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Nonsmooth modal analysis: investigation of a 2-dof
spring-mass system subject to an elastic impact law
Anders Thorin1*, Mathias Legrand1, Stéphane Junca2

Abstract
The well-known concept of normal mode for linear systems has been extended to the framework of nonlinear dynamics over the course of the
20th century, initially by Lyapunov, and later by Rosenberg and a growing community of researchers in modal and vibration analysis. This
effort has mainly targeted nonlinear smooth systems—the velocity is continuous and differentiable in time—even though systems presenting
nonsmooth occurrences have been increasingly studied in the last decades to face the growing industrial need of unilateral contact and friction
simulations. Yet, these systems have nearly never been explored from the standpoint of modal analysis.
This contribution addresses the notion of modal analysis of nonsmooth systems. Developments are illustrated on a seemingly simple 2-dof
autonomous system, subject to unilateral constraints reflected by a perfectly elastic impact law. Even though friction is ignored, its dynamics
appears to be extremely rich. Periodic solutions are sought for given numbers of impacts per period and nonsmooth modes are illustrated for one
and two impacts per period in the form of two-dimensional manifolds in the phase space. Also, an unexpected bridge between these modes in
the frequency-energy plots is observed.
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1. Introduction

Vibration analysis is easily carried out in the framework of lin-
ear elastodynamics because the principle of superposition says
that any solution is a combination of linear normal modes. The
notion of modes has been extended in the context of nonlinear
dynamics [1, 2, 3, 4] which opens doors to efficient dynamic
analysis of smooth nonlinear systems in the neighbourhood of
fixed points and to model-reduction of large-scale systems [5].
Nevertheless, this extension relies on the smoothness of the so-
lutions and many mechanical systems such as industrial robots,
rotating machinery may undergo unilateral contact with adjacent
components. Nonlinear modes have also been studied on piece-
wise linear systems with regularized contact occurrences but with
no general outcome regarding modal analysis [6, 7, 8]. When not
regularized, unilateral contact events induce discontinuities in
velocity and usual ordinary differential equations fo not properly
capture nonsmooth events such as impacts [9]. Such a system is
investigated in the present work.

Nonsmooth systems, i.e. systems undergoing nonsmooth
events, have been increasingly studied in the last two decades [9,
10] usually in the time-domain. Vibration analysis of forced non-
smooth systems is reported in the literature (see e.g. [11, 12]
among many others). Nevertheless, very few works tackle such
systems with no external periodic forcing, with the aim of iden-
tifying nonlinear modes of vibration [13, 14, 15, 16, 17]. The
latter are commonly defined as continuous families—continuity
with respect to the energy—of periodic orbits in the phase space.
Extensions to nonsmooth systems yield families of nonsmooth
periodic orbits. Illustrations are provided on an elementary sys-
tem with two degrees-of-freedom exhibiting one and two impacts
per period (ipp), similar to those studied in [18, 19]; we highlight
again that here, the autonomous system only is investigated.

First, the model is exposed and the expression of the au-
tonomous periodic solutions is derived. It is shown that the exis-
tence of periodic solutions depends on three necessary conditions.
These conditions are explored for one and two ipp. Continuous
families of admissible solutions organized on two-dimensional

manifolds are introduced. Nonsmooth modes are then defined
and illustrated. Unexpectedly, two supporting manifolds are
connected by a “bridge” in the frequency-energy plot: this is
described in the last section. Some of the proposed results have
to be taken as conjectures since they have only been numerically
observed, on a number of calculations, yet not mathematically
proven.

The system of interest consists of two springs k1 and k2

connected to two masses m1 and m2 in series, as depicted in
Figure 1.

The corresponding displacements are denoted x1.t/ and x2.t/,
respectively. For sufficiently large amplitudes, the second mass
x2 meets a rigid obstacle and thus should satisfy a Signorini
condition which prevents any interpenetration with the founda-
tion [20]:

8t � 0;

8̂<̂
:
d � x2.t/ � 0
�.t/ � 0
�.t/.d � x2.t// D 0

(1)

where � is the reaction force of the obstacle on the second mass,
negative for sticking. Note that the first mass is not subject to any
unilateral contact condition.

To ensure the well-posedness of the problem, information
regarding the impact must be added [21]. In this work, this infor-
mation is incorporated in the form of a perfectly elastic Newton
impact law through the introduction of a restitution coefficient
1 � e � 0. The dynamics is governed by the following equa-
tions:

8t such that x2.t/ < d;�
m1 0

0 m2

�� Rx1.t/

Rx2.t/

�
C
�
k1 C k2 �k2

�k2 k2

��
x1.t/

x2.t/

�
D
�
0

0

�
(2a)

8ti such that x2.ti / D d;
Px2.t

C
i / D �e Px2.t

�
i / (2b)
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Nomenclature

� diagonal matrix of the frequencies
0n zero matrix of Rn�n

D1;D2 eigenvectors of M�1K
In identity matrix of Rn�n

K stiffness matrix
M mass matrix
N mapping of the pre-impact velocities to the post-impact

velocities, on Px
P change of basis matrix, in R2�2

QN mapping of the pre-impact velocities to the post-impact
velocities, on Qx

QS mapping of initial conditions to current state in a free
phase

q modal coordinates
x vector of the displacement x1 and x2 (nodal coordinates)

Qq vector of modal coordinates and modal velocities
�t time-step
Px1; Px2 velocities of the masses
� reaction force of the obstacle on the second mass
!1; !2 eigenvalues of M�1K
d distance between resting position of second mass and

obstacle
e coefficient of restitution
k1; k2 stiffnesses of the springs
m number of impact(s) per period
m1; m2 masses
T period
t time
T1; T2 modal periods, Ti D 2�=!i

ti impact time instant, i 2 f1; : : : ; mg (t1 D 0 by choice)
x1; x2 displacements of the masses
WD equals, by definition

x1.t/ x2.t/

k1 m1 k2 m2
dresting position

in motion

Figure 1. Model of interest and notations.

where x1 is twice differentiable everywhere in time and x2 twice
differentiable almost everywhere (i.e. everywhere except for ti
such that x2.ti / D d ) in time. The two quantities Px2.t

�
i / and

Px2.t
C
i / stand for the velocity of the second mass just before and

just after the impact, respectively—more precisely the left- and
right-hand side limits of Px2 in ti .

In this paper, periodic orbits are solely targeted. To ease the
discussion to come, problem (2) together with periodicity are
written in a slightly different manner. The mathematical problem
of interest becomes: Given a number of impacts m 2 N?, find
the two displacements x1.�/ and x2.�/, one period T 2 R?C and
m intermediate impact time instants t1; : : : ; tm such that:

8t 2 R?
C; t … ft1; : : : ; tmg; Equation (2a) is satisfied (3a)

8ti 2 ft1; : : : ; tmg; Px2.t
C
i / D �e Px2.t

�
i / (3b)

8t � 0; x1.t C T / D x1.t/ and x2.t C T / D x2.t/ (3c)
8ti 2 ft1; : : : ; tmg; x2.ti / D d (3d)
8t 2 Œ0 IT Œ; x2.t/ D d H) t 2 ft1; t2; : : : ; tmg (3e)

Equation (3a) ensures the solutions obey the dynamics; (3b)
is the impact law; (3c) guarantees the periodicity of the solu-
tion; (3d) ensures that t1; : : : ; tm are actually impact instants, and
finally (3e) means that x2 does not undergo more than m impacts
on the time interval Œ0 IT Œ. Without any loss of generality, the
first impact is now assumed to occur at t1 D 0. By periodicity,
this also corresponds to an impact at T , which is the first impact
of the second period.

The periodicity (3c) requires that e D 1, which is considered
here. Indeed, e < 1 leads to an instantaneous loss of kinetic
energy of the second mass and therefore an instantaneous change
of the total energy of the system at each impact.

With the final objective of calculating solutions to system (3),
necessary conditions on their existence are now derived. This is

achieved as follows: derive the free dynamics on �0 I t2Œ, enforce
the impact law at t2, and repeat with the subsequent sequences of
free dynamics and corresponding impact occurrences up to the
last interval �tm IT Œ. This yields a necessary condition on the pe-
riod T and the intermediate impact time instants t2; : : : ; tm. The
linear dynamics is governed by Eq. (2a) which can be compactly
cast in a matrix form:

MRxCKx D 0 (4)

with x.t/ D .x1.t/ x2.t//
>. The pairs of eigenvalues and eigen-

vectors of M�1K are denoted by .!1; !2/ and .D1;D2/, respec-
tively. The two corresponding periods are given by T1 D 2�=!1

and T2 D 2�=!2. Introducing P D ŒD>1 D>2 � and the vector of
modal coordinates q.t/ D P�1x.t/, Eq. (4) can be diagonalized
as

I2 RqC�q D 0 (5)

which gathers two uncoupled equations. In Eq. (5), the notations
I2 D diag.1; 1/ and � D P�1M�1KP D diag.!2

i /iD1;2 are
used. This second order differential equation can be transformed
into a first order differential equation:� Pq.t/
Rq.t/

�
D
�

02 I2

�� 02

��
q.t/
Pq.t/

�
(6)

Introducing Qq.t/ D �q.t/> Pq.t/>�>, the solutions of the smooth
free motions are thus given by:

Qq.t/ D QS.t/ Qq.0/ (7)

where QS is the exponential of the matrix in (6):

QS.t/ D

2664
cos.!1t / 0 sin.!1t /=!1 0

0 cos.!2t / 0 sin.!2t /=!2

�!1 sin.!1t / 0 cos.!1t / 0

0 �!2 sin.!2t / 0 cos.!2t /

3775 (8)

The dynamics is fully determined by the four initial conditions Qq.0/.
Naturally, the components of q have the major benefit of being
dynamically uncoupled, but the condition of unilateral contact
inherently involves the physical coordinate x2.t/. There is hence
no evident better choice for the basis into which the contact dy-
namics will be described: both the modal (for the free flight) and
the physical basis (for the impact condition) are involved.
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When contact occurs, the impact condition (3b) on Px2 and
the continuity of Px1 are expressed in a matrix form as:

Px.tC/ D N Px.t�/ with N WD
�
1 0

0 �e
�

(9)

that is, in terms of modal velocities:

Pq.tC/ D P�1NP Pq.t�/ (10)

Overall, the impact law is written

Qq.tC/ D QN Qq.t�/ (11)

where by definition

QN WD
�

I2 02

02 P�1NP

�
(12)

Accordingly, the two possible states of the system in Œ0 IT Œ are:

Free phase on any interval �ti I tiC1Œ, with i 2 1; : : : ; m:

Qq.t/ D QS.t � ti / Qq.tCi / (13)

Impact for any time of impact ti 2 f0; t2; : : : ; tmg:
Qq.tCi / D QN Qq.t�i / (14)

It is now possible to describe the periodic solutions of period T
with m intermediate impact occurrences ft2; : : : ; tmg as listed in
Tab. 1. The periodicity condition (3c) formulated on the modal

t Qq.t/ D
t 2 Œ0 I t2Œ QS.t/ Qq.0/
t 2 Œt2 I t3Œ QS.t � t2/ QN QS.t2 � 0/ Qq.0/

:::
:::

t 2 Œtm IT Œ QS.t � tm/ QN QS.tm � tm�1/ � � � QN QS.t2 � 0/ Qq.0/
Table 1. Modal displacement Qq as a piecewise function of time.

coordinates, that is Qq.T / D Qq.0/, can now be expressed as

QS.t � tm/ QN QS.tm � tm�1/ � � � QN QS.t2 � 0/ Qq.0/ D Qq.0/ (15)

or equivalently

Qq.0/ 2 ker Am (16)

with

Am WD S.T � tm/ QNS.tm � tm�1/ � � � QNS.t2 � 0/ � I4 (17)

This 4 � 4 matrix Am stems from Eq. (3a), (3b), and (3c) and
governs the existence of periodic solutions with m impact(s)
per period. It embeds the free dynamics on every time interval
�0 I t2Œ; : : : ; �tm IT Œ and the change of sign of Px2 at impact times
0; t2; : : : ; tm. It is essential to find impact times ft2; : : : ; tmg
for which solutions to (3) may exist. Indeed, if det Am ¤ 0,
the unique solution of Eq. (16) is Qq.0/ D .0 0 0 0/>. This
indicates that det Am D 0 (or equivalently dim.ker Am/ > 1) is
a necessary condition for the existence of solutions of (3). It is
denoted by (NC1).

However, Am does not include (3d) and (3e). Hence, iden-
tifying a period T and impact times ft2; : : : ; tmg using (NC1)
does not ensure that the corresponding displactement is a solu-
tion of (2). Two additional verifications have to be performed:

first, impacts must occur when the second mass meets the obsta-
cle (3d). This condition ensures that the impact law on x2.ti /

is enforced only when x2.ti / D d . Otherwise, the second mass
should free-flight in Œ0 IT Œ for times other 0; t2; : : : ; tmn that is
x2 < d since x2 is continuous on RC. Formally and all together
these conditions are:

(NC1) det.A2/ D 0 for T and t2; : : : ; tm

(NC2) 8t 2 f0; t2; : : : ; tmg; x2.ti / D d
(NC3) 8t � 0, x2.t/ � d .

To illustrate the necessity of (NC2) and (NC3), a displacement
x2.t/ calculated using A2 and Tab. 1 is represented in Figure 2.
It is clear that it is not a solution of (3), because it does not satisfy
(NC2) nor (NC3).

t2 T
0

d

t

x
2
.t

/

Figure 2. Non-admissible displacement with m D 2: [ ] x2.t/.
The motion satisfies condition (NC1) but neither (NC2) (x2.t2/ ¤
d ) nor (NC3) (because x2 � d for some t 2 Œ0 IT Œ).

Defining

QP WD
�

02 P
02 P

�
(18)

condition (NC2) can be expressed in the modal basis as:� QP QS.ti � ti�1/ QN QS � � � QN QS.t2 � 0/ � Qq.0/
� � e2 D d (19)

8ti 2 ft2; : : : ; tmg. Eq. (19) yields an algebraic system of m
equations. It will be shown that whether these equations are
redundant or not is an essential criterion for the existence of
solutions of (2).

All together, the three necessary conditions yield a neces-
sary and sufficient condition for the existence of a solution to
system (3). In terms of computation, (NC3) is the most costly
condition because to our knowledge, it can only be checked
numerically.

To summarize, given .k1; k2/, .m1; m2/, and m:

1. matrix Am can be defined as a function of t2; : : : ; tm; T .

2. a solution exists if and only if

(NC1) det.Am/ D 0
(NC2) 8t 2 f0; t2; : : : ; tmg; x2.ti / D d
(NC3) 8t; d � x2.t/ > 0

3. when these three conditions are met for some t2; : : : ; tm; T ,
the solution is a piecewise function given by Tab. 1.

3



In the following, the terminology potential solution refers to mo-
tions which satisfy conditions (NC1) and (NC2), and admissible
solutions refer to motions which satisfy conditions (NC1), (NC2),
and (NC3), and are thus solutions of (2). Of course, admissible
solutions are also potential solutions.

Also, all figures were obtained with .m1; m2/ D .1; 1/ kg,
.k1; k2/ D .0:85; 2/N m�1, and d D 1 m. These values are
arbitrary. They correspond to periods T1 � 2:97 s and T2 �
10:19 s. Units are no longer indicated in the remainder.

2. Existence of admissible solutions

2.1 One impact per period

In this section, attention is paid to periodic orbits with exactly
one impact per period. It can be theoretically shown that the
mapping A1 W T 7�! QN QS.T / � I4 has a kernel of dimension 1,
for every T > 0, except for some very specific values of ki and
mi , i D 1; 2 corresponding to internal resonances that are not
discussed in the present work. Condition (NC1) is thus verified.
(NC2) consists in a unique equation:

Pq.0/ � e2 D d” P11 q1.0/C P12 q2.0/ D d (20)

Since the kernel of A1 is of dimension 1, condition (20) is always
satisfied: for the unique vector y D Œy1; y2; y3; y4�

> in ker.A1/,
then ˛y verifies (NC2) with ˛ D d=.P11y1 C P12y2/. Accord-
ingly, there is a unique potential solution for every T > 0. Let
us now focus on (NC3). Given T and a potential solution x2.t/,
it is possible to calculate numerically its maximum over Œ0 IT �
and check that max x2.t/ < d . It appears that there are intervals
of T which contains admissible solutions, as illustrated in Fig. 3.
To understand these seemingly random zones of admissible solu-

T1 2T1 3T1 T2 4T1 5T1 6T1 2T2

T (period)

en
er

gy

TS TG

Figure 3. Energies of T -periodic autonous orbits. [ ] Potential
solutions. [ ] Admissible solutions. [ ] Singular transitions.
[ ] Linear modal transitions. TS is an example of singular
transition. TG is an arbitrary grazing transition used in Fig. 5.

tions, the expression of x2 is explored in more details: given an
arbitrary T and t 2 Œ0 IT Œ, its expansion yields:

x2.t/ D A.T /
�
B1.T / cos

�
!1.t � T=2/

�
C B2.T / cos

�
!2.t � T=2/

�� (21)

where

A.T / D d�!2P12P21 cotan.!1T / � !1P11P22 cotan.!2T /
��1

B1.T / D P12P21!2= sin.!1T=2/ (22)
B2.T / D P11P22!1= sin.!2T=2/

from which three kinds of distinct transitions from admissible to
non-admissible solutions can be found:

Singular transitions They correspond to singularities of A.T /,
i.e. solutions TS to

!2P12P21 cotan.!1T / D !1P11P22 cotan.!2T / (23)

Such TS are shown in Fig. 3. In the left neighbourhood of
a TS, x2 diverges toC1, while in the right neighbourhood,
it diverges to �1.

Linear modal transitions They may occur when T is a multiple
of the linear periods T1 or T2, that is when

!1T � 0 .mod 2�/ or !2T � 0 .mod 2�/ (24)

Fig. 4 illustrates how an admissible solution smoothly be-
comes non-admissible. These transitions occur when a
linear mode has a sufficiently large energy to graze the
wall, level after which they vanish.

Grazing transitions They can be found by comparing d and
maxt2Œ0 IT Œ x2.t/. These are by far the most interesting
transitions: from 1-ipp trajectories, they lead to multiple
impacts per period solutions as shown later. Such a transi-
tion period denoted by TG is represented in Fig. 3 and the
corresponding TG-periodic motion is plotted in Fig. 5.

2T2

d

admissible

non-admissible

linear mode

t

x
2

Figure 4. Linear modal transition in the neighbourhood of 2T2,
for 1-ipp. In the left neighbourhood of 2T1 ([ ] T D 2T1 � "),
motion is admissible. In the right neighbourhood ([ ] T D
2T1 C "), it violates the unilateral constraints (x2 > d ). The
limit case is a modal motion ([ ] T D 2T1).

T

d

t

x
2

Figure 5. Grazing transition in TG (see Fig. 3). Solutions with two
impacts per period emerge from this transition, see last section.
[ ] Solution forT D TG .

Solutions corresponding to a grazing transition always have at
least a solution to the equation x2.t/ D d in �0 IT Œ. They are
common solutions to two distinct problems (15) (with the as-
sociated conditions (NC1), (NC2), and (NC3)) with a different
number of impacts per period m. Our observations on numerical
examples tend to show that grazing transitions have a very par-
ticular property—which we have not proven mathematically yet:
the conditions 8ti , x2.ti / D d in Eq. (3c) are all redundant. This
property has remarkable consequences as explained later.
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2.2 Two impacts per period
T -periodic admissible solutions with two impacts per period are
targeted in this section. To this end, we explore the mapping

A2 W .t2; T / 7�! QN QS.T � t2/ QN QS.t2/ � I4 (25)

We recall that the necessary condition (NC1) requires that t2
and T be such that det A2.t2; T / D 0. A first result is that given
an arbitrary T , condition (NC11) is satisfied for a few t2 only, if
any. This is illustrated in Fig. 6. A second result, which has been

0
2

4
6

8
100

2

4

6

8

10

0

10

t2 D T=2

t2 D T

t2

T

de
tA

2
.t

2
;T

/

t2 D T=2

t2 D T

Figure 6. Determinant of A2.t2; T / versus t2 for several T .
[ ] det.A2.t2; T //. [ ] Roots .t2; T / of det.A2/. For T 2
f1; 2; 7; 8; 10g, det A2. � ; T / has no roots t2 ¤ T=2 and therefore
no potential solutions. On the contrary T 2 f3; 4; 5; 6; 9g leads
to potential T -periodic solutions, some of which can possibly be
admissible solutions.

proven but the proof is not detailed for the sake of brevity, is that

8T; det.A2.T=2; T // D 0 (26)

so that t2 D T=2 always satisfies (NC1). This corresponds to
2-ipp T -periodic solutions which are in fact 1-ipp T=2-periodic
solutions seen on two periods. This result is complemented by
a second one which states the existence of a threshold above
which there always exists at least a t2 ¤ T=2 which is root
of det.A2. � ; T //. Such a threshold, which can be refined in
specific cases is QT D 3�=min.!1; !2/ or equivalently QT D
3max.T1; T2/=2. This can be mathematically written as

8T � QT ; 9t2 ¤ T=2 such that det.A2.t2; T // D 0 (27)

A third interesting result whenm D 2 is that if (NC1) is satis-
fied, then it is always possible to find initial conditions such that
(NC2) is satisfied too. This comes from the following property:

det.A2.t2; T // D 0 H) dim.ker.A2.t2; T /// D 2 (28)

Indeed, dim.ker.A2.t2; T // D 2 for some appropriate .t2; T /
means that it is possible to choose the initial conditions such that
the motion obeys two independent constraints x2.0/ D d and
x2.t2/ D d .

Again, (NC3) has to be tested numerically and zones of ad-
missible solutions emerge again. This time, they involve both T
and t2. Numerical results are exposed in Fig. 7. Since t2 D T=2
always corresponds to a potential solution for m D 2, which is
nothing else than two periods of the potential solution for m D 1,
configurations with m D 1 and some of the configurations with
m D 2 are related. This is highlighted in Fig. 8 which combines

Figure 7. Energies of T -periodic 2-ipp motions as a function of T
and the time of second impact t2. [ ] Potential solutions. [ ]
Admissible solutions.

Fig. 3 and 7 in a two-dimensional graph: the factor 2 dilation of
the admissible soltions in the 1-ipp energy plot along the T axis
coincides with some parts of the 2-ipp admissible solutions.

T1 2T1 3T1 T2 4T1 5T1 6T1 2T2

T (period)

en
er

gy

dilation

dilation

Figure 8. Energies for 1-ipp and 2-ipp orbits. [ ] 1-ipp. [ ]
2-ipp. [ ] 2-ipp with t2 D T=2. The green curve, which is a
subpart of the orange curve, is the factor 2 dilated version of the
blue curve along the T axis.

To summarize, when m D 2, potential solutions of minimal
period T sometimes exist when T is smaller than QT , and always
exist when T > QT . The existence of potential solutions coincide
with the roots of det.A.t2; T // which defines continuous curves
in the plane .t2; T /. Subparts of these curves define continuous
zones of admissible solutions.

2.3 More than two impacts per period

More generally, (NC1) seems to be driven by the parity of m.
The following results have not been mathematically proven but
numerically verified on numerous examples. They have therefore
to be understood as conjectures:

� If m is odd, then dim.ker Am/ D 1. (NC2) imposes m
conditions, so potential solutions may exist only if these
conditions form a system of rank 1, i.e. if they are all
equivalent. This seems to happen only for a very few cases
corresponding to 1 ipp grazing orbits, see Fig. 9. Any
1-ipp potential solution of period T=3 is of course also a
potential solution of a 3-ipp problem.

� If m is even, then dim.ker Am/ D 2 and (NC2) imposes m
conditions, so potential solutions may exist only if these
conditions form a system of rank 1 or 2. These motions

5



have not been thoroughly investigated but no potential
solution has been found yet with m � 4.

T
0

d

t2 t3

t

x
2
.t

/

Figure 9. Trajectory with two grazing points and one impact:
admissible solution to both the 1-ipp and 3ipp formulations.

3. Nonsmooth modes of vibration

In linear dynamics, modes are two-dimensional flat surfaces in
the phase space. The notion of normal mode has been particularly
extended to smooth nonlinear dynamics in [2], with the follow-
ing definition: a nonlinear normal mode is a two-dimensional
invariant manifold of the phase space, tangent to a mode of the
linearized system. Invariant means that if a motion starts on the
nonlinear mode at a given time, then it will remain on it for all
times. In the same spirit, the definition of a nonsmooth mode
of vibration is proposed here: a nonsmooth mode is an invari-
ant manifold formed by a continuum of periodic autonomous
(possibly nonsmooth) orbits in the phase space, containing one
orbit the a linear mode. For two degree-of-freedom systems, such
modes could be described by four functions f1; : : : ; f4 of two
parameters, e.g. the energy E and time t such that:

x1 D f1.E; t/

x2 D f2.E; t/

Px1 D f3.E; t/

Px2 D f4.E; t/

(29)

We showed that for m D 1, continuous zones of admissible
solutions exist. For each of them, it is therefore possible to de-
fine two-dimensional surfaces of the phase space .x1; x2; Px1; Px2/

which contains all their admissible motions. Note that in the
energy-frequency plane, these zones are delimited by T1, T2 or
one of their multiples, therefore they contain an orbit of a graz-
ing linear mode. Such a surface is represented in Fig. 10. The
nonsmooth mode contains one orbit of a grazing linear mode
(see red curve in Fig. 10). It is noteworthy that the nonsmooth
mode indeed presents some discontinuities on Px2, when x2 D d .
Similarly, nonsmooth modes can be defined for 2-ipp motions,
since continua of admissible solutions exist. While 1-ipp non-
smooth modes support periodic orbits of different periods T ,
2-ipp nonsmooth modes gather periodic orbits which differ in
both t2 and T—but t2 and T cannot vary independently, they
are related by the constraint det.A2.t2; T // D 0. To better un-
derstand the meaning of the invariant manifold, various x2 are
displayed in Figure 11. The corresponding orbits are combined in
a three-dimensional cross-section .x1; x2; Px2/ of the phase plot
.x1; x2; Px1; Px2/, which is an illustration of a cross-section of a
2-ipp nonsmooth mode.

Nonsmooth modes feature numerous benefits. They contain
an infinity of admissible solutions which corresponds to a contin-
uum of energy. They provide a picture of the possible admissible
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Figure 10. Periodic orbits with one impact per period in the
neighbourhood of 2T1. These orbits lie on a nonsmooth manifold.
[ ] Grazing trajectory of the second linear mode. It is visible
that x2 � 1, and that when x2 D 1, Px2 is discontinuous.
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Figure 11. 2-ipp admissible solutions in the neighbourhood of
T D 3T1. In red, the solution coincides with the linear mode.
Other plots obtained by exploring the branch of admissible so-
lutions for different roots .t2; T / of det A2. The continuum of
orbits is illustrated by the red curve which continuously shades
into blue ones.

solutions lying in the phase space of the system of interest. They
also provide indications on other regions of the phase space be-
cause orbits cannot intersect: for example they can define closed
boundaries from which solutions cannot escape. It is also highly
possible yet not proved that the associated forced solutions reach
high amplitudes when they approach a nonsmooth mode, as it
stands in linear and smooth nonlinear dynamics. Additionally,
based on preliminary numerical experiments, the developments
presented in this paper seem to directly extend to arbitrary N -
degree-of-freedom systems.

4. Relation between 1-ipp and 2-ipp nonsmooth modes

In this last section, a relation between 1-ipp and 2-ipp nonsmooth
modes is described. This is not completely understood yet, but
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It is visible that x2 6 1, and that when x2 D 1, Px2 is discontinu-
ous. The continuum of orbits is illustrated by the red curve which
continuously shades into blue ones.

unexpected admissible solutions exist that were never reported
before. Indeed, we recall that for grazing transitions, conditions
x2.ti / D d , i 2 f1; : : : ; mg, are apparently redundant, and can
thus reduced to x2.0/ D d . When m D 2, for t2 and T such that
det.A2.t2; T // D 0, then dim.ker A2.t1; T // D 2. Initial con-
ditions, which have to be elements of the bi-dimensional plane
ker.A2/ and simulaneously satisfy x2.0/ D d are underdeter-
mined: there is a continuum of such initial conditions. Accord-
ingly, a free parameter can be chosen to describe this continuum.
The interval in which it lives in controlled by the admissibility of
the displacements corresponding to this initial condition. Interest-
ingly, the extremal values correspond to cases which are common
solutions of the 1-ipp and the 2-ipp problems. Moreover, the two
1-ipp solutions happen to be actually the same solution shifted in
time by half a period as depicted in Fig. 13. Such solutions are
also illustrated in a cross-section of the phase plot in Fig. 14. The
1-ipp smooth manifold (only partially represented, in blue) gives
rise to a surface made of a continuum of 2-ipp orbits. Moreover,

T

d

t

x
2

Figure 13. Continuum of 2-ipp orbits of period T ([ ], [ ]
and [ ]) limited by one 1-ipp solution of period T [ ] and
the same 1-ipp solution shifted by T=2 [ ]. The 2-ipp solutions
differ by the value of the free parameter which determines Qq.0/
in the kernel of A2.

the solutions contained in the continuum of 2-ipp orbits exhibit
all the same period but distinct energies. In other words, the
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Figure 14. Periodic orbits in the phase portrait .x1; x2; Px2/ for
a period T such that the transition is grazing: 1-ipp [ ] and
2-ipp [ ] orbits. Grazing solution [ ]. 2-ipp orbits all have
the same period T .

frequency-energy plot in Fig. 8 features a vertical line connecting
the branch of 1-ipp admissible solutions and the branch of 2-ipp
admissible solutions, zoomed-in in Fig. 15. Let us insist on the
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gy

dilation

dilation

Figure 15. Zones of admissible 1-ipp and 2-ipp solutions.
Bridge [ ] between the two manifolds. 1-ipp solutions [ ]
and 2-ipp solutions [ ]. Branch of 2-ipp solutions obtained
by dilation of the 1-ipp solution branch [ ]. The height of this
graph with the same scale as Fig. 8 would be about the thickness
of the curves of Fig. 8.

differences between the orange curves in Fig. 14 and the nons-
mooth manifolds in Fig. 10 and 12: the orange curves correspond
to trajectories which all have the exact same period and for which
the two conditions x2.t1/ D d and x2.T / D d are equivalent.
They differ by the value of the free parameter which controls the
choice of the initial conditions in the kernel of A2. Nonsmooth
modes described previously do not all have the same period; they
differ by a parameter which corresponds to a curve on the roots
of det.A2/.

5. Conclusion

The free periodic dynamics of a simple oscillator with two degrees-
of-freedom undergoing unilateral conditions reflected as a New-
ton impact law was explored. Its behaviour proved to be ex-
tremely rich, dispite its apparent simplicity. A linear mapping
Am which governs the existence of periodic solutions was defined
for any number of impacts per period m. Continuous families of
periodic orbits emerge from this mapping for m D 1 and m D 2
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and were used to define the concept of nonsmooth modes of vi-
bration. The frequency of these orbits is driven by the natural
frequencies of the underlying linear system. Such modes were
illustrated, and open doors to several key improvements in the
analysis of nonsmooth systems.

Form D 1, the admissibility of these trajectories is controlled
by three kinds of transitions: singular, linear modal or grazing.
The latter merges solutions with different numbers of impacts per
period. This was illustrated for one and two impacts per period
but is not fully understood yet. Configurations with m > 3 seem
to be only degenerate counterparts of solutions featuring fewer
impacts per period.

From preliminary numerical experiments, the results with
two degrees-of-freedom extend to larger systems. This sounds
promising for a systematic nonsmooth modal analysis, including
modal reduction of more challenging nonsmooth systems. Next
steps include mathematical proofs of the conjectures presented
here as well as stability analyses.
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