Context	Studied system	1 impact per period	2 impacts per period	k impacts per period	Conclusion

Nonsmooth modal analysis: investigation of spring-mass system subject to an elastic impact law

<u>Anders Thorin¹</u>, Pierre Delezoide, Mathias Legrand¹, Stéphane Junca²

¹Department of Mechanical Engineering, McGill University, Montreal, Canada. ²Mathematics Laboratory JAD and Team COFFEE INRIA, Nice, France.

August 05, 2015

IDETC 2015, Boston

Context ●○○○○○○	Studied system	1 impact per period 000	2 impacts per period	k impacts per period	Conclusion
State	space				1/18

Context ○●○○○○○	Studied system	1 impact per period 000	2 impacts per period	k impacts per period 00	Conclusion
Linear	mode 1				2/18

Context	Studied system 00	1 impact per period	2 impacts per period	k impacts per period	Conclusion
Linear	mode 2				2/18

Context ○O●OOOO	Studied system	1 impact per period	2 impacts per period	k impacts per period	Conclusion
Linear	modal an	alysis			3/18

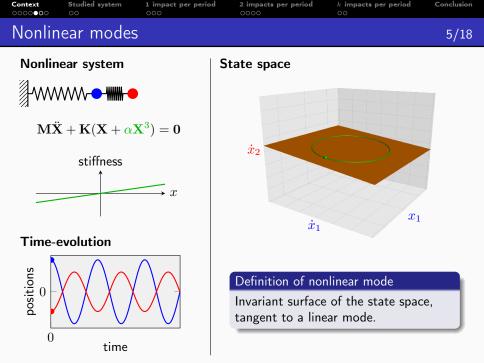
	Studied system 00	1 impact per period 000	2 impacts per period	k impacts per period	Conclusion
What	about nor	nlinear syster	ns?		4/18

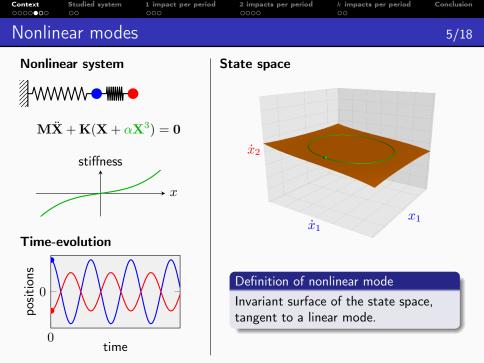
Linear modes:

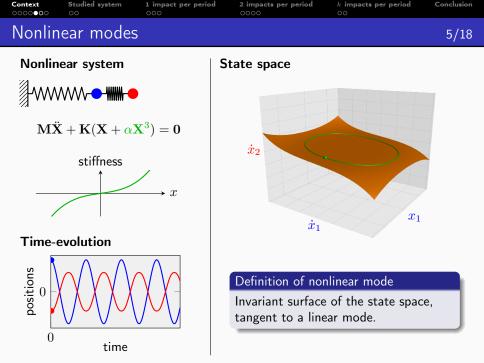
- rely on superposition principle
- solutions live in a vector space whose basis are the linear modes
- linear algebra (\sim end of 19th)
- physical importance of eigenvalues: resonances and internal resonances

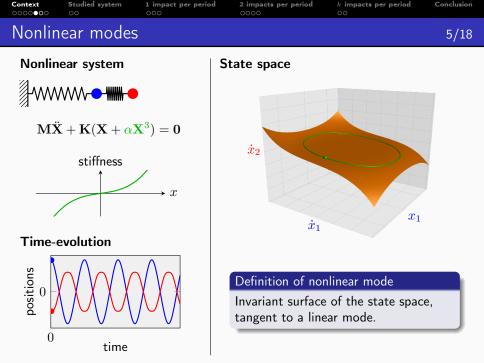
Nonlinear modes:

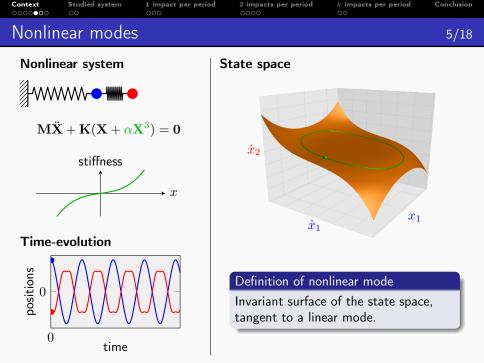
- superposition principle no longer applies
- but maths gives a way to calcule particular surfaces of the state space
- centre manifold theorem (\sim 1970)
- applied to dynamical systems (Rosenberg, Shaw, Pierre, Vakakis, etc.)











Context ○○○○○●○	Studied system	1 impact per period 000	2 impacts per period	k impacts per period	Conclusion
Nonlin	ear modes	5			5/18

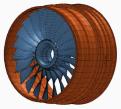
		1 impact per period 000	2 impacts per period	k impacts per period	Conclusion
Limita	tion of no	nlinear moda	al analysis		6/18

Limitation

Calculation of nonlinear modes relies on smoothness.

\longrightarrow What about *nonsmooth* systems?

• Nonsmooth system: system undergoing impacts or/and friction.



Newton's craddle [Inria]

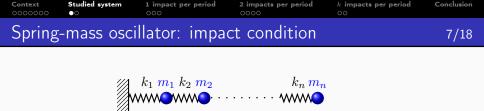
Aircraft engine [Mech. Eng., McGill]

• Long-term objective: extend nonlinear modal analysis to nonsmooth systems

Context 0000000	Studied system 00	1 impact per period 000	2 impacts per period	k impacts per period	Conclusion
Outlin	е				6/18

2 Description of the non-smooth system

- 3 1 impact per period
- 4 2 impacts per period
- 5 k impacts per period



• Free flight Dynamics $M\ddot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{0}$ First-order form $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ with $\mathbf{X} = \begin{pmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{pmatrix}$ and $\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & \mathbf{0} \end{bmatrix}$ Solutions $\mathbf{X}(t) = e^{t\mathbf{A}}\mathbf{X}(0)$

• Free flight Dynamics $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{0}$ First-order form $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ with $\mathbf{X} = \begin{pmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{pmatrix}$ and $\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & \mathbf{0} \end{bmatrix}$ Solutions $\mathbf{X}(t) = e^{t\mathbf{A}}\mathbf{X}(0)$

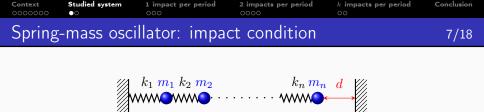
Impact condition

Impact law $\dot{x}_n(t_{imp}^+) = -e \dot{x}_n(t_{imp}^-)$ with e = 1Matrix form $\mathbf{X}(t_{imp}^+) = \text{diag}(1, \dots, 1, -1)\mathbf{X}(t_{imp}^-)$

• Free flight Dynamics $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{0} \leftarrow \text{unforced}$ First-order form $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ with $\mathbf{X} = \begin{pmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{pmatrix}$ and $\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & \mathbf{0} \end{bmatrix}$ Solutions $\mathbf{X}(t) = e^{t\mathbf{A}}\mathbf{X}(0)$

Impact condition

Impact law $\dot{x}_n(t_{imp}^+) = -e \dot{x}_n(t_{imp}^-)$ with e = 1Matrix form $\mathbf{X}(t_{imp}^+) = \text{diag}(1, \dots, 1, -1)\mathbf{X}(t_{imp}^-)$



• Free flight Dynamics $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{0}$ First-order form $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ with $\mathbf{X} = \begin{pmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{pmatrix}$ and $\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & \mathbf{0} \end{bmatrix}$ Solutions $\mathbf{X}(t) = e^{t\mathbf{A}}\mathbf{X}(0)$

• Impact condition Impact law $\dot{x}_n(t^+_{imp}) = -e \dot{x}_n(t^-_{imp})$ with e = 1Matrix form $\mathbf{X}(t^+_{imp}) = \text{diag}(1, \dots, 1, -1)\mathbf{X}(t^-_{imp})$

How to build nonsmooth modes for this system?

Linear algebra + Geometric interpretation

Context 0000000	Studied system ○●	1 impact per period	2 impacts per period	k impacts per period	Conclusion
Chang	e of basis				8/18

After an appropriate change of basis:

• Free flight $\mathbf{X}(t) = e^{t\mathbf{A}}\mathbf{X}(0) \text{ becomes } \mathbf{q}(t) = \mathbf{S}(t)\mathbf{q}(0)$

where diagonal blocks of
$$\mathbf{S}(t)$$
 are $\begin{bmatrix} \cos(\omega_i t) & -\sin(\omega_i t) \\ \sin(\omega_i t) & \cos(\omega_i t) \end{bmatrix}$

 $\Longrightarrow \mathbf{S}(t)$ is a direct isometry with n orthogonal stable planes

	Studied system ○●	1 impact per period 000	2 impacts per period	k impacts per period	Conclusion
Change	e of basis				8/18

After an appropriate change of basis:

• Free flight $\mathbf{X}(t) = e^{t\mathbf{A}}\mathbf{X}(0) \text{ becomes } \mathbf{q}(t) = \mathbf{S}(t)\mathbf{q}(0)$

where diagonal blocks of
$$\mathbf{S}(t)$$
 are $\begin{bmatrix} \cos(\omega_i t) & -\sin(\omega_i t) \\ \sin(\omega_i t) & \cos(\omega_i t) \end{bmatrix}$

 $\Longrightarrow \mathbf{S}(t)$ is a direct isometry with n orthogonal stable planes

• Impact condition $\mathbf{X}(t_{imp}^+) = \mathbf{diag}(1, \dots, 1, -1)\mathbf{X}(t_{imp}^-)$ becomes $\mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$ $\implies \mathbf{N}$ is an indirect isometry (reflexion w.r.t. hyperplane)

Geometric interpretation

- Free flight can be seen as the image of ${f q}$ by n plane rotations.
- Impact = image of q(t) by reflexion with respect to a hyperplane.

1 i.p.p.: governing equations 9/18	

٥

• free flight from
$$t_{imp}$$
 to t : $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

impact at
$$t$$
: $\mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$ 1 reflexion

n plane rotations

Context		1 impact per period ●○○	2 impacts per period	k impacts per period	Conclusion
1 i.µ	p.p.: govern	ing equations	5		9/18

• free flight from
$$t_{imp}$$
 to t : $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at t:
$$\mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$$
 1 reflexion

n plane rotations

t_1 : impact instant ($t_1 = T$)

initial state
$$\mathbf{q}(0) \mid \mathbf{q}(0^+)$$

	Studied system 00	1 impact per period ●○○	2 impacts per period	k impacts per period	Conclusion
1 i.p.p	.: governi	ng equations			9/18

• free flight from
$$t_{imp}$$
 to t : $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at t:
$$\mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$$
 1 reflexion

n plane rotations

 t_1 : impact instant ($t_1 = T$)

 $\begin{array}{lll} \mbox{initial state} & \mathbf{q}(0) & \mathbf{q}(0^+) \\ \mbox{free flight} & \mathbf{S}(t_1)\mathbf{q}(0) & \mathbf{q}(t_1^-) \end{array}$

		1 impact per period ●○○	2 impacts per period	k impacts per period	Conclusion
1 i.p.p	.: governi	ng equations	5		9/18

• free flight from
$$t_{imp}$$
 to t : $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at
$$t$$
: $\mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$ 1 reflexion

n plane rotations

 t_1 : impact instant ($t_1 = T$)

	ntext	Studied system	1 impact per period ●○○	2 impacts per period	k impacts per period	Conclusion
1	i.p.p.	: governii	ng equations			9/18

• free flight from
$$t_{imp}$$
 to t : $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at
$$t: \mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$$
 1 reflexion

n plane rotations

 t_1 : impact instant ($t_1 = T$)

Periodicity conditions

Find $\mathbf{q}(0)$ and t_1 such that $\mathbf{q}(0) = \mathbf{q}(t_1)$

Mathematical problem

	ntext	Studied system	1 impact per period ●○○	2 impacts per period	k impacts per period	Conclusion
1	i.p.p.	: governii	ng equations			9/18

• free flight from
$$t_{imp}$$
 to t : $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at
$$t$$
: $\mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$ 1 reflexion

n plane rotations

 t_1 : impact instant ($t_1 = T$)

Periodicity conditions

Find $\mathbf{q}(0)$ and t_1 such that $\mathbf{q}(0) = \mathbf{q}(t_1)$

Mathematical problem

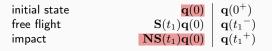
Context 0000000	Studied system 00	1 impact per period ●○○	2 impacts per period	k impacts per period	Conclusion
1 i.p.p	o.: governi	ng equations	5		9/18

• free flight from
$$t_{imp}$$
 to t : $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at
$$t: \mathbf{q}(t_{imp}^+) = \mathbf{N}\mathbf{q}(t_{imp}^-)$$
 1 reflexion

n plane rotations

 t_1 : impact instant ($t_1 = T$)



Periodicity conditions

Find $\mathbf{q}(0)$ and t_1 such that $\mathbf{q}(0) = \mathbf{q}(t_1)$

Mathematical problem

Context 0000000	Studied system 00	1 impact per period ○●○	2 impacts per period	k impacts per period	Conclusion
1 i.p.p	.: Illustrat	tion			10/18

Mathematical problem

- Solve det $(\mathbf{NS}(t_1) \mathbf{Id}) = 0$
- Choose $\mathbf{q}(0) \in \ker \left(\mathbf{NS}(t_1) \mathbf{Id} \right)$ such that $x_n(0) = d$

- Start from a grazing linear mode
- Vary continously t_1 (recall that t_1 is the period)

 \Longrightarrow continuum of nonsmooth orbits

Context 0000000	Studied system	1 impact per period 000	2 impacts per period ●000	k impacts per period	Conclusion
2 i.p.	o.: governi	ng equations	5		12/18
Summ	ary				
• free flight from $t_{\sf imp}$ to t : ${f q}(t)={f S}(t-t_{\sf imp}){f q}(t_{\sf imp})$ n plane) n plane ro	otations	
• ir	mpact at t : $\mathbf{q}(\mathbf{r})$	$t^+) = \mathbf{N}\mathbf{q}(t^-)$		1 r	reflexion

• free flight from
$$t_{\sf imp}$$
 to t : ${f q}(t)={f S}(t-t_{\sf imp}){f q}(t_{\sf imp})$

• impact at
$$t$$
: $\mathbf{q}(t^+) = \mathbf{N}\mathbf{q}(t^-)$ 1 reflexion

 t_1, t_2 : impact instant ($t_2 = T$)

initial state

 $\mathbf{q}(0) \mid \mathbf{q}(0^+)$

n plane rotations

Context 0000000	Studied system 00	1 impact per period 000	2 impacts per period ●000	k impacts per period	Conclusion
2 i.p.p	.: governi	ng equations	5		12/18
Summa	ary				

n plane rotations

1 reflexion

- free flight from t_{imp} to t: $\mathbf{q}(t) = \mathbf{S}(t t_{imp})\mathbf{q}(t_{imp})$
- impact at t: $\mathbf{q}(t^+) = \mathbf{N}\mathbf{q}(t^-)$

 t_1, t_2 : impact instant $(t_2 = T)$

 $\begin{array}{c|c} \mbox{initial state} & \mathbf{q}(0) & \mathbf{q}(0^+) \\ \mbox{free flight 1} & \mathbf{S}(t_1)\mathbf{q}(0) & \mathbf{q}(t_1^-) \\ \end{array}$

Context 0000000	Studied system	1 impact per period 000	2 impacts per period ●000	k impacts per period	Conclusion
2 i.p.p	.: governi	ng equations	5		12/18
Summa	ary				

• free flight from $t_{\sf imp}$ to $t:~{\bf q}(t)={\bf S}(t-t_{\sf imp}){\bf q}(t_{\sf imp})$

• impact at
$$t$$
: $\mathbf{q}(t^+) = \mathbf{N}\mathbf{q}(t^-)$

n plane rotations 1 reflexion

 t_1, t_2 : impact instant ($t_2 = T$)

 $\begin{array}{c|c} \mbox{initial state} & \mathbf{q}(0) & \mathbf{q}(0^+) \\ \mbox{free flight 1} & \mathbf{S}(t_1)\mathbf{q}(0) & \mathbf{q}(t_1^-) \\ \mbox{impact 1} & \mathbf{NS}(t_1)\mathbf{q}(0) & \mathbf{q}(t_1^+) \\ \end{array}$

			1 impact per period			Conclusion
l	0000000	00	000	000	00	
	2 i.p.p.	: governin	g equations			12/18

• free flight from $t_{\sf imp}$ to $t:~{\bf q}(t)={\bf S}(t-t_{\sf imp}){\bf q}(t_{\sf imp})$

• impact at
$$t$$
: $\mathbf{q}(t^+) = \mathbf{N}\mathbf{q}(t^-)$

n plane rotations 1 reflexion

 t_1, t_2 : impact instant ($t_2 = T$)

initial state	$\mathbf{q}(0)$	$ \mathbf{q}(0^+) $
free flight 1	$\mathbf{S}(t_1)\mathbf{q}(0)$	$q(t_1^{-})$
impact 1	$\mathbf{NS}(t_1)\mathbf{q}(0)$	$\mathbf{q}(t_1^+)$
free flight 2	$\mathbf{S}(t_2-t_1)\mathbf{NS}(t_1)\mathbf{q}(0)$	$q(t_2^{-})$

Context 0000000	OO	1 impact per period	2 impacts per period ●000	k impacts per period	Conclusion
2 i.p.p.	: governin	g equations			12/18

• free flight from t_{imp} to t: $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at
$$t$$
: $\mathbf{q}(t^+) = \mathbf{N}\mathbf{q}(t^-)$

n plane rotations 1 reflexion

 t_1, t_2 : impact instant $(t_2 = T)$

initial state	$\mathbf{q}(0)$	$q(0^+)$
free flight 1	${f S}(t_1){f q}(0)$	$\mathbf{q}(t_1^{-})$
impact 1	$\mathbf{NS}(t_1)\mathbf{q}(0)$	$\mathbf{q}(t_1^+)$
free flight 2	$\mathbf{S}(t_2-t_1)\mathbf{NS}(t_1)\mathbf{q}(0)$	$q(t_2^{-})$
impact 2	$\mathbf{NS}(t_2-t_1)\mathbf{NS}(t_1)\mathbf{q}(0)$	$q(t_2^+)$

Periodicity conditions

Find $\mathbf{q}(0)$ and t_1, t_2 such that $\mathbf{q}(0) = \mathbf{q}(t_2)$

Mathematical problem

	Context	Studied system	1 impact per period	2 impacts per period	k impacts per period	Conclusion
				0000		
	<u>.</u>					
2 i.p.p.: governing equations					12/18	
					12/10	

• free flight from t_{imp} to t: $\mathbf{q}(t) = \mathbf{S}(t - t_{imp})\mathbf{q}(t_{imp})$

• impact at
$$t:~\mathbf{q}(t^+) = \mathbf{N}\mathbf{q}(t^-)$$

 t_1, t_2 : impact instant ($t_2 = T$)

initial state	$\mathbf{q}(0)$	$ \mathbf{q}(0^+) $
free flight 1	$\mathbf{S}(t_1)\mathbf{q}(0)$	$ {\bf q}(t_1^-)$
impact 1	$\mathbf{NS}(t_1)\mathbf{q}(0)$	$\mathbf{q}(t_1^+)$
free flight 2	$\mathbf{S}(t_2-t_1)\mathbf{NS}(t_1)\mathbf{q}(0)$	$ {\bf q}(t_2^-)$
impact 2	$\mathbf{NS}(t_2 - t_1)\mathbf{NS}(t_1)\mathbf{q}(0)$	$ \mathbf{q}(t_2^+) $

Periodicity conditions

Find $\mathbf{q}(0)$ and t_1, t_2 such that $\mathbf{q}(0) = \mathbf{q}(t_2)$

Mathematical problem

Mathematical problem

Find
$$\mathbf{q}(0)$$
 and t_1, \ldots, t_k s.t. $\mathbf{q}(0) \in \ker\left(\underbrace{\mathbf{NS}(t_2 - t_1)\mathbf{NS}(t_1) - \mathbf{Id}}_{:=\mathbf{A}(t_1, t_2)}\right)$

Mathematical problem

Find
$$\mathbf{q}(0)$$
 and t_1, \ldots, t_k s.t. $\mathbf{q}(0) \in \ker\left(\mathbf{NS}(t_2 - t_1)\mathbf{NS}(t_1) - \mathbf{Id}\right)$
idea:

Idea:

- Solve det $(\mathbf{A}(t_1, t_2)) = 0$ for unknows (t_1, t_2)
- **2** calculate ker($\mathbf{A}(t_1, t_2)$)

 $\coloneqq \mathbf{A}(t_1, t_2)$

Mathematical problem

Find
$$\mathbf{q}(0)$$
 and t_1, \ldots, t_k s.t. $\mathbf{q}(0) \in \ker \left(\mathbf{NS}(t_2 - t_1) \mathbf{NS}(t_1) - \mathbf{Id} \right)$

Idea:

Solve det
$$(\mathbf{A}(t_1, t_2)) = 0$$
 for unknows (t_1, t_2)

2 calculate
$$ker(\mathbf{A}(t_1, t_2))$$

Issues:

• $det(\mathbf{A}(t_1, t_2)) = 0$ is a cumbersome condition

2 dimension of ker has to be greater than rank of the system of conditions $x_n(t_1) = x_n(t_2) = d$.

 $\coloneqq \mathbf{A}(t_1, t_2)$

Mathematical problem

Find
$$\mathbf{q}(0)$$
 and t_1, \ldots, t_k s.t. $\mathbf{q}(0) \in \ker \left(\mathbf{NS}(t_2 - t_1) \mathbf{NS}(t_1) - \mathbf{Id} \right)$

Idea:

Solve det
$$(\mathbf{A}(t_1, t_2)) = 0$$
 for unknows (t_1, t_2)

$$\bigcirc$$
 calculate ker $(\mathbf{A}(t_1, t_2))$

Issues:

•
$$det(\mathbf{A}(t_1, t_2)) = 0$$
 is a cumbersome condition

Objective dimension of ker has to be greater than rank of the system of conditions x_n(t₁) = x_n(t₂) = d.

Not possible to solve in practice for $n \ge 3$.

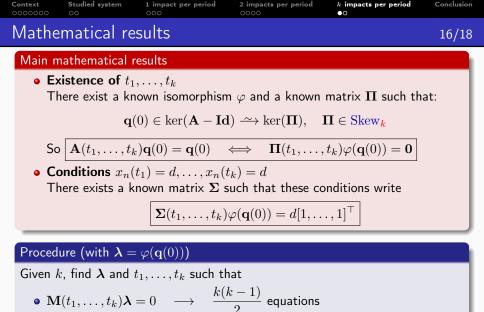
 \implies More subtle reasoning is required

Context 0000000	Studied system	1 impact per period	2 impacts per period ○○●○	k impacts per period	Conclusion
2 i.p.p	.: Illustrat	tion			14/18

See last part for details on how this was obtained.

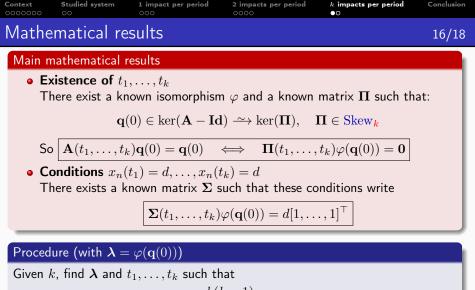
- Start from a grazing linear mode
- Vary continously t_1, t_2 (recall that t_2 is the period)
- Difficulty: (t_1, t_2) must always verify $\dim(\ker \mathbf{A}(t_1, t_2)) = 2$

 \implies continuum of nonsmooth orbits



• $\Sigma(t_1, \dots, t_k) \lambda = d[1, \dots, 1]^\top \longrightarrow k$ equations

for k+k unknowns $(t_1,\ldots,t_k \text{ and } \boldsymbol{\lambda})$



•
$$\mathbf{M}(t_1, \dots, t_k) \boldsymbol{\lambda} = 0 \longrightarrow \frac{\kappa(\kappa - 1)}{2}$$
 equations

•
$$\Sigma(t_1, \ldots, t_k) \lambda = d[1, \ldots, 1]^\top \longrightarrow k$$
 equations

for k + k unknowns $(t_1, \ldots, t_k \text{ and } \lambda)$; independent of n

Procedure (with $\boldsymbol{\lambda} = \varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_1, \ldots, t_k such that

• $\Pi(t_1, \ldots, t_k) \lambda = 0 \longrightarrow \frac{k(k-1)}{2}$ equations

•
$$\Sigma(t_1, \ldots, t_k) \lambda = d[1, \ldots, 1]^\top \longrightarrow k$$
 equations

for k + k unknowns $(t_1, \ldots, t_k \text{ and } \boldsymbol{\lambda})$

• k = 1: almost always a unique solution

$$\mathbf{\Pi} = \begin{bmatrix} 0 \end{bmatrix} \tag{1}$$

Procedure (with $\lambda = \varphi(\mathbf{q}(0))$)

Given k, find λ and t_1, \ldots, t_k such that

- $\Pi(t_1,\ldots,t_k)\lambda = 0 \longrightarrow \frac{k(k-1)}{2}$ equations
- $\Sigma(t_1, \ldots, t_k)\lambda = d[1, \ldots, 1]^\top \xrightarrow{} k$ equations for k + k unknowns $(t_1, \ldots, t_k \text{ and } \lambda)$
 - k = 1: almost always a unique solution
 - k = 2: when $\Pi_{1,2}(t_1, t_2) = 0$, almost always a unique solution

$$\mathbf{\Pi} = \begin{bmatrix} 0 & \Pi_{1,2}(t_1, t_2) \\ -\Pi_{1,2}(t_1, t_2) & 0 \end{bmatrix}$$
(1)

Procedure (with $\lambda = \varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_1, \ldots, t_k such that

•
$$\Pi(t_1,\ldots,t_k)\lambda = 0 \longrightarrow \frac{k(k-1)}{2}$$
 equations

•
$$\Sigma(t_1, \dots, t_k) \lambda = d[1, \dots, 1]^\top \longrightarrow k$$
 equations

for k + k unknowns $(t_1, \ldots, t_k \text{ and } \boldsymbol{\lambda})$

- k = 1: almost always a unique solution
- k = 2: when $\prod_{1,2}(t_1, t_2) = 0$, almost always a unique solution
- k = 3: difficulty is to solve $\Pi_{1,2} = \Pi_{1,3} = \Pi_{2,3} = 0$

$$\mathbf{\Pi} = \begin{bmatrix} 0 & \Pi_{1,2} & \Pi_{1,3} \\ -\Pi_{1,2} & 0 & \Pi_{2,3} \\ -\Pi_{1,3} & -\Pi_{2,3} & 0 \end{bmatrix}$$
(1)

Context	Studied system	1 impact per period	2 impacts per period	k impacts per period	Conclusion
				00	
Mathematical results: application					
Induite		Juits, applie			17/18

Procedure (with $\lambda = \varphi(\mathbf{q}(0))$)

Given k, find $\boldsymbol{\lambda}$ and t_1, \ldots, t_k such that

•
$$\Pi(t_1,\ldots,t_k)\lambda = 0 \longrightarrow \frac{k(k-1)}{2}$$
 equations

•
$$\boldsymbol{\Sigma}(t_1,\ldots,t_k)\boldsymbol{\lambda}=d[1,\ldots,1]^{ op}$$
 \longrightarrow k equations

for k + k unknowns $(t_1, \ldots, t_k \text{ and } \boldsymbol{\lambda})$

- k = 1: almost always a unique solution
- k = 2: when $\Pi_{1,2}(t_1, t_2) = 0$, almost always a unique solution
- k = 3: difficulty is to solve $\Pi_{1,2} = \Pi_{1,3} = \Pi_{2,3} = 0$
- $k \ge 4$: too many $\Pi_{1,2} = \cdots = \Pi_{k-1,k}$ but solutions based on symmetries

	Studied system 00	1 impact per period	2 impacts per period	k impacts per period	Conclusion		
Conclu	Conclusions & Prospects						

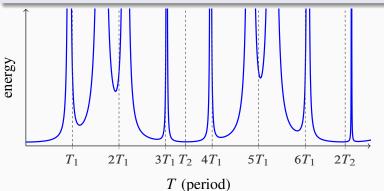
- Existence of invariant manifolds, tangent to linear modes: **nonsmooth modes**
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact:

energy

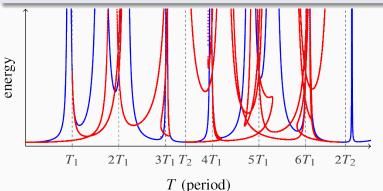
- Existence of invariant manifolds, tangent to linear modes: **nonsmooth modes**
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact: linear modes

 $T_{1} = 2T_{1} = 3T_{1}T_{2} = 4T_{1} = 5T_{1} = 6T_{1} = 2T_{2}$ T (period)

- Existence of invariant manifolds, tangent to linear modes: **nonsmooth modes**
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact: 1 impact per period



- Existence of invariant manifolds, tangent to linear modes: nonsmooth modes
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact: 2 impacts per period



Context 0000000	Studied system	1 impact per period	2 impacts per period	k impacts per period	Conclusion	
Conclusions & Prospects						

- Existence of invariant manifolds, tangent to linear modes: **nonsmooth modes**
- Classification by number of impact(s) per period
- Highlights importance of mathematics
- Extremely rich behaviour induced by contact:

Future work: is it usable in practice?

- Study of stabilities (Lyapunov, orbital, etc.)
- Behaviour of *forced* system
- Generalisation to more complex geometries