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Magnetocaloric behavior of gadolinium near room temperature can be correctly described by the Weiss molecular field theory especially in the paramagnetic state. In this paper, this approach is generalized for binary rare earth alloys which present as Gd a second order phase transition. The magnetic entropy variation can be calculated as a function of the temperature and the applied field. This model was tested on a laboratory synthesized samples of Gd-Tb. The agreement between calculations and experiments shows that this model can be easily used for these alloys in order to optimize their composition and adjust their Curie temperatures. For first order transition materials, the observed magnetocaloric effect enhancement can be explained by magnetoelastic effects which are due to the spontaneous crystal deformation and the structure transformation. A model based on the phenomenological approach of Bean Rodbell is developed to describe such a behavior. It highlights the link between the nature of magnetic transition and the magnetocaloric effect. It can be identified by only two parameters: T 0 the Curie temperature without deformation and η an order parameter which characterizes the transition nature. In this paper we apply this model to describe the giant magnetocaloric effect exhibited by the new Mn 1- x (Ti 0.5 V 0.5 ) x As materials.

INTRODUCTION

Magnetic cooling technology is based on the magnetocaloric effect (MCE), this effect is the result of entropy changes arising from the coupling of the magnetic moment system with the applied magnetic field. When a magnetic field is applied to a material near transition temperature, the magnetic moments become aligned parallel to the magnetic field which causes an increase of the magnetic order and, consequently, a decrease in the magnetic entropy. Under adiabatic conditions, this variation of magnetic entropy is transferred from the magnetic moment subsystem to the atom lattice subsystem, thus leading to an increase the temperature of the material. Suppressing the external magnetic field, the moments become randomly oriented after gaining entropy from the lattice, then the material cools down. This process of heating and cooling caused by variation of an external magnetic field is analogous to the compression and expansion of a gas in classic refrigerator. In order to gain a larger MCE, much attention has been paid to magnetic materials exhibiting first-order phase transformations. In 1997, a giant magnetocaloric effect has been discovered in Gd 5 Ge 2 Si 2 by Pecharsky and Gschneidner [1]. Calculation of the magnetic entropy change ΔS m using magnetization measurements yielded a value twice larger than for gadolinium, so appearing the material with the best MCE near room temperature. At T = 276 K and for a magnetic field variation from 0 to 5 T, the magnetic entropy change is ~ 18.5 J/kg.K, a large value resulting both from the first order magnetic phase transition combined with a crystallographic transformation. Later, Tegus et al [2] have shown that MnFeP 0.45 As 0.55 possesses a large change of magnetic entropy around 300 K with the same magnitude as Gd 5 Ge 2 Si 2 . Once again, the large amplitude of the MCE phenomenon observed for the ternary pnictides results from a first order transition with electronic origin unstabilities of both local magnetic moment and lattices parameters. However, it was shown by Wada et al that MnAs exhibits a giant MCE near T = 318 K [3]. For a change from 0 to 2 T of the applied magnetic field, the resulting magnetic entropy change is ~ 31 J/kg.K. Gama et al [4] reveal that under a pressure of 0.22 GPa and for a magnetic field change from 0 to 5 T the isothermal entropy variation of MnAs is about 267 J/Kg.K which is by far greater than those measured in all mentioned compounds at ambient pressure. More recently, we reported a giant magnetocaloric effect in Mn 1-x (Ti 0.5 V 0.5 ) x As compounds close to room temperature [START_REF] Tobola | Giant magnetocaloric effect in Mn 1-t Ti t As and Mn 1-x (Ti 0.5 V 0.5 ) x[END_REF], and besides we demonstrated that the binary rare earth Gd 1-x Tb x alloys [START_REF] Balli | Gd 1-x Tb x[END_REF] are attractive candidates as magnetic refrigerants working near room temperature in an Ericsson cycle. In order to predict or to analyse the MCE in the here reported materials, several models were used. For the rare earth compounds undergoing a second order magnetic phase transition, the MCE was calculated using a model derived from the Weiss molecular mean field theory for ferromagnetic interactions. Based on the Bean and Rodbell model written to explain the first order transition in MnAs [7], a development was made to justify the giant MCE in Gd 5 (Ge 1-x Si x ) 4 [8] , MnAs 1-x Sb x [9], and MnFeP 0.45 As 0.55 [10]. In this paper, we propose a simpler analysis based of the Bean and Rodbell model [7] to quantify the magnetocaloric effect in the Mn 1-x (Ti 0.5 V 0.5 ) x As compounds which exhibits a first order transition and in Gd 1-x Tb x alloys where the transition is of second order.

EXPERIMENTAL

The sample Gd 0.8 Tb 0.2 was prepared by arc melting in an argon gas atmosphere. The compound Mn 0.9 Ti 0.05 V 0.05 As, was synthesized by using solid diffusion reaction. For Mn 0.9 Ti 0.05 V 0.05 As (x = 0.1), the pure elements (purity better than 3N) were mixed in appropriate amounts. The sample was heated in sealed evacuated tubes up to 900 °C for 3 days and then crushed and annealed for more 3 days at the same temperature, always in sealed evacuated quartz tube. Magnetization measurements were performed at Louis Néel Laboratory, Grenoble. Magnetic entropy changes were determined from M (H, T) measurements as shown in figure 1, using thermodynamic Maxwell relation:
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For MnAs (x = 0), the experimental data were taken from reference [3]. 

MODEL

According to the Bean-Rodbell model, if the exchange interactions giving rise to the magnetic ordering strongly depends on the interatomic spacing, the Curie temperature T C is given as follows [7]:
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where T 0 is the Curie temperature for a non compressible lattice, V is the volume and V 0 is the volume in the absence of exchange interactions, β is the slope for the volume dependence of T C .

The critical behaviour of the magnetic system is analyzed by using the Gibbs free energy (for an arbitrary angular momentum quantum number J ) consisting of the following contributions:
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where exch G , Zeeman G , elastic G , entropy G and press G represent the exchange interactions, the Zeeman energy, the elastic energy, the entropy term, and the pressure term, respectively. These terms are given below, where N is the number of magnetic atoms per unit volume, k the Boltzmann constant, B the external magnetic field, σ the relative magnetization, 0 M the saturation magnetization, S m the magnetic entropy, S r the lattice entropy, K the compressibility coefficient and P the pressure. 
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By inserting (2a) to (2e) into the equation ( 2) and after minimization with respect to V and σ at P = 0, we obtain the dependence of the relative magnetization on the temperature and external magnetic field as already described by Zach et al [11].
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where R is the universal gas constant. The change of the magnetic entropy caused by a variation of magnetic field
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is given according to relation (5) by: 
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APPLICATION OF THE MODEL

On the basis of equations ( 3) and ( 4) we can obtain the magnetization versus temperature at constant magnetic field for different values of the parameter η . Thus we can determine the value of η who is in good agreement with the experimental data for calculation of magnetocaloric effect. For Mn 1-x (Ti 0.5 V 0.5 ) x As series, Landé factor J g is assumed to be 2 in the equation (3). The effective values of the total angular momentum J are estimated to be 1.7 and 1.65 for x = 0 and 0.1 respectively, values deduced from saturation moments. We have calculated the magnetization versus temperature under different magnetic fields, in order to obtain best parameters for the application of the model. As an example, figure 2 shows the calculated magnetization versus temperature at 2 T in MnAs. Experimental data [3] are also given at 2 T for comparison. The parameters that yield the best fit with the experimental data are 2 = η and 0 T = 294 K for MnAs, while for Mn 0.9 (Ti 0.5 V 0.5 ) 0.1 As 2 = η and 0 T = 245 K. For MnAs, the obtained parameters are in fair agreement with those determined by P. J. Ranke et al (η = 2, T 0 = 293 K) to calculate entropy change in MnAs 1-x Sb x (x = 0) as reported in reference [9].

Based on the relation ( 5), the resulting temperature dependences of the calculated magnetic entropy change for x = 0 and 0.1 are displayed in figure 3 for a magnetic field variation from 0 to 2 and 0 to 5 Tesla. For comparison, experimental data are also given for magnetic field varying from 0 to 2 T. Under a magnetic field variation of 2 T, the calculated entropy change in Mn 1-x (Ti 0.5 V 0.5 ) x As is about 33 J/kg.K at T C = 318 K for x = 0 and almost 31 J/kg.K at 266 K for x = 0.1. This is in good agreement with the experimental values, where ΔS m is 32 J/kg.K for x = 0 and about 30 J/kg.K for x = 0.1. Under 2 T, the here reported magnetocaloric effect of Mn 1- x (Ti 0.5 V 0.5 ) x As series is about twice large as the peak value of Gd 5 Ge 2 Si 2 (14 J/kg.K close to 276 K) and much larger than that obtained in pure gadolinium (~5 J/kg.K) around room temperature. The large magnetic entropy change observed in Mn 1-x (Ti 0.5 V 0.5 ) x As should be attributed to the first order phase transition from ferromagnetic to paramagnetic states. This transition is accompanied by brutal changes from the hexagonal NiAs type structure to the orthorhombic MnP type structure. Besides, figure 3 shows that the peak amplitude of the entropy change appears roughly independent of magnetic field, whereas the peak width increases with magnetic field change. This should be explained by the fact that the magnetic field increase makes the transition broader, a characteristic of these types of first order magnetic transitions. However, as shown in figure 3, the Curie temperature of Mn 1-x (Ti 0.5 V 0.5 ) x As system can be decreased easily from 318 to 266 K by varying x from 0 to 0.1 without significant change in magnetocaloric properties. This result is very important, because by changing the Ti and V content, one can cover a large temperature range and then the materials can be used to design a composite material to be used as magnetic refrigerant. Besides, the particular temperature interval near room temperature in which the composite refrigerant materials can be designed, has a huge technological and industrial interest.

For binary rare earth compounds such as Gd 0.8 Tb 0.2 , the transition at C T is of second order, so η = 0 in equation ( 4) and the y variable of the Brillouin function presents only the linear term inσ . In this case, the model parameters consisting of Landé Factor, angular momentum and Curie temperature are calculated from Gd and Tb parameters J g , J and T C . From these data, the parameters of different Gd-Tb alloys can be evaluated by considering the following relationships deduced from the de Gennes model [12]: 
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Figure 4 presents, the experimental magnetic entropy changes and those calculated from mean field theory of the Gd 0.8 Tb 0.2 compound. It can be seen that the experimental and theoretical curves coincide markedly well in the paramagnetic phase. Besides, a significant deviation of theoretical curves from the experimental ones can be observed in ferromagnetic state. This can be due to the inability of the mean field theory to describe accurately well the magnetization at theses temperature ranges (T < T C ).

CONCLUSION

In conclusion, the giant magnetocaloric effect in Mn 1-x (Ti 0.5 V 0.5 ) x As compounds due to a first order magnetic phase transition was analyzed by using the Bean and Rodbell model. With the parameters 2 = η , 0 T = 294 K for x = 0 and 2 = η , 0 T = 245 K for x = 0.1, the theoretical calculations of the magnetic entropy change versus temperature results are in good agreement with experimental data. The change of x from 0 to 0.1 shifts the Curie temperature from 318 K to 266 K without important change of magnetocaloric properties which is of great interest in magnetic refrigeration applications. For the binary rare earth Gd 0.8 Tb 0.2 (η = 0, 0 T = T C ), the theoretical calculations are in rather good agreement with experimental data in particular in the paramagnetic state. Note that, in our model, anisotropy effect characteristic of Tb moments are not taken into account.
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 4 Second IIF-IIR International Conference on Magnetic Refrigeration at Room Temperature Portoroz, Slovenia, 11-13 April 2007 IIF-IIR Commissions B2, involving K and β , two parameters related to the change of volume. Note that for 1 < η the magnetic phase transition is 2 nd order while for 1 > η the transition is 1 st order. The MCE represented by the magnetic entropy change is calculated from:
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 12 Figure 1: Magnetization isotherms of Mn 0.9 Ti 0.05 V 0.05 As between 260 and 280 K. The step between the isotherms is 1K
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Figure 3 :Figure 4 :

 34 Figure 3: Temperature dependences of the change of magnetic entropy for MnAs and Mn 0.9 Ti 0.05 V 0.05 As compounds upon magnetic field variations of 0-2 and 0-5 T.

  moment, and x the concentration of Gd in an alloy Gd-Tb. Thus from above equations, one can deduce the corresponding J g and J for a given alloy. The Curie temperature obeys .