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Mechanical model Mathematical standpoint
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What about nonlinear systems?

o Linear modes:

rely on superposition principle

solutions live in a vector space whose basis are the linear modes

linear algebra (~ end of 19t")

physical importance of eigenvalues: resonances and internal resonances

@ Nonlinear modes:
e superposition principle no longer applies
e but maths gives a way to calcule particular surfaces of the state space
e centre manifold theorem (~ 1970)
o applied to dynamical systems (Rosenberg, Shaw, Pierre, Vakakis, etc.)
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Limitation of nonlinear modal analysis

Calculation of nonlinear modes relies on smoothness. I

— What about nonsmooth systems?

o Nonsmooth system: system undergoing impacts or/and friction.

ol

Newton's craddle [Inria] Aircraft engine [Mech. Eng., McGill]

o Long-term objective: extend nonlinear modal analysis to nonsmooth
systems



Outline

© Context

© Description of the non-smooth system
© 1 impact per period

@ 2 impacts per period

© % impacts per period
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Spring-mass oscillator: impact condition

@ Free flight
Dynamics Mx +Kx =0
. : . X 0 I
First-order form X = AX with X = (x) and A = [—M_lK 0}

Solutions X(t) = e*4X(0)
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@ Free flight
Dynamics Mx +Kx =0
. : . X 0 I
First-order form X = AX with X = (x) and A = [—M_lK 0}

Solutions X(t) = e*4X(0)

@ Impact condition

Impact law in(t;:np) = —edn(t,,) withe=1

Matrix form X(¢! ) = diag(1,...,1,—1)X(t,..)
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Spring-mass oscillator: impact condition
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o Free flight
Dynamics Mx +Kx =0
. : . X 0 I
First-order form X = AX with X = (x) and A = [—M_lK 0}

Solutions X(t) = e*4X(0)

@ Impact condition

Impact law in(t;:np) = —edn(t,,) withe=1
. + _ . —
Matrix form X (¢, ) = diag(1,...,1, —=1)X(t,,)

How to build nonsmooth modes for this system?

Linear algebra + Geometric interpretation
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Change of basis

After an appropriate change of basis:

@ Free flight
X(t) = etAX(0) becomes q(t) = S(t)q(0)

where diagonal blocks of S(¢) are {cos(wit) B sm(wit)}

sin(w;t)  cos(w;t)

= S(t) is a direct isometry with n orthogonal stable planes



Studied system
[ ]

Change of basis

After an appropriate change of basis:

@ Free flight
X(t) = etAX(0) becomes q(t) = S(t)q(0)

cos(w;t) —sin(w;t)

where diagonal blocks of S(¢) are dilms)  cos(enn)

= S(t) is a direct isometry with n orthogonal stable planes

@ Impact condition

X(t diag(1,...,1,-1)X(¢ becomes q(t Imp) Na(timp)

= N is an indirect isometry (reflexion w.r.t. hyperplane)

lmp) |mp)

Geometric interpretation

@ Free flight can be seen as the image of q by n plane rotations.

@ Impact = image of q(t) by reflexion with respect to a hyperplane.




1 impact per period
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1 i.p.p.: governing equations

o free flight from timp to t: q(t) = S(t — timp)d(timp) n plane rotations
o impact at t: q(t,,) = Na(t,,,) 1 reflexion
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t1: impact instant (¢, = T)

initial state q(0) | q(0™)
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1 i.p.p.: governing equations

o free flight from timp to t: q(t) = S(t — timp)d(timp) n plane rotations
o impact at t: q(tf,) = Na(ti,, 1 reflexion

t1: impact instant (¢, = T)

initial state q(0) | q(0%)
free flight S(t1)a(0) | a(ti™)
impact NS(t1)q(0) | q(t:™)

Periodicity conditions

Find q(0) and ¢; such that q(0) = q(t1)

Mathematical problem

Find q(0) and ¢; such that q(0) € ker (NS(¢;) — Id)
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1 i.p.p.: governing equations

o free flight from timp to t: q(t) = S(t — timp)d(timp) n plane rotations
o impact at t: q(tf,) = Na(ti,, 1 reflexion

t1: impact instant (¢, = T)

initial state q(0) | q(0%)
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1 i.p.p.: governing equations

o free flight from timp to t: q(t) = S(t — timp)d(timp) n plane rotations
o impact at t: q(tf,) = Na(ti,, 1 reflexion

t1: impact instant (¢, = T)

initial state a(0) | q(0%)
free flight S(t1)a(0) | a(ti™)
impact NS(t1)a(0) | a(t:™)

Periodicity conditions

Find q(0) and ¢; such that q(0) = q(#1)

Mathematical problem

Find q(0) and ¢; such that q(0) € ker (NS(¢;) — Id)
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1 i.p.p.: lllustration

Mathematical problem
Find g(0) and ¢; such that g(0) € ker (NS(¢1) — Id)

@ Solve det (NS(tl) — Id) =0
o Choose q(0) € ker (NS(t1) — Id) such that z,,(0) = d

positions x(t)

o Q
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0 time ()
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1 impact per period

1 i.p.p.: Building nonsmooth mode

e Start from a grazing linear mode

@ Vary continously ¢; (recall that ¢; is the period)

= continuum of nonsmooth orbits

S

o

positions z(t)

0 2m
w2
time ¢ 1

(K<) ]>H] [ +]
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2 i.p.p.. governing equations

o free flight from timp to 1 q(t) = S(t — timp)d(timp) n plane rotations
@ impact at t: q(t7) = Nq(t7) 1 reflexion
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o free flight from timp to 1 q(t) = S(t — timp)d(timp) n plane rotations
@ impact at t: q(t7) = Nq(t7) 1 reflexion

t1,to: impact instant (t2 =T

initial state q(0) ‘ q(0")
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2 i.p.p.. governing equations
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@ impact at t: q(t7) = Nq(t7) 1 reflexion

t1,to: impact instant (t2 =T
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2 i.p.p.. governing equations
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@ impact at t: q(t7) = Nq(t7) 1 reflexion

t1,to: impact instant (t2 =T

initial state q(0) | q(0*

free flight 1 S(t1)a(0) | a(ta™)
impact 1 NS(t1)a(0) | q(t:1)
free flight 2 S(ta — t1)NS(t1)q(0) | q(t27)



2 impacts per period
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2 i.p.p.. governing equations

o free flight from timp to 1 q(t) = S(t — timp)d(timp) n plane rotations
@ impact at t: q(t7) = Nq(t7) 1 reflexion

t1,to: impact instant (t2 =T

initial state q(0) | q(0*

free flight 1 S(t1)a(0) | a(ta™)
impact 1 NS(t1)q(0) | q(t:™)
free flight 2 S(ta — t1)NS(t1)q(0) | q(t27)
impact 2 NS(t2 — t1)NS(t1)a(0) | q(t2™)

Periodicity conditions
Find q(0) and #1,t2 such that q(0) = q(¢2)

Mathematical problem
Find g(0) and ¢; such that q(0) € ker (NS(t2 — t;)NS(t;) — Id)




2 impacts per period
[ o]

2 i.p.p.. governing equations

o free flight from timp to 1 q(t) = S(t — timp)d(timp) n plane rotations
@ impact at t: q(t7) = Nq(t7) 1 reflexion

t1,to: impact instant (t2 =T

initial state q(0) Q(0+

free flight 1 S(t1)q(0) | q(ti™)
impact 1 NS(t1)q(0) | a(t1™)
free flight 2 S(t2 — t1)NS(t1)q(0) | a(t2")
impact 2 NS(t2 = t1)NS(t1)q(0) q(t2+)

Periodicity conditions
Find q(0) and #1,t2 such that g(0) = q(%3)

Mathematical problem
Find g(0) and ¢; such that q(0) € ker (NS(t2 — t;)NS(t;) — Id)




2 impacts per period
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Direct approach: fails

Mathematical problem
Find q(0) and ¢4, ..., s.t. q(0) € ker (NS(t2 —t1)NS(t1) — Id)

=A(t1,t2)
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Direct approach: fails

Mathematical problem
Find q(0) and ¢4, ..., s.t. q(0) € ker (NS(t2 —t1)NS(t1) — Id)

Idea: =A(t1,t2)
© Solve det (A(ty,t2)) = 0 for unknows (t1,2)
@ calculate ker(A(ty,t2))



2 impacts per period
oe

Direct approach: fails

Mathematical problem
Find q(0) and ¢4, ..., s.t. q(0) € ker (NS(t2 —t1)NS(t1) — Id)

Idea: =A(f1,t2)
© Solve det (A(ty1,t2)) = 0 for unknows (i1, t2)
@ calculate ker(A(ty,t2))

Issues:
@ det(A(t1,t2)) =0 is a cumbersome condition

@ dimension of ker has to be greater than rank of the system of conditions
In(tl) = I’n(tg) =d.



2 impacts per period
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Direct approach: fails

Mathematical problem

Find g(0) and t1,...,t; s.t. g(0) € ker (NS(t — t1)NS(t1) — Id )

Idea: =A(f1,t2)
© Solve det (A(ty1,t2)) = 0 for unknows (i1, t2)
@ calculate ker(A(ty,t2))

Issues:
@ det(A(t1,t2)) =0 is a cumbersome condition

@ dimension of ker has to be greater than rank of the system of conditions
In(tl) = I’n(tg) =d.

Not possible to solve in practice for n > 3.
= More subtle reasoning is required
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2 i.p.p.: Illustration

See last part for details on how this was obtained.

o Q

positions z(t)

time (¢)
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2 impacts per period

2 i.p.p.: Building nonsmooth mode

e Start from a grazing linear mode
@ Vary continously ¢y, t5 (recall that t5 is the period)
o Difficulty: (¢1,t2) must always verify dim(ker A (¢1,%2)) = 2

= continuum of nonsmooth orbits

NSNS
///////////

S

o

positions x(t)

0 2m T

wa
time ¢

KIS I>]>] [=]ote][+]




pacts per period

Mathematical results

Main mathematical results

o Existence of ¢1,...,¢;
There exist a known isomorphism ¢ and a known matrix IT such that:

q(0) € ker(A — Id) == ker(IT), II € Skewy

So At t)al0) =a(0) < T(h,... . t)p(a0) = 0]
e Conditions z,,(t1) =d,...,x,(tx) =d
There exists a known matrix X such that these conditions write

(tr, .. te)p(a0) = d[1,...,1]"

Procedure (with A = ¢(q(0)))

Given k, find X and ¢4, ..., ¢, such that
k(k—1)
2

o X(ty,...,ti))A=d[l,...,1]T — k equations
for k + k unknowns (t1,...,tx and A)

@ M(t1,...,t5)A=0 equations
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Mathematical results

Main mathematical results

o Existence of ¢1,...,¢;
There exist a known isomorphism ¢ and a known matrix IT such that:

q(0) € ker(A — Id) == ker(IT), II € Skewy

So At t)al0) =a(0) < T(h,... . t)p(a0) = 0]
e Conditions z,,(t1) =d,...,x,(tx) =d
There exists a known matrix X such that these conditions write

(tr, .. te)p(a0) = d[1,...,1]"

Procedure (with A = ¢(q(0)))

Given k, find X and ¢4, ..., ¢, such that
k(k—1)
2
o X(ty,...,ti))A=d[l,...,1]T — k equations
for k + k unknowns (t1,...,t; and A); independent of n

@ M(t1,...,t5)A=0 equations
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Mathematical results: application

Procedure (with A = (q(0)))

Given k, find X and ¢4, ..., tx such that
k(k—1)

o II(ty,...,tk)A =0 equations
o X(ty,...,t,))A=d[l,...,1]T — k equations

for k + k unknowns (t1,...,t; and A)

@ k = 1: almost always a unique solution

I1 = [0] (1)
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Mathematical results: application

Procedure (with A = ©(q(0)))

Given k, find X and ¢4, ..., ¢, such that
k(k—1)
2

o X(ty,...,ti))A=d[l,...,1]T — k equations
for k + k unknowns (t1,...,tx and A)

o II(ty,...,tk)A=0 equations

@ k = 1: almost always a unique solution

@ k = 2: when II; 5(t1,t2) = 0, almost always a unique solution

0 Ty o(t1, t2)

II = 1
—II; 2(t1,t2) 0 (1)
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Mathematical results: application

Procedure (with A = (q(0)))

Given k, find X and ¢4, ..., tx such that

k(k—1
o IT(ty,...,t5)A =0 g equations
o X(ty,...,ti))A=d[1,...,1]T  — k equations

for k -+ k unknowns (1, ...t and A)

@ k = 1: almost always a unique solution
@ k= 2: when II; 2(t1,t2) = 0, almost always a unique solution
o k= 3: difficulty isto solve ITy 5 =II; 3 =I5 3 =0

0 Mo I3
II=|-II 2 0 Iy 3 (1)
I3 —Il3 0O
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Mathematical results: application

Procedure (with A = (q(0)))

Given k, find X and ¢4, ..., tx such that

k(k—1
o II(t,...,tx,)A =0 kk=1) equations
o X(ty,...,ti))A=d[1,...,1]T  — k equations

for k + k unknowns (t1,...,t; and A)

@ k = 1: almost always a unique solution

@ k =2: when II; 5(t1,t2) = 0, almost always a unique solution

o k = 3: difficulty is to solve IT; o = II; 3 = Il 3 =0

@ k> 4: too many II; o = - -+ = II;_y  but solutions based on symmetries
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Conclusions

o Existence of invariant manifolds, tangent to linear modes: nonsmooth
modes

o Classification by number of impact(s) per period

@ Highlights importance of mathematics

o Extremely rich behaviour induced by contact:
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Conclusions

@ Existence of invariant manifolds, tangent to linear modes: nonsmooth
modes

@ Classification by number of impact(s) per period
@ Highlights importance of mathematics

o Extremely rich behaviour induced by contact: 1 impact per period

energy
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T 2T 371 T> 4T, 5T 6T, 2T
T (period)
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Conclusions

@ Existence of invariant manifolds, tangent to linear modes: nonsmooth
modes

o Classification by number of impact(s) per period
@ Highlights importance of mathematics

o Extremely rich behaviour induced by contact: 2 impacts per period

uw L

Ti 2T, 3T1 T2 4T} 5T T2
T (period)

energy
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Conclusions

o Existence of invariant manifolds, tangent to linear modes: nonsmooth
modes

o Classification by number of impact(s) per period
@ Highlights importance of mathematics

o Extremely rich behaviour induced by contact:

v

Future work: is it usable in practice?

@ Study of stabilities (Lyapunov, orbital, etc.)

@ Behaviour of forced system

@ Generalisation to more complex geometries

N
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