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Abstract. In recommendation systems, one is interested in the ranking of
the predicted items as opposed to other losses such as the mean squared error.
Although a variety of ways to evaluate rankings exist in the literature, here
we focus on the Area Under the ROC Curve (AUC) as it widely used and
has a strong theoretical underpinning. In practical recommendation, only
items at the top of the ranked list are presented to the users. With this
in mind, we propose a class of objective functions over matrix factorisations
which primarily represent a smooth surrogate for the real AUC, and in a
special case we show how to prioritise the top of the list. The objectives are
differentiable and optimised through a carefully designed stochastic gradient-
descent-based algorithm which scales linearly with the size of the data. In the
special case of square loss we show how to improve computational complexity
by leveraging previously computed measures. To understand theoretically the
underlying matrix factorisation approaches we study both the consistency of
the loss functions with respect to AUC, and generalisation using Rademacher
theory. The resulting generalisation analysis gives strong motivation for the
optimisation under study. Finally, we provide computation results as to the
efficacy of the proposed method using synthetic and real data.

1. Introduction

A recommendation system [1, 16] takes a set of items that a user has rated and
recommends new items that the user may like in the future. Such systems have
a broad range of applications such as recommending books [17], CDs [17], movies
[27, 3] and news [7]. To formalise the recommendation problem let {w1, . . . , wm} ⊆
W be the set of all users and let {y1, . . . , yn} ⊆ Y be the items that can be rec-
ommended. Each user wi rates item yj with a value rij which measures whether
item yj is useful to wi. In this work, we consider the implicit recommendation

problem in which rij ∈ R = {−1,+1}. For example, the rating value represents
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2 AUC OPTIMISATION AND COLLABORATIVE FILTERING

whether a person has read a particular research paper, or bought a product. We
are thus presented with a set of observations {(wi, yj , rij) : wi ∈ W , yj ∈ Y} as a
training sample. The aim of recommendation systems is to find a scoring function
f : W × Y 7→ R such that the score f(w, y) is high when user w strongly prefers
item y. This problem is challenging for a number of reasons: we are interested only
in the top few items for each user, there is often a large fraction of missing obser-
vations (irrelevant items are generally unknown) and the sample of rated items is
often drawn from a non-uniform distribution.

To address these issues, we propose a general framework for obtaining strong
ranking of items based on the theoretically well studied local Area Under the ROC

Curve (AUC) metric. The framework relies on matrix factorisation to represent
parameters, which generally performs well and scales to large numbers of users and
items. One essentially finds a low rank approximation of the unobserved entries
according to an AUC-based objective and several different surrogate loss functions.
In addition we show how to focus the optimisation to the items placed at the top of
the list. The resulting methods have smooth differentiable objective functions and
can be solved using stochastic gradient descent. We additionally show how to per-
form the optimisation in parallel so it can make effective use of modern multicore
CPUs. The novel algorithms are studied empirically in relation to other state-of-
the-art matrix factorisation methods on a selection of synthetic and real datasets.
We also answer some theoretical questions about the proposed methods. The first
question is whether optimising the surrogate functions will result in improving the
AUC. The second question represents a generalisation analysis of the matrix fac-
torisation approaches using Rademacher Theory [2], a data-dependent approach to
obtaining error bounds. The analysis sheds some light onto whether the quantities
optimised on a training sample will generalise to unseen observations and provides
a bound between these values. Note that a preliminary version of this paper has
been presented in [9] and here we extend the work by considering a much larger
class of objectives, the theoretical study and further empirical analysis.

This paper is organised as follows. In the next section we motivate and derive
the Matrix Factorisation with AUC (MFAUC) framework and present its special-
isation according to a variety of objective functions. In Section 3 we present the
theoretical study on consistency and generalisation of the proposed approaches.
Following, there is a review on related work on matrix factorisation methods in-
cluding those based on top-ℓ rank-based losses. The MFAUC algorithm is then
evaluated empirically in Section 5 and finally we conclude with a summary and
some perspectives.

Notation: A bold uppercase letter represents a matrix, e.g. X, and a column
vector is displayed using a bold lowercase letter, e.g. x. The transpose of a matrix
or vector is written XT . The indicator function is given by I(·) so that it is 1
when its input is true otherwise it is . The all ones vector is denoted by j and the
corresponding matrix is J.

2. Maximising AUC

The Area Under the ROC Curve is a common way to evaluate rankings. Consider
user w ∈ W then the AUC is the expectation that a uniformly drawn positive item
y is greater with respect to a negative item y′ under a scoring function s : Y 7→ R

(1) AUCD(s) = ED[I(s(y) > s(y′))],



AUC OPTIMISATION AND COLLABORATIVE FILTERING 3

where D is a distribution over items for w, I is the indicator function that is 1 when
its input is true and otherwise 0, and we assume scores are never equal. One cannot
in general maximise AUC directly since the indicator function is non-smooth and
non-differentiable and hence difficult to optimise. Our observations consist only
of positive relevance for items, thus we maximise a quantity closely related to the
AUC for all users, which is practical to optimise. The missing observations are
considered as negative as in [6, 25] for example.

Accuracy experienced by users is closely related to performance on complete
data rather than available data [25] and thus the distribution D is an important
consideration in a practical recommendation system. This implies that a non-
uniform sampling of items might be beneficial. Consider a user w and a rating
function s, then the empirical AUC for this user is:

(2) ÂUC(s) =
∑

p∈ω

∑

q∈ω̄

I(s(yp) > s(yq))g(yp)g
′(yq),

where ω is the set of indices of relevant items for user w, ω̄ is the complement of ω,
and g and g′ are distributions on the relevant and irrelevant items respectively. The
most intuitive choices for g and g′ are the uniform distributions. On real datasets
however, item ratings often have a long tail distribution so that a small number
of items represent large proportions of the total number of ratings. This opens up
the question as to whether the so-called popularity bias might be an advantage to
recommender systems that predict using the same distribution and we return to
this point later.

The AUC certainly captures a great deal of information about the ranking of
items for each user, however as pointed out by previous authors, in practice one
is only interested in the top items in that ranking. Two scoring functions s and
s′ could have identical AUC value and yet s for example scores badly on the top
few items but recovers lower down the list. One way of measuring this behaviour
is through local AUC [5] which is the expectation that a positive item is scored
higher than a negative one, and the positive one is in the top tth quantile. This is
equivalent to saying that we ignore positive items low down in the ranking.

2.1. A General Framework. As previously stated, direct maximisation of AUC
is not practical and hence we use a selection of surrogate functions to approximate
the indicator function. Here a scoring function is found for all users and items, in
particular the score for the ith user and jth item is given by s(wi, yj) = (UVT )ij
where U ∈ Rm×k is a matrix of m user factors and V ∈ Rn×k is a matrix of n item

factors. We will refer to the ith rows of these matrices as ui and vi respectively.
Furthermore, let X ∈ Rm×n be a matrix of ratings such that Xij = +1 if user wi

finds item yj relevant otherwise Xij = 0 if the item is missing or irrelevant. In a
sense which is made clear later, X is an approximation of the complete structure
of learner scores so that X ≈ UVT . The advantage of this matrix factorisation
strategy is that the scoring function has k(m + n) parameters and hence scales
linearly with both the number of users and items.
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The framework we propose is composed principally of solving the following gen-
eral optimisation:

min
1

m

m
∑

i=1

∑

p∈ωi

g(yp)φ

(

∑

q∈ω̄i

L(γi,p,q)g
′(yq)

)

+
λ

2

(

1

m
‖U‖2F +

1

n
‖V‖2F

)

,(3)

for a user-defined regularisation parameter λ, loss function L, rank weighting func-
tion φ, item difference γi,p,q = uT

i vp − uT
i vq and distributions for relevant and

irrelevant items g and g′. The relevant items for the ith user are given by the
set ωi and irrelevant/missing items are indexed in ω̄i. The first sum in the first
term averages over users and the second sum computes ranking losses over positive
items for the ith user. The second term is a penalisation on the Frobenius norms
(‖A‖2F =

∑

ij A
2
ij) of the user and item factor matrices. Concrete item distribu-

tions g and g′ are discussed later in this section but a simple case is using the
uniform distributions 1/|ωi| and 1/|ω̄i| respectively.

The loss function L can be specialised to one of the following options (β > 0 is
a user-defined parameter):

L(x) = 1
2 max(0, 1− x)2 square hinge

L(x) = 1
2 (1− x)2 square

L(x) = −1/(1 + e−βx) sigmoid
L(x) = − ln(1/(1 + e−βx)) logistic

See Figure 1 for a graphical representation of each of these loss functions. On binary
classification the square hinge loss is show to provide a strong AUC on both training
and test data in [29]. Furthermore, the objective becomes convex in U and V when
φ(x) = x. The squared loss is shown to be consistent with the AUC [11] and the
squared hinge loss is shown to be consistent in [12]. In contrast, the hinge loss is
not consistent with AUC. The sigmoid function is perhaps the best approximation
of the negative indicator function. As β →∞ it approaches the indicator function,
and hence we get an objective exactly corresponding to maximising AUC. The
sigmoid function is used in conjunction with AUC for bipartite ranking in [14].
An noted in this paper, if β is too small then corresponding objective is a poor
approximation of the AUC and if it is too large then the objective approaches the
sum of step functions making it hard to perform gradient descent. To alleviate the
problem the training data is used to to choose a series of increasing β values.

For the weighting function φ(x) = x, one can see that the first term in the
objective follows directly from AUC (Equation 2) by replacing the indicator function
with the appropriate loss. The optimisation in this case is convex in the square and
hinge loss cases forU andV but not both simultaneously. This form of the objective
however, does not take into account the preference for ranking items correctly at
the top of the list. Consider instead φ(x) = tanh(ρx) for x ≥ 0 and fixed ρ > 0,
which is a concave function. The term inside φ in Optimisation 3 represents a
ranking loss for ith user and pth item and thus yp is high up in the ranked list if
this quantity is small. The effect of choosing the hyperbolic tangent is that items
with small losses have larger gradients towards the optimal solution and hence are
prioritised.

The distributions on the items allow some flexibility into the expectation we
ultimately compute. Although the obvious choice is a uniform distribution, in
practice relevant item distributions often follow the so-called power law given by
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Figure 1. Plot of the loss functions L with β = 5.

p(y) ∝ n−τ
y for some exponent τ ≥ 1, where ny is the number of times relevant item

y occurs in the complete (fully observed) data. In words, the power law says that
there are a few items which are rated very frequently whereas most items are not
frequently rated, corresponding to a bias on observing a rating for popular items.
However, recommendations for less well-known items are considered valuable for
users. Since we have incomplete data the generating distribution can be modelled
in a similar way to that of the complete data (see e.g. [26] for further motivation),

g(y) ∝ p̂(y)τ
′

.

where p̂(y) is the empirical probability of observing y and τ ′ ≥ 0 is a exponent used
to control the weight of items in the objective. The irrelevant and missing items
form the complement of the relevant ones and hence we have

g′(y) ∝ q̂(y)τ
′

= (1− p̂(y))τ
′

.

Notice that when τ ′ = 0 we sample from the uniform distribution. Since we expect
p̂(y) to be related to ny with a power law this implies that when τ ′ > 0 we give
preference to items for which ny is small and hence focus on less popular items.

2.2. Optimisation Algorithms. To solve the above objectives one can use gra-
dient descent methods which rely on computing the derivatives with respect to the
parameters U and V. Here we present the derivatives for choices of loss L and
weighting function φ, starting with the squared hinge loss and φ(x) = x. Denote
the objective function of Optimisation 3 as θ then the derivatives are,

δθ

δui
=

1

m

∑

p∈ωi

g(yp)

(

∑

q∈ω̄i

(vq − vp)h(γi,p,q)g
′(yq)

)

+
λ

m
ui,(4)

and

δθ

δvj
=

1

m

m
∑

i=1

ui

(

Ij∈ω̄i
g′(yj)

∑

p∈ωi

g(yp)h(γi,p,j)

−Ij∈ωi
g(yj)

∑

q∈ω̄i

g′(yq)h(γi,j,q)

)

+
λ

n
vj ,

(5)
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where h(x) = max(0, 1− x) and for convenience we use the notation Ij∈ω̄i
= I(j ∈

ω̄i). The squared loss is identical except that h(x) = (1 − x) in this case. It is
worth noting that the term inside the outer sum of this derivative in the squared
loss case can be written as:

δθ

δvj
=

1

m

m
∑

i=1

ui

(

Ij∈ω̄i
g′(yj)(1 + uT

i (vj − v̇i))

−Ij∈ωi
g(yj)(1 + uT

i (v̈i − vj))
)

+
λ

n
vj

(6)

where v̇i =
∑

p∈ωi
g(yp)vp and v̈i =

∑

q∈ω̄i
g′(yq)vq are empirical expectations.

The derivative with respect to ui can be treated in a similar way:

(7)
δθ

δui
=

1

m
(v̈i − v̇i + ẅi − v̇iv̈

T
i ui − v̈iv̇

T
i ui + ẇi) +

λ

m
ui,

where ẇi =
∑

p∈ωi
g(yp)vpv

T
p ui and ẅi =

∑

q∈ω̄i
g′(yq)vqv

T
q ui. Thus we have

inexpensive ways to compute derivatives in the square loss case provided we have
access to the expectations of particular vectors.

The logistic and sigmoid losses are similar functions and their derivatives are
computed as follows (β is a user-defined parameter and φ(x) = x as before):

δθ

δui
= − β

m

∑

p∈ωi

g(yp)

(

∑

q∈ω̄i

(vq − vp)h(γi,p,q)g
′(yq)

)

+
λ

n
ui,(8)

and

δθ

δvj
=− β

m

m
∑

i=1

ui

(

Ij∈ω̄i
g′(yj)

∑

p∈ωi

g(yp)h(γi,p,j)

−Ij∈ωi
g(yj)

∑

q∈ω̄i

g′(yq)h(γi,j,q)

)

+
λ

n
vj ,

(9)

in which h(x) = e−βx

1+e−βx for the logistic loss and h(x) = 1
(1+e−βx)2

for the sigmoid

loss.
We now consider the case in which we have the weighting function φ(x) =

tanh(ρx) on the item losses in conjunction with a square or squared hinge loss.
The gradients with respect to the objective θ are

δθ

δui
=

ρ

m

∑

p∈ωi

g(yp)

(

∑

q∈ω̄i

(vq − vp)h(γi,p,q)g
′(yq)

)

(

1− tanh2

(

ρ

2

∑

q∈ω̄i

h(γi,p,q)
2g′(yq)

))

+
λ

m
ui,

and the corresponding gradient with respect to vj is

δθ

δvj
=

ρ

m

m
∑

i=1

ui

(

Ij∈ω̄i
g′(yj)

∑

p∈ωi

g(yp)h(γi,p,j) ·
(

1− tanh2

(

ρ

2

∑

q∈ω̄i

h(γi,p,q)
2g′(yq)

))

− Ij∈ωi
g(yj)

∑

q∈ω̄i

g′(yq)h(γi,j,q) ·
(

1− tanh2

(

ρ

2

∑

ℓ∈ω̄i

h(γi,j,ℓ)
2g′(yℓ)

)))

+
λ

n
vj ,
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with h(x) = max(0, 1− x) in the square hinge loss case and h(x) = (1 − x) for the
square loss. When we compare the above derivatives to Equations 4 and 5 for the
square/hinge loss functions we can see that there is an additional weighting on the

relevant items given by f(ui,vp) = 1 − tanh2
(

ρ
2

∑

q∈ω̄i
h(uT

i vp − uT
i vq)

2g′(yq)
)

which will naturally increase the size of gradient for items with small losses and
hence those high up in the ranking.

Thus we have presented the derivatives for each of the loss functions we proposed
earlier in this section as well the hyperbolic tangent weighting scheme. The deriva-
tive with respect to vj is generally the most costly to find and we can see that the
computational complexity of computing it is O(mn) and hence the derivative with
respect to the complete matrix V is O(mn2). The complexity of the derivative
with respect to U is identical although in practice it is quicker to compute. Fortu-
nately, the expectations for both derivatives can be estimated effectively using κW
users, and κY items from ωi and ω̄i. This reduces the complexity per iteration of
computing the derivative with respect to V to O(κWκ2

Y).
Using these approximate derivatives we can apply stochastic gradient descent to

solve Optimisation 3. Define θ′(U,V) as the approximate subsampled objective,
then one then walks in the negative direction of the approximate derivatives using
average stochastic gradient descent (average SGD, [22]). Algorithm 1 shows the
pseudo code for solving the optimisation. Given initial values of U and V (using
random Gaussian elements, for example) we define an iteration as max(m,n) gradi-
ent steps using a random permutation of indices i ∈ [1,m] and j ∈ [1, n]. It follows
that each iteration updates all of the rows of U and V at least once according to
the learning rate α ∈ R+ and the corresponding derivative. Note in line 6 that if
t exceeds the size of the corresponding vector we wrap around to the start. Under
average SGD one maintains, during the optimisation, matrices Ū and V̄ which are
weighted averages of the user and item factors. These matrices can be shown to
converge more rapidly than U and V, see [22] for further details. The algorithm
concludes when the maximum number of iterations T has been reached or conver-
gence is achieved by looking at the average objective value for the the most recent
iterations. In the following text we refer to this algorithm as Matrix Factorisation
with AUC (MFAUC).

2.2.1. Parallel Algorithm. A disadvantage of the optimisation just described is that
it cannot easily be implemented to make use of model parallel computer architec-
tures as each intermediate solution depends on the previous one. To compensate,
we build upon the Distributed SGD (DSDG) algorithm of [13]. The algorithm
works on the assumption that the loss function we are optimising can be split up
into a sum of local losses, each local loss working on a subset of the elements of Xij .
The algorithm proceeds by partitioning X into d1 × d2 fixed blocks (sub-matrices)
and each block is processed by a separate process/thread ensuring that no two
concurrent blocks share the same row or column. This constraint is required so
that updates to the rows of U and V are independent, see Figure 2. The blocks
do not have to be contiguous or of uniform size, and in our implementation blocks
are sized so that the number of nonzero elements within each one is approximately
constant. The algorithm terminates after every block has been processed at least
T times.
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Algorithm 1 Pseudo code for Matrix Factorisation with AUC

Require: Ratings X, solutions U, V, iterations T , average start T0, learning rate
α, convergence threshold ǫ

1: Ū = U and V̄ = V

2: Vector z is permutation of {1, . . . ,m} and z′ is permutation of {1, . . . , n}
3: θ′0 = θ′(U,V), θ′1 = θ′0 + ǫ, s = 1
4: while s 6= T and |θ′s − θ′s−1| ≥ ǫ do
5: for t = 1, . . . ,max(m,n) do
6: Let i = zt and j = z′t
7: ui ← ui − α δθ′

δui
and vj ← vj − α δθ′

δvj

8: if T ≥ T0 then

9: ūi ← i
i+1 ūi +

1
i+1ui and v̄j ← i

i+1 v̄j +
1

i+1vj

10: else

11: ūi = ui and v̄j = vj

12: end if

13: end for

14: Update θ′s = θ′(Ū, V̄), s = s+ 1
15: end while

16: return Solutions Ū, V̄

Figure 2. Illustration of the principal behind DSGD. Each of the
two large squares represents a matrix divided into blocks, and each
black square represents a process working on a block.

For AUC-based losses we require a pairwise comparison of items for each row and
therefore the loss cannot easily be split into local losses. To get around this issue
we modify DSGD as follows: at each iteration we randomly assign rows/columns
to blocks, i.e. blocks are no longer fixed throughout the algorithm. We then
concurrently compute empirical estimates of the loss above within all blocks by
restricting the corresponding positive and negative items, and repeat this process
until convergence or for T iterations.

3. Consistency and Generalisation

In this section we will discuss issues relating to the consistency of the above
optimisation, as well as the generalisation performance on unseen data. First we
address the question of whether optimising a surrogate of the AUC will lead to
improving the AUC itself. We draw upon the work of [12] to show that our chosen
loss functions are consistent. In the bipartite ranking case the square hinge loss is
shown to be consistent in [12] and a similar result for the square loss is proven in [11].
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Therefore we concentrate on the sigmoid and logistic functions and additionally
show how the consistency results apply to the matrix factorisation scenario we
consider in this paper.

To begin we define consistency in a more formal sense, starting with a more
general definition of the AUC than Equation 1. In this case, the scoring function s
can result in the same scores for different items,

AUCD(s) = ED[I((r − r′)(s(y)− s(y′)) > 0) +
1

2
I(s(y) = s(y′))|r 6= r′)],

where r, r′ ∈ {−1,+1} are the labels respectively of items y, y′. We can alternatively
state the AUC in terms of a risk so that maximising AUC corresponds to minimising
this quantity:

R(s) = E(y,r),(y′,r′)∼D[ℓ(s, (y, r), (y
′, r′))|r 6= r′]

in which ℓ(s, (y, r), (y′, r′)) = I((r− r′)(s(y)− s(y′)) < 0)+ 1
2I(s(y) = s(y′)). If we

define η(y) = P [r = +1|y] then we see that the risk can be expressed as

R(s) ∝ E(y,y′)∼D2

Y
[η(y)(1 − η(y′))ℓ′(s, y, y′) + η(y′)(1 − η(y))ℓ′(s, y′, y)],

where ℓ′(s, y, y′) = I(s(y) − s(y′) < 0) + 1
2I(s(y) = s(y′)) and DY is the marginal

distribution over Y. Notice that if we assume that η(y) > η(y′) then we would
prefer a function s such that s(y) > s(y′), and a similar results holds if we swap
y and y′. This allows us to introduce the Bayes risk R(s∗) where s∗ is defined as
follows:

s∗ = arginfsR(s)

= {s : (s(y)− s(y′))(η(y) − η(y′)) > 0 if η(y) 6= η(y′)},
where s is chosen from all measurable functions. Since we replace the indicator with
a surrogate loss function, define L′(s, y, y′) = L(s(y)− s(y′)) then we can write the
corresponding risk as,

RL(s) ∝ E(y,y′)∼D2

Y
[η(y)(1 − η(y′))L′(s, y, y′) + η(y′)(1− η(y))L′(s, y′, y)],

and the optimal scoring function with respect to this risk is s∗L = arginfsRL(s).
With these definitions, we can define consistency.

Definition 3.1 (Consistency, [12]). The surrogate loss L is said to be consistent

with AUC if for every sequence {s〈i〉(y)}i≥1, the following holds over all distribu-

tions D on Y ×R:
RL(s

〈i〉)→ RL(s
∗
L) then R(s〈i〉)→ R(s∗).

Thus, a consistent loss function will lead to an optimal Bayes risk in the limit
of an infinite sample size. Furthermore, a sufficient condition is given for AUC as
follows

Theorem 3.1 (Sufficiency for AUC consistency, [12]). The surrogate loss L′(s, y, y′) =
L(s(y)− s(y′)) is consistent with AUC if L : R→ R is a convex, differentiable and

non-increasing function with ∆L(0) < 0.

These theorems allow us to prove that the sigmoid and logistic losses are consis-
tent with AUC.

Theorem 3.2. Both the sigmoid −σ(x), σ(x) = 1/(1 + e−βx), and logistic loss

− ln(σ(x)) = ln(1/(1 + e−βx)) functions are consistent with AUC.
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Proof. We will start with the logistic function. Assume that β > 0 and x is finite,

δ − ln(σ)

δx
= − −βe

−βx

(1 + e−βx)
< 0,

which implies a non-increasing function, in particular the derivative at zero is −β/2.
In addition the logistic loss is convex since for all finite x,

δ2 − ln(σ)

δx2
=

β2e−βx

(1 + e−βx)

(

1− e−βx

(1 + e−βx)

)

> 0,

where the first term in the derivative is greater than zero and the second term in
parenthesis is between 0 and 1. An application of Theorem 3.1 gives the required
result.

For the sigmoid function, consider a set of items S = {y1, y2, . . . , yn} with cor-
responding conditional probabilities on being positive η(y1), η(y2), . . . , η(ym) then
we can find the following risk (we use notation ηi = η(yi) and si = s(yi) for conve-
nience)

RL(s) ∝ R′
L(s) = −

∑

i<j

(

ηi(1− ηj)
1

1 + e−(si−sj)
+ ηj(1 − ηi)

1

1 + e−(sj−si)

)

.

For each pair of terms in this sum notice first that 1/(1 + e−x) + 1/(1 + ex) = 1
for all x. It follows that if ηi > ηj then the first term should be maximised by
increasing si − sj otherwise the second one should be maximised to minimise the
risk. Therefore, in the limiting case

R′
L(s)→ −

∑

ηi>ηj

ηi(1− ηj),

and we have (si − sj)(ηi > ηj) > 0 when ηi 6= ηj as in the Bayes risk. �

As we have not made any assumption on scoring functions in our previous results,
the AUC is simply generalised to the expectation over users as follows

AUCD(s) = EW×Y [I((r − r′)(s(w, y)− s(w, y′)) > 0) +
1

2
I(s(y) = s(y′))|r 6= r′)],

where D is now is a distribution over users and items and we redefine the scoring
function as s : W × Y 7→ R. Thus we have shown that all the loss functions we
consider are consistent with the AUC in the multi-user scenario.

3.1. Generalisation Bound. We now turn to another critical question about our
algorithm relating to the generalisation. In particular we look at Rademacher
theory, which is a data-dependent way of studying generalisation performance.
We assume that the observations are sampled from a distribution D̄ over W ×
Y × R. Recall that only positive ratings are observed, hence the sample S =
∪mi=1{(wi, yωi1

), . . . , (wi, yωini
)} is drawn from the distribution D = Dn1

1 ×· · ·×Dnm
m

where we use the shorthand ni = |ωi|. Now consider a class of functions Q mapping
from W ×Y2 to [0, 1] then the AUC can be maximised by minimising

(10) ÊS [Q] =
1

m

m
∑

i=1

1

nin′
i

∑

p∈ωi

∑

q∈ω̄i

Q(wi, yp, yq),

in the case that Q = {Q : (w, y, y′) 7→ I(s(w, y) ≤ s(w, y′)), s ∈ S}. Likewise
we can substitute any class of loss functions Q to be minimised, for example the
surrogate functions defined above. Noting this, we can now present the idea of a
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Rademacher variables which are uniformly distributed {−1,+1} independent ran-
dom variables. The following definition is an empirical Rademacher average for all
users

R̂AUC(Q) = 2Eν

[

sup
Q∈Q

1

m

m
∑

i=1

νi
nin′

i

∑

p∈ωi

∑

q∈ω̄i

Q(wi, yp, yq)

]

,

where the νi’s are independent Rademacher random variables (note the close con-
nection to Equation 10). This expectation is an empirical measure of the capacity
of a function class because it measures how well functions in that class can correlate
with random data. We define the Rademacher complexity of Q as

RAUC(Q) = ES [R̂
AUC(Q)],

where S is drawn over Dn1

1 × · · · × Dnm
m . In the following lemma we provide a

relationship between these two quantities using McDiarmid’s Theorem.

Theorem 3.3 (McDiarmid, [19]). Let X1, . . . , Xn be independent random variables

taking values in a set A and assume f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn)− f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci,

for all i = 1, . . . , n. Then for all ǫ > 0,

P{f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ ǫ} ≤ exp

( −2ǫ2
∑n

i=1 c
2
i

)

,

and

P{E[f(X1, . . . , Xn)]− f(X1, . . . , Xn) ≥ ǫ} ≤ exp

( −2ǫ2
∑n

i=1 c
2
i

)

.

We show that the Rademacher complexities are related as follows

Theorem 3.4. Let Q be a function class mapping from W×Y2 to [0, 1] and define

sample S = ∪mi=1{(wi, yωi1
), . . . , (wi, yωini

)} drawn from distribution Dn1

1 × · · · ×
Dnm

m . Then with probability at least 1− δ the following is true

RAUC(Q) ≤ R̂AUC(Q) +

√

√

√

√

2 ln(1/δ)(n− 1)2

m2

m
∑

i=1

1

|ωi||ω̄i|2
.

Proof. As well as S consider another sample Ŝab = S \ {(wa, yb)} ∪ {(wa, yb′)} for
a ∈ [1,m] and b, b′ ∈ [1, n]. For notational convenience we call the nonzero elements

of Ŝab, ω
′
i = ωi, i 6= a and ω′

a = ωi \ {yb} ∪ {yb′}. Likewise for the zero elements
ω̄′
i = ω̄i, i 6= a and ω̄′

a = ω̄i \ {yb′} ∪ {yb}. Define

f(S) = 2Eν



 sup
Q∈Q

1

m

m
∑

i=1

νi
|ωi||ω̄i|

|ωi|
∑

p=1

|ω̄i|
∑

q=1

Q(wi, yωip
, yω̄iq

)



 .
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Therefore we have that (m/2) · (f(S)−f(Ŝab)) is equal to (the notation ωij denotes
the jth element in ωi)

= Eν



 sup
Q∈Q

m
∑

i=1

νi

|ωi||ω̄i|

|ωi|
∑

p=1

|ω̄i|
∑

q=1

Q(wi, yωip
, yω̄iq

) − sup
Q∈Q

m
∑

i=1

νi

|ω′
i||ω̄

′
i|

|ω′
i|

∑

p=1

|ω̄′
i|

∑

q=1

Q(wi, yω′
ip
, yω̄′

iq
)





≤ Eν



 sup
Q∈Q





m
∑

i=1

νi

|ωi||ω̄i|

|ωi|
∑

p=1

|ω̄i|
∑

q=1

Q(wi, yωip
, yω̄iq

)−
m
∑

i=1

νi

|ω′
i||ω̄

′
i|

|ω′
i|

∑

p=1

|ω̄′
i|

∑

q=1

Q(wi, yω′
ip
, yω̄′

iq
)









= Eν



 sup
Q∈Q





νa

|ωa||ω̄a|

|ωa|
∑

p=1

|ω̄a|
∑

q=1

Q(wa, yωap , yω̄aq )−
νa

|ω′
a||ω̄

′
a|

|ω′
a|

∑

p=1

|ω̄′
a|

∑

q=1

Q(wa, yω′
ap

, yω̄′
aq

)









= Eν



 sup
Q∈Q





νa

|ωa||ω̄a|





∑

yq∈ω̄a\{yb′}

(Q(wa, yb, yq)−Q(wa, yb′ , yq))

+
∑

yp∈ωa\{yb}

(Q(wa, yp, yb′ )−Q(wa, yp, yb)) +Q(wa, yb, yb′)−Q(wa, yb′ , yb)













≤
|ωa|+ |ω̄a| − 1

|ωa||ω̄a|

=
n− 1

|ωa||ω̄a|
.

A similar derivation can be shown to bound m(f(Ŝab) − f(S)) using an identical

term. If we let cab =
2(n−1)

m|ωa||ω̄a| then we can apply Theorem 3.3 and write E[f(S)] ≤
f(S) + ǫ with a probability greater than 1− δ for some δ ∈ [0, 1] where

δ = exp

(

−2ǫ2
∑m

i=1

∑ni

j=1 c
2
ij

)

,

and rearranging gives ǫ =
√

2 ln(1/δ)(n−1)2

m2

∑m
i=1

1
|ωi||ω̄i|2 as required. �

To gain some insight into Theorem 3.4 we study the cases for which the empirical
Rademacher complexity is close to its expectation. In the first setting, |ωi| is fixed
and non-zero. Therefore the second term of the theorem is

√

2 ln(1/δ)(n−1)2

m|ωi|(n−|ωi|)2 , which

tends to zero as soon as the number of users m tends to infinity. Similarly, if
|ωi| = Θ(n) when n tends to infinity, the second term of the theorem is Θ(1/

√
mn)

when n and m tends to infinity. Finally, when |ω̄i| is fixed and non-zero, the second
term grows as Θ(

√

n
m ) when n and m tend to infinity. In the last setting we

require m to grow faster than n so that n/m tends to zero to enforce the empirical
Rademacher complexity to be close to its expectation.

We can now turn to concrete definitions of the function class Q relating to the
matrix factorisation scenario we are interested in. Consider a specific form of the
scoring function of the form Qh = {Q : (wi, yp, yq) 7→ h(uT

i vp − uT
i vq) | ‖U‖F ≤

R, ‖V‖F ≤ R} which allows us to analyse more deeply the empirical Rademacher
complexity. Our goal is to bound the empirical Rademacher complexity based on
the observations S. Before presenting a result we introduce two useful theorems.



AUC OPTIMISATION AND COLLABORATIVE FILTERING 13

Theorem 3.5 ([20]). Let φ1, . . . , φn be functions with respective Lipschitz constants

γ1, . . . , γn, then the following bound holds:

Eσ

[

sup
f∈F

n
∑

i=1

σiφi(f(xi))

]

≤ Eσ

[

sup
f∈F

n
∑

i=1

σiγif(xi)

]

,

where F is a function class on x ∈ X and σ1, . . . , σn are independent Rademacher

variables.

Theorem 3.6 ([10]). Let B ∈ Rm×n be a matrix with singular values σ1, . . . , σr

where r is the rank of A, and B̃ = DLBDR be a multiplicative perturbation in

which DL and DR are nonsingular matrices. The the following holds on the singular

values σ̃1, . . . , σ̃r of B̃:

σi

‖D−1
L ‖2‖D−1

R ‖2
≤ σ̃i ≤ σi‖DL‖2‖DR‖2,

where ‖A‖2 =
√

λmax(A
TA) = σmax(A) is the spectral norm.

We also introduce the following lemma whose utility will become apparently in
the sequential theorem.

Lemma 3.1. Consider a matrix A ∈ Rm×n, then for a fixed integer k the solutions

U ∈ Rm×k and V ∈ Rn×k of,

sup tr(UTAV)
s.t. ‖U‖F = 1

‖V‖F = 1,

are given by U = 1√
k
[q1 · · · q1] and V = 1√

k
[p1 · · ·p1] where p1 and q1 are the

largest left and right singular vectors of A respectively. The corresponding value of

the objective is σ1, the largest singular value of A.

Proof. We introduce φ(U,V) = tr(UTAV)− 1
2λ1(tr(U

TU)−1)− 1
2λ2(tr(V

TV)−1)
where λ1 and λ2 are Lagrange multipliers. Taking derivatives, one obtains the
following equations:

AV = λ1U(11)

ATU = λ2V,(12)

where λ1 and λ2 are Lagrange multipliers. By premultiplying the first equality by
UT and the second by V then taking the trace one can see that λ1 = λ2 = λ is
the objective value. By substitution of U = λ−1AV into the second equality we
obtain ATAV = λ2V which implies that columns of V must be composed of a
particular eigenvector of ATA. In a similar manner, one obtains AATU = λ2U.
Denote the left and right singular values of A as p1, . . . ,pr and q1, . . . ,qr, where
r is the rank of A, with corresponding singular values σ1 ≥ σ2 ≥ . . . ≥ σr, then it
is clear that U = a1[q1 · · ·q1], V = a2[p1 · · ·p1] and λ = σ1 for some constants a1
and a2. To find the scaling factors a1 and a2 we can write tr(UTU) = a1k

2 = 1

and tr(VTV) = a2k
2 = 1 which implies a1 = a2 = 1/

√
k. �

These theorems allow us to make the following statement concerning the empir-
ical Rademacher complexity under a matrix factorisation setting.
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Theorem 3.7. Consider a sample S = ∪mi=1{(wi, yωi1
), . . . , (wi, yωini

)} drawn from

distribution Dn1

1 × · · · × Dnm
m . Define scoring functions of the form Qh = {Q :

(wi, yp, yq) 7→ h(uT
i vp − uT

i vq) | U ∈ Rm×k,V ∈ Rn×k‖U‖F ≤ RU, ‖V‖F ≤ RV}
where h is Lipschitz with constant B and k is a fixed integer. Then the following

bound holds on the empirical Rademacher complexity

R̂AUC(Qh) ≤
2BRURV

m
‖E− Ē‖2,

where Σ is a diagonal matrix of the first k singular values of (E − Ē) with E =
(diag(Xj)−1X)T , Ē = (diag(X̄j)−1X̄)T and X̄ = J−X where diag(·) is a diagonal

matrix of its vector input.

Proof. Consider the following

R̂AUC(Q) = 2Eν



 sup
Q∈Q

1

m

m
∑

i=1

νi
nin′

i

ni
∑

p=1

n′
i

∑

q=1

h(uT
i vp − uT

i vq)





≤ 2B

m
Eν

[

sup
‖U‖F≤RU,‖V‖F≤RV

m
∑

i=1

νi
nin′

i

∑

p∈ωi

∑

q∈ω̄i

(uT
i vp − uT

i vq)

]

=
2B

m
Eν

[

sup
‖U‖F≤RU,‖V‖F≤RV

m
∑

i=1

νi(u
T
i v̇i − uT

i v̈i)

]

=
2B

m
Eν

[

sup
‖U‖F≤RU,‖V‖F≤RV

tr(ΠνUVTE−ΠνUVT Ē)

]

≤ 2BRURV

m
Eν

[

‖(E− Ē)Πν‖2
]

≤ 2BRURV

m
‖E− Ē‖2

where Πν
ii = νi for all i and off-diagonal elements are zero. The second line results

from an application of Theorem 3.5. The fourth line is a matrix representation of
the sum in the sup term and in the fifth line we use Lemma 3.1. For the final line,
note that the diagonal elements ofΠν are selected from {−1,+1} and so ‖Πν‖2 = 1
and an application of Theorem 3.6 shows the singular values do not change, giving
the required result. �

Notice that this bound does not depend on the dimensionality of the factor
matrices U and V. Here we see the motivation for penalising Optimisation 3 by
the norm of the weight matrices: doing so keeps the Rademacher complexity low.
We would also benefit from choosing loss functions whose Lipschitz constant is
small. Putting the parts together allows us to note the following.

Corollary 3.1. Consider a sample S = ∪mi=1{(wi, yωi1
), . . . , (wi, yωini

)} drawn

from distribution Dn1

1 × · · · × Dnm
m . Using the notations defined above the follow-

ing bound holds on the Rademacher complexity of Qh, with probability greater than

1− δ,

RAUC(Qh) ≤
2BRURV

m
‖E− Ē‖2 +

√

√

√

√

2 ln(1/δ)(n− 1)2

m2

m
∑

i=1

1

|ωi||ω̄i|2
.
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We now want to make the connection between the expectation of the AUC and
the Rademacher complexity. To do so we introduce the following lemma.

Lemma 3.2. Let Q be a function class mapping from W ×Y2 to [0, 1]. Then with

probability at least 1− δ over all samples S drawn from D, the following holds:

sup
Q∈Q

(ED[Q]− ÊS[Q]) ≤ ES∼D[ sup
Q∈Q

(ED[Q]− ÊS[Q])]+

√

√

√

√

ln(1/δ)

2m2

m
∑

i=1

1

|ωi|

(

n− 1

|ω̄i|

)2

.

Proof. We can use a similar proof technique to that of Theorem 3.4 to write

|ÊS [Q]− ÊŜab
[Q]| ≤ n− 1

m|ωa||ω̄a|
,

Noting that the left hand side can be written as |(E[Q]− ÊŜab
[Q])− (E[Q]− ÊS [Q])|

and taking the supremum over Q allows us to bound | supQ∈Q(E[Q] − ÊS [Q]) −
supQ∈Q(E[Q]− ÊŜab

[Q])|:

≤ | sup
Q∈Q

(E[Q]− ÊS [Q])− (E[Q]− ÊŜab
[Q])|

≤ n− 1

m|ωa||ω̄a|
,

Define the following function

f ′(S) = sup
Q∈Q

(E[Q]− ÊS [Q]),

then the above bound can be used in conjunction with McDiarmid’s theorem and
we can say

PD(f
′(S)− E[f ′] > ǫ) ≤ exp

(

−2ǫ2
∑m

i=1

∑ni

j=1 c
2
ij

)

,

where cab = n−1
m|ωa||ω̄a| . If we equate the right side of the above to δ we have

ǫ =

√

ln(1/δ)
2m2

∑m
i=1

1
|ωi|

(

n−1
|ω̄i|

)2

. �

Finally we show how the empirical expectations of Q ∈ Q found on different
samples are related to the Rademacher complexity in the following lemma.

Lemma 3.3. Let S and S̃ be sampled from the distribution D and consider a

sequence of Rademacher variables ν1, . . . , νm, then the following statement is true

ES,S̃ sup
Q∈Q

[ÊS̃ [Q]− ÊS [Q]] ≤ RAUC(Q).

Proof. We start by showing the following is equivalent to supQ∈Q[ÊS̃ [Q]− ÊS [Q]]:

ES,S̃ν sup
Q∈Q





1

m

m
∑

i=1

1

nin′
i

ni
∑

p=1

n′
i

∑

q=1

(νiQ(wi, yωip, yω̄iq)− νiQ(wi, yωip, yω̄iq))



 ,

since when νi = −1 for all i the two expressions are clearly the same, and νi = 1
swaps the observations for the ith user in S with the corresponding ones in S̃. Since
both S and S̃ are sampled from the the same distribution the expectation of the
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supremum over these sets is the same. Note also that above term is upper bounded
by the following:

sup
Q∈Q

[ÊS̃ [Q]− ÊS [Q]] ≤ ES,S̃ν sup
Q∈Q





1

m

m
∑

i=1

1

nin′
i

ni
∑

p=1

n′
i

∑

q=1

νiQ(wi, yωip, yω̄iq)





+ES,S̃ν sup
Q∈Q



− 1

m

m
∑

i=1

1

nin′
i

ni
∑

p=1

n′
i

∑

q=1

νiQ(wi, yωip, yω̄iq)





= 2ES,S̃ν sup
Q∈Q





1

m

m
∑

i=1

1

nin′
i

ni
∑

p=1

n′
i

∑

q=1

νiQ(wi, yωip, yω̄iq)





= RAUC(Q),
where the second line comes from the symmetry of distribution of the Rademacher
variables. �

We can now bound the expectation of the loss using the Rademacher complexity.

Theorem 3.8. Let S and S̃ be sampled from the distribution D and let Q be a

function class mapping from W × Y2 to [0, 1]. The with probability at least 1 − δ,
the following holds:

ED[Q] ≤ ÊS [Q] +RAUC(Q) +

√

√

√

√

ln(1/δ)(n− 1)2

2m2

m
∑

i=1

1

|ωi||ω̄i|2
.

Proof. The result follows directly from Lemmas 3.2 and 3.3. �

Given this result we can examine our loss functions in terms of the bound on the
expectation. A key advantage of the bound is it is data-dependent and hence we can
estimate the model complexity if we replace the Rademacher complexity term with
the bound on its empirical estimate. We have already discussed when this quantity
is small as well as a similar analysis for the final term. In practice one finds that
the bound on the Rademacher term is larger than the last term hence once must
be focus on this term. When studying the loss functions of Section 2.1 one can see
that the logistic and sigmoid functions are Lipschitz with constant 1. If we say that
the norms of ui and vi are bounded by D then we have −2D2 ≤ γi,p,q ≤ 2D2. The

hinge loss is given by 1
2 max(0, 1 − x)2 which implies D = 1/

√
4 so that the loss

term is in the range [0, 1] and the Lipschitz constant is 3/2.

4. Related Work

In this section we will briefly review some works on finding low rank matrix
factorisations for implicit rating matrices. An early attempt to deal with implicit
ratings using a squared loss is presented in [15, 21]. The formulation is an adapta-
tion of the Singular Value Decomposition (SVD), and minimizes

min

m
∑

i=1

n
∑

j=1

Cij(u
T
i vj − 1)2 + λ(‖U‖2F + ‖V‖2F ),

where C is a matrix of weights for user-item pairs and λ is a regularisation param-
eter. In [21] the user-item values are set to 1 for positive items and lower constants
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for the rest. A related problem is that of matrix completion [4, 18] in which one
minimises the Frobenius norm difference between real and predicted ratings using
a trace norm penalisation (the sum of the singular values, denoted ‖ · ‖∗),

min
1

2

∑

i,j∈ω

(Xij − Zij)
2 + λ‖Z‖∗,

where λ is a user-defined regularisation parameter and Z is the matrix factorisation.
Notice that only nonzero elements ofX are considered in the cost. A key strength of
matrix completion is the strong theoretical guarantees on finding unknown entries
with high accuracy. The disadvantage of both these approaches is that they do not
take into account the orderings of the items.

In [23] the authors study AUC maximisation for matrix factorisation in the con-
text of recommendation, the primary motivation for which is a maximum posterior
estimate for a Bayesian framing of the problem. The connection to AUC max-
imisation is made by replacing the indicator function in its computation with the
log sigmoid denoted by lnσ(x) = ln(1/(1 + e−x)). Solutions are obtained using a
stochastic gradient descent algorithm based on bootstrap sampling. The particular
optimisation considered takes the form

max
m
∑

i=1

∑

p∈ωi

∑

q∈ω̄i

log σ(uT
i vp − uT

i vq)−
λU

2
‖U‖2F

−
∑

i

(

λV1

2

∑

p∈ωi

V2
ip +

λV0

2

∑

q∈ω̄i

V2
iq

)

,

where λU, λV1
, λV0

are regularisation constants for the user factors, positive items
and negative items respectively. The first term is a log-sigmoid unnormalised re-
laxation of the AUC criterion and the remaining terms are used for regularisation.
Note that one optimises over the full list as opposed to prioritising the top few.
Furthermore, our framework specialises to BPR in logistical loss case and when the
regularisation parameters above are equivalent.

Another paper which considers the AUC is [28] however it departs from other
papers in using an item factor model of the form Zij = 1

|ωi|
∑

p∈ωi
vT
p vj which is

the score for the ith user and jth item. The disadvantage of the item modelling
approach is that it does not model users separately. Indeed, the connection between
the user-item factor approach can be seen by setting ui = 1

|ωi|
∑

p∈ωi
vp. In the

optimisation, the AUC is approximated by the hinge loss,

min

m
∑

i=1

∑

p∈ωi

∑

q∈ω̄i

max(0, 1− Zip + Ziq),

and one applies stochastic gradient descent using one user, one positive and one
negative item chosen at random at each gradient step. As noted by the authors,
this loss does not prioritise the top of the list and hence they propose another loss

min

m
∑

i=1

∑

p∈ωi

∑

q∈ω̄i

Φ

( |ω̄i|
N

)

max(0, 1− Zip + Ziq),

where Φ(x) =
∑x

i=1 1/x and N is a sampled approximation of
∑

q∈ω̄i
I(Zip ≤

1− Ziq) i.e. the rank of pth item for ith user. Additionally, the algorithm samples
ranks of positive items in non-uniform ways in order to prioritise the top of the list.
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A related approach based on Mean Reciprocal Rank (MRR) [24] increases the
importance of top k-ranked items in conjunction with maximising a lower bound on
the smoothed MRR of the list. In words, the MRR is the average of the reciprocal
of the rank of the first correct prediction for each user. The authors use a sigmoid
function to approximate the indicator and after relaxation of a lower bound of the
reciprocal rank, the following function is maximised

∑

ij

Xij

(

lnσ(Zij) +
n
∑

k=1

ln(1−Xikσ(Zik − Zij))

)

− λ

2
(‖U‖2F + ‖V‖2F ),

where λ is a regularisation constant. The first term in the sum promotes elements
in the factor model that correspond to relevant items and the second term degrades
the relevance scores of the irrelevant items relative to relevant item yj .

5. Computational Experiments

In this section we analyse various properties of MFAUC empirically in order to
understand its behaviour and ranking performance. We consider the question of
how well MFAUC optimises the AUC on the training set under specific loss functions
and weightings. Another important question is whether the parallel optimisation
procedure can speed up convergence of the objective. A final consideration is the
evaluation of our ranking framework and other matrix factorisation methods when
considering results at the very top of the list for each user. For this comparison
we benchmark against other user-item matrix factorisation methods including Soft
Impute [18] and Weighted Regularised Matrix Factorisation (WRMF, [15]). Notice
that the choice of the logistic loss function and identity weighting implies a com-
parison to BPR. All experimental code is written in Python with critical sections
written in Cython and C++.

We make use of the following synthetic datasets. The first, Synthetic1, is
generated in the following manner. Two random matrices U∗ ∈ R500×8 and V∗ ∈
R200×8 are constructed such that respectively their columns are orthogonal. We
then compute the partially observed matrix X̂ij = I(uT

i vj > Q(s, 1 − t)) where
Q(s, 1−ti) represents the quantile corresponding to the top ti items. Here ti = .1 so

that there are on average 20 nonzero elements per row of X̂, and we additionally add
an average of 5 random relevant ratings per row to form our final rating matrix X.
For the second dataset, Synthetic2, we generateU andV in a similar way, however
this time the probability of observing a rating (relevant/irrelevant) is distributed
according to the power law for each item/user with exponent 1. We iteratively
sample observations according to this distribution of users and items, setting Xij

to be 1 if Zij ≥ Ê[Z], Z = UVT , otherwise it is zero. We continue this process
until the density of the matrix is at least .1. The final matrix is of size 573× 300
with 17796 non-zeros.

5.1. ROC Analysis of Losses. First we analyse the maximisation of AUC under
the loss functions we outlined in Section 2.1 using the synthetic datasets. The
MFAUC algorithm is set up with k = 8 using κW = 30 row samples and κY = 10
column samples to compute approximate derivatives for ui and vi. The initial
values of U and V are set to zero mean Gaussian random values with a standard
deviation of .1, the regularisation constant λ = 0, maximum iterations T = 500
and item distribution exponent τ = 0. The learning rate is α = .05 and we choose
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β ∈ {.5, 1.0, 2.0} for sigmoid and logistic losses and ρ ∈ {.5, 1.0, 2.0} for the tanh
item weighting. To make the problem harder we remove 5 items for each user
and then train using the remaining items, recording the ROC curve at the end of
the procedure. This process is repeated 5 times, averaging results. Since we are
interested in the top items of the list, we consider items until a false positive rate
of 20% is encountered. For clarity we only include the best ROC curves for logistic,
sigmoid and tanh-based losses, defined as the largest true positive rate at 20% false
positives.
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Figure 3. Left side of ROC curves for the synthetic datasets using
different loss functions.

The ROC plots are presented in Figure 3 and on the whole we see that differences
are slight for both datasets. On Synthetic1 the tanh weighting function is slightly
preferential at the start of the curve relative to the other losses, followed by hinge,
sigmoid and then the logistic loss. The square loss provides the worst of the results
as it penalises only the difference in the scores for positive and negative items,
however one does gain a speed advantage as outlined in Section 2.2. We can see
from the curves on Synthetic2 that this is a more challenging problem. We observe
the logistic loss providing the fewest errors at the start of the ranking followed
closely by hinge and then the tanh loss. The sigmoid and square loss curves are
poor in this case, the latter for the reason we have already mentioned. Performing
gradient descent over the sigmoid loss function can be challenging for the reasons
we mentioned in Section 2.1.

5.2. Optimisation Strategy. We now examine the parallel optimisation proposed
in Section 2.2 in terms of convergence and timing. The MFAUC algorithm is set up
with k = 8 using κU = 30 row samples and κY = 10 column samples to compute
approximate derivatives for ui and vi. The initial values of U and V are set to
random Gaussian values, then we fix learning rate α = .05, regularisation λ = .1,
maximum iterations T = 300, and use the hinge loss. To see how the parallelisation
affects convergence and timings, we record these values for the parallel optimisation
with 2, 4, and 8 processes, as well as the standard SGD approach, repeating exper-
iments 5 times to get average quantities for each parameter set. The experiment
is run on an Intel core i7-3740QM CPU with 8 cores and 16 GB of RAM and we
record the objective value every 5 iterations.
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Figure 4. Plots showing the objective function on the synthetic
datasets with different optimisation routines.

1 2 4 8
Synthetic1 607.1 309.1 163.6 106.9
Synthetic2 689.2 332.8 201.9 16.3

Table 1. Timings (in seconds) of the optimisation routines with
the synthetic datasets by number of processes.

Figure 4 compares the objective values and Table 1 shows the timings of the
parallel and non-parallel variants of SGD on both datasets. We observe approximate
speedups of 3 times with 8 processes whilst converging to approximately the same
objective values for both datasets. When we look at the objective against the
iteration number, the parallel SGD converges slower than the non-parallel version
particularly when using 8 cores. One of the reasons for this decrease in convergence
rate is that the dataset is split into smaller blocks when more processes are applied.
Overall however, parallel SGD matches the objective of SGD at a few smaller time
cost and we naturally expect this improvement factor to increase with higher core
CPUs.

5.3. Comparative Ranking Performance. Here we concern ourselves with how
well the different matrix factorisation methods can rank items in a top-ℓ recommen-
dation task. From each user, 5 randomly selected relevant elements are removed
and then a prediction is made for the top ℓ items. In this case, ℓ ∈ {1, 3, 5} and the
average values of the precision, recall and AUC are recorded.

As an initial step in the learning process we perform model selection on the
training nonzero elements using 3-fold cross validation. For MFAUC the param-
eters are identical to the setup used above and we select learning rates from
α ∈ {2−1, . . . , 2−8} and λ ∈ {20, . . . , 2−10}. The initial factor matrices are com-
puted using the randomised SVD. The F1 measure is recorded on validation items
in conjunction with MFAUC and used to pick the best solution. We take a sample
of 3 validation items from the users to form this validation set. With Soft Impute,
we use regularisation parameters λ ∈ {1.0, .8, . . . , 0} and the randomised SVD to
update solutions as proposed in [8]. The regularisation parameters for WRMF are
chosen from λ ∈ {21, 2−1, . . . , 2−11}. To select the best parameters we use the
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p@1 p@3 p@5 r@1 r@3 r@5 AUC

S
y
n
1

SoftImpute .831 .696 .549 .166 .417 .549 .914
WRMF .893 .754 .610 .179 .452 .610 .924

MFAUC hinge .855 .759 .606 .171 .455 .606 .924

MFAUC square .863 .755 .607 .173 .453 .607 .922
MFAUC sigmoid .867 .772 .626 .173 .463 .626 .923
MFAUC logistic .872 .762 .614 .174 .457 .614 .924

MFAUC tanh ρ = .5 .854 .752 .602 .171 .451 .602 .923
MFAUC tanh ρ = 1.0 .866 .760 .615 .173 .456 .615 .924

MFAUC tanh ρ = 2.0 .874 .775 .618 .175 .465 .618 .921
MFAUC tanh ρ = 5.0 .880 .764 .604 .176 .459 .604 .920

S
y
n
2

SoftImpute .225 .193 .172 .045 .116 .172 .766
WRMF .431 .297 .241 .086 .178 .241 .817

MFAUC hinge .428 .294 .240 .086 .176 .240 .796
MFAUC square .422 .290 .236 .084 .174 .236 .801
MFAUC sigmoid .416 .284 .228 .083 .170 .228 .795
MFAUC logistic .444 .295 .238 .089 .177 .238 .800
MFAUC tanh ρ = .5 .415 .284 .232 .083 .171 .232 .791
MFAUC tanh ρ = 1.0 .420 .284 .230 .084 .170 .230 .790
MFAUC tanh ρ = 2.0 .395 .285 .231 .079 .171 .231 .797
MFAUC tanh ρ = 5.0 .362 .259 .214 .072 .156 .214 .776
Table 2. Test errors on the synthetic datasets. Top represents
Synthetic1 and bottom is Synthetic2. Best results are in bold.

maximum F1 scores on the test items averaged over all folds, fixing k = 8 as this is
the dimension used to generate the data. Once we have found the optimal parame-
ters we train using the training observations and test on the remaining elements to
get estimates of precision, recall and AUC. The training is repeated 5 times with
different random seeds and the resulting evaluation metrics are averaged.

Table 2 shows the performance of the matrix factorisation methods. On both
datasets, MFAUC and WRMF perform better than Soft Impute and particularly
on Synthetic2. One explanation is that WRMF and MLAUC do not make as-
sumptions about the distributions of the relevant items like Soft Impute. On the
harder Synthetic2 dataset WRMF gives the best overall results closely followed
by logistic and hinge loss MLAUC.

5.3.1. Real Datasets. Next we consider a set of real world datasets: MovieLens,
Flixster, Epinions and Book Crossing. For the MovieLens and Flixster datasets,
ratings are given on scales of 1 to 5 and those greater than 3 are considered relevant
with the remaining ones set to zero. Epinions ratings are given on the scale 0 to 5
and Book Crossing ones are given from 0 to 10, and we assign relevance to ratings
greater than 3 and 4 respectively. For all datasets, we remove users with less than
10 items and items with less than 2 users, repeating this process until convergence
is reached. Properties about the resulting matrices are shown in Table 3.

The experimental procedure is similar to before except that we select k ∈
{32, 64, 128} in this case and use 2 model selection repetitions. Since the datasets
are larger than the synthetic ones we perform model selection on a subsample of at
most 105 ratings from the complete matrices. To form the model selection matrix,
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Dataset users items nonzeros sparsity (%)
Book Crossing 9571 68,517 640,430 0.098
Epinions 12,663 38,499 371,969 0.076
Flixster 43,979 32,024 5,147,187 0.37
MovieLens 897 1281 54,883 4.78

Table 3. Properties of the real datasets

we pick users sequentially until the desired number of ratings is reached. Any items
which then have no ratings are removed. The parameters for MFAUC are chosen
from α ∈ {21, . . . , 2−2}, λ ∈ {20, . . . , 2−5} and κW = 15. After the model selection
step, we use the parallel SGD procedure in conjunction with MLAUC to compute
the final matrix factorisation.

Table 4 shows the results on these datasets. It is clear that the non-ranking
based methods perform reasonably well on the more sparse datasets Epinions and
Book Crossing relative to MLAUC. We noticed in the model selection stage for
example, MLAUC would not converge adequately for many parameter sets. Whilst
this did not negatively impact the AUC, it did effect the items at the very top of
the list, hence the low precision and recall scores for these datasets. In contrast, we
see with Flixster and MovieLens that the ranking methods show their advantage
particularly with the hinge and logistic losses. With MovieLens for example, all of
the ranking losses improve over WRMF in the precisions at 3 and 5.

A useful comparison is between the hinge and tanh losses since it demonstrates
the effectiveness of prioritising list elements. The results are mixed: on the Epinions
and MovieLens datasets we gain an improvement with this prioritisation function,
but on Flixster results are worse. A difficultly of the approach is that one must
correctly set ρ for accurate results.

6. Conclusion

Recommendation is a Learning To Rank (LTR) problem, in that for each user
the system has to rank items according to the relevance for the user. Whilst early
recommender systems based on matrix factorisation aimed to recover the complete
matrix of ratings, recent advances focus on optimising scoring losses designed for
LTR problems. The current paper pushes forward this domain by considering local
AUC maximisation, which focuses on the ranking of top items. The corresponding
loss is handled with a smooth surrogate function which is minimised through sto-
chastic gradient descent. Furthermore, use of parallel architectures by a blockwise
partitioning of the rating matrix in conjunction with stochastic gradient descent
allows the algorithm to run on datasets with millions of known entries. In addition
we show that our chosen loss functions are consistent with AUC and gained insight
into the generalisation of the algorithms using Rademacher Theory.

From the computational study we can conclude that the proposed parallelisation
by block optimisation speeds up the convergence whilst keeping the quality of the
objective relative to single process optimisation. The weighting of observations,
which gives more importance to items which are more often relevant, can be effective
for certain datasets. In general, the MFAUC approach is a useful tool when the
sparsity of the underlying dataset under examination is not too high.
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p@1 p@3 p@5 r@1 r@3 r@5 AUC

B
o
o
k
C
r
o
s
s
i
n
g

SoftImpute .040 .031 .027 .008 .019 .027 .782
WRMF .040 .030 .026 .008 .018 .026 .754
MFAUC hinge .018 .016 .014 .004 .010 .014 .845
MFAUC sigmoid .015 .013 .012 .003 .008 .012 .849

MFAUC logistic .020 .016 .014 .004 .010 .014 .836
MFAUC tanh ρ = .5 .015 .012 .010 .003 .007 .010 .797
MFAUC tanh ρ = 1.0 .018 .015 .013 .004 .009 .013 .833
MFAUC tanh ρ = 2.0 .018 .016 .014 .004 .009 .014 .846

E
p
i
n
i
o
n
s

SoftImpute .037 .030 .026 .007 .018 .026 .793
WRMF .041 .031 .027 .008 .019 .027 .771
MFAUC hinge .025 .020 .019 .005 .012 .019 .826
MFAUC sigmoid .025 .020 .018 .005 .012 .018 .819
MFAUC logistic .034 .027 .023 .007 .016 .023 .853
MFAUC tanh ρ = .5 .027 .024 .021 .005 .014 .021 .824
MFAUC tanh ρ = 1.0 .031 .026 .023 .006 .016 .023 .854
MFAUC tanh ρ = 2.0 .033 .028 .024 .007 .017 .024 .859

F
l
i
x
s
t
e
r

SoftImpute .157 .111 .089 .031 .067 .089 .926
WRMF .167 .119 .096 .033 .071 .096 .891
MFAUC hinge .168 .132 .112 .034 .079 .112 .984

MFAUC sigmoid .121 .090 .076 .024 .054 .076 .980
MFAUC logistic .167 .126 .107 .033 .076 .107 .984

MFAUC tanh ρ = .5 .119 .090 .077 .024 .054 .077 .981
MFAUC tanh ρ = 1.0 .058 .049 .043 .012 .029 .043 .967
MFAUC tanh ρ = 2.0 .069 .052 .047 .014 .031 .047 .969

M
o
v
i
e
L
e
n
s

SoftImpute .209 .165 .140 .042 .099 .140 .880
WRMF .225 .174 .145 .045 .104 .145 .891
MFAUC hinge .217 .183 .158 .043 .110 .158 .919
MFAUC square .211 .176 .157 .042 .106 .157 .925
MFAUC sigmoid .237 .193 .165 .047 .116 .165 .924
MFAUC logistic .241 .191 .166 .048 .114 .166 .926

MFAUC tanh ρ = .5 .223 .185 .161 .045 .111 .161 .922
MFAUC tanh ρ = 1.0 .226 .183 .159 .045 .110 .159 .923
MFAUC tanh ρ = 2.0 .222 .180 .157 .044 .108 .157 .918

Table 4. Test errors on the real datasets.
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through nuclear norm regularisation. In Proceedings of the 2014 SIAM International Con-
ference on Data Mining, pages 623–631, 2014.

[9] Charanpal Dhanjal, Romaric Gaudel, and Stéphan Clémençon. Collaborative filtering with
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