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a b s t r a c t

This paper presents a methodology based on spatial autocorrelation function for assessing homogeneity
of a mixture and more particularly for determining the size and the number of defects in the bulk of a
mixture or materials. Intensity and scale of segregation are used as conceptual tools for assessing mixture
homogeneity, and have been specially adapted for this particular case. Their performances are investi-
gated for detecting defects in a product manufactured from a dry powder mixture, a bipolar plate used
in fuel cell technology, through a simulation of the product on Matlab (92).

1. Introduction

Assessing mixture homogeneity is a key issue in many indus-
tries involved in solids processing. The general heterogeneity of a
mixture is known to have an influence on the taste of a food prod-
uct or the bioavailability of a drug. Several criteria based on the
variance of composition of samples have been derived to access
to a macroscopic quality standard which is used in the industry
to accept or reject a mixture. This also results in dramatic costs in-
crease, especially in the pharmaceutical industry in which recy-
cling is not allowed. But even if this global criteria is satisfied,
the presence of punctual defects in the mixture can drive to a lack
of processability and to a loss of quality of the final product. Such a
‘‘hot point” can affect dramatically the mechanical resistance of a
piece of material made of concrete, or change the visual apprecia-
tion of a food product. This is also the case in the field of bipolar
plate manufacturing, in which mechanical, electrical and thermal
characteristics of the plates are key properties to guarantee.

Fuel cells convert chemical energy into ‘‘clean” electrical energy
from hydrogen and oxygen, the only wasted product being clean
water. They consist in a stack of individual cells (Fig. 1). Bipolar
plates interconnect individual cells and provide connections to
the outside. Their roles are to conduct electricity, keep the reaction
gases separated, and channel away waste water and heat from the
reaction. However, the widespread adoption of fuel cells is limited
by the cost of key components as bipolar plates. The manufacture

of efficient, reliable and low cost bipolar plates is now a crucial
economic issue to allow implementation of fuel cells in industrial
and domestic applications. Bipolar plates may be prepared by ther-
mosetting of dry powder mixtures consisting of graphite, epoxy re-
sin, as well as some minor additives. The formation of polymer
aggregates is sometimes observed during the mixing step. These
aggregates are known to lead to mechanical deficiencies of the
plates, which may cause their rupture during the demolding step.
Determination of the size and number of polymer aggregates in a
plate could therefore help to define better criteria for their
acceptability.

In a first approach, it might seem indicated to link the detection
of defects on the surface of a materials or a mixture to image anal-
ysis. However, defects can be located in the bulk material, mixture
or plate and may therefore not be visible, making image analysis of
disputable use. The purpose of this work is to develop a methodol-
ogy which can be applied regardless of the analytical method used
in the measurement of sample’s composition. We will focus on the
methodological tools developed to study powder mixture homoge-
neity and then we will present an extension aiming at detecting
defects in a bipolar plate.

2. Mixture homogeneity

The first definition for assessing homogeneity of mixtures was
introduced by Danckwerts in 1952 [1]. He suggested the use of
two concepts: the intensity and the scale of segregation. The first
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one studies fluctuations among sample’s compositions, while the
second one describes the state of subdivision of clusters.

Let us consider a mixture made of two components (A and B)
being divided into N samples of a certain size. Let a and b be the
mean composition of the mixture in component A and B, respec-
tively, and ra and rb the corresponding standard deviations. In
Danckwert’s definition, the intensity of segregation is calculated
as:

I ¼ r2
a

ab
¼

r2
b

ab
ð1Þ

A decrease of segregation intensity reflects the fact that the
composition of each sample is close to the mean composition of
the mixture. Instead of the definition proposed by Danckwerts, it
is usual to consider the coefficient of variation, which varies in
the same way as the variance but may be less dependent on the
mean. CV could be used for a mixture of more than two compo-
nents. Let us consider a mixture cutted into N samples, for which
a key component has been defined. Let xi be the composition in
key component in sample i and x the mean composition in the
samples. The CV of the mixture over the N samples reads:

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N $
PN

i¼1
ðxi % xÞ2

s

x
ð2Þ

Indexes have been developed, based on the comparison of the
standard deviation of the mixture with those of limit cases (ran-
dom mixture, totally segregated mixture) but none allows to reach
a better definition of the mixing homogeneity. Poux et al. [2] made
a summary of the different indexes and Fan and Wang [3] reported
a comparison between some indexes.

The intensity of segregation qualifies the state of macromixing
[4]. It gives no information about the structure of a mixture. In
Fig. 2, four different mixtures are represented. Each of them has
the same CV but their structures are completely different. It may

happen that they could also drive to different end-used properties.
To describe this, Danckwert suggested the use of a second concept,
the scale of segregation. This tool provides information about the
shape and the size of agglomerated particles and could therefore
be linked to the size of defects.

The autocorrelation function, R(r), among composition xi of N
consecutive samples, is applied to determine its numerical value
by analogy to the scale of turbulence used in the statistical theory
of turbulence.

RðrÞ ¼

PN% r

i¼1
ðxi % xÞðxiþ r % xÞ

PN

i¼1
ðxi % xÞ2

r is the distance between two samples ð3Þ

In the associated autocorrelogram (see Fig. 3), e corresponds to the
limit beyond which R(r) may be considered to be equal to zero,
being r0 the corresponding value of r. This results from statistical
thoughts [5] and depends on the confidence interval. For example,
if a confidence interval of 95% is considered, then:

e ¼ 2ffiffiffiffi
N
p ð4Þ

R(r) always lies between % 1 and +1. A high value of R(r) means a
strong correlation between samples compositions separated by a
‘‘distance” equal to r. Therefore r0, also called the specific lag, corre-
sponds to the number of samples that are correlated among each
other [5]. Danckwerts defined the scale of segregation, S, as the area
under the curve:

S ¼
Z r0

0
RðrÞ ' dr ð5Þ

S can be approximated by the trapezoïdal method. However the
determination of the autocorrelation function follows a discrete
way and consequently the number of points may be too small to

Fig. 1. Schematic representation of a fuel cell stack [17].

Decrease of the scale of segregation 

Fig. 2. Representation of the scale of the segregation according to Schofield [6].



apply this method. The values associated may lead to some major
errors in calculations. This makes r0 most likely used instead of S,
because its determination is easier and more precise.

Although the scale of segregation provides interesting informa-
tion on the mixture’s structure, examples of its use in assessing
powder mixture homogeneity are scarce. We can mention the
work by Schofield [6] and, more recently, the one by Gyenis [7].
Both have linked the scale of segregation to the mixing mecha-
nisms and particularly to convection through some simulations.
Schofield has shown that autocorrelograms give rise to suitable in-
dexes of mixedness for predominantly convective mixing mecha-
nism. When diffusion becomes the limiting phenomena, the
autocorrelation data are more difficult to interpret. Gyenis conclu-
sions followed the same way. He proved that the correlation tech-
nique assesses the degree of homogeneity and reveal the
microstructure of concentration pattern, especially at the early
stages of the process (i.e., convective and shear mechanism).

Very few other papers have been published on the subject. As a
matter of fact, the determination of the scale of segregation (or the
r0 associated) requires exhaustive sampling ideally at different
scale of scrutiny. The collection of accurate data is somewhat a te-
dious task and authors [8,9] concluded that this measure is difficult
to be performed for a real case, so that such a tool could not be
used as a chore. However, with on-line analytical techniques, the
study of a larger number of samples in a short time looks now pos-
sible. Autocorrelation could therefore appear now as a viable tool
for a better understanding of mixing process and mixture
structure.

Danckwert’s approach is based on time series models where
only one direction is used (the future is only determined by the

past and the present). Thus, the determination of autocorrelation
coefficients can be done only for long thin (row) samples. For a bet-
ter determination of scale of segregation in space (I–e cluster shape
and size) a 2D approach is needed. Schofield [6] extend this theory
to a 2D and 3D approach of the mixture by averaging at a lag r, for
each value of i, the different product ðxi % xÞðxiþ r % xÞ obtained in
the three directions. In the same way, but in a different field, it
was used for studying the microstructure of a 3D porous media
[10,11]. It seems that a spatial approach could gain accuracy in
the determination of the scale of segregation and the understand-
ing of mixing mechanism. Closely related problems also arise in
geographical or economics and some of this extensive work is sum-
marised by Cliff and Ord [12].

3. Spatial autocorrelation

Spatial autocorrelation studies the correlation of a variable with
itself through space. Thus if there is any systematic pattern in the
spatial distribution of sample’s composition, it is said to be spa-
tially autocorrelated. If nearby or neighbouring areas have compo-
sition more alike, this indicates positive spatial autocorrelation. On
the contrary, negative autocorrelation describes patterns in which
neighbouring areas are unlike. At last, random patterns exhibit no
spatial autocorrelation.

Several spatial autocorrelation indexes have been proposed. The
most known and used follows Moran’s and Geary’s statistics [12].
Each index gives a specific information. Moran’s coefficients com-
pare the value of a composition at a definite location with the val-
ues at all other locations. Formally, it is defined as:

Fig. 3. Discharge of a mixer onto a conveyor and cutting the mixture into n samples (a) as in Massol-Chaudeur et al. [4]. Representation of the related autocorrelogram (b).



IðrÞ ¼
N $

P
i

P
j

Wrði; jÞ $ ðxi % xÞðxj % xÞ

S0ðrÞ $
P

i
ðxi % xÞ2 ð6Þ

S0ðrÞ ¼
X

i

X

j

Wrði; jÞ ð7Þ

Geary’s coefficients are similar to Moran’s. However the interac-
tion is not the cross-product of the deviation from the mean but
the deviation in intensities of each sample composition with one
another. It is defined as:

CðrÞ ¼ N % 1
2 $ S0ðrÞ

" #
$

P
i

P
j

Wrði; jÞ $ ðxi % xjÞ2

P
j
ðxj % xÞ2 ð8Þ

As a consequence, Moran’s coefficients give a more global indi-
cator whereas Geary’s coefficients are more sensitive to differences
in small neighbourhoods [13]. I(r) varies in the same direction as
Danckwert’s definition (between % 1 and 1).

In both definitions, the spatial dimension is introduced thanks
to Wr(i,j) called contiguity or neighbouring matrices. It indicates
the proximity of two samples at the lag r. Wr(i,j) equals 1, if sample
i is neighbouring sample j to the distance r (Fig. 4). In the simplest
case, two samples are neighbouring if r borders must be crossed to
join them. A border is defined as a line between two samples. This
means that contact points are excluded. Another option is to make
Wr(i,j) a distance-based weight which is the inverse distance be-
tween locations i and j (1/dij). In this case Wr(i,j) are called weight
matrices.

4. Methods and simulation

The methodology we suggest for studying the number and size
of defects inside a bulk mixture, or a finite product like a bipolar
plate, is based on the coefficient of variation and Moran’s Index
(using for Wr(i,j) a neighbouring matrixes). This may help in stay-
ing closer to Danckwerts’s definition of the intensity and the scale
of segregation.

First, the materials studied are virtually cut into N parallelepi-
ped rectangles samples according to two directions. Neighbouring
matrices Wr, at different lag r, are built. Wr will be a N $ N matrix

with each diagonal element equal to zero as a sample cannot be
neighboured by himself. Then the coefficient of variation CV and
the Moran’s coefficient are calculated. The autocorrelogram associ-
ated to Moran’s coefficients is represented graphically and the spe-
cific lag r0, such as I(r0) = 0 is determinated. A value of r0 lesser than
1 indicates that there is no correlation among samples.

We study here a simulated typical bipolar plate manufactured
from thermoset polymer and graphite. Let us consider its dimen-
sions as being 60 cm ( 60 cm ( 0.5 mm. It can be regarded as a
two dimensional array of parallelepiped rectangles called unit
samples. Unit sample size should be related to the smallest scale
of scrutiny that is considered. In this study, dimensions for unit
samples were set at 1 mm by 1 mm and 0.5 mm for the thickness
(total thickness). The bipolar plate is therefore represented by a
60 $ 60 matrix. Each element of the matrix takes the value of the
composition in the key component (graphite) in the unit sample
considered.

Simulation of bipolar plate composition was realised in Matlab.
The plate studied had the following composition: 15% for thermo-
set polymer and 85% for graphite. This composition corresponds to
a real case of manufactured bipolar plate which allows to meet the
requirements for thermal and electrical conductivity and mechan-
ical strength of the bipolar plate. Defects were assigned to the plate
with a composition in thermoset polymer equal to 100%. Number
and size of defects were studied. Their locations were determined
randomly. We assumed a perfect mixing state all around defects
(Fig. 5a). The bipolar plate is then divided into cubic regions or
samples (Fig. 5b) whose compositions are stored in a matrix. The
coefficient of variation and the autocorrelation coefficients accord-
ing to Moran’s model were calculated. The specific lag r0 has been
determined as follows: if y(r) is a linear regression between the last
value upper and the first value below the error bar, the number of
correlated samples, r0, would be determined from y(r0) = 0.

5. Results and discussion

5.1. Influence of the sample size

The importance of the scale of scrutiny has been discussed in
numerous articles [14–16]. The scale of scrutiny (i.e., the ‘‘best”
sample size) must be defined as the final product meets the

Fig. 4. Neighbouring matrix (b) for a plate (a) cut in 12 samples at the lag r = 1.



specifications it is intended for. Take the example of a powder mix-
ture used to produce pharmaceutical tablets: the scale of scrutiny
makes sense, it must be equal to the size of a tablet. In other field
or applications, it can be more difficult to define. For a bipolar
plate, specifications are of electrical, chemical, thermal and
mechanical orders which makes scale of scrutiny not easy to de-
fine. Regions (samples) of different sizes were therefore considered
to study its influence on the coefficient of variation and the specific
lag. Hereafter, cubic samples from 1 (1 by 1) to 36 (6 by 6) unit
samples were considered.

Consider two bipolar plates, each containing two defects of
identical size. For the first one, the defect size is set to 2 by 2 unit
samples, and for the second one, the defects size is set to 3 by 3
unit samples. Fig. 6 shows the evolution of CV versus sample size.
It appears that increasing the sample size implies a reduction of
variance. It may be noted that this variation is not linear. When
the sample size (i.e., scale of scrutiny) is greater than the defect
size, we observe very few changes in CV value. In fact, the CV
allows to see imperfections in a mixture (or a material) whose sizes
are greater than the scale of scrutiny. This means that a defect of a
size smaller than that of a sample cannot be seen.

Spatial autocorrelation coefficients were calculated following
Moran’s definition (Fig. 7). r0 decreases with increasing sample size
up to 1 (Fig. 8). However, the curve obtained for a defect size of 9
unit samples reach 1 faster than the curve obtained for a defect size
of 4 unit samples. To explain this phenomenon, let’s have a look at
the two bipolar plates that correspond to curves previously men-
tioned and to their cutting into samples size of 25 unit samples
(5 by 5) (Fig. 9a and b).

In this example, a defect of the size of 4 unit samples (2 by 2) is
cut in two samples causing a higher r0, while defects with a larger
size (9 unit samples: 3 by 3) are each included within a single sam-
ple causing a r0 value less than 1. Thus, when the defect size is low-
er than that of the sample, the cutting has a strong influence on the
value of r0. To investigate the influence of the defect’s size and their
number on CV and r0, only sample sizes greater than those of the
defects have been considered.

5.2. Influence of the defect size and the number of defects

Evolution of CV and specific lag r0 have been studied for a bipo-
lar plate with 2 defects of different sizes (Fig. 10). Sample size is set

Fig. 5. Representation of a bipolar plate obtained from Matlab simulation with 2 defects (defect size: 2 by 2 unit samples). In black: homogenized mixture; in white:
thermoset polymer defects (a). Cutting of the plate (a) in 100 samples (sample size 6 by 6 unit samples) (b).
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to 1 unit sample. An increase of the defects size involves an in-
crease of CV and specific lag. It is interesting to note that slopes
seem almost parallel. This highlights the fact that an increasing de-
fects size has the same impact on CV and specific lag.

For a defect size set, when the number of defects increases, the
CV also increases (Fig. 11a). Conversely, the variation of r0 seems to
be low (Fig. 11b). However a systematic small decrease of r0 is ob-
served with the number of defects. We think that it could be linked
to the fact that if the number of defects increases, they could be
considered as an integral part of the plate rather than singular
occurrences.

To sum up, number of defects have an influence only on CV
while defects size affects both CV and specific lag. Thus defects size
seems rather linked to the specific lag. Once the defect size is esti-
mated, the CV could provide indications about the number of
defects.

6. Concluding remarks

In this paper, we have developed a methodology for analyzing
defects in 2D. This methodology allows the detection of defects
in the bulk of a mixture or materials, only from samples composi-
tions. It has been applied to a bipolar plate through a simulation of
defects on the plate. As expected, an increase of sample size (scale
of scrutiny) led to a decrease of the CV and the specific lag until the
sample size is greater than those of defects. Otherwise the cutting
into samples has a great influence on the value of r0. It has been
highlighted that an increase in the size of the defects implies an in-
crease of the CV and r0 and both follow the same profile increase. It
has also been demonstrated that if an increase of the number of de-
fects involves an increase of the CV, r0 remains almost constant and
is more likely related to the size of the defect. Indeed, a knowledge
of these two parameters could enable the identification of defects
giving ideas of their numbers and their sizes. Future work will fo-
cus on investigating the effect of a non perfect mixture around the
defects and the influence of the presence of defects of different
sizes in the same plate.
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Fig. 9. Bipolar plate with two defects of size 2 by 2 unit samples (a) and two defects of size 3 by 3 unit samples (b). Cutting into samples of size 5 by 5 is shown (grey lines).
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