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Nonsmooth modal analysis of a N degree-of-freedom system undergoing a
purely elastic impact law

Mathias Legrand�, Stéphane Junca��, and Sokly Heng�

Abstract The dynamics of a N degree-of-freedom autonomous oscillator undergoing an energy-preserving impact law on
one of its mass is investigated in the light of nonlinear modal analysis. The impacted rigid foundation provides
a natural Poincaré section of the investigated system from which is formulated a well-defined smooth First
Return Map away from the grazing trajectory. Continuous one-parameter families of T -periodic orbits featuring
one impact per period and lying on two-dimensional invariant manifolds in the state-space are shown to exist.
The geometry of these piecewise-smooth manifolds is such that a linear “flat” portion (on which contact is
not activated) is continuously attached to a purely nonlinear portion (on which contact is activated once per
period) exhibiting a velocity discontinuity through a grazing orbit. These features explain the newly introduced
terminology “Nonsmooth modal analysis”. The stability of the periodic orbits lying on the invariant manifolds is
also explored by calculating the eigenvalues of the linearized First Return Map. Internal resonances and multiple
impacts per period are not addressed in this work.
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1. Introduction In the framework of linear vibration theory of conservative autonomous systems,
natural modes of vibration, uniquely defined as a countable sequence of natural frequency and normal-
ized modeshape pairs, exhibit interrelated properties appealing to the engineer and mathematician: (1)
they span the state-space through the principle of superposition, (2) they are invariant (that is linearly
independent), orthogonal, and uncouple the equations of motion thus enabling the construction of
reduced-order models, (3) they efficiently predict potential vibratory resonances of periodically forced
systems [16].

Nonlinear modes of vibration (NLM) are conceived as an extension of linear modes when a
nonlinear term arises in the governing equations. Their existence in the vicinity of fixed points is
ensured by the center-stable manifold theorem [23]. For autonomous conservative nonresonant systems,
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they are defined as continuous one-parameter families of periodic orbits realized on two-dimensional
curved manifolds in the state-space reducing to the common “flat” eigenspaces in the linear framework.
Similarly to the invariance property of linear modes, such manifolds are also invariant under the flow:
trajectories stemming from an initial condition in the manifold will remain in the manifold as time
unfolds [23, 14]. On such manifolds, the modal dynamics can be regarded as a single degree-of-freedom
second-order nonlinear oscillator from which all position and velocity coordinates can be functionally
parametrized. For certain classes of systems, equivalence between nonlinear modal analysis and normal
form theory is also established [25]. Evidently, the principle of superposition does no longer apply for
nonlinear systems but NLM are useful for the analysis of mode bifurcations and forced resonances
as well as for the construction of reduced-order models [27]. Nonlinear oscillations are also known
to exhibit energy-dependent natural frequencies (and corresponding modeshapes) [19], feature that is
conveniently illustrated in frequency–energy plots (FEP) where they form the backbone of the nonlinear
forced response curves [26].

The present work explores the free dynamics of N degree-of-freedom impact oscillators within
the nonlinear modal analysis framework. Such systems commonly consist of N linearly coupled
one-degree-of-freedom oscillators one of which undergoes a motion limiting constraint induced by the
presence of a rigid foundation against which it impacts. The impenetrability condition is incorporated
in the formulation through (1) an energy-preserving impact law acting on the impacting mass velocity
and characterized by the restitution coefficient e D 1 which introduces impulsive contact forces into
the dynamics [5] and (2) a one-sided admissibility condition to be satisfied by the solution which
has to be realized on the “appropriate” side of the rigid foundation. Between successive impacts, the
motion is governed by a linear second-order ordinary differential equation in time but the two previous
conditions introduce nonlinearity into the dynamics. An initially positive separating clearance between
the impacting mass and the rigid foundation is assumed.

It should be noted that the literature on (mainly low-dimensional) vibro-impact oscillators is vast
(among many other references, see [9, 7, 1] for an overview). Nevertheless, it seems much more limited
when it comes to the nonlinear modal analysis of such systems. Three distinct formulations are then
available: piecewise linear formulation [11, 12, 6], regularized unilateral formulation [18, 15], and
purely nonsmooth formulation [21, 20]. Nonsmooth terms used to be replaced by simplified smooth
approximations whose mathematical properties are better understood. This approach is acceptable in
many situations but it is no longer justified to neglect such nonsmooth effects. In the, by now tradi-
tional, research area on nonsmooth systems, focus has been directed towards a differential inclusions,
convex analysis, or complementarity formulation that deal with standard questions like existence and
uniqueness of solutions.

The paper is organized as follows: as explained in section 2, the proposed procedure involves
the construction of a First Return Map where the switching hyperplane defined by the boundary
of the rigid foundation impacted by the oscillator serves as a Poincaré section in the state-space.
Calculating the targeted families of periodic orbits reduces to determining the fixed points of this map.
The corresponding main results are given in section 3. In section 4, (quasi-) closed-form solutions
are provided but the first return time has to be approximated numerically. Admissible trajectories
defining nonlinear modes of vibration are discussed in section 5. Stability together with an introductory
bifurcation analyses are then undertaken by computing the eigenvalues of the linearized First Return
Map numerically evaluated at a fixed-point in section 6.

2. Assumptions and formulations

2.1. Governing equations of motion A generic, initially unstressed, autonomous and conserva-
tive N degree-of-freedom oscillator, similar in essence to the one illustrated in Fig. 2.1, is investigated.
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The N masses mi and stiffnesses ki , i D 1; : : : ; N are associated to the N degrees-of-freedom, or

k1 k2 kN �1 kN
g

m1 m2 mN �1 mNinitial
configuration

current
configuration

u1.t/ u2.t/ uN .t/uN �1.t/

Figure 2.1: Investigated N degree-of-freedom vibratory system subject to a unilateral contact
constraint on uN .t/.

displacements, ui .t/ where t stands for time. The last degree-of-freedom uN .t/ is subject to an
impenetrability condition due to the presence of a rigid foundation. The corresponding equations
governing the dynamics of the system shall be expressed in a compact matrix form

M RuCKuC fc D 0 (2.1)

where M 2 RN;N and K 2 RN;N are the mass and stiffness matrices of the system, respectively.
Displacements are stored in vector u D Œu1; : : : ; uN�1; uN �> 2 RN and vector fc D Œ0; : : : ; 0; f c

N �
> 2

RN stands for the contact force emerging from the unilateral condition. At this point, the initial
conditions in displacement u and velocity Pu are not discussed.

Unilateral contact constraints are commonly expressed as complementarity conditions such that
the contact force vector fc in Eq. (2.1) becomes

M RuCKu � �B> D 0
Bu � g � 0 I � � 0 I �.Bu � g/ D 0 (2.2)

where, in this work, matrix B 2 R1;N maps the displacement vector u to the N th displacement uN ,
that is B D e>N D .0 0 : : : 0 1/. It is well-known that formulation (2.2) is ill-posed [8, 5, 4] and
the complementarity conditions should be supplemented with an impact law governing the dynamics
during impact, that is

uN .t/ D g ) PuCN .t/ D �Pu�N .t/ (2.3)

where the notations

PuCN .t/
defD lim

0<�!0 PuN .t C �/ and Pu�N .t/
defD lim

0<�!0 PuN .t � �/ (2.4)

are used. It is understood that PuN , the velocity of the N th degree-of-freedom, is a function of bounded
variations. Usually, the reflection coefficient e belongs to the interval Œ0 I 1� with the reflection rule
PuCN .t/ D �e Pu�N .t/. Since we are targeting periodic motions without impact dissipation, e D 1 in (2.3)
by assumption.

Following [1, 2, 3], the formulation of the problem of interest now takes the form: Find the
displacement u.t/ and the contact force �.t/ satisfying

M RuCKu D �B>; (2.5a)

� is a non-positive measure; (2.5b)

uN .t/ � g � 0; 8t; (2.5c)

suppr� � ft IuN .t/ D gg; (2.5d)

uN .t/ D g ) PuCN .t/ D �Pu�N .t/: (2.5e)

The measure � depends on the solution u. It arises as a nonlinear impulsive restoring force in (2.5a).
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2.2. Periodic solutions with a single impact per period This work targets one-parameter
continuous families of periodic solutions. If such families exist, it is expected that they will be
organized on two-dimensional invariant manifolds which usually characterize modes of vibration for
nonlinear mechanical systems [14, 11, 21].

A major assumption is made: trajectories experience a single impact per period where the period T
is to be found. Since the system of interest is autonomous, the phase is free and formulation (2.5) can
be advantageously simplified by considering, without loss of generality, that the impact, if any, occurs
at t D T . Accordingly, the problem shall be reformulated and simplified as follows (see [6] for a
similar formulation for piecewise linear systems):

Definition 2.1 [Extended formulation] Find T and u.t/ such that:

M RuCKu D 0; 8t 2 �0 IT Œ (2.6a)

u.T / D u.0/ (2.6b)

uN .0/ D g (2.6c)

Pu�.T / D S PuC.0/ (2.6d)

where S is the matrix of symmetry with respect to the hyperplane PuN D 0, or jump matrix:

S D

266664
1 0 � � � 0

0
: : :

: : :
:::

:::
: : : 1 0

0 � � � 0 �1

377775 (2.7)

System (2.6) says the following:
� Away from an impact, the system is free and its dynamics governed by Eq. (2.6a).
� The displacement is a continuous and periodic function of time.
� The period T is an unknown of the problem.
� At the beginning of the period t D 0, the impacting mass is located on the rigid wall.
� As reflected by the matrix S, the velocities of masses 1 to N � 1 are continuous and periodic

functions of time and the velocity of mass N is discontinuous at t D T where it satisfies
PuCN .t/ D �Pu�N .t/.

In (2.6), the measure � does not seem to arise explicitly. In fact, it emerges as the zero measure
in (2.6a) when uN .t/ � g < 0 and as a Dirac measure at t D T such that uN .T / D g in (2.6d) which
defines its magnitude. Also, the less restrictive formulation (2.6) exhibits more T -periodic solutions
than (2.5) because the unilateral condition uN .t/ � g < 0 might be violated on interval �0 IT Œ: their
admissibility will have to be systematically verified. Still, this extended formulation can be completely
solved through closed-form expressions as detailed later.

Definition 2.2 [Admissible solution] A solution to the extended formulation 2.1 is said to be admis-
sible if

8t; uN .t/ � g: (2.8)

2.3. Eligible linear eigenspace structure The construction of the nonlinear periodic solutions
is tightly related to the eigenspace structure of the underlying linear mechanical system for which the
unilateral contact constraint is discarded. In Eq. (2.1), matrices M and K are assumed to be positive
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definite thus excluding rigid-body motions. Accordingly, there exists a matrix P of M-orthogonal
eigenmodes which diagonalizes both the mass and stiffness matrices, that is

P>MP D IN
P>KP D �2 D diag.!2i /jiD1;:::;N

(2.9)

where IN is the identity matrix in RN;N and !2i , i D 1; : : : ; N are the N eigenfrequencies of the
underlying linear system. In the remainder, it is assumed that eigenfrequencies are all distinct, ie

0 < !1 < : : : < !N and 0 < TN < : : : < T1 (2.10)

where !iTi D 2� , i D 1; : : : ; N . In order to efficiently expose the coming developments, a definition
based on the modal matrix P is needed:

Definition 2.3 [Interaction coefficient] For all j D 1; : : : ; N , the quantity:

aj D PNjP�1jN (2.11)

is called the interaction coefficient between the displacement of mass N along the j th linear mode and
the unilateral contact constraint.

It should be noted that the interaction coefficients satisfy

NX
jD1

aj D e>NPP�1eN D 1: (2.12)

Assumption 2.1 None of the N interaction coefficients shall vanish, that is aj ¤ 0, j D 1; : : : ; N .

Mechanically, this simply means that the last mass always experiences a displacement along a linear
modal motion. Further interpretations will be provided in the remainder of the paper.

Definition 2.4 [Linear grazing orbit] A linear grazing orbit associated to the j th linear mode is a
periodic trajectory u such that

max
t2R uN .t/ D g: (2.13)

Assumption 2.1 implies that PNj ¤ 0, j D 1; : : : ; N which also reflects the existence and uniqueness
of the j th linear grazing orbit

u.t/ D g

PNj
cos.!j t /P�j (2.14)

where P�j is column j of matrix P. In other words, the last row e>NP D PN � of the eigenvectors matrix
has no vanishing terms. Hence, a linear grazing orbit is automatically admissible since uN .t/ � g for
all time t . Since P�1 D P>M, Assumption 2.1 also entails

P�1jN D e>j P�1eN D e>j P>M eN D .M eN />P ej ¤ 0; j D 1; : : : ; N (2.15)

where e>j D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 RN is a row vector with a 1 located at its j th coordinate. In
particular, if the mass matrix is the constant diagonal matrix M D mIN withm > 0 then MeN D meN ,
P�1jN D mPNj , aj D mP 2Nj > 0, and aj ¤ 0 reduces to PNj ¤ 0. For a diagonal mass matrix, the
sign of the interaction coefficients is known through Assumption 2.1

M D mIN ) aj D mP 2Nj > 0; j D 1; : : : ; N: (2.16)
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Remark 1. In this work, all numerical examples and corresponding illustrations are provided for the
generic oscillator depicted in Fig. 2.1 with N D 5, mj D m D 1=N , and kj D k D N , i D j; : : : ; N ,
that is

M D

266664
m 0 0 0 0

0 m 0 0 0

0 0 m 0 0

0 0 0 m 0

0 0 0 0 m

377775 and K D

266664
2k �k 0 0 0

�k 2k �k 0 0

0 �k 2k �k 0

0 0 �k 2k �k
0 0 0 �k k

377775 : (2.17)

As such, it falls into the framework explained above. Yet, the proposed construction of nonsmooth
modes of vibration is still valid for a much broader class of discrete oscillators.

2.4. First Return Map The admissible state-space of the investigated system takes the form

D D Dı [HC [H� [H 0 (2.18)

where

Dı D f.u; Pu/ 2 R2N such that uN < gg; (2.19a)

HC D f.u; PuC/ 2 R2N such that uN D g and PuCN < 0g; (2.19b)

H� D f.u; Pu�/ 2 R2N such that uN D g and Pu�N > 0g; (2.19c)

H 0 D f.u; Pu/ 2 R2N such that uN D g and PuN D 0g: (2.19d)

It is illustrated in Fig. 2.2.

uN

PuN

H�

HC

H 0

Dı

g

Figure 2.2: Cross-section of the admissible state-space. The hypersurface H D HC [ H 0 [
H� partitions the state-space into two regions. The hatched area is the zone of non-admissible
displacements and its complementary Dı in the state-space is populated by admissible orbits of
which are one admissible periodic orbit with one impact per period [blue], one admissible periodic

orbit with no impact (linear system) [red], and one grazing periodic orbit [green].

Seeking solutions of the extended formulation 2.1 can be equivalently seen as finding fixed-points
of a First Return Map, the so called Poincaré map. Among all eligible Poincaré cross-sections, the half
hyperplane HC plays a crucial role in the impact dynamics and is selected. Loosely speaking, it is
expected that the Poincaré map is well defined from HC to HC. Indeed, we prove later that near an
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admissible periodic solution with initial data in HC, the First Return Map is locally well-defined and
smooth. Since our focus is on periodic solutions with a unique impact per period, trajectories .u; Pu/
defined as follows

HC ! Dı ! H� ! HC (2.20)

are considered. More challenging situations shall emerge1 with potential grazing impacts on H 0

between two impacts on HC as illustrated in Fig. 5.2.
In order to enjoy an almost closed-form expression of the Poincaré map, Eq. (2.6a) is projected

onto the linear modal space through the transformation u D Pq to become

IN RqC�2q D 0 (2.21)

by invoking Eq. (2.9). Assume the existence of the first return time T from HC to H� which is a
nonlinear function of the initial state .u.0/; PuC.0// of the system. It is then straightforward to map the
state of system at t D 0C to its state at t D T � by solving the linear differential system (2.21) [6, 20]
as follows:

q�.T / D cos.T�/qC.0/C��1 sin.T�/ PqC.0/ (2.22a)

Pq�.T / D �� sin.T�/qC.0/C cos.T�/ PqC.0/ (2.22b)

where cos.T�/ � diag.cos.!iT /iD1;:::;N / and sin.T�/ � diag.sin.!iT /iD1;:::;N / are used as
notations. In modal coordinates, the continuity of the displacement as well as the jump in velocity
occurring at t D T become

qC.T / D q�.T / (2.23a)

PqC.T / D SS Pq�.T / (2.23b)

where the expression of the jump matrix in modal coordinates is

SS D P�1SP: (2.24)

When T is known and by inserting Eq. (2.23) into Eq. (2.22), a 2N � 2N Return Map matrix R.T /
mapping the system from t D 0C to t D TC can be built in modal coordinates. It includes the free
flight in Dı as well as one impact on H�:

Definition 2.5 [First Return Map] The modal state of the system at time t is denoted by the quantity
Q.t/ D .q.t/; PqC.t// D .P�1u.t/;P�1 PuC.t//. If .u.0/; PuC.0// 2 HC, T D T .Q.0// > 0 is the first
return time to H� where Q.0/ is the initial modal state of the system. Then, the modal state at time
TC is given by the First Return Map

F.Q.0// D Q.T / D R.T .Q.0///Q.0/ (2.25)

with

R.T / D
�

cos.T�/ ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/

�
: (2.26)

1 Trajectories with more than one impact per period are investigated in [24] for a two degree-of-freedom system.
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To better “visualize” the expression of the First Return Map, Eq. (2.25) is expanded as�
q.T /
PqC.T /

�
D
�

cos.T�/ ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/

��
q.0/
PqC.0/

�
: (2.27)

From the periodicity conditions (2.6b) and (2.6d), the extended formulation (2.1) is transformed into
a nonlinear fixed point problem: find Q.0/ such that F.Q.0// D Q.0/ also arising in the form of
Eq. (2.25) as

Q.0/ D R.T .Q.0///Q.0/ , .R.T .Q.0/// � I2N /Q.0/ D 02N : (2.28)

Determining the fixed-points of the First Return Map thus reduces to solving a generalized eigenvalue
problem in .T;Q.0//. Since Q.0/ 2 HC, half hyperplane of dimension 2N � 1, there are 2N D
1 C 2N � 1 unknowns for 2N equations. Although the scalar T is an implicit function of the
2N � 1 dimensional variable Q.0/, the key point to solve nonlinear system (2.28) is to fix T such that
system (2.28) is then linear in Q.0/. The constraint Q.0/ 2 HC yields a unique solution (the proof
is given later). In other words, we obtain a one-to-one relation between the period and the periodic
solution with one impact per period2.

We might think that the First Return Map is a linear map, but this is a wrong statement. First, the
first return time T from HC to H� is an unknown of the nonlinear transcendental algebraic Eq. (2.6c).
Second, since SS is a non diagonal matrix, all the linear modes are fully coupled through (2.23b), which
is a well known feature of nonlinearity.

Let us emphasize the expression of the impact nonlinearity in terms of the matrix SS and the
interaction coefficients aj . It is clear that S is a diagonal matrix but SS is not. In the unrealistic case
where SS D IN (which is strictly impossible), the reflection on H� is removed and the problem would
be simply linear. In other words, the nonlinearity shall be quantified by the difference SS � IN which is
directly linked to the interaction coefficients aj from definition 2.3. The identity S D IN � 2eN e>N
yields

SS D IN � 2P�1eN e>NP D IN � 2P�1�NP>N �: (2.29)

The matrix eN e>N is the rank one matrix of the orthogonal projection onto eN . The interaction
coefficients are the diagonal terms of the rank one matrix P�1�NP>N � uniquely defined by the last row of
the eigenvector matrix and the last column of its inverse

aj D
�
P�1eN e>NP

�
jj
D �P�1�NP>N �

�
jj
: (2.30)

The condition aj ¤ 0 from assumption 2.1 simply means that the diagonal of the projector on eN
expressed in the modal basis P�1�NP>N � does not vanish. Accordingly, all the coefficients of this matrix
are nonzero since it is a rank one matrix. More precisely, the condition aj D 0 has a mechanical
interpretation:

� if P�1jN D 0, the entire row j of
�
P�1�NP>N �

�
vanishes. Thus, equation j of (2.23b) becomes

qCj .T / D q�j .T / which means that the linear mode j is not coupled to any of the other modes
k ¤ j on H�.
� if PNj D 0, none of the modes k ¤ j are affected by mode j onH� since the N th mass does

not move along linear mode j .

2 The solution to Eq. (2.28) is depicted in the form of a Frequency-Energy plot in Fig. 3.2: it is the union of the thin grey and
thick black lines. As long as the non-admissible solutions are not discarded, the system is shown to exhibit a continuous
spectrum.
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3. Main results This paper is mainly concerned with the construction of nonlinear modes of vibration
of a conservative and autonomousN degree-of-freedom impact oscillator defined as families of periodic
solutions with one impact per period. These periodic solutions are found to be organized on two-
dimensional invariant manifolds in the state-space. The proposed formulation gives access to (almost)
closed-form solutions, admissibility criteria, as well as spectral stability (and bifurcation) of these
nonlinear modes.

Remark 2. In this contribution, derivations are mostly expressed in terms of the period T but the plots
are displayed in terms of ! D 2�=T in line with conventional Frequency-Energy Plots. As stated
in [14], “[a] nonlinear modal motion is represented by a point in Frequency-Energy Plots, which is
drawn at a frequency corresponding to the minimal period of the periodic motion and at an energy equal
to the conserved total energy during the motion. A branch is a family of modal motions possessing the
same qualitative features.”

A majority of the proposed results are related to the key function

wN .T / D
NX
jD1

aj�j .T /; �j .T / D sin.!jT /
!j .1 � cos.!jT //

D 1

!j tan.!jT=2/
(3.1)

illustrated in Fig. 3.1. The existence and uniqueness of solutions to the extended formulation 2.1 is

�3
�2

�1
0

1
2

3

period T [lin scale]

w
N

.T
/

T5 2T5 4T5 8T5T4 3T4T3 2T3 4T3 5T3T2 2T2 T1

Figure 3.1: Function wN versus period T for the system of interest. The linear periods and
corresponding subharmonics kTi , i D 1; : : : ; 5, k 2 N�C [coloured vertical lines] are the poles of

this function. All T such that wN .T / D 0 are the zeros of the function

proven as soon as 0 < jwN .T /j < C1.

Remark 3. The function wN is a barycenter of the functions �j through (2.12).

Remark 4. The poles ofwN , for which jwN .T /j D 1, are all the linear periods and their subharmonics,
that is T 2 [NjD1 TjN (see Fig. 3.1).

Remark 5. The function wN admits at most a countable set of zeros.

9
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Assumption 3.1 [No internal resonance assumption] The linear periods of the system of interest
satisfy

TN
jD1 TjN D ;.

Through assumption 3.1, difficulties induced by internal resonances are discarded. We then have the
following results:

Theorem 3.1 [Extended formulation: existence and uniqueness of solutions] Assume a posi-
tive T that is neither a pole nor a zero of wN , then for all such T :

� Extended formulation 2.1 admits one and only one solution.
� The set of initial data

V0 D f.u.0 IT /; PuC.0 IT //; 0 < T; 0 < jwN .T /j < C1g (3.2)

for the extended formulation is an analytic curve which generates a set of periodic solutions
forming a piecewise analytic manifold of dimension 2 defined as

V D ˚.u.t IT /; PuC.t IT //; 0 � t � T; 0 < T; 0 < jwN .T /j <1	 (3.3)

in the state-space R2N .
� If both assumptions 2.1 and 3.1 are satisfied, then the Lipschitz extension u. � IT / when
T ! Tj is the linear grazing solution denoted u. � ITj / here.

Note that the analytic curve is not connected when wN .T / D 0. When assumption 3.1 holds and
wN .T / D ˙1, then there is an analytic connection with the initial data associated to a linear grazing
orbit.

Solutions to the extended formulation are not necessarily admissible solutions since many of them
violate the non-penetration condition (2.8): they are called “phantom solutions”. As detailed later, a
one-sided condition naturally arises near the linear period Tj [21].

Theorem 3.2 [One-sided condition for admissible periodic solutions] Assumptions 2.1 and 3.1
hold. Then, for all T > 0 such that T � Tj and aj .T � Tj / < 0:

� The unique T -periodic solution u. � IT / of theorem 3.1 is admissible.
� The invariant manifold of admissible periodic solutions with one impact per period near the

linear grazing orbit is a piecewise smooth manifold in the admissible state-space Dı.
Moreover:

� For aj .T � Tj / > 0 and T � Tj , the solution of the extended formulation is not admissible.
� If for all j , aj > 0 then the admissible frequencies are bounded.

The extended formulation 2.1 also exhibits solutions near linear subharmonics. The question
of their admissibility is more challenging since in the most general case, a numerical verification is
required. Still, a simple criteria for subharmonics of order one-half exists.

Theorem 3.3 [Admissible solutions near linear subharmonics of order one-half] Assumptions 2.1
and 3.1 hold. Then, for T � 2Tj such that aj .T � 2Tj / < 0 and u.T=2IT / � g, the solution
t 7! u.t IT / is admissible.

For subharmonics of lower order (1=3; 1=4; : : :), the admissibility is discussed in Section 5.2.
Theorems 3.1, 3.2 and 3.3 are illustrated in Fig. 3.2 for the system of interest. It should be noted

that this system features only strictly positive interaction coefficients aj , j D 1; : : : ; 5, stemming from
Eq. (2.16): from a mechanical standpoint, only stiffening is observed when contact is initiated. When
phantom solutions are excluded, the initially continuous spectrum becomes a set of admissible branches
organized by the zeros and poles of wN .

10
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Figure 3.2: Frequency-Energy Plot: non-admissible spectrum [thin gray line] and admissible
spectrum [thick black line]. Linear eigenfrequencies !i , i D 1; : : : ; 5 [thick vertical coloured
lines] as well as the corresponding subharmonics !i=k, i D 1; : : : ; 5, k D 1; : : : ; 10 [thin vertical
coloured lines] are displayed. The frequency interval ! 2 Œ0 I!1� shows admissible branches that

are not displayed here for the sake of clarity.

The key-tool for the stability analysis is the First Return Map whose fixed-points can be expressed
in a closed form up as soon as the first return time T is (numerically) known. Moreover, in the
vicinity of an impacting periodic orbit, the First Return Map is locally well defined and a fully explicit
differential of this map is also available. Stability can then be evaluated numerically by computing
its eigenvalues. The corresponding results are expressed in modal coordinates for conciseness where
Q.t IT / D .q.t IT /; PqC.t IT // denotes a T -periodic solution. We also choose the notations e>N D
.0; : : : ; 0; 1; 0; : : : ; 0/ 2 R2N (e>N is a row vector with a 1 located at the N th coordinate) and P D
Bdiag.P;P/.

Theorem 3.4 [First Return Map near an impacting periodic orbit] Let T0 …
SN
jD1 TjN be a

nonlinear period and Q0 D Q.0 IT0/ 2 HC be the initial condition generating an orbit of period
T0 D T .Q0/. Then, for all Q ' Q0 2 HC, the first return time T .Q/ and the First Return Map
F.Q/ are well defined and smooth. Moreover, the gradient of the first return time and the matrix of the
linearized First Return Map at Q0 are respectively given by

rT .Q0/ D wN .T0/

g
e>NPR.T0/; (3.4)

DF.Q0/ D R.T0/C PR.T0/ŒQ0rT .Q0/�: (3.5)

Furthermore, 1 is an eigenvalue of DF.Q0/.

Numerical examples seem to show that 1 is a simple eigenvalue as opposed to usual (smooth) Hamilto-
nian systems for which 1 is a double eigenvalue [17]. Another derivation of DF in the space variables is
proposed in appendix A.

11
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4. Explicit solutions to the extended formulation In this section, existence and uniqueness of
solution for the extended formulation are proven. Closed-form initial data generating periodic solutions
with one impact per period is derived for all nonlinear periods T … SN

jD1 TjN and the associated
invariant manifolds are investigated. Admissibility is discussed later.

The following quantities are well defined:

Ĺ.T / D ��1.I � cos.T�//�1 sin.T�/ (4.1a)

w.T / D .PĹ.T /P�1/eN (4.1b)

wN .T / D e>Nw.T / (4.1c)

Notice that wN is exactly the function defined in (3.1). A first important result is established:

Proposition 4.1 [Zero velocities, analytic manifolds, and symmetry]
1. For all T …SN

jD1 TjN, there exists a unique solution t 7! u.t IT / to the extended formulation
with period T given by its initial data

u.0 IT / D PuCN .0 IT /w.T /
PuC.0 IT / D PuCN .0 IT /eN

(4.2)

where PuCN .0 IT / D g=wN .T /.
2. The initial data set of solutions is an analytic manifold as soon as 0 < jwN .T /j < C1 and

the set of periodic solutions is a piecewise analytic invariant manifold in the state-space.
3. The solution is symmetric with respect to T=2 that is u.T=2C t IT / D u.T=2 � t IT /, 8t

and Pu.T=2 IT / D 0.

Before proving proposition 4.1, we explicitly express the eigenspace associated to the eigenvalue 1
of R.T / from Eq. (2.26).

Lemma 4.1 [Fixed-points of the Linear Return Map R] If T …SN
jD1 TjN then system (2.28) defines

a one-dimensional vector space parametrized by c 2 R:�
u.0/
PuC.0/

�
D
�

P 0
0 P

��
q.0/
PqC.0/

�
D c

�
w.T /

eN

�
(4.3)

Note that all velocities except velocity N are zero when the N th mass hits the wall, as already known
for a two degree-of-freedom system [20]. The solution in Eq. (4.3) can be seen as the “shape” w.T / of
the mode (as commonly found for linear modes that are standing waves) to which is added an initial
velocity on the N th degree-of-freedom.

Proof. The kernel ker.R.T / � I2N / can be explicitly expressed through a simple block-manipulation of
R.T / detailed below:�

cos.T�/ � IN ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/ � IN

�
�
�

IN � cos.T�/ ���1 sin.T�/

�� sin.T�/ cos.T�/ � SS

�
�
�

IN � cos.T�/ ���1 sin.T�/

0 .IN � cos.T�//.cos.T�/ � SS/ � sin2.T�/

�
(4.4)

where � stands for “equivalent homogeneous systems”. The lower-right block can be simplified as follows:

.IN� cos.T�//.cos.T�/ � SS/ � sin2.T�/

D �.IN � cos.T�//SS C cos.T�/ � cos2.T�/ � sin2.T�/

D �.IN � cos.T�//SS C .cos.T�/ � IN /
D �.IN � cos.T�//.SS C IN /

D �.IN � cos.T�//P�1.SC IN /P:

(4.5)

12
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By assumption, the matrix IN � cos.T�/ is invertible and system (4.4) is equivalent to�
IN � cos.T�/ ���1 sin.T�/

0 .SC IN /P

�
: (4.6)

Since Pu D P Pq, the right lower block in (4.6) yields .SC IN / Pu D 0, that is Pu D ceN with c 2 R. Similarly,
the upper block yields q D cˆ.T /P�1eN .

We now prove proposition 4.1 and theorem 3.1.

Proof. The identity c D PuCN .0/ is a direct consequence of the last equality of (4.3) which means that the
outcoming velocity at the boundary parametrizes every periodic solution. If wN .T / ¤ 0, condition (2.6c)
implies

PuCN .0/ D
g

wN .T /
: (4.7)

Due to the velocity jump, only piecewise regularity of V can be expected. Nevertheless, the projection of V
on the displacement

Vu D fu.t IT /; 0 � t � T; 0 < T; 0 < jwN .T /j <1g (4.8)

is at least continuous since the free flight response is governed by a linear differential system and is
accordingly very smooth. The regularity of the manifold V can be completely identified through the
restriction of V to the Poincaré section

V0 D
˚
.u.0 IT /; PuC.0 IT //; 0 < T; 0 < jwN .T /j <1

	
: (4.9)

Singularities of V0 shall arise when T approaches the poles
SN
jD1 TjN of wN . Consider the case T ! Tj .

The only singular term in w.T / stems from the matrix .IN � cos.T�//�1 through assumption 3.1. More
precisely, only the diagonal term

�j .T / D sin.!jT /
!j .1 � cos.!jT //

� 2

!2j .T � Tj /
(4.10)

becomes singular when T approaches Tj since all linear periods are distinct. From assumption 2.1, wN .T /
is precisely expanded as

wN .T / D
NX
kD1

ak�k.T / � aj�j .T / when T ! Tj (4.11)

and the condition uN .0 IT / D g D PuCN .0 IT /wN .T / yields

PuCN .0 IT / �
g

aj�j .T /
� g

2

!2j

aj
.T � Tj /: (4.12)

Thus PuCN .0 IT /! 0 when T ! Tj : the manifold V0 is smooth at T D Tj and recovers the initial data of
the corresponding linear grazing orbit. Let ek be the vector in RN such that all coordinates are 0 except the
kth one equal to 1. The computation is straightforward:
� if Pkj ¤ 0:

wk.T / D e>k w.T / D
NX
pD1

PkpP
�1
pN�p.T / � PkjP�1jN �j .T / when T ! Tj (4.13)

and thus

uk.0 IT / D PuCN .0 IT /wk.T / D g wk.T /=wN .T /! g Pkj =PNj ; k D 1; : : : ; N (4.14)

and PuC.0 IT /! 0 which forms the initial data of the linear grazing mode.
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� if Pkj D 0, then wk.T / D O.1/ so uk.0 IT / ! 0 and the previous statement still holds true.
Moreover, the function T 7! .T � Tj /�j .T / is analytic at T D Tj and then V0 is an analytic
manifold.

The same investigation is valid for the subharmonics T ' kTj , k 2 Z�.
Finally we prove the symmetry of the solutions. The proof only uses the uniqueness initial data theorem for
linear differential system (without contact). To this end, let us define z.t/ WD u.T=2C t /, �T=2 < t < T=2:
it is a solution of the linear differential system and can be extended to all time t 2 R. This vectorial
function is very smooth and also well defined at t D ˙T=2 with z.T=2/ D z.�T=2/ D u.0/ and
Pz.T=2/ D �Pz.�T=2/ D �PuC.0/. As a consequence, z.t/ and z.�t / satisfy the same linear differential
system with the same initial data, that is z.t/ D z.�t /, 8t 2 R. As a direct consequence, Pz.0/ D 0 that is
u.t/ D u.�t /, 8jt j � T=2 and Pu.T=2/ D 0, which concludes the proof.

5. Nonsmooth modes of vibration with one impact per period The previous section defines
the set of all solutions to the extended formulation 2.1. They are not all physically acceptable and the
admissible solutions only form the so-called “Nonsmooth modes of vibration”.

Among all the admissible branches shown in Fig. 3.2, special attention is paid to four of them
illustrated in Fig. 5.1 since they embed the main properties of all branches: they are defined in the
vicinity of fundamental and sub-harmonics of the linear modes and their domain of definition is either
bounded by a nonlinear grazing orbit (branches 1, 2, and 3) or not bounded (branch 4). These nonlinear
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Figure 5.1: Zoomed-in Frequency-Energy plot: investigated branches of the admissible spectrum
[see Fig. 3.2]. Colored vertical straight segments are the linear portions of the nonlinear modes of
vibration [contact not activated] while the colored curved segments are the nonlinear portions [one
impact per period] of the nonlinear modes of vibration: the corresponding supporting manifolds
are depicted in figures 5.4, 5.8, 5.5, and 5.9 with increasing frequencies. Points A, C , E, and G
correspond to the linear grazing orbits in these figures, while points B , D, and F correspond to the

nonlinear grazing orbits. One zero of wN .T / is highlighted.

grazing orbits are plotted in Fig. 5.2, together with their linear counterparts. It should be understood that
these are solutions where the system (probably) bifurcates from one impact per period orbits to multiple
impacts per period orbits. The proposed approach is not capable of investigating these new types of
response and a sophisticated formulation tackling more than one impact per period is needed [24].
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(d) Branch 4: points G and H (not a grazing orbit)

Figure 5.2: Linear [solid line] and nonlinear [dashed line] grazing displacements mentioned in
Fig. 5.1. Nonlinear grazing orbits feature additional grazing impact instants thus limiting the domain
of admissibility of one impact per period orbits. Note that the time axis is rescaled for each orbit for

viewing purposes.

All invariant manifolds are plotted in the cross-section .uN�1; uN ; PuN / of the state-space as
generically shown in Fig. 5.3. The terminology “Hyperplane view” and “Top view” used later is
self-explanatory. The jump in velocity induced by the impact law is highlighted by a thick black line
representing the one-dimensional manifold V0.

5.1. In the vicinity of the linear natural frequencies The solution of the eigenvalue prob-
lem (2.28) given in proposition 4.1 has various consequences on the existence and admissibility of a
periodic solution satisfying uN .0/ D g and PuCN .0/ < 0.

Proposition 5.1 [Admissibility] Assumptions 2.3, 3.1, and T … SN
jD1 TjN hold. Then a periodic

solution u. � IT / will be an admissible solution if:
1. Necessary admissibility conditions: PuCN .0/ < 0 and wN .T / < 0.
2. Sufficient admissibility condition: aj .T � Tj / < 0 and T ' Tj .

This proposition is a reformulation of theorem 3.2 which is proved below.

Proof. The first necessary condition PuCN .0 IT / � 0 should be satisfied otherwise massN penetrates the rigid
wall. Since PuCN .0 IT / ¤ 0 for the nonlinear period T , the condition PuCN .0 IT / � 0 becomes PuCN .0 IT / < 0.
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nonlinear
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hyperplane uN D g

V0 [ SV0

Figure 5.3: Generic admissible manifold for illustration purposes only. It shows (1) the linear
portion [red] for which contact is not activated during one period and (2) the nonlinear portion [blue]
supporting periodic orbits with one impact per period. The linear grazing orbit joins the two portions
defining the manifold. The continuum of periodic orbits “hits” the hyperplane uN D g along the

one-dimensional manifold V0 [ SV0 [thick black line].

The second necessary condition stems from the fact that u.0 IT / D cw.T / with c D PuCN .0 IT / and
0 < g D uN .0 IT / D c wN .T /.
Equivalent (4.12) for T ' Tj implies the one-sided condition aj .T �Tj / < 0. Assume a positive interaction
coefficient aj . The admissibility of a T -periodic solution uN .t IT / with only one impact per period means

uN .t IT / < g; 8t 2 �0 IT Œ: (5.1)

A continuity argument on u.t IT / along t and T belonging to the compact set K� D f.t; T /; 0 � t �
T; Tj �� � T � Tj g parametrized by 0 < � � 1 shows that u.t IT / � u.t ITj / which is the linear grazing
solution satisfying uN .t ITj / < g except for t D 0 and t D T : as a consequence, uN .t IT / < g except
for t � 0 and t � T . Let us investigate inequality (5.1) around t � 0 only since the other configuration
is handled in an identical fashion. The solutions uN .0 IT / D g for T < Tj have negative velocity on the
wall PuCN .0 IT / < 0 without any uniform estimate since PuN .0 IT /! 0 when T ! Tj . We cannot conclude
directly on the existence of a time zone �0 I t0Œ independent of T such that uN .t IT / < g for all .t; T / 2 K� ,
0 < t < t0. Fortunately, there exist t0 > 0 and � > 0 such that

sup
Œ0 It0��ŒTj�� ITj �

RuN .t IT / < 0 (5.2)

which is a sufficient condition to ensure admissibility because PuN .t IT / decreases on Œ0 I t0� and PuN .0 IT / �
0 so PuN .t IT / < 0 on �0 I t0� � ŒTj � � ITj �, and then uN .t IT / < g on �0 I t0� � ŒTj � � ITj �. Let us
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.4: Nonsmooth mode for T � T1 corresponding to branch 1 in Fig. 5.1.

calculate the second derivatives by starting with

P�1P D I ,
NX
pD1

P�1kp Ppj D ıkj : (5.3)

The expansions are now performed in a neighborhood of Tj through (4.10), (4.11), and (4.14) when T ! Tj .
For 0 < t < T , the explicit solution is

u.t/ D P cos.T�/P�1u.0/C P��1 sin.T�/P�1 PuC.0/ (5.4)

which leads to the expressions for

� the displacement:

uN .t IT / D g

wN .T /

� NX
`D1

NX
kD1

PN`P
�1
`k cos.!`t /wk.T /C

NX
kD1

ak
sin.!kt /
!k

�
(5.5)

uN .0 IT / D g; (5.6)
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.5: Nonsmooth mode for T � T2 corresponding to branch 2 in Fig. 5.1.

� the velocity:

PuN .t IT / D g

wN .T /

�
�

NX
`D1

NX
kD1

PN`P
�1
`k !` sin.!`t /wk.T /C

NX
kD1

ak cos.!kt /
�

(5.7)

PuCN .0 IT / D
g

wN .T /

� NX
kD1

ak

�
D g

wN .T /
; (5.8)

� the acceleration:

RuN .t IT / D � g

wN .T /

� NX
`D1

NX
kD1

PN`P
�1
`k !

2
` cos.!`t /wk.T /C

NX
kD1

ak!k sin.!kt /
�

(5.9)

RuCN .0 IT / D �
g

wN .T /

� NX
`D1

NX
kD1

PN`P
�1
`k !

2
`wk.T /

�
D �g

NX
`D1

NX
kD1

PN`P
�1
`k !

2
`

wk.T /

wN .T /
;
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.6: Nonsmooth mode for T � T3. It is not bounded by a nonlinear grazing orbit. The
corresponding branch is not shown in Fig. 5.1. It should be compared to the manifold emerging in
the vicinity of T � 3T3 reported in Fig. 5.8. Both share the same linear part but bifurcate differently

at the linear grazing orbit.

which becomes, by passing to the limit when T ! Tj

lim
T!Tj

RuCN .0 IT / D �g
NX
`D1

NX
kD1

PN`P
�1
`k !

2
`

P
kj

PNj
D �g

NX
`D1

!2`
P
N`

PNj

� NX
kD1

P�1`k Pkj

�
(5.10)

D �g
NX
`D1

!2`
P
N`

PNj
ı j̀ D �g !2j < 0: (5.11)

To summarize, we can state that uN .0 IT / D g, PuCN .0 IT / � 0 and RuCN .0 IT / < 0 for T � Tj and
aj .T � Tj / < 0. Thus uN .t IT / < g for 0 < t < �, aj .T � Tj / < 0, jT � Tj j < � and � > 0, which is
sufficient to prove the admissibility of the solution.

Two manifolds emerging in the neighborhood of the linear natural frequencies !1 and !2 are
displayed in figures 5.4 and 5.5, respectively. They both exhibit a nonlinear grazing orbit limiting their
domain of definition. Accordingly, these two manifolds have boundaries. A third one, unbounded,
defined around !3 is shown in Fig. 5.6. It should be compared to its counterpart arising about !3=3:
they both share the same linear portion but then bifurcate differently at the linear grazing orbit. A
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similar behavior is expected for all admissible subharmonics of all (linear) modes. As such, this is a
typical example of a mechanical system for which the number of nonlinear modes of vibration exceeds
the number of degrees-of-freedom.

5.2. In the vicinity of the linear subharmonics In this section, we prove theorem 3.3 and
discuss the more challenging case of linear subharmonics.

Proof. The solution u.t I 2Tj / is simply the j th linear grazing solution with two loops and two (grazing)
contacts per period. By continuity, it is clear that the solution u.t IT / ' u.t I 2Tj / when T � 2Tj (see
Fig. 5.7). To test admissibility, attention is paid to the scalar function t 7! uN .t IT /: from the closed-
form expression (5.4), it clearly lies near uN .t I 2Tj / D g cos.!j t=2/ in all C k topologies (outside the
impact). The solution u.t I 2Tj / and all its derivatives with respect to time t have simple roots only, and
this holds true for T � 2Tj as well. Accordingly, u.t IT / has only two local maxima on Œ0 IT Œ where
the condition u.t IT / � g has to be tested. If the one-sided condition aj .T � 2Tj / < 0 is satisfied
for all T � 2Tj , the first maximum is located at t D 0: this is a straightforward consequence of the
previous proof. Due to the symmetry of the solution, the second maximum is at t D T=2. We also
have RuN .T=2 IT / � RuN .Tj I 2Tj / D RuN .0 ITj / < 0 and the inequality uN .T=2 IT / � g guarantees
admissibility.

As detailed in Proposition 4.1, interesting features of the modal dynamics can also be observed by
examining responses for various initial energy levels in the phase portraits. Fig. 5.10 depicts phase plane
diagrams for masses 4 and 5: the loops correspond to periodic responses whose amplitude depends on
the initial energy level. They are symmetric along the velocity axis because of the conservative nature
of the system and the symmetry of the impulsive impact force in velocity. It also show how mass 4 is
affected in its motion by the nonlinear restitution force.

Remark 6. An important feature that distinguishes the investigated vibro-impact oscillator from poly-
nomial nonlinear oscillators is the existence of physically observable backbone curves near the linear
subharmonics of vibration. In Fig. 5.1, the vibratory motions corresponding to the two linear segments
located at !3=3 and !4=2 are not readily observable as they turn to be identical to the ones corre-
sponding to the two linear segments located at !3 and !4 (that is linear modes 3 and 4), respectively.
Nevertheless, the nonlinear branches emanating from the natural frequencies !i and from their sub-
harmonics !i=j , .i; j / 2 N�C, correspond to distinct co-existing manifolds sharing the same linear
portion, as illustrated in Figs. 5.6 and 5.8. This is in contrast with polynomial nonlinear systems where
manifolds are defined in the neighborhood of linear modes of vibration only.

Admissibility for T ' kTj , k > 2 For lower-order subharmonics (1=3; 1=4; : : :), numerical approxi-
mations are required to test admissibility conditions:

1. Check aj .T � kTj / < 0.
2. With a numerical solver, find t` � ` T=k such that PuN .t` IT / D 0 for all integers ` such that
1 � ` � k=2.

3. Check the conditions uN .t` IT / � g for 1 � ` � k=2.
As shown in Fig. 5.7, the displacement uN . � IT / on Œ0 IT � has a graph very similar to uN . � I kTj /
on Œ0 I kTj � with the same number of extrema nearly at the same locations. By symmetry, only half a
period should be scrutinized. Moreover, if k is even, tk=2 D T=2 as in theorem 3.3.

5.3. High Frequencies In [21, p. 1008], it is shown that very high frequency (that is T ! 0 here)
admissible solutions exist. This is not true in our investigation. The last statement of theorem 3.2 is a
consequence of proposition 5.2.
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Figure 5.7: Admissible nonsmooth periodic solutions in the vicinity of the third linear mode of
period T3, and in the vicinity of two of its subharmonics 2T3 and 3T3. For readability, the time scale

is normalized with respect to each T .

Proposition 5.2 [Nonexistence of high-frequency nonlinear modes] If the condition

˛ WD
NX
jD1

aj!
�2
j > 0 (5.12)

is satisfied, then the frequencies of the admissible nonlinear modes are bounded.

As previously highlighted, our illustrative example (2.17) is such the interaction coefficients are all
positive and the admissible frequencies are bounded. To have the opportunity to observe high-frequency
admissible nonlinear modes, the condition ˛ < 0 is required which is a bit challenging to fulfil asP
j aj D 1 from (2.12).

Proof. Within the current mathematical framework, it is possible to derive an asymptotic behaviour
when T ! 0. The limit limT!0 u.0 IT / can be explicitly exploited and the only non vanishing ve-
locity PuCN .0 IT / D g=wN .T / D O.T / converges to 0. Recall that uk.0 IT / D g wk.T /=wN .T /. The
asymptotic behavior of wk.T / for T � 0 is

wk.T / D
nX

pD1
PkpP

�1
pN�p.T / D

2

T

NX
pD1

PkpP
�1
pN!

�2
p CO.1/ when T ! 0 (5.13)

In particular, for k D N , we simply have:

wN .T / � 2˛

T
when T ! 0: (5.14)

Consequently, the limiting initial data are:

lim
T!0

uk.0IT / D
g

˛

NX
pD1

PkpP
�1
pN!

�2
p ; k D 1; : : : ; N

lim
T!0

Puk.0IT / D 0; k D 1; : : : ; N
(5.15)
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.8: Nonsmooth mode for T � 3T3 corresponding to branch 3 in Fig. 5.1.

In particular, uN .0I 0/ D g and a grazing contact trajectory is retrieved. The admissibility criterion on the
velocity requires PuN .0IT / < 0 but for T ' 0 and T > 0, PuCN .0 IT / D g=wN .T / � Tg=.2˛/ > 0. Thus
the solution of the extended formulation becomes inadmissible. Moreover, through Eqs. (5.10) and (5.3), we
can derive an approximation of the second right derivative for small T :

RuCN .0 IT / D �g
NX
`D1

NX
kD1

PN`P
�1
`k !

2
`

wk.T /

wN .T /
� �g

˛

NX
`D1

NX
kD1

NX
pD1

!2
`

!2p
PN`P

�1
`k PkpP

�1
pN

� �g
˛

NX
`D1

NX
pD1

!2
`

!2p
PN`P

�1
pN ı`p D �

g

˛

NX
`D1

PN`P
�1
`N � �

g

˛
< 0: (5.16)

Accordingly, the trajectory leaves the rigid foundation on the “wrong” non-admissible side uN > g with
decreasing velocity.

6. Spectral stability analysis Nonlinear systems shall exhibit a wide range of exotic behaviours,
including instabilities, bifurcations, and chaos. Of high interest is the systematic investigation of the

22



M. LEGRAND, S. JUNCA, S. HENG, Nonsmooth modal analysis of a N degree-of-freedom system undergoing a purely elastic impact law

(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.9: Nonsmooth mode for T � 2T4 corresponding to branch 4 in Fig. 5.1.

stability of the previously found periodic orbits as their frequency—or energy—increases. Stability of a
periodic solution manifests itself in the way neighboring trajectories behave. It is known for autonomous
conservative linear systems that the periodic orbits are neutrally stable. In general, this property is
destroyed for nonlinear systems and as a result, some of the previously found orbits shall be unstable.
In order to clarify the situation, a dedicated analysis should be undertaken: it commonly prescribes a
perturbation of a calculated periodic trajectory in order to explore its dynamical behavior with time.
This can be conveniently achieved by either calculating the eigenvalues of the linearized Poincaré
map or, equivalently, by exploiting the characteristic multipliers determined from the monodromy
matrix [22].

In this work, since the First Return Map is found to be locally well defined and smooth for non-
grazing solutions3, Lyapunov’s theorems can be used and the stability analysis reduces to the classical
spectral stability analysis of the Poincaré map fixed points [10]. The sufficient condition for (spectral)
stability is that all the eigenvalues of the linearized Poincaré map lie inside the unit circle in the complex
plane; the necessary condition is that they lie either inside or on the circle. In other words, (nonlinear)
instability is achieved when the modulus of one eigenvalue of the linearized First Return Map is larger
than unity.

Some additional features of the response are also readily accessible from this analysis: depending

3 The stability analysis of the grazing orbits involves quite complicated arguments [4, 13] that are not discussed in this paper.
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Figure 5.10: Phase portraits of the periodic motion on the invariant manifolds: mass N [color] and
mass N � 1 [gray]. Linear grazing orbit [thick black]. Branches are defined in Fig. 5.1

on where the eigenvalue or pair of complex conjugate eigenvalues crosses the unit circle defined in
the complex plane, different types of bifurcation occur. Evidently, the more challenging bifurcation
mechanisms induced by grazing orbits, that are specific to nonlinear systems involving switching
manifolds in the state-space, are not addressed with this approach.

6.1. Linearized First Return Map In order to prove theorem 3.4, let us first notice that the First
Return Map F is fully defined by the first return time T when it exists. Also, we need the following
ingredient: the mechanical energy E. Pu;u/ D Pu>M PuC u>Ku is conserved after an impact when the
last mass is concentrated.

Proposition 6.1 [Conserved energy] The impact law conserves the mechanical energy if and only if
the mass matrix of the investigated system satisfies MNk D 0 DMkN for all k D 1; : : : ; N � 1.

Proof. In space coordinates, the energy is clearly conserved during the free flight. The impact rule reads
PuC D S Pu� and the energy is conserved only when SMS DM which concludes the proof.

We now prove theorem 3.4.

Proof. To avoid the impact-induced jump in the orbit, the closed-form solution is considered on interval
�0 IT Œ as a function of initial data Q and time t

q.t/ D L.t/Q D cos.t�/q.0/C��1 sin.t�/ PqC.0/ (6.1)
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where the N � 2N matrix L.t/ stores the first N rows of R.t/. Linear relation (6.1) is valid only on Œ0 IT �.
Away from impact, q.t/ can be differentiated with respect to time such that Pq.t/ D PL.t/Q while at the
impact, Pq�.T / D PL.T /Q.
The proof involves several distinct steps:

1. Existence and smoothness of T in the neighborhood of Q0 — The scalar function T .Q/ is implicitly
defined by uN .T .Q// D g in physical coordinates which becomes, in modal coordinates

f .T;Q/ WD e>NPL.T /Q D g: (6.2)

Note also that f .T;Q/ D e>NPR.T /Q. In order to use the implicit function theorem at .T0;Q0/,
it is sufficient to prove that @T f .T0;Q0/ ¤ 0. This partial derivative has a simple interpretation:
@T f .T0;Q0/ D Pu�N .T0 IT0/ since uN .t IT0/ D f .t;Q0/ for all t 2 �0 IT0Œ. As a consequence,
the non-grazing condition PuCN ..0 IT0// ¤ 0, the periodicity, and the reflection law Pu�N .T0 IT0/ D
�PuCN .T0 IT0/ D �PuCN .0 IT0/ show that

@T f .T0;Q0/ D e>NP PL.T0/Q D �PuCN .0 IT0/ ¤ 0: (6.3)

2. Explicit formula for DF — Differentiating equality (6.2) with respect to Q at Q D Q0 leads to

rT D � 1

@T f
rQf D � 1

e>NP PL.T .Q0//Q0

e>NPL.T .Q0// D 1

PuCN .0 IT0/
e>NPL.T0/

D wN .T0/

g
e>NPL.T0/ D wN .T0/

g
e>NPR.T0/: (6.4)

Finally, it is sufficient to differentiate F through the standard chain rule formula.
3. 1 is an eigenvalue — There are two ways to see that 1 is an eigenvalue of DF. First, we have a smooth

family of initial data Q.0 IT / for a non-grazing nonsmooth mode, so F.Q.0 IT // D Q.0 IT / and
differentiating with respect to the time yields

DF.Q.0 IT //@TQ.0 IT / D @TQ.0 IT /: (6.5)

The explicit formula for Q.0 IT / shows that @TQ.0 IT / ¤ 0 at least for almost all T . In this case
@TQ.0 IT / is a left eigenvector of DF associated with the eigenvalue 14.
Second, if the mass matrix satisfies the assumptions of proposition 6.1, differentiating the conservation
of energy E.F.Q// D E.Q/ yields rE.F.Q//DF.F.Q// D rE.Q/. Note that the energy is not
degenerate, that is rE.Q/ ¤ 0 except for Q D 0 which is not an initial condition for periodic
solutions. Furthermore, if F.Q/ D Q then rE.Q/ is a left eigenvector of DF.Q/ with eigenvalue 1.
We cannot deduce that 1 is an eigenvalue with multiplicity 2 as it is for smooth Hamiltonian systems.

This ends the proof.

The First Return Map is conventionally defined on the Poincaré section only, that is the hyperplane
HC in this work. In the derivations above, the First Return Map and its differential in the neighborhood
of an admissible nonlinear trajectory are expressed in the entire state-space, which adds one dimension,
and thus one eigenvalue to the Jacobian. An obvious question then arises: “What is the magnitude
and meaning of the additional eigenvalue?” Consider the orbit of the nonlinear mode which leaves
HC at time t D 0C: F.Q.t IT0// D Q.0 IT0/ D Q0 such that DF.Q0/ satisfies DF.Q0/ v D 0 where
v D PQ.0 IT0/ ¤ 0 does not belong to H . Consequently, in this formulation, where the unnecessary
new dimension makes it easier to handle, 0 is always an extraneous eigenvalue of the matrix DF.Q0/,
that should be formally removed in the analysis.

4 The derivative @TQ.0 IT / can eventually be 0 for an isolated time only. Thus, for almost all time, this vector is non-zero
and 1 is an eigenvalue. Since the eigenvalue depends continuously on the matrix coefficients that are smooth with respect
to T , 1 is an eigenvalue for all time.
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6.2. Numerical example: first nonlinear mode Computational work can be directly conducted
in physical coordinates where the N th row of DF vanishes since e>N DF D 0 which is a direct con-
sequence of F.H/ � H . The varied control parameter is the frequency of the autonomous periodic
response. The corresponding stability/instability pattern is shown in Fig. 6.1. As depicted in Fig. 6.2,
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Figure 6.1: Spectral stability analysis of the first nonlinear mode in the vicinity of !1 [Branch 1 in
Fig. 5.1]. Instability is achieved when the modulus of one eigenvalue of the linearized First Return
Map DF is larger than unity. In every subfigure, zones of instability are highlighted in light red
rectangles. The color scheme based on the magnitude of the real parts allows for the convenient

identification of the various branches. Eigenvalue 1 is removed for readability purposes.

instability arises through the three well-known bifurcation scenarios usually identified for autonomous
and conservative systems: a pair of complex conjugate eigenvalues leaves the unit circle, defined in
the complex plane, either (i) at .1; 0/, or (ii) at .�1; 0/, or (iii) anywhere else. For each of the above
scenarios, eigenvalues initially travel on the unit circle and escape it, for critical values of the control
parameter, yielding unstable behavior. Some of the additional features of the bifurcated solutions
(fold, flip or Neimark-Sacker bifurcations, for instance) can be graphically displayed by numerically
integrating the equations of motion initiated on the nonlinear mode. The Poincaré map is then employed
to explore and visualize the dynamics in the unstable region. This is not further discussed in this work.

7. Conclusion Nonlinear normal modes are one-parameter continuous families of periodic motions
of multi-degrees-of-freedom systems. They have been investigated since the 1950’s for vibratory
systems involving smooth and differentiable nonlinearities. In this work, an extension to a vibro-impact
system exhibiting non-differentiable displacement and discontinuous velocity is proposed. Based on
the construction of a convenient Poincaré map and with the assumption of a single impact per period,
(quasi-) closed-form solutions are obtained and nonlinear modes of vibration are shown to exist. They
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Figure 6.2: Spectral stability analysis of the first nonlinear mode in the vicinity of !1 [Branch 1 in
Fig. 5.1]. Eigenvalues of the linearized First Return Map DF in the complex plane.

can be visualized as piecewise analytic two-dimensional manifolds in the state-space, formed by the
union of one “flat” submanifold (contact is not activated and the normal modes are invariant elliptic
disks) and one “curved” submanifold (contact occurs once per period) sharing a common grazing orbit.
From the expressions for the normal modes, the frequency-energy relationships on each mode are
captured and are (obviously) of piecewise type.

Interestingly, it is shown that the manifolds emanating from the linear modes of period Ti and
from the subharmonics of the linear modes of period nTi , n 2 NC and i 2 f1; : : : ; N g are distinct.
Altogether, such manifolds “shape” the state-space of the system and graphically illustrate the dynamical
complexities induced by the presence of a perfectly elastic impact law into the (otherwise linear)
governing equations.

A succinct spectral stability analysis is conducted for the first nonlinear mode. It is numerically
demonstrated that an intricate pattern of stable and instable solutions arises as the frequency of the
periodic solution is increased. The three commonly reported bifurcation mechanisms are found: they
depend on where the eigenvalues of the linearized First Return Map leave the unit circle in the complex
plane. Other more advanced bifurcations involving grazing orbits transitioning from a single impact
per period to multiple impacts per period are conjectured.

Appendix A. Stability analysis through perturbed orbits The stability analysis of a periodic
orbit lying on the previously constructed manifolds as explained in theorem 3.4 is revisited in a more
pragmatic and intuitive manner. Let’s first define the notation Ut WD .ut ; Put / WD .u.t/; PuC.t//. The
initial condition on the Poincaré section of this periodic orbit is denoted by U0 and its period, T0. By
definition of the Poincaré section, e>NU0 D uN .0/ D g. We want to know how slightly disturbed initial
conditions U0 C ıU0 defined on the Poincaré section, i.e. satisfying e>N ıU0 D 0, are mapped back
onto the Poincaré section UT D U0 C ıUT after a time T D T0 C ıT with the condition e>N ıUT D 0.
If their amplitude is magnified, then the periodic orbit is unstable. The Poincaré map (2.27) in physical
coordinates reads�

u.T /
PuC.T /

�
D
�

P cos.T�/P�1 P��1 sin.T�/P�1
�SP� sin.T�/P�1 SP cos.T�/P�1

��
u.0/
PuC.0/

�
D
�
�1.T / �2.T /

�3.T / �4.T /

��
u.0/
PuC.0/

�
(A.1)

that is �.T / D PR.T /P�1. An admissible perturbed orbit starting on the Poincaré section at t D 0 in
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a neighborhood of the actual periodic orbit and coming back to the Poincaré section at T D T0C ıT is
thus governed by the system�

u0 C ıuT
Pu0 C ıPuT

�
D
�
�1.T0 C ıT / �2.T0 C ıT /
�3.T0 C ıT / �4.T0 C ıT /

��
u0 C ıu0
Pu0 C ıPu0

�
(A.2)

with the property

e>N ıuT D e>N ıu0 D 0: (A.3)

Neglecting higher order terms, system (A.2) simplifies to�
u0 C ıuT
Pu0 C ıPuT

�
D
�
�1.T0/C P�1.T0/ıT �2.T0/C P�2.T0/ıT
�3.T0/C P�3.T0/ıT �4.T0/C P�4.T0/ıT

��
u0 C ıu0
Pu0 C ıPu0

�
: (A.4)

Since Eq. (A.1) is satisfied by the periodic orbit, Eq. (A.4) becomes�
ıuT
ıPuT

�
D
�
�1.T0/ �2.T0/

�3.T0/ �4.T0/

��
ıu0
ıPu0

�
C ıT

� P�1.T0/ P�2.T0/
P�3.T0/ P�4.T0/

��
u0
Pu0

�
(A.5)

From Eq. (A.3), we can express ıT in terms of .ıu0; ıPu0/ since�
eN
0

�> �
�1.T0/ �2.T0/

�3.T0/ �4.T0/

��
ıu0
ıPu0

�
C ıT

�
eN
0

�> � P�1.T0/ P�2.T0/
P�3.T0/ P�4.T0/

��
u0
Pu0

�
D 0 (A.6)

which leads to

ıT D �e>N�.T0/ıU0
e>N P�.T0/U0

: (A.7)

System (A.5) thus becomes

ıUT D
�
� �

P�.T0/U0e>N�.T0/

e>N P�.T0/U0
�
ıU0 (A.8)

which takes the compact form

ıUT D ı� ıU0 (A.9)

where ı� is a notation. The matrices ı� in Eq. (A.9) and DF in Eq. (3.5) are two expressions of the same
linearized First Return Map, in physical and modal coordinates, respectively (see transformation (4.3)
between the two systems). They both exhibit the additional extraneous eigenvalue 0 which should be
discarded. To this end, let’s consider the rectangular mapping Q>N which removes row N of a vector it
multiplies; QN is a rectangular matrix of size 2N � 2N � 1 storing “1” on its “fake diagonal”. Let’s
also use two new reduced quantities: U0;N D QNU0 is U0 with its N th coordinate removed; same for
UT;N with UT , as well as their corresponding perturbations. System (A.9) simplifies to

ıUT;N D Q>N ı� QN ıU0;N D ı�N ıU0;N : (A.10)

A similar reduction could be proposed for DF in the modal coordinates system. The eigenvalues of
the reduced maps dictate the instability of the targeted periodic orbit. For a given periodic response, a
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sufficient condition for instability is that at least one of these eigenvalues in modulus lies outside the
unit circle in the complex plane.

Appendix B. Eigenvalues of the Return Map Matrix The spectrum of the Return Map Matrix
R.T / lies on the unit circle. Unfortunately, this is not sufficient to conclude on the stability of the
nonlinear modes but it could be useful for further works on this topic. It is determined by finding �
such that

det
��

cos.T�/ � �I ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/ � �I

��
D 0: (B.1)

The first row of blocks stores diagonal matrices and the determinant can be calculated blockwise

det
�
.cos.T�/ � �I/.SS cos.T�/ � �I/C SS sin.T�/2

� D 0 (B.2)

or equivalently

det
�
SS � � cos.T�/.SS C I/C �2I

� D 0: (B.3)

We can respectively premultiply and postmultiply by the non-singular matrices P and P�1 such that

det P det
�
SS � � cos.T�/.SS C I/C �2I

�
det P�1 D 0 (B.4)

which is equivalent to

det
�
P.SS � � cos.T�/.SS C I/C �2I/P�1

� D 0 (B.5)

which itself simplifies to

det
�
S � � cos.T�/.SC I/C �2I

� D 0: (B.6)

This becomes the determinant of a diagonal system with the following discussion:
1. entries i D 1; : : : ; N � 1:

1 � 2� cos.!iT /C �2 D 0 (B.7)

2. entry N :

�1C �2 D 0 (B.8)

All eigenvalues are of modulus 1.
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