Nonsmooth modal analysis: investigation of spring-mass system subject to an elastic impact law

Anders Thorin ${ }^{1}$, Pierre Delezoide, Mathias Legrand ${ }^{1}$, Stéphane Junca ${ }^{2}$
${ }^{1}$ Department of Mechanical Engineering, McGill University, Montreal, Canada. ${ }^{2}$ Mathematics Laboratory JAD and Team COFFEE INRIA, Nice, France.

August 05, 2015

McGill

Université
nice
Sophia Antipolis

IDETC 2015, Boston

Mechanical model

- Mechanical system

- Generalised coordinates x_{1}, x_{2}
- Laws of physics

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K X}=\mathbf{0}, \quad \mathbf{X}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Mathematical standpoint

- Ordinary Differential Equations (ODEs)
- Solutions can be plotted in state space

Equivalence

Linear system

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K X}=\mathbf{0}, \quad \mathbf{X}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Time-evolution

State space: linear mode

Definition of linear mode

Invariant plane of periodic orbits in the state space.

Linear system

亥 1 mun- WMWW-

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K X}=\mathbf{0}, \quad \mathbf{X}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Time-evolution

State space: linear mode

Definition of linear mode

Invariant plane of periodic orbits in the state space.

Linear system

そうWMWH--MuM-
$\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K X}=\mathbf{0}, \quad \mathbf{X}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

Time-evolution

Decomposition on linear modes

- Linear modes:
- rely on superposition principle
- solutions live in a vector space whose basis are the linear modes
- linear algebra (\sim end of $19^{\text {th }}$)
- physical importance of eigenvalues: resonances and internal resonances
- Nonlinear modes:
- superposition principle no longer applies
- but maths gives a way to calcule particular surfaces of the state space
- centre manifold theorem (~ 1970)
- applied to dynamical systems (Rosenberg, Shaw, Pierre, Vakakis, etc.)

Nonlinear modes

Nonlinear system

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K}\left(\mathbf{X}+\alpha \mathbf{X}^{3}\right)=\mathbf{0}
$$

stiffness

Time-evolution

State space

Definition of nonlinear mode

Invariant surface of the state space, tangent to a linear mode.

Nonlinear modes

Nonlinear system

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K}\left(\mathbf{X}+\alpha \mathbf{X}^{3}\right)=\mathbf{0}
$$

Time-evolution

State space

Definition of nonlinear mode

Invariant surface of the state space, tangent to a linear mode.

Nonlinear modes

Nonlinear system

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K}\left(\mathbf{X}+\alpha \mathbf{X}^{3}\right)=\mathbf{0}
$$

stiffness

Time-evolution

State space

Definition of nonlinear mode

Invariant surface of the state space, tangent to a linear mode.

Nonlinear modes

Nonlinear system

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K}\left(\mathbf{X}+\alpha \mathbf{X}^{3}\right)=\mathbf{0}
$$

Time-evolution

State space

Definition of nonlinear mode

Invariant surface of the state space, tangent to a linear mode.

Nonlinear modes

Nonlinear system

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K}\left(\mathbf{X}+\alpha \mathbf{X}^{3}\right)=\mathbf{0}
$$

stiffness

Time-evolution

State space

Definition of nonlinear mode

Invariant surface of the state space, tangent to a linear mode.

Nonlinear modes

Nonlinear system

$\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K}\left(\mathbf{X}+\alpha \mathbf{X}^{3}\right)=\mathbf{0}$
stiffness

Time-evolution

State space

Definition of nonlinear mode

Invariant surface of the state space, tangent to a linear mode.

Limitation of nonlinear modal analysis

Limitation

Calculation of nonlinear modes relies on smoothness.

\longrightarrow What about nonsmooth systems?

- Nonsmooth system: system undergoing impacts or/and friction.

Newton's craddle [Inria]

Aircraft engine [Mech. Eng., McGill]

- Long-term objective: extend nonlinear modal analysis to nonsmooth systems

Outline

(1) Context

(2) Description of the non-smooth system
(3) 1 impact per period
(4) 2 impacts per period
(5) k impacts per period

Spring-mass oscillator: impact condition

- Free flight

Dynamics $\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}$
First-order form $\dot{\mathbf{X}}=\mathbf{A X}$ with $\mathbf{X}=\binom{\mathbf{x}}{\dot{\mathbf{x}}}$ and $\mathbf{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1} \mathbf{K} & \mathbf{0}\end{array}\right]$
Solutions $\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0)$

Spring-mass oscillator: impact condition

- Free flight

Dynamics $\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}$
First-order form $\dot{\mathbf{X}}=\mathbf{A X}$ with $\mathbf{X}=\binom{\mathbf{x}}{\dot{\mathbf{x}}}$ and $\mathbf{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1} \mathbf{K} & \mathbf{0}\end{array}\right]$
Solutions $\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0)$

- Impact condition

Impact law $\dot{x}_{n}\left(t_{\mathrm{imp}}^{+}\right)=-e \dot{x}_{n}\left(t_{\mathrm{imp}}^{-}\right)$with $e=1$
Matrix form $\mathbf{X}\left(t_{\mathrm{imp}}^{+}\right)=\operatorname{diag}(1, \ldots, 1,-1) \mathbf{X}\left(t_{\mathrm{imp}}^{-}\right)$

Spring-mass oscillator: impact condition

- Free flight

Dynamics $\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=0 \longleftarrow$ unforced
First-order form $\dot{\mathbf{X}}=\mathbf{A X}$ with $\mathbf{X}=\binom{\mathbf{x}}{\dot{\mathbf{x}}}$ and $\mathbf{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1} \mathbf{K} & \mathbf{0}\end{array}\right]$
Solutions $\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0)$

- Impact condition

Impact law $\dot{x}_{n}\left(t_{\mathrm{imp}}^{+}\right)=-e \dot{x}_{n}\left(t_{\mathrm{imp}}^{-}\right)$with $e=1$
Matrix form $\mathbf{X}\left(t_{\mathrm{imp}}^{+}\right)=\operatorname{diag}(1, \ldots, 1,-1) \mathbf{X}\left(t_{\mathrm{imp}}^{-}\right)$

Spring-mass oscillator: impact condition

- Free flight

Dynamics $\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}$
First-order form $\dot{\mathbf{X}}=\mathbf{A X}$ with $\mathbf{X}=\binom{\mathbf{x}}{\dot{\mathbf{x}}}$ and $\mathbf{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1} \mathbf{K} & \mathbf{0}\end{array}\right]$
Solutions $\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0)$

- Impact condition

Impact law $\dot{x}_{n}\left(t_{\mathrm{imp}}^{+}\right)=-e \dot{x}_{n}\left(t_{\mathrm{imp}}^{-}\right)$with $e=1$
Matrix form $\mathbf{X}\left(t_{\text {imp }}^{+}\right)=\boldsymbol{\operatorname { d i a g }}(1, \ldots, 1,-1) \mathbf{X}\left(t_{\text {imp }}^{-}\right)$
How to build nonsmooth modes for this system?
Linear algebra + Geometric interpretation

After an appropriate change of basis:

- Free flight
$\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0)$ becomes $\mathbf{q}(t)=\mathbf{S}(t) \mathbf{q}(0)$
where diagonal blocks of $\mathbf{S}(t)$ are $\left[\begin{array}{cc}\cos \left(\omega_{i} t\right) & -\sin \left(\omega_{i} t\right) \\ \sin \left(\omega_{i} t\right) & \cos \left(\omega_{i} t\right)\end{array}\right]$
$\Longrightarrow \mathbf{S}(t)$ is a direct isometry with n orthogonal stable planes

Change of basis

After an appropriate change of basis:

- Free flight

$$
\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0) \text { becomes } \mathbf{q}(t)=\mathbf{S}(t) \mathbf{q}(0)
$$

where diagonal blocks of $\mathbf{S}(t)$ are $\left[\begin{array}{cc}\cos \left(\omega_{i} t\right) & -\sin \left(\omega_{i} t\right) \\ \sin \left(\omega_{i} t\right) & \cos \left(\omega_{i} t\right)\end{array}\right]$
$\Longrightarrow \mathbf{S}(t)$ is a direct isometry with n orthogonal stable planes

- Impact condition $\mathbf{X}\left(t_{\mathrm{imp}}^{+}\right)=\operatorname{diag}(1, \ldots, 1,-1) \mathbf{X}\left(t_{\mathrm{imp}}^{-}\right)$becomes $\mathbf{q}\left(t_{\mathrm{imp}}^{+}\right)=\mathbf{N q}\left(t_{\mathrm{imp}}^{-}\right)$
$\Longrightarrow \mathbf{N}$ is an indirect isometry (reflexion w.r.t. hyperplane)

Geometric interpretation

- Free flight can be seen as the image of \mathbf{q} by n plane rotations.
- Impact $=$ image of $\mathbf{q}(t)$ by reflexion with respect to a hyperplane.

1 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\mathrm{imp}}\right) \mathbf{q}\left(t_{\mathrm{imp}}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t_{\text {imp }}^{+}\right)=\mathbf{N q}\left(t_{\text {imp }}^{-}\right)$

1 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t_{\text {imp }}^{+}\right)=\mathbf{N q}\left(t_{\text {imp }}^{-}\right)$
t_{1} : impact instant $\left(t_{1}=T\right)$

initial state

$$
\mathbf{q}(0) \mid \mathbf{q}\left(0^{+}\right)
$$

1 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\mathrm{imp}}\right) \mathbf{q}\left(t_{\mathrm{imp}}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t_{\text {imp }}^{+}\right)=\mathbf{N q}\left(t_{\text {imp }}^{-}\right)$
t_{1} : impact instant $\left(t_{1}=T\right)$

initial state
free flight

$$
\begin{array}{r|l}
\mathbf{q}(0) & \mathbf{q}\left(0^{+}\right) \\
\mathbf{S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}^{-}\right)
\end{array}
$$

1 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t_{\text {imp }}^{+}\right)=\mathbf{N q}\left(t_{\text {imp }}^{-}\right)$
t_{1} : impact instant $\left(t_{1}=T\right)$

initial state
free flight
impact

$\mathbf{q}(0)$	$\mathbf{q}\left(0^{+}\right)$
$\mathbf{S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}-\right)$
$\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}{ }^{+}\right)$

1 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t_{\mathrm{imp}}^{+}\right)=\mathbf{N q}\left(t_{\mathrm{imp}}^{-}\right)$
t_{1} : impact instant $\left(t_{1}=T\right)$
initial state free flight impact

$\mathbf{q}(0)$	$\mathbf{q}\left(0^{+}\right)$
$\mathbf{S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}-\right)$
$\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}{ }^{+}\right)$

Periodicity conditions

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0)=\mathbf{q}\left(t_{1}\right)$

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

1 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t_{\mathrm{imp}}^{+}\right)=\mathbf{N q}\left(t_{\mathrm{imp}}^{-}\right)$
t_{1} : impact instant $\left(t_{1}=T\right)$

initial state	$\mathbf{q}(0)$	$\mathbf{q}\left(0^{+}\right)$
free flight	$\mathbf{S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}-\right)$
impact	$\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}{ }^{+}\right)$

Periodicity conditions

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0)=\mathbf{q}\left(t_{1}\right)$

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

1 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t_{\mathrm{imp}}^{+}\right)=\mathbf{N q}\left(t_{\mathrm{imp}}^{-}\right)$
t_{1} : impact instant $\left(t_{1}=T\right)$

initial state	$\mathbf{q}(0)$	$\mathbf{q}\left(0^{+}\right)$
free flight	$\mathbf{S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}-\right)$
impact	$\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0)$	$\mathbf{q}\left(t_{1}{ }^{+}\right)$

Periodicity conditions

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0)=\mathbf{q}\left(t_{1}\right)$

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

1 i.p.p.: Illustration

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

- Solve $\operatorname{det}\left(\mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)=0$
- Choose $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$ such that $x_{n}(0)=d$

$0 \quad$ time $(t) \quad t_{1}=T$

$$
K<\Delta \Delta \ggg \mid \cdots+
$$

1 i.p.p.: Building nonsmooth mode

- Start from a grazing linear mode
- Vary continously t_{1} (recall that t_{1} is the period)
\Longrightarrow continuum of nonsmooth orbits

2 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$
n plane rotations
- impact at $t: \mathbf{q}\left(t^{+}\right)=\mathbf{N q}\left(t^{-}\right)$

2 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$ n plane rotations
- impact at $t: \mathbf{q}\left(t^{+}\right)=\mathbf{N q}\left(t^{-}\right)$
t_{1}, t_{2} : impact instant $\left(t_{2}=T\right)$ initial state

$$
\mathbf{q}(0) \mid \mathbf{q}\left(0^{+}\right)
$$

2 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$ n plane rotations
- impact at $t: \mathbf{q}\left(t^{+}\right)=\mathbf{N q}\left(t^{-}\right)$
t_{1}, t_{2} : impact instant $\left(t_{2}=T\right)$
initial state free flight 1

$$
\begin{array}{r|l}
\mathbf{q}(0) & \mathbf{q}\left(0^{+}\right) \\
\mathbf{S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}^{-}\right)
\end{array}
$$

2 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$ n plane rotations
- impact at $t: \mathbf{q}\left(t^{+}\right)=\mathbf{N q}\left(t^{-}\right)$
t_{1}, t_{2} : impact instant $\left(t_{2}=T\right)$
initial state free flight 1 impact 1

$$
\begin{array}{r|l}
\mathbf{q}(0) & \mathbf{q}\left(0^{+}\right) \\
\mathbf{S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}^{-}\right) \\
\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}^{+}\right)
\end{array}
$$

2 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\text {imp }}\right) \mathbf{q}\left(t_{\text {imp }}\right)$ n plane rotations
- impact at $t: \mathbf{q}\left(t^{+}\right)=\mathbf{N q}\left(t^{-}\right)$
$t_{1}, t_{2}:$ impact instant $\left(t_{2}=T\right)$
initial state free flight 1 impact 1 free flight 2

$$
\begin{array}{r|l}
\mathbf{q}(0) & \mathbf{q}\left(0^{+}\right) \\
\mathbf{S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}^{-}\right) \\
\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}+\right) \\
\mathbf{S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{2}-\right)
\end{array}
$$

2 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\mathrm{imp}}\right) \mathbf{q}\left(t_{\mathrm{imp}}\right)$
- impact at $t: \mathbf{q}\left(t^{+}\right)=\mathbf{N q}\left(t^{-}\right)$
n plane rotations
1 reflexion
t_{1}, t_{2} : impact instant $\left(t_{2}=T\right)$
initial state free flight 1 impact 1 free flight 2 impact 2
$\mathbf{q}(0) \mid \mathbf{q}\left(0^{+}\right)$
$\mathbf{S}\left(t_{1}\right) \mathbf{q}(0) \quad \mathbf{q}\left(t_{1}^{-}\right)$ $\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) \quad \mathbf{q}\left(t_{1}{ }^{+}\right)$
$\mathbf{S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) \quad \mathbf{q}\left(t_{2}{ }^{-}\right)$
$\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) \mid \mathbf{q}\left(t_{2}{ }^{+}\right)$

Periodicity conditions

Find $\mathbf{q}(0)$ and t_{1}, t_{2} such that $\mathbf{q}(0)=\mathbf{q}\left(t_{2}\right)$

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

2 i.p.p.: governing equations

Summary

- free flight from $t_{\text {imp }}$ to $t: \mathbf{q}(t)=\mathbf{S}\left(t-t_{\mathrm{imp}}\right) \mathbf{q}\left(t_{\mathrm{imp}}\right)$
- impact at $t: \mathbf{q}\left(t^{+}\right)=\mathbf{N q}\left(t^{-}\right)$
n plane rotations
1 reflexion
t_{1}, t_{2} : impact instant $\left(t_{2}=T\right)$
initial state free flight 1 impact 1 free flight 2 impact 2

$$
\begin{array}{r|l}
\mathbf{q}(0) & \mathbf{q}\left(0^{+}\right) \\
\mathbf{S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}-\right) \\
\mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{1}+\right) \\
\mathbf{S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{2}-\right) \\
\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right) \mathbf{q}(0) & \mathbf{q}\left(t_{2}+\right)
\end{array}
$$

Periodicity conditions

Find $\mathbf{q}(0)$ and t_{1}, t_{2} such that $\mathbf{q}(0)=\mathbf{q}\left(t_{2}\right)$

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1} such that $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

Direct approach: fails

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1}, \ldots, t_{k} s.t. $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

$$
:=\mathbf{A}\left(t_{1}, t_{2}\right)
$$

Direct approach: fails

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1}, \ldots, t_{k} s.t. $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

Idea:

$$
:=\mathbf{A}\left(t_{1}, t_{2}\right)
$$

(1) Solve $\operatorname{det}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)=0$ for unknows $\left(t_{1}, t_{2}\right)$
(2) calculate $\operatorname{ker}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)$

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1}, \ldots, t_{k} s.t. $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

Idea:

$$
:=\mathbf{A}\left(t_{1}, t_{2}\right)
$$

(1) Solve $\operatorname{det}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)=0$ for unknows $\left(t_{1}, t_{2}\right)$
(2) calculate $\operatorname{ker}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)$

Issues:

(1) $\operatorname{det}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)=0$ is a cumbersome condition
(2) dimension of ker has to be greater than rank of the system of conditions $x_{n}\left(t_{1}\right)=x_{n}\left(t_{2}\right)=d$.

Direct approach: fails

Mathematical problem

Find $\mathbf{q}(0)$ and t_{1}, \ldots, t_{k} s.t. $\mathbf{q}(0) \in \operatorname{ker}\left(\mathbf{N S}\left(t_{2}-t_{1}\right) \mathbf{N S}\left(t_{1}\right)-\mathbf{I d}\right)$

Idea:

$$
:=\mathbf{A}\left(t_{1}, t_{2}\right)
$$

(1) Solve $\operatorname{det}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)=0$ for unknows $\left(t_{1}, t_{2}\right)$
(2) calculate $\operatorname{ker}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)$

Issues:

(1) $\operatorname{det}\left(\mathbf{A}\left(t_{1}, t_{2}\right)\right)=0$ is a cumbersome condition
(2) dimension of ker has to be greater than rank of the system of conditions $x_{n}\left(t_{1}\right)=x_{n}\left(t_{2}\right)=d$.

Not possible to solve in practice for $n \geqslant 3$.
\Longrightarrow More subtle reasoning is required

2 i.p.p.: Illustration

See last part for details on how this was obtained.

2 i.p.p.: Building nonsmooth mode

- Start from a grazing linear mode
- Vary continously t_{1}, t_{2} (recall that t_{2} is the period)
- Difficulty: $\left(t_{1}, t_{2}\right)$ must always verify $\operatorname{dim}\left(\operatorname{ker} \mathbf{A}\left(t_{1}, t_{2}\right)\right)=2$
\Longrightarrow continuum of nonsmooth orbits

Mathematical results

Main mathematical results

- Existence of t_{1}, \ldots, t_{k}

There exist a known isomorphism φ and a known matrix Π such that:

$$
\mathbf{q}(0) \in \operatorname{ker}(\mathbf{A}-\mathbf{I d}) \xrightarrow{\sim} \operatorname{ker}(\boldsymbol{\Pi}), \quad \boldsymbol{\Pi} \in \operatorname{Skew}_{k}
$$

So $\quad \mathbf{A}\left(t_{1}, \ldots, t_{k}\right) \mathbf{q}(0)=\mathbf{q}(0) \quad \Longleftrightarrow \quad \Pi\left(t_{1}, \ldots, t_{k}\right) \varphi(\mathbf{q}(0))=\mathbf{0}$

- Conditions $x_{n}\left(t_{1}\right)=d, \ldots, x_{n}\left(t_{k}\right)=d$

There exists a known matrix $\boldsymbol{\Sigma}$ such that these conditions write

$$
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \varphi(\mathbf{q}(0))=d[1, \ldots, 1]^{\top}
$$

Procedure (with $\boldsymbol{\lambda}=\varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_{1}, \ldots, t_{k} such that

- $\mathbf{M}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \quad \longrightarrow \frac{k(k-1)}{2}$ equations
- $\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=d[1, \ldots, 1]^{\top} \longrightarrow \quad k$ equations
for $k+k$ unknowns $\left(t_{1}, \ldots, t_{k}\right.$ and $\left.\boldsymbol{\lambda}\right)$

Main mathematical results

- Existence of t_{1}, \ldots, t_{k}

There exist a known isomorphism φ and a known matrix Π such that:

$$
\mathbf{q}(0) \in \operatorname{ker}(\mathbf{A}-\mathbf{I d}) \xrightarrow{\sim} \operatorname{ker}(\boldsymbol{\Pi}), \quad \Pi \in \operatorname{Skew}_{k}
$$

So $\quad \mathbf{A}\left(t_{1}, \ldots, t_{k}\right) \mathbf{q}(0)=\mathbf{q}(0) \quad \Longleftrightarrow \quad \boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \varphi(\mathbf{q}(0))=\mathbf{0}$

- Conditions $x_{n}\left(t_{1}\right)=d, \ldots, x_{n}\left(t_{k}\right)=d$

There exists a known matrix $\boldsymbol{\Sigma}$ such that these conditions write

$$
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \varphi(\mathbf{q}(0))=d[1, \ldots, 1]^{\top}
$$

Procedure (with $\boldsymbol{\lambda}=\varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_{1}, \ldots, t_{k} such that

- $\mathbf{M}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \quad \longrightarrow \frac{k(k-1)}{2}$ equations
- $\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=d[1, \ldots, 1]^{\top} \longrightarrow \quad k$ equations for $k+k$ unknowns (t_{1}, \ldots, t_{k} and $\boldsymbol{\lambda}$); independent of n

Procedure (with $\lambda=\varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_{1}, \ldots, t_{k} such that

- $\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \quad \longrightarrow \quad \frac{k(k-1)}{2}$ equations
- $\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=d[1, \ldots, 1]^{\top} \quad \longrightarrow \quad k$ equations
for $k+k$ unknowns (t_{1}, \ldots, t_{k} and $\boldsymbol{\lambda}$)
- $k=1$: almost always a unique solution

$$
\begin{equation*}
\boldsymbol{\Pi}=[0] \tag{1}
\end{equation*}
$$

Procedure (with $\lambda=\varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_{1}, \ldots, t_{k} such that

- $\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \quad \longrightarrow \quad \frac{k(k-1)}{2}$ equations
- $\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=d[1, \ldots, 1]^{\top} \quad \longrightarrow \quad k$ equations for $k+k$ unknowns (t_{1}, \ldots, t_{k} and $\boldsymbol{\lambda}$)
- $k=1$: almost always a unique solution
- $k=2$: when $\Pi_{1,2}\left(t_{1}, t_{2}\right)=0$, almost always a unique solution

$$
\boldsymbol{\Pi}=\left[\begin{array}{cc}
0 & \Pi_{1,2}\left(t_{1}, t_{2}\right) \tag{1}\\
-\Pi_{1,2}\left(t_{1}, t_{2}\right) & 0
\end{array}\right]
$$

Procedure (with $\boldsymbol{\lambda}=\varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_{1}, \ldots, t_{k} such that

- $\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \quad \longrightarrow \quad \frac{k(k-1)}{2}$ equations
- $\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=d[1, \ldots, 1]^{\top} \quad \longrightarrow \quad k$ equations for $k+k$ unknowns (t_{1}, \ldots, t_{k} and $\boldsymbol{\lambda}$)
- $k=1$: almost always a unique solution
- $k=2$: when $\Pi_{1,2}\left(t_{1}, t_{2}\right)=0$, almost always a unique solution
- $k=3$: difficulty is to solve $\Pi_{1,2}=\Pi_{1,3}=\Pi_{2,3}=0$

$$
\boldsymbol{\Pi}=\left[\begin{array}{ccc}
0 & \Pi_{1,2} & \Pi_{1,3} \tag{1}\\
-\Pi_{1,2} & 0 & \Pi_{2,3} \\
-\Pi_{1,3} & -\Pi_{2,3} & 0
\end{array}\right]
$$

Procedure (with $\boldsymbol{\lambda}=\varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_{1}, \ldots, t_{k} such that

- $\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \quad \longrightarrow \quad \frac{k(k-1)}{2}$ equations
- $\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=d[1, \ldots, 1]^{\top} \longrightarrow \quad k$ equations
for $k+k$ unknowns (t_{1}, \ldots, t_{k} and $\boldsymbol{\lambda}$)
- $k=1$: almost always a unique solution
- $k=2$: when $\Pi_{1,2}\left(t_{1}, t_{2}\right)=0$, almost always a unique solution
- $k=3$: difficulty is to solve $\Pi_{1,2}=\Pi_{1,3}=\Pi_{2,3}=0$
- $k \geqslant 4$: too many $\Pi_{1,2}=\cdots=\Pi_{k-1, k}$ but solutions based on symmetries

Conclusions \& Prospects

Conclusions

- Existence of invariant manifolds, tangent to linear modes: nonsmooth modes
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact:

Conclusions

- Existence of invariant manifolds, tangent to linear modes: nonsmooth modes
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact: linear modes

Conclusions \& Prospects

Conclusions

- Existence of invariant manifolds, tangent to linear modes: nonsmooth modes
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact: 1 impact per period

Conclusions

- Existence of invariant manifolds, tangent to linear modes: nonsmooth modes
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact: 2 impacts per period

Conclusions \& Prospects

Conclusions

- Existence of invariant manifolds, tangent to linear modes: nonsmooth modes
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact:

Future work: is it usable in practice?

- Study of stabilities (Lyapunov, orbital, etc.)
- Behaviour of forced system
- Generalisation to more complex geometries

