figure 6: FLC0 with different values of f0 by Ludwick’s model at 200°C. 

 

 



29 

 

 

Figure 7: Evolution of FLC0 with Ludwick’s model and for a calibration at different temperatures 

(strain rate of 2s-1). 

 

 

Figure 8: Predicted FLCs at 20°C with Ludwick’s model. 
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Figure 9: Predicted FLCs at 150°C with Ludwick’s model. 

 

 

 

Figure 10: Predicted FLCs at 200°C with Ludwick’s model. 
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Figure 11: Predicted FLCs by Voce’s model at different temperatures and for a strain rate of 2s-1. 

 

 

Figure 12: Predicted FLCs by Ludwick’s model at different temperatures and for a strain rate of 

2s-1. 

 



32 

 

 

Figure 13: FLCs predicted from Ludwick’s and Voce’s models with different yield functions at 

20°C and 2s-1. 

 

 

Figure 14: Predicted FLCs by H-V model at different temperatures and for a strain rate of 2s-1. 

 


