N

N

Hardware Implementation of a Non-Coherent IR-UWDB
Receiver Synchronization Algorithm Targeting IEEE
802.15.6 Wireless BAN

Houcine Chougrani, Jean Schwoerer, Pierre-Henri Horrein, Amer Baghdadi

» To cite this version:

Houcine Chougrani, Jean Schwoerer, Pierre-Henri Horrein, Amer Baghdadi. Hardware Implemen-
tation of a Non-Coherent IR-UWB Receiver Synchronization Algorithm Targeting IEEE 802.15.6
Wireless BAN. ICUWB 2014 : International Conference on Ultra-WideBand, Sep 2014, Paris, France.
pp.444 - 449, 10.1109/ICUWB.2014.6959023 . hal-01185867

HAL Id: hal-01185867
https://hal.science/hal-01185867
Submitted on 21 Aug 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01185867
https://hal.archives-ouvertes.fr

Hardware implementation of a non-coherent

IR-UWB receiver synchronization algorithm
targeting IEEE 802.15.6 wireless BAN

Houcine Chougrani*f, Jean Schwoerer*, Pierre-Henri Horreinf, Amer Baghdadif
*Orange Labs, 28 Chemin du Vieux Chéne, 38240 Meylan, France
Institut Mines-Telecom; Telecom Bretagne; Lab-STICC, Technopdle Brest-Iroise, 29238 Brest, France
Email: {houcine.chougrani,jean.schwoerer} @orange.com, {ph.horrein,amer.baghdadi} @telecom-bretagne.eu

Abstract—Synchronization acquisition is one of the main
challenges for practical and efficient implementations of impulse
radio ultra wideband (IR-UWB) receivers. This is particularly
true in the context of the recently adopted IEEE 802.15.6
standard for wireless body area networks (BAN). Targeting
energy-efficient non-coherent detectors, this paper presents a low-
complexity hardware implementation of an efficient standard-
compliant synchronization algorithm. The proposed architecture
is described, together with performance and FPGA implemen-
tation results. A sub-optimal estimator of path selection and
recombining is also proposed in the presented solution to improve
the sensitivity of the receiver. Obtained results constitute a
reference in this domain where the available literature is rather
scarce.

I. INTRODUCTION

The last few years have seen an increased interest in the
research of practical and efficient receiver implementations
for impulse radio ultra wideband (IR-UWB). One of the main
recent drivers for this interest is the introduction in 2012 of
the IEEE 802.15.6 standard for wireless body area networks
(BAN). A very wide range of applications is foreseen as
the standard targets short-range wireless devices for in-body,
on-body, and around-the-body communications. Besides the
very significant medical and healthcare application domain,
the standard offers a huge opportunity for non-medical appli-
cations [1] belonging to a variety of fields including personal
audio or video, gaming, entertainment, wearable computing,
ambient intelligence, and many others. Therefore, these dif-
ferent application domains and the related communication
scenarios lead to different technical requirements which must
be met:

- Very low power consumption as some applications re-
quire devices with battery life of several months or even
several years.

- Minimal short range.

- Variable data rate.

- Small factor form allowing portability of BAN devices.

- Robust communication quality between the BAN devices.

In fact, the IEEE 802.15.6 standard defines Physical (PHY)
and Medium Access Control (MAC) Layers [2]. Three PHY
are proposed: (1) body channel communication for signal
propagation on the skin surface, (2) narrowband PHY mainly
for healthcare applications using the various available license
free band, and (3) ultra wideband (UWB) PHY able to address
higher data rates. In this paper we focus on the impulse radio
ultra wideband (IR-UWB) PHY, and more particularly on the
synchronization issue at the receiver and its practical hardware
implementation. Achieving an accurate synchronization is a

major challenge in IR-UWB systems and a key factor to
ensure reliable communications. Even a slight misalignment
in the order of nanoseconds can severely degrade the system
performance [3], [4], [S5]. A recent overview of existing syn-
chronization algorithms for IR-UWB systems is available here
[5]. This overview paper analyses in particular the performance
of few relevant recent synchronization algorithms: correlation
based timing acquisition proposed in [6], orthogonal code
matching based method in [7] and energy detection based
method presented in [8]. As analysed in [9], state-of-the-art
sliding correlation schemes have shown their efficiency in
terms of timing retrieval accuracy but exhibit strong limitations
in terms of power consumption and elapsed time to acquire a
very fine common time base between emitter and receiver. The
literature is rather scarce on non-coherent receivers synchro-
nization acquisition [9], and particularly with a perspective of
practical hardware implementations.

In this context, the new frame structure defined in the IEEE
802.15.6 standard for IR-UWB PHY offers new opportunities
for efficient synchronization schemes. The specified synchro-
nization header (SHR) integrates specific short 63-bit Kasami
sequences which present good cross correlation properties
(coexistence of BANs) and good autocorrelation properties for
accurate synchronization. Considering non-coherent receivers,
which are known to offer significant savings in complexity and
in energy-per-bit [10][11] over their coherent counterparts, a
recent work has proposed a new standard-compliant synchro-
nization technique [12].

In this paper, we consider this recent synchronization tech-
nique and we present an efficient low-complexity hardware
implementation that offers good opportunities for integration
in low power BAN devices. The proposed architecture is de-
scribed, together with performance and FPGA implementation
results. Furthermore, a sub-optimal estimator of path selection
and recombining is also implemented in the presented solution
to improve the sensitivity of the receiver.

The rest of the paper is organized as follows. Section II gives
a general overview of the transmitted frame structure, the IR-
UWB non-coherent receiver, the considered synchronization
algorithm as well as the proposed path selection and recom-
bining estimator. Section III describes in details the proposed
hardware architecture for the synchronization algorithm and
for the path selection and recombining estimator. Section IV
presents the results related to the synchronization success rate
of the considered algorithm and the proposed FPGA hardware
implementation. Finally, conclusions are drawn in Section V.

|IEEE802.15.6 UWB frame

Preamble SFD PHR PSDU
S; Si S; S;
o] o .| ofgwl o] .| o 62 o| .. | o
—» T le—
LT,
Tsymb

Fig. 1. UWB PHY frame format

II. SYNCHRONIZATION ALGORITHM

In this section, an overview of the transmitting frame and
receiver analog front-end is presented. The synchronization
algorithm and the proposed path selector are also described.

A. Transmitted frame

The UWB PHY frame format specified in the IEEE 802.15.6
standard [2] is composed of a Synchronization Header (SHR)
used to acquire the synchronization, a Physical Header (PHR)
containing information about the radio link (modulation, data
rate, etc.) and Physical-layer Service Data Unit (PSDU) which
is the payload of the frame. The SHR consists of the preamble,
which is used for timing synchronization, packet detection,
and carrier frequency offset recovery, and the start-of-frame
delimiter (SFD), which is used for frame synchronization.

The preamble is built using a Kasami sequence of length 63.
The standard defines eight different Kasami sequences which
are named C; for ¢ = 1,...,8. The preamble consists of 4
repetitions of the symbol Si. Si is obtained by a Kasami
sequence zero-padded by L — 1 zeros. Figure 1 illustrates the
construction of the symbol .S;, where the zero-padding period
is LT, and T, is the pulse waveform duration (7,, and L
depend on the modulation employed) [13].

We consider in this paper an On-Off Keying modulation
(OOK) and LT, = 64ns. In this configuration, when sending
a 1, the transmitter sends a pulse of T,,~1ns and stays inactive
for 63ns. When sending a 0, the transmitter stays inactive for
64ns.

B. IR-UWB non-coherent receiver

The structure of the receiver is illustrated in Figure 2.
The analog front-end of the receiver is based on a non-
coherent architecture. It is based on energy detection over a
short integration period. It embeds a low-pass filter with short
integration duration in the order of the pulse duration. The goal
is to obtain the envelop of the received signal as a baseband
pulse. This envelop is then compared to a predefined threshold
in order to determine whether a pulse is being received or not.

The received signal can be represented using the output
of the comparator. When the received signal is above the
threshold, it gives a 1, otherwise it gives a 0. The presence of
a pulse is then represented using this binary value.

It should be noted that using a comparator avoids the need
for an analog-to-digital converter (ADC), which significantly
decreases the complexity and the cost of the receiver. Con-
sequently, such a low complexity structure allows simply to

Digital signal processing

Energy detection Comp

Data

Decision —»

DT HEHEN
cr_J]

threshold

Fig. 2. Block diagram of the non-coherent receiver

63 bits

Fig. 3. Representations for Kasami sequence Cy

detect the presence/absence of the signal rather than a more
accurate, yet high complexity, amplitude information (energy
estimation) [12].

C. The synchronization algorithm

The considered synchronization algorithm has been recently
proposed in [12] based on inter-pulse time interval detection
and comparison. As presented above, the preamble symbol
is based on Kasami sequence. The upper part of Figure 3
represents the fourth one (Cy) used in the considered link for
illustration. The notion of slot is used here to simplify the
comprehension of the algorithm, so one slot is a time quantity
which represents the duration of one bit (64ns). When this
sequence is sent, a pulse is transmitted in the first slot, then
3 slots stays unused, before having a new slot with a pulse.
On the receiver side, this means that there is a time interval
of four between the first two pulses. This sequence can thus
be represented using a time interval representation, as shown
in the lower part of Figure 3.

The synchronization algorithm is based on a finite-state
machine (FSM) designed to check the correlation between the
received symbol and the expected one. The FSM also allows
to count the distance between two consecutive received pulses.
The algorithm continues as long as the detected distances
correspond to the expected ones, and restart when it is not
the case. The synchronization is done when all the expected
distances are identified.

In order to accommodate for the noise interfering with a
transmission, the algorithm must be able to cope with spurious
or missed pulses. The proposed FSM has been optimized to
take into account a certain number of these erroneous pulses.

The main idea is that when a detected distance differs
from the expected one, it is not discarded immediately. So,
the comparisons to decide whether a distance matches the
expected one is less strict, and can be made with the sum
of expected distances (missed pulse) or the sum of received
distances (spurious pulse). For example, if a distance {6} is
received, expected next distance is a {3} as shown in the lower
part of Figure 3. However, if the next pulse is missed, the
next distance might be a {5}, which could be the sum of
{3} and {2}, the two distances following {6}. If a {5} is
received, the algorithm does not stop, and decide according
to the next distance. On the opposite, the two next received
distances could be {1} and {2}, which should be discarded.
However, the sum of received distances is 3, and this error
could be caused by noise. This sequence can be kept if the
following distances match the expected ones.

Sync_OK

last_pulse

! 1
! clear_dist I
. deardst
! | enable . distance !
! distance 1
1 | | start . 1
1] counter_i
- 1
X ‘ V| !
1 clear_noise \
1 . noise_pulse |
enable incr_noise noise X
1 counter_i 1
start FSM | |
1 - 1
datal(i) |
Addr J 1
| clear) test_pulse 1
register \
1
1
1
1
1
T
1

T

1

1

1

1 load | memory_i
1 .
! ;
1

1

1

1

1

Fig. 4. Synchronization block

D. Path selection and recombining estimator

In the IR-UWB radio link, the transmitter sends a frame
with the structure presented in Sub-section II-A. The zero-
padding period is set to LT, = 64ns, and OOK modulation
is employed.

In the receiver part, the signal is detected for one pulse
duration (1ns). This allows a multipath reception, which
means that we can detect several paths and recombine them
to increase the receiver performances. With zero-padding of
LT, = 64ns, we can detect up to 64 paths for a transmitted
pulse.

To enable this multipath reception, we use a parallel
synchronization scheme with multiple branches, where each
branch embeds one FSM and processes 1ns detected signal.
So to cover all possible path, 64 branches of synchronization
are considered. Each FSM is responsible to detect a synchro-
nization in its own branch. If this is the case, the detected
signal on this branch is considered as a valid path.

The FSM optimization for error tolerance presented in Sub-
section II-C can be used to sort the validated paths according
to their estimated signal quality. When the energy of the
path is high, it stays above the detection threshold during
the whole synchronization symbol. As a result, the FSM
converges without going through the optimization steps. This
means that the FSM rapidly converges. In the same way, a
path with relatively less energy does not reach the detection
threshold during the whole transmission. In this case, one
or more optimization steps are applied, leading to higher
convergence time. Due to this difference in convergence time,
the first detected paths can be safely used as the more powerful
ones. This is a sub-optimal path selection, as the proposed
low-complexity non-coherent receiver does not sort the paths
whose FSMs converge at the same time given the lack of
information on energy measurement. In this case, the first
received path is considered as the most powerful.

III. IMPLEMENTATION

This section describes in details the proposed hardware
architecture for the considered synchronization algorithm and
for the proposed path selection and recombining estimator.

A. Implementation of synchronization algorithm

Figure 4 gives a general overview of the proposed architec-
ture to implement the synchronization algorithm. The proposed
architecture integrates the following main components: dis-
tance_counter, noise_counter, FSM and register_memory. The
blocks distance_counter and noise_counter consist of simple
counters. The first one (distance_counter) is used to compute
the distances between the received pulses, whereas the second
one(noise_counter) computes the number of spurious pulses
when necessary. In the same way, the FSM block checks the
different distances delivered by distance_counter component
as described in Section II, and the register_memory component
is used to check the identified pulses.

When the control part of the receiver detects a change
in the channel, it activates the Acgq_Sync signal to trigger
the synchronization acquisition process. Once Acq_Sync is
activated, the synchronization block starts taking into account
the received data from the output of the comparator through
the data signal.

When no pulse are detected (data = 0), distance_counter
is incremented. Once a pulse is received (data = 1), the
FSM reads the distance_counter value which represents the
distance between two consecutive detections. At this state, if
the distance corresponds to one of the expected distances,
the FSM changes its state and resets the distance_counter
by activating the clear signal. As a result, one pulse has
been detected and the distance with the next pulse is begin
computed. If the distance does not correspond to the expected
one, the second pulse is considered as a noise, and FSM
increments the noise_counter in order to verify the tolerate
spurious pulses. As long as the tolerated spurious is not
exceeded, the above process continues until the identification
of expected distance. If it is not the case,the process should
be restarted.

When a pulse j is identified, the register j of the regis-
ter_memory component changes its value to 1, indicating that
the j*" pulse was identified. The process described above is
repeated until all the pulses are identified (register_memory
is full). Once this happens, the FSM converges to the final
state, activates the Sync_ok signal to indicate that the syn-
chronization is acquired, and provides the position of the last
detected pulse through the last_pulse signal. This last_pulse
signal is used to represent the position of the current pulse,
based on received distances. This position is given in binary
coded decimal form.

B. Implementation of path selection and recombining estima-
tor

Figure 5 presents the proposed architecture for the path se-
lection and recombining estimator named path_selector block.

It consists of a serial-to-parallel converter (deserializer
component) cascaded with 64 synchronization blocks. To allow
processing of 1ns signal in each branch, the deserializer must
work at high frequency, typically at 1GHz. In order to ease
the constraints, data processing is parallelized to reduce the
working frequency of the other blocks.

The deserializer block is divided in two main parts:

e the clock managemet part, represented by the
clock_generator block on the figure, is designed to
provide proper clocks to the different parts of the
system,

—> Sync_ok 1

FSM_1
—> Last_pulse 1

——> Sync_ok 2

FSM_2

Output
comparator
—

= Last_pulse 2

LVDS
P
™ [Deserialiser

——> Sync_ok 64

FSM_64
—=> Last_pulse 64

Fig. 5. Path selector block

o the parallelization part, represented by blocks ISERDES
and shift_register, is used to transform the serial input in
a parallel processing unit.

In order to further describe this block, a target specific im-
plementation is proposed here. The selected target is a Xilinx
FPGA with high-speed inputs (RocketlO™ GTP transceivers).
The clock_generator component is based on one of the FPGA
Digital Clock Management (DCM) unit.

The ISERDES block is provided by Xilinx, and designed to
use hardware deserializers available in the FPGA. It disposes
of SERDES ratios of 1:2, 1:3, and 1:4, where the SERDES
ratio is defined as the ratio between the high speed I/O clock
that is capturing data, and the slower internal global clock used
for processing the parallel data [14]. However, the SERDES
ratio can be extended to 1:8 when ISERDES is cascaded [15].

The digital receiver uses the same Ep clock as the analog
front end. The clock_generator component uses this clock as
input of its internal Phase-Locked Loop (PLL) to generate an
input clock for the ISERDES block, with a frequency matching
the required data rate (1 GHz). Represented by I/O clock in
Figure 6, this high speed clock is then used to sample the
received serial data on the input of ISERDES block. In the
proposed non-coherent receiver, data is sent from the analog
frontend to the digital part through an LVDS link, with no
clock signal. Since the data rate is known, and the target is
to sample the input data at each clock cycle, this allows the
ISERDES block to be used as an analog-to-digital converter:
the output of the comparator is sent as data signal, and the
internally generated 1 GHz clock becomes a sampling clock.

To allow 1:16 SERDES ratio, an intermediate clock is
generated by the clock_generator at 125 MHz (gclk2). From
that clock, two ISERDES with 1:8 ratio are cascaded, forming
a 16 bits word at the output of ISERDES (data_out) with
a frequency of 62.5 MHz (gclkl). Given the 1:16 ratio, a
62.5 MHz clock for the 16 bits word is sufficient to allow
a 1 GHz input data rate.

As mentioned above, 64 parallel data is required at the
output of deserializer block, so a ratio of 1:16 is not sufficient.
This last parallelization step is done by the shift_register,
which takes as input the 16 bits words sent by ISERDES and
outputs a 64 bits word with a data rate divided by 4. For
performance reason, a new clock is not generated for this final
output, but the enable signal is used to indicate the validity of
the output word. The system clock for the digital receiver is
thus gclkl, and 4 cycles are available to process each 64 bits
data word.

At this stage, a simple connection of each output data of

clock_
generator

SerDes | 1/0
Stmbeldockl lgm eclk

data_out (15:0)

data (63:0)

Shift_register |+

>

ble

ISERDES 1:16

Deserializer

Fig. 6. Deserializer block

the deserializer block to a synchronization block is sufficient
to complete the path_selector block as illustrated in Figure 5.

IV. RESULTS

This section presents the results related to the synchroniza-
tion software simulation of the considered algorithm and the
proposed FPGA hardware implementation

A. Synchronization software simulation

This considered synchronization algorithm [12] was imple-
mented in a complete UWB BAN simulation environment
developed in Matlab for the RUBY project'. Simulations were
performed for additive white Gaussian noise (AWGN) and for
CM3/CM4 channel models [16] which are defined by the IEEE
802.15.6 standard.

Figure 7(a) illustrates the synchronization success rate of
the considered synchronization technique. As can be seen,
the difference between all channels is not negligible. For
the AWGN channel, the 100% synchronization success rate
is obtained when Ep/NO reaches 10 dB, while CM3/CM4
channel models obtain the same synchronization success rate
starting from 17 dB. This can be explained by the multipath
characteristic of the CM3/CM4 channel models. A difference
between these channel models is also observed. The worst
cases are CM4 for angles other than 0°.

Figure 7(b) shows the detected paths for the different
CM3/CM4 channel models. As we can see, the identified paths
in CM3 is more important than the CM4. More than 18 paths
are identified in the case of CM3 when Ep/NO reach 26 dB,
while the maximum identified paths is around 8 for CM4 at
the same Ep/N0O. CM4 (0°) is a Line-Of-Sight (LOS) channel,
with a strong main path. CM3 may be either LOS or Non-LOS
(NLOS), depending on whether a part of the body is located
between devices. CM4 for angles other than 0°are either LOS
or NLOS, depending on the position of the body. However,
the distance between devices is much higher than for CM3,
and the spreading of paths over time is more important, which
explains why results are lower than CM3.

A comparison of our considered synchronization technique
results with [17] results was carried out in [12]. This com-
parison revealed the effectiveness of our algorithm in term of
Synchronization success rate as well as the time required to
acquire the synchronization.

IResearch project started in 2012 and funded in part by the French National
Research Agency (ANR)

1 e

0.9t i
2
T 0.8} il
]
2 0.7} 1
8
S 0.61]
(%]
S 05f —6— CM3 i
= —e— CM4(0°)
N 0.4y —g— CM4(90°) |1
S sl CM4(180°)| |
5 —+— CM4(270°)
S 0.2t AWGN ,
n

0.1} 1

ol 8 i i
5 10 15 20 25 30
Ep/NO (dB)

(a) Synchronization success rate

20

181

—o— CM3
16+ —6e— CM4(0°) 1
—v— CM4(90°)
147 CM4(180°)]
1| —%— CM4(270°) |

number of path

of
10 12 14 16

18 20 22 24 26
Ep/NO (dB)

(b) number of detected path

Fig. 7. Simulation results of the proposed algorithm for various channel models

Name Value | [3;700ms | [2800ms | [3.800ms | |4000ns | |#100ms | 420005 | [#300ms | 4,400 s | |4,500ms | &
H'r data_in
1 enavte __M []] 71 [[[71 = [[1 [[[-
1 ep JUALALAL AL AL PR AL AL L U LA A AL AR PP P LA AL AL L UL LA A AL AP L AL AL AL AL AL L LA
1 reset I 4 I
1 start 7
» B last_pulse[s:0] 2% W25 K 2 || 27 ¥ 28 ¥ 0 X ’ 1 X 2
& sync_ok ~ F o
ya
1 p_state sta...) state 25) state_26 ,{ state_27 ¥ state_28 | i noise_28) { K state_1 X,;ij final_state
7 " 4 7
l’ g /I /,
H ’” ¥ /
1 I, 7 /'
Detected pulse Spurious pulse | Processing period | | Synchronization acquired |
(a) Synchronization block
4,400 ns 4,500 ns 4,600 ns |4m 0ns 4,800 ns 4,900 ns 5,000 ns 5,100 ns
[ARFTRIR I AT T T I T S ST S T S A SN VT S I T S S A S N U A S S A A WO
4 data[63:0] 4 00000000000 ¥ 1111111 ¥00D00000000000000000000000000... 111111 ... +/000000000000000000000000000000000000000... ¥ 1111111, ¥0000000... ¥ 1111111 ¥
e LPLPL PP PR AP AL PP PP AP AP PP AP PP PP AP AL L AL P AP AL L
enable [[Il [[[[[T Il [[T [[|
¢ generate_pulse
0000000000000C0000000000000000(000000000000000002000000000000000C ,y): 1111112111113113931339113113133493331399113313133319331913:1391191
28 X 1 =")(I 2 I
PP P 4

Synchronization acquired

Last detected pulse

(b) path_selector block

Fig. 8. Example of signal waveform results of the implemented hardware synchronization architecture

B. FPGA hardware implementation

The architecture presented in Section III has been fully
described in VHDL including the input interface with the
Deserializer block (Figure 6). For testing purpose, a transmitter
block has also been developed in VHDL to generate an
impulse signal compliant with the standard frame structure
as presented in Sub-section II-A. Besides the behavioral and
post-synthesis simulations, on-board validation was performed
using the development board AES-S6DEV-LX150T-G from
Avnet which integrates a Xilinx Spartan 6 LX150T FPGA
circuit. The selected FPGA circuit integrates 8 RocketlO™
GTP transceivers able to operate at a serial bit rate of 3.125
Gb/s (as the integrated FPGA is of a -3 speed grade). Both

the transmitter and the receiver have been implemented on
this single FPGA. However, the outputs of the transmitter
are sent to two LVDS output pins of the FPGA and then
connected to two LVDS input pins of the receiver. For the
on-board validation, Xilinx ChipScope Analyzer was used to
probe the internal signals of the design and check the different
implemented blocks. Different analysis have been conducted
and the synchronization acquisition was verified with spurious
and missed pulses. Figure 8 illustrates an example of signal
waveform results.

The output signals as well as the transition states evolution
of the synchronization block are presented in the upper part
of Figure 8(a). Signals are presented in Section III. The
Figure shows the end of a successful synchronization in

TABLE I
FPGA RESOURCE UTILIZATION

Logic Utilisation synchronization block path_selector block
Used | Available | Utilization | Used | Available | Utilization
Number of Slice Registers (Flip-Flops) | 127 184304 0% 8276 184304 4%
Number of Slice LUTs 431 92152 0% 27056 92152 29%
Number of BUFG/BUFGCTRLs 1 16 6% 4 16 25%
Number of PLL_ADVs 0 6 0% 1 6 16%

the presence of a spurious pulse. The received sequence at
this point is 7111101010001, which is a noisy version of
”111100010001”. This matches the end (”111100”) and start
(’010001”) of C}4 sequence. The processing period of 4 cycles
can be seen between each enable. The FSM changes state
each time a pulse is received, and the last_pulse signal is
update with current pulse position. When the spurious pulse
is received, it does not match an expected pulse, and the
FSM goes through a noise state. Finally, when the last pulse
is received, the sequence is recognized, the Sync_ok signal
is set to 1 to indicate that synchronization is acquired. The
last_pulse signal thus represent the position of this pulse. The
results for path_selector block are shown on Figure 8(b). The
sync_ok signal is the concatenation of all sync_ok from the 64
synchronization blocks. This shows the results for the same
sequence duplicated on each branch, and it can be seen that
synchronization is found on all branches, indicating that the
block works as expected.

Table I summarizes the required hardware resources to im-
plement the synchronization and path_selector blocks. These
results illustrate the hardware efficiency of the proposed ar-
chitecture. A single synchronization block requires very low
resources utilization: 127 Flip-Flops and 431 Look-Up Tables
(LUT). Moreover, it can be noticed the absence of multipliers
(DSP’s resources) in the resources occupation.

Regarding the path_selector block, the overall resources uti-
lization in terms of Flip-Flops and LUTs is almost multiplied
by 64. This is necessary in order to analyze the 64 possible
paths and to allow a robust multipath detection. The use of
the PLL in the path_selector block leads to use more buffers
in order to drive the different generated clock. This explain
the difference of the used buffers between synchronization
block (one buffer) and path_selector block (four buffers). Even
with this advanced feature, the resulted complexity is still
reasonably low: about 8K Flip-Flops (~4% of the available
resources) and 27K LUTs (~30% of the available resources).
Furthermore, this additional complexity is compensated by
the increased synchronization performances when the multiple
paths are recombining to take a decision. Thus, the proposed
low-complexity synchronization architecture offers good op-
portunities for integration in low power BAN devices.

V. CONCLUSION

In this paper, a low-complexity hardware implementation
of an efficient synchronization algorithm for non-coherent IR-
UWB receivers is presented. The proposed architecture is
compliant with the recently adopted IEEE 802.15.6 standard
for BANs. It is based on the use of an optimized FSM
with appropriate counters and registers to match the particular
structure of the synchronization header based on short 63-
bit Kasami sequences. The presented solution integrates a
sub-optimal estimator of path selection and recombining to

improve the sensitivity of the receiver. The efficient syn-
chronization algorithm enables a effectiveness synchronization
success rate in BAN channel models. FPGA implementation
results show a reasonably low resources occupation (about
27K LUT and 8K FF) which offers good opportunities for
integration in low power BAN devices. Further optimizations
are possible by making use of the available 4 cycles, which
could further reduce required resources. Obtained results con-
stitute a reference in this domain where the available literature
is rather scarce.

REFERENCES
[1]

S. Drude, “Requirements and application scenarios for body area net-
works,” in Mobile and Wireless Communications Summit, 2007. 16th
IST, 1-5 July 2007.

Part 15.6: Wireless Body Area Networks, IEEE Standard for Local and
metropolitan area networks Std., 29 February 2012.

Z. Tian and G. Giannakis, “BER sensitivity to mistiming in ultra-
wideband impulse Radios-part I: nonrandom channels,” IEEE Trans-
actions on Signal Processing, vol. 53, no. 4, pp. 1550-1560, 2005.

N. He and C. Tepedelenlioglu, “Performance analysis of non-coherent
UWRB receivers at different synchronization levels,” IEEE Transactions
on Wireless Communications, vol. 5, no. 6, pp. 1266-1273, 2006.

R. Akbar and E. Radoi, “An overview of synchronization algorithms
for IR-UWB systems,” in Proc. of the International Conference on
Computing, Networking and Communications (ICNC), 2012, pp. 573—
577.

L. Yang and G. Giannakis, “Timing ultra-wideband signals with dirty
templates,” IEEE Transactions on Communications, vol. 53, no. 11, pp.
1952-1963, 2005.

Y. Ying, M. Ghogho, and A. Swami, “Code-Assisted Synchronization
for UWB-IR Systems: Algorithms and Analysis,” IEEE Transactions on
Signal Processing, vol. 56, no. 10, pp. 5169-5180, 2008.

X. Luo and G. Giannakis, “Low-complexity blind synchronization and
demodulation for (ultra-)wideband multi-user ad hoc access,” IEEE
Transactions on Wireless Communications, vol. 5, no. 7, pp. 1930-1941,
2006.

B. Miscopein and J. Schwoerer, “Low Complexity Synchronization
Algorithm for Non-Coherent UWB-IR Receivers,” in Proc. of the IEEE
65th Vehicular Technology Conference (VTC2007-Spring), April 2007,
pp. 2344-2348.

F. S. Lee and A. P. Chandrakasan, “A 2.5 nj/bit 0.65 v pulsed uwb
receiver in 90 nm cmos,” Solid-State Circuits, IEEE Journal of, vol. 42
Issue:12, pp. 2851 — 2859, Dec 2007.

Y. Gao, Y. Zheng, and C.-H. Heng, “Low-power cmos 1f front-end for
non-coherent ir-uwb receiver,” in Solid-State Circuits Conference, 2008.
ESSCIRC 2008. 34th European, 15-19 Sept. 2008.

H. Chougrani, J. Schwoerer, P-H. Horrein, and A. Baghdadi, “Effi-
cient Synchronization Technique for Non-coherent IR-UWB Receiver
Targeting IEEE 802.15.6 Wireless BAN,” in Proceedings of the Sth
International Conference on Body Area Networks (BodyNets), 2013, pp.
181-184.

Part 15.6: Wireless Body Area Networks, IEEE Standard for Local and
metropolitan area networks Std., 2012.

“Spartan-6 fpga selectio resources,” XILINX, Tech. Rep., February 14,
2014.

N. Sawyer, “Source-synchronous serialization and deserialization (up to
1050 mb/s),” XILINX, Tech. Rep., June 3, 2010.

K. Y. Yazdandoost and K. Sayrafian-Pour, “Channel Model for Body
Area Network (BAN),” IEEE P802.15 Working Group for Wireless
Personal Area Networks (WPANs), vol. Document IEEE802.15-08-0780-
05-0006, 2009.

K. B. et al, “Etri & samsung phy proposal to 802.15.6,” IEEE P802.15
Working Group for Wireless Personal Area Networks (WPANSs), Tech.
Rep., May 2009.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

