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Drag-and-drop has become ubiquitous, both on desktop computers and touch-sensitive surfaces. It is used

to move and edit the geometry of elements in graphics editors, to adjust parameters using controllers such as
sliders, or to manage views (e.g., moving and resizing windows, panning maps). Reverting changes made via

a drag-and-drop usually entails performing the reciprocal drag-and-drop action. This can be costly as users

have to remember the previous position of the object and put it back precisely. We introduce the DND−1

model that handles all past locations of graphical objects. We redesign the Dwell-and-Spring widget to

interact with this history, and explain how applications can implement DND−1 to enable users to perform

reciprocal drag-and-drop to any past location for both individual objects and groups of objects. We report
on two user studies, whose results show that users understand DND−1, and that Dwell-and-Spring enables

them to interact with this model effectively.
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1. INTRODUCTION
Most graphical user interfaces rely heavily on drag-and-drop interactions for view
management. Drag-and-drop is the primary method for moving and resizing windows
on a desktop, for laying out icons, for panning a map or a very large image, for browsing
a long document. But objects manipulated via drag-and-drop often have to be restored
to one of their previous positions. For instance, a user will carefully lay out windows
on his desktop but will then temporarily move or resize one of them to access content
hidden behind it, such as an icon or another window of lesser importance that was
left in the background; he will then want to restore the foreground window to its ear-
lier configuration. The reader of a document will scroll down to an appendix or check
a reference, and will then want to come back to the section he was reading. Current
systems do not enable users to easily restore windows or viewports to their earlier
configuration; users have to manually reposition and resize the corresponding objects.
Such actions can be costly. From a motor perspective, the cost of repairing a drag-and-
drop manipulation can be higher than that of the original manipulation depending on
how precisely the object has to be positioned. This is especially true for touch-based
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Fig. 1. Exploring different office layout alternatives on a floor plan. (a) Placing a cupboard in the SW
corner. (b) When moving the cupboard to the SE corner, it is difficult to access it when the door is open.
(c) Cupboard back to the SW corner. (d) Cupboard in the NE corner. The heater is partially occluded. (e)
Cupboard almost centered along the S wall. (f) Adding a desk in the NE corner, composed of two tables and
a chair. The heater is partially occluded. (g) Cupboard back in the SE corner to free space for the desk in
the SW corner. (h) Desk in the SW corner. (i) Changing the relative placement of the desk elements. (j) Desk
back in the NE corner with the new relative layout between the two tables and the chair.

interfaces, which can make precise manipulations challenging [Siek et al. 2005]. The
cost can also be high from a cognitive perspective, as users may have difficulty remem-
bering what was the previous state of a particular object [Katifori et al. 2008].

Users also rely heavily on drag-and-drop for content manipulation in WYSIWYG
applications such as vector graphics editors and slide show presentation programs.
The precise positioning of elements is particularly important in such contexts, where
users perform advanced graphical layout task. But it can be challenging. For instance,
graphical shapes vary in their size and may be very close to one another. Accidental
selections are likely to occur, and users may want to revert a subset of objects, selected
by mistake, back to their original position; and this without having to cancel the ma-
nipulation for the objects they actually had intended to move. Some shapes can also
overlap other shapes, or even completely cover them. While the shapes below can be
visible through alpha-blending, they will often be difficult to access. In this situation,
users will often temporarily move the shape on top to access the ones below and modify
them, but will eventually want to revert to the original layout.

From a user perspective, such graphical layout tasks are often part of an exploratory
process. For instance, Figure 1 illustrates a scenario in which a person rearranges fur-
niture in an office and tests alternative layouts. The software allows her to explore
different arrangements by selecting and moving either a single piece of furniture, or
multiple pieces together. Direct manipulation strongly contributes to making such ex-
ploratory design activities easy. But effectively supporting users also entails enabling
them to easily revert back to past states from which to try other design options. Most
graphical editing software provides an undo command to restore a past state of the en-
tire document but, unfortunately, the underlying undo model is usually a global linear
one that does not keep track of branches in the history of manipulations. Such a basic
undo mechanism has two strong limitations, as detailed below.

The first limitation is that some previous states in the history can become inacces-
sible [Berlage 1994; Yoon et al. 2013]. If a user applies a command that turns state
A into state B, reverts back to state A using undo, and then applies a new command
that turns state A into state C, she will no longer be able to get back to state B. For
instance, in Figure 1, the user moves the cupboard (a-b) but then undoes this move
(b-c) when she realizes that this location might not be so convenient because of its
proximity to the door. Later, after having considered the different constraints (window,
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heater, additional furniture), she finally decides that putting the cupboard behind the
door (as in (b)) is the best option. She wants to revert it to this location, but as she has
moved it to other locations (c-d-e) after her undo operation (b-c), she is no longer able
to get back to this configuration other than by manually moving it back there.

The second limitation comes from the lack of integration of object selection mech-
anisms with the history of direct manipulations. When adjusting layouts, users often
want to apply direct manipulation actions to multiple objects simultaneously, typically
selected using a rubber-band rectangle or by clicking on all objects in turn while keep-
ing a modifier key pressed. Multiple selection allows users to manipulate groups of
objects simultaneously while preserving their relative layout. But this notion of group
is transient, as graphical editors usually support only one active selection at a time.
Undoing an action performed on multiple objects will no longer be possible once the
selection has changed. Users then have to select these objects again, and manually
revert them to their earlier position using the reverse drag-and-drop action. Coming
back to Figure 1, the user moves the two tables and the chair that make her worksta-
tion (g-h), and then changes their relative layout, thus breaking the previous multiple
selection (i). Because there can only be one single active selection at a time, testing
a location of the workstation that has already been explored (f), but with the new
relative layout made in (i-j), requires selecting all its elements again and manually
dragging-and-dropping them in the right place. Some graphical editors feature a com-
mand to group objects together. But this makes the exploratory design process much
more cumbersome, as groupings have to be anticipated and created explicitly. In addi-
tion, groupings set persistent links between objects, which impede single-object editing
operations.

In all examples above, users have to put back individual objects or groups of objects
to one of their past locations. In other words, they have to perform reciprocal drag-
and-drop actions. Such actions occur frequently, and their associated cognitive and
motor cost can be high. We present the DND−1 history model, that keeps track of all
past locations for both individual and multiple object selections. DND−1 is based on
a direct selective undo model for drag-and-drop actions that works for all past selec-
tions of both single and multiple objects. We extend the Dwell-and-Spring widget, that
was introduced in [Appert et al. 2012], to let users quickly restore single objects and
groups of objects to any past location1. DND−1, together with this extended version
of the Dwell-and-Spring widget, better support exploratory tasks in direct manipula-
tion interfaces, as they let users revert arbitrary objects to a previous configuration,
while preserving the result of drag-and-drop actions that happened later in the editing
process. For instance, DND−1 lets users perform the edits described in Figure 1 in a
lesser number of actions, as they can undo actions performed on a selection of objects
without having to undo the direct manipulations that were performed later on in the
workspace.

We first describe the DND−1 model and detail how we extended the Dwell-and-
Spring widget to support reciprocal drag-and-drop. We illustrate DND−1 on both sim-
ple and advanced cases, and discuss implementation details. Finally, we report on two
user studies which indicate that: (i) users are faced with situations in which they would
like to have better support for reciprocal drag-and-drop, (ii) they can successfully use
the Dwell-and-Spring widget in such situations and (iii) they can take advantage of
DND−1 to solve advanced layout problems with reciprocal drag-and-drop.

1The original Dwell-and-Spring technique was supporting only a basic linear undo model for single objects.
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Fig. 2. The Dwell-and-Spring technique (DS). A red circular handle pops up close to the cursor when the
user presses the mouse button and remains still for 500ms (i.e., dwells) over an icon. Releasing the mouse
button while the cursor is over the spring handle will undo the last move of this icon.

(1)

(2)

(3)

(4)

Fig. 3. Evaluating the impact of different values of a parameter controlled with a slider. (1) The current
value of the slider is 248. (2) The user tests value 392. (3) Unsatisfied with it, he sets the value back to 248.

2. RECIPROCAL DRAG-AND-DROP
Situations that call for reciprocal drag-and-drop can be simple: for instance, putting a
window back to its last location or reverting it to its previous size. They can also be
much more elaborate: for instance, putting back a group of shapes to an earlier position
on the drawing canvas after having manipulated other shapes, and putting them back
there while preserving the new relative position that was given to them after they
were initially moved away. This section illustrates both simple and more advanced
situations, and explains how we have redesigned the Dwell-and-Spring widget on top
of the DND−1 model to provide users with a flexible and powerful way of reverting
various types of drag-and-drop actions (the companion video shows the technique in
action).

2.1. Last Location of an Object
The basic Dwell-and-Spring technique, as described in [Appert et al. 2012], readily
applies to all simple cases of reciprocal drag-and-drop. Figure 2 illustrates it on a very
simple case, where an icon gets restored to its last position. A red circular handle
pops up close to the cursor when the user presses the mouse button and remains still
for 500ms (i.e., dwells) over the icon. Bringing the cursor or finger onto this handle
will make a spring appear, showing what the center of the icon will become if the
user releases the mouse button or lifts his finger over the spring handle. If the user
dwells without having initiated any movement, the spring shows the last move that
was applied to the icon. If the user has already initiated a drag-and-drop, the spring
proposes the reciprocal drag-and-drop for the current move. The user can either move
over the spring handle and select it, activating the spring and thus bringing back the
object to its previous location; or he can discard the widget by getting out of the active
area.
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(1) (2)

(3) (4)

Fig. 4. Reading a document. (1) The user finds a bibliographic reference while reading. (2) He drags the
scrollbar knob to the end of the document to check that reference. (3-4) Once he has checked it, he invokes
Dwell-and-Spring on the scrollbar knob to get back to the page he was reading.

This simple technique already applies to many cases of reciprocal drag-and-drop:
manipulating icons on the desktop (Figure 2), navigating documents using a scrollbar
(Figure 4) or with a swipe gesture on a touch-sensitive surface (Figure 5), moving
and resizing windows (Figure 6), or any other action where the spring’s actions are
equivalent to what the user would manually do to revert to the original state, like
moving a slider knob (Figure 3) or a manipulation handle (Figure 7). However, in its
original version [Appert et al. 2012], Dwell-and-Spring was only able to revert the
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(1) (2) (3) (4)

Fig. 5. Panning a map on a tabletop. (1-2) The user swipes on the touch screen to set the viewport over the
region of interest on the map, revealing more of Central Park in New York City. (3-4) She touches the screen
and remains still to invoke Dwell-and-Spring on the map and go back to her view on Midtown.

(1) (2)

(3) (4)

(5) (6)

Fig. 6. Managing the desktop. (1) The user is making a transcription of a sketch into a vector-based docu-
ment. (2-3) She resizes the window in order to copy and paste some elements that she had already drawn
somewhere else in her document. (4-5) She restores the initial window size to get back to an ideal window
layout for her transcription task. (6) She adjusts the location of the just pasted elements.

current or the last drag-and-drop, as it was only keeping track of the previous location
of each object, based on a per-object linear undo model.

2.2. All Past Locations of an Object
The first enhancement made to the Dwell-and-Spring technique is to provide users
with extra spring handles that allow them to apply a series of reciprocal drag-and-
drop actions quickly. As illustrated in Figure 7, the spring widget features additional
handles that are horizontally aligned with the main spring handle (which was the
only handle in the original design). Users can navigate through these handles to get
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(2)(1) (4)(3) (6)(5)
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Fig. 7. DND−1 applied to shape manipulation handles. (1-2-3) The user resizes a rectangle twice. (4) She
invokes Dwell-and-Spring on the resizing handle and enters the spring’s main handle. This shows where
the resizing handle was prior to the last resizing manipulation. (5) She moves the cursor to the next spring
handle in the DND−1 history. This shows where the resizing handle was prior to the last two resizing manip-
ulations. (6) She releases the mouse button on that second spring handle to revert back to the configuration
in (1). Steps (7–12) illustrate a similar scenario on a rotation handle.

A

B

C
D

E
F

G

stored history
{A, B, C, D, E, F, G, H, I, J}

1 step  back {-J}
{-J, -I}
{-J, -G}
{-J, -G, -F}
{-J, -G, -F, -E}
{-J, -G, -F, -E, -D}

2 steps back
3 steps back
4 steps back
5 steps back
6 steps back

presented history

H
I J

{-J, -G, -A}7 steps back

Fig. 8. DND−1 stores all repositioning actions applied to an object, including those performed via a re-
ciprocal drag-and-drop (D, F and I, shown as dashed black lines). It presents the shortest path to all past
locations.

a preview of where the selected object(s) would go if they released the mouse button
or lifted their finger on one of them. Releasing the mouse button while the cursor is
over a spring handle will invoke the series of reciprocal drag-and-drop actions that are
associated with this handle. As explained below, the series of past moves is managed
by the DND−1 model, which differs from the linear undo stack that is implemented in
most systems. With DND−1, users can revert back to any past location, while keeping
the length of the history as short as possible.

Applications that support undo typically store the history of actions as a tree whose
nodes are the different states of the application. Performing an operation means creat-
ing a novel child state to the current node. Undoing an operation means getting back
to the parent node. Some systems make several branches active at the same time: in
collaborative work settings (e.g., [Edwards and Mynatt 1997]) or for comparing varia-
tions of an image design that have minor differences [Terry et al. 2004]. However, the
linear undo model only supports one single active path. All nodes outside this path are
inaccessible via undo. For instance, in Figure 8, the user moves the icon three times
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successively (displacements A, B then C), reverts C, and then moves the icon again by
E. At this point, she can no longer recover the position the icon had after displacement
C, since this one no longer belongs to the active path ({A,B,E}). A few applications,
such as Emacs [Gosling 1982; Yang 1992], make users able to recover any state. How-
ever, this might require chaining a long series of interactions to reach a given state, as
the history stack is presented to them as a full sequential path in the history tree.

Figure 8 illustrates DND−1, the local undo model we propose to navigate in the his-
tory tree of displacements performed on a graphical object. This model lies in-between
the single active path and the full sequential path models described above. It stores
the full history of repositioning actions, but provides users with shortcuts to quickly
access nodes in the tree, so as to make them able to recover any past location, in the
spirit of the Selective Undo model [Berlage 1994]. Each object remembers the sequence
of moves that were applied to it, including reciprocal drag-and-drop actions. All past
locations are accessible. Also, when a user invokes a reciprocal drag-and-drop action
to restore a past position P of an object O, DND−1 adds the straight move between
O’s current location and P to the end of the history, in the spirit of the inverse model
for selective undo (used in e.g., [Berlage 1994; Myers 1998; Yoon et al. 2013]), rather
than inserting all reciprocal moves after the corresponding moves in the history, as the
script model (used in, e.g., [Kurlander and Feiner 1988; Myers et al. 2015]) would have
done.

For example, in Figure 8, the user moves an icon using three standard drag-and-drop
actions (moves A, B and C). He then moves the icon back to the location where it was
before reaching C, using a reciprocal drag-and-drop (move D). At this point, there is no
difference between DND−1 and the script model: both append D (i.e., -C) right after C
at the end of the history: {A, B, C, D}. However, when the user moves the object back
to the location it had before move B (following move E), DND−1 handles this reciprocal
drag-and-drop as any regular drag-and-drop by appending F to the history ({A, B, C,
D, E, F}), while the script model would have turned the history into {A, B, -B, C, -C, E,
-E}. This entails that a drag-and-drop that has been undone with DND−1 can be easily
redone. However, keeping a trace of all past moves also means that the number of steps
to revert to a past location can be very long. In order to present an object’s history of
past locations in a compact way, we have implemented a navigation algorithm that
computes the shortest path in the history to reach any of these past locations. This is
basically achieved by removing cycles, i.e., series of moves that bring the object back
to a location already present on the path. For instance, navigating two steps back
with DND−1 after move J in Figure 8-b entails following path {-J, -I}; but navigating
three steps back entails following path {-J, -G}, as {-J, -I, -H} would have led to the
same location than {-J}, which is already proposed for a one-step-back navigation.
This simplification decreases the number of steps that should be presented to the user,
while ensuring that he can reach any past locations. For the scenario in Figure 8,
thanks to this simplification, our extended version of Dwell-and-Spring presents seven
spring handles while it would have presented ten (i.e. the length of the stored history)
otherwise.

2.3. Groups of Objects
The second enhancement made to Dwell-and-Spring is to provide users with another
type of extra spring handles that allow them to apply reciprocal drag-and-drop actions
to groups of objects that were moved simultaneously in the context of a multiple selec-
tion. Figure 9 illustrates what Dwell-and-Spring looks like after the user has played
the scenario of Figure 10. These additional square handles act on the groups that con-
tain object O, on which Dwell-and-Spring has been invoked. Handles are organized
into several rows, one per group. The primary handle of a row is aligned with the main
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(a) (b) (c)

(d) (e) (f)
Fig. 9. Extended version of Dwell-and-Spring (the zoomed-in inset is added on top of UI screenshots for
illustration purposes only). (a) The user presses the mouse button and remains still over object O; the main
circular handle appears after a short delay. (b) The user enters this handle; additional handles appear as a
result. (c) Navigating the row of circular handles lets her undo sequences of moves for O as an individual
object. (d) Square handles allow her to restore any past location for groups in which O was – or is – involved.
The first row of square handles will act on group Gmeeting+desk, that contains the 7 objects in the scene. (e)
Navigating along this row lets the user undo sequences of moves for group Gmeeting+desk. (f) The second
row of square handles will act on group Gmeeting , that contains the 4 chairs and the circular table.

spring handle that initially popped out. When the cursor enters the handle associated
with a group G, additional handles appear on its left. There are as many handles as
the number of locations this group has visited. To help users anticipate what will hap-
pen if they activate a given handle, Dwell-and-Spring gives some feedforward when
the mouse cursor or the finger enters that handle: objects in the group are highlighted,
and the sequence of moves that will be reverted is shown as a series of springs that
ends on what will become the center of object O after completion of the sequence of
reciprocal drag-and-drops.

To keep track of all multiple selections an object has belonged to, the DND−1 model
stores the whole history of moves into a hashtable (History) whose keys are groups of
objects (which can be singletons) that index lists of timestamped movements. Figure
10 illustrates this on a simple example. However, there can be some ambiguity when
deciding what a group is, as the same objects can be involved in different multiple
selections (Figure 10-(a-d)). In order to maintain a coherent history, we have designed
a strategy for handling groups, that allows users to recover any past state without
breaking any previous group.

When a group G has been moved by d, we first add G and all the singletons for
objects in G that are not already in History. We associate an empty history with each
of them (lines 1-8). We then review the history of all groups, as detailed in Algorithm 1.
Each group Gi is split into two parts: G∩, that contains the objects that belong to both
G and Gi, and G\, that contains the objects that only belong to Gi (lines 10-11). Each
of these groups, if not empty, are updated in History (after creation if needed). The
history of G∩, which is empty if just created, is merged with the one of Gi and is then
enriched with the last move d (line 15). The history of G∩, which will be empty if it just
got created, is merged with the one of Gi.
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GroupC (2 objects)        , which
corresponds to GroupA  \ GroupB , 
is also created in the history.d1, d2

Move GroupA by d1 at time t1

d1
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d1
d1

d1

d1
d1
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(b)

(c)

(d)

d1

d2

Move GroupA by d2 at time t2

d3

Move GroupB by d3 at time t3

{
{
{
{
{

}
}
}
}
}

{ }
{ }

{ }

d1, d2
d1, d2
d1, d2
d1, d2
d1, d2

d1, d2

d1, d2
d1, d2

{
{
{
{
{

}
}
}
}
}

{ }
{ }

{ }

d1, d2, d3
d1, d2, d3
d1, d2, d3
d1, d2, d3
d1, d2, d3

d1, d2

d1, d2, d3
d1, d2, d3

{
{
{
{
{

}
}
}
}
}

{ }
{ }

{ }

GroupA (7 objects) 
is created in the history.

The 7 individual objects (singletons) 
are also created in the history.

GroupB (5 objects)
is created in the history. 

{ }
{ }

d1, d2, d3

Fig. 10. A scenario involving multiple selections: arranging furniture on an office’s floor plan. (a-b) Moving
GroupA by d1 then d2. GroupA consists of all 7 pieces of furniture: the circular table and its associated 4
chairs + the rectangular table and its associated chair. (c) Moving group GroupB by d3. GroupB consists of
the 2 pieces of furniture: the rectangular table and its associated chair

Figure 10 illustrates this on a concrete example. Starting from an empty History,
GroupA, that consists of 7 objects, is moved by d1 as illustrated in step (a). Our algo-
rithm creates 7 singletons and GroupA in History. Then, during the process of revising
existing groups, the individual histories are populated with d1. In step (b), d2 is added
to all histories. In step (c), the user moves GroupB by d3. This latter group is created
(line 3 in Algorithm 1) and, when revising the existing groups, GroupA is split into
GroupB (line 10) and GroupC (line 11). GroupB ’s empty history is merged with the one
of GroupA, which is (d1, d2), and d3 is added to the resulting history (line 15). GroupC is
also created (line 18) and its empty history is merged with the one of GroupA (line 19).
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// Let h be the function that returns the local history of G stored in History as a
list of timestamped past movements (di, ti), merge(H1, H2) be a function that
creates a chronologically ordered list of all timestamped movements of H1 and
H2 (removing duplicates), and append(H, (d, t)) be a function that appends (d, t) at
the end of H.

1 if G does not exist in History then
2 h(G) = ∅
3 foreach object O in G do
4 if {O} does not exist in History then
5 h({O}) = ∅
6

7 end
8 foreach existing group Gi in History do
9 G∩ = Gi ∩G

10 G\ = Gi \G∩
11 if G∩ 6= ∅ then
12 if G∩ does not exist in History then
13 h(G∩) = ∅
14 h(G∩) = append(merge(h(G∩), h(Gi)), (d, t))
15 if G\ 6= ∅ then
16 if G\ does not exist in History then
17 h(G\) = ∅
18 h(G\) = merge(h(G\), h(Gi))
19

20 end
21 h(G) = append(h(G), d)

ALGORITHM 1: Revising History after a group G has been moved by d at time t.

The creation of singleton objects (line 4 in Algorithm 1) gives more flexibility to users
by allowing them to revert moves on individual objects, as in the scenario of Figure 11,
detailed below. However, we do not add all sets that belong to the power set of group
G (the one that just moved). This is to keep the number of groups in History reason-
able, while ensuring that any revert operation is possible. This simplicity vs. flexibility
tradeoff means that, if users want to revert a move for a subset g of objects that belong
to group G, they have to revert that move on each of the individual objects. Finally,
when users delete a graphical object, this object is not removed from History, but is
simply tagged as passive, so as to keep a memory of it in case it gets restored by means
of the application’s functional undo model or by drag-and-drop across applications. Its
passive state makes it ignored by our algorithm for revising groups.

Support for groups in DND−1 means that users can keep a trace of previous multiple
object selections even if other selections happened afterwards. In particular, the cur-
rent relative layout between objects within a group G is preserved in case they want
to restore a past location of G, making transitions such as the one in Figure 1-(i-j)
very easy: the user can put back all desk elements to a past location while preserving
the rearrangement of the elements that was made afterwards. It also overcomes some
limits of the single active selection model used in most applications. With the latter,
the current selection gets cleared as soon as users click on a region or object that does
not belong to the selection. DND−1 should save a lot of time and effort when trying
to revert complex selections (small objects, objects scattered all over the workspace,
partially occluded objects, etc.). For example, Figure 11 shows a scenario where a user
wants to test alternative placements for the legend of a bar chart. The user acciden-
tally selects a bar along with the legend, but notices it only after he has moved the
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legend to another location (a-c). As each object is also added individually in History,
he can easily restore the bar’s position (d), which has the effect of creating the group
that contains only the graphical elements of the legend in History. As the novel place-
ment of the legend overlaps with the y-axis label, he applies a reciprocal drag-and-drop
to this group to put it back where it initially was (e). Later, he decides to slightly offset
the label of the y-axis (f) and can easily test the alternative placement with the legend
on the left again (g-h).

2.4. Implementing DND−1

DND−1 is designed to be implemented at the system level, in an application-
independent manner. We developed a Java prototype using SwingStates [Appert and
Beaudouin-Lafon 2008] to demonstrate the approach, in which each client applica-
tion implements the ReciprocalDnDProtocol interface and runs in a JInternalFrame. The
ReciprocalDnDManager communicates with these applications exclusively through mes-
sages, while the interaction techniques to navigate in DND−1 (Dwell-and-Spring or
DnD-List – described later in Experiment 2) are hosted on a full-screen GlassPane.

The central object in the implementation is the ReciprocalDnDManager, that handles
the entire History across client applications. Application developers can add support
for DND−1 simply by registering their application with the ReciprocalDnDManager and
implementing the simple protocol described below.

Client applications send a message each time an object is created or deleted. The
ReciprocalDnDManager can then tag this object as either active or passive. They also
send a message moved(G, d) each time a group of objects G is moved by a displacement
vector d. The ReciprocalDnDManager then updates History according to the algorithm de-
scribed earlier. All these client-to-server messages contain the sender application’s id,
and the ids of objects that are created, deleted or moved. The ReciprocalDnDManager or-
ganizes object ids using namespaces (one per client application), meaning that unicity
is ensured across applications but that applications still have to guarantee the unicity
of their objects’ ids.

Techniques for interacting with DND−1 are connected to the ReciprocalDnDManager to
expose History to users and let them select a group G and a past location p to restore.
When users invoke such a reciprocal drag-and-drop, the ReciprocalDnDManager updates
History by adding δ to the history of G, with δ being the vector between the current
location of G and p. It then sends a translate(G, δ) message to the right client applica-
tion with the ids of objects in G and the translation vector as arguments. The client ap-
plication is then in charge of applying this displacement. To enable the implementation
of feedforward mechanisms such as object highlighting, client applications must also
be able to reply to two other messages: id:pick(screenPoint) and rectangle:bounds(G).
The first returns the id of the object that is picked at a given location, the second re-
turns the bounding box of a group of objects. We have used this prototype to implement
the experiments that we report on in the next sections.

3. EXPERIMENT 1: UNDERSTANDING USERS’ DRAG-AND-DROP HABITS AND EVALUATING
THE DISCOVERABILITY OF DWELL-AND-SPRING

For completeness, we include an experiment that was reported in [Appert et al. 2012],
in which we introduced the original, simpler version of the Dwell-and-Spring widget.
We conducted this first experiment to capture what users typically do in situations
where they want to revert a drag-and-drop. We also wanted to evaluate whether the
spring metaphor implemented in Dwell-and-Spring is a viable alternative or not. The
experiment lasted around 45 minutes and contained two parts: an interactive in-situ
questionnaire to gather data about how users currently revert drag-and-drop actions,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11. Positioning the legend of a bar chart. (a-b) The user makes a selection of all elements of the legend.
(c) He notices that he has accidentally included a bar in his selection and moved it along with the legend.
(d) He uses Dwell-and-Spring to restore the bar to its original position. (e) The novel placement of the legend
is not satisfying, and he puts the legend back where it was initially. (f) He moves the y-axis label, and (g-h)
reverts the legend back to the left position.
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Sicon Sscrollbar Swindow Seditor

Fig. 12. Scenarios used for collecting users’ habits in different situations of reciprocal drag-and-drop. The
current location of the object (icon, scrollbar knob, window or vector shape) is highlighted in green and the
past position to restore is highlighted in red.

followed by a formal experiment to evaluate how easy it is to discover and understand
Dwell-and-Spring, and how often they would actually use it once discovered.

3.1. Participants & Apparatus
Twelve unpaid volunteers (10 male, 2 female), aged 24 to 36 year-old (average 29.1,
median 28.5), all daily users of personal computers, participated in this experiment:
7 of them used Mac OS X, 4 Microsoft Windows, and 1 an X-Window system.

Each session started with a short paper questionnaire asking participants about
their familiarity with, and use of, undo operations. Nine participants said that they
use the undo operation very often, two often, and one sometimes. All but one partici-
pants reported using keyboard shortcuts often (e.g., Ctrl/Cmd-Z). Only one said that she
mainly uses a toolbar button, with five participants sometimes using such a button.
One participant also mentioned using an elaborate menu to navigate in the command
history of an image editor (namely Adobe Photoshop).

All sessions were conducted on a workstation with a 30” LCD monitor (2560×1600,
100 dpi, 1 pixel is about 0.256 mm in width) running Mac OS X. The mouse was a
standard optical mouse with 400 dpi resolution and default system acceleration.

3.2. Capturing Users’ Habits
To gather data about how users revert drag-and-drop actions more specifically, we
used an interactive questionnaire where participants actually played several scenar-
ios leading to cognitive states where they want to either cancel an on-going interaction
or undo that interaction right after they have completed it. To simulate this cogni-
tive state, participants were instructed to move a graphical object to a target location
highlighted on screen. We considered two cases:

— DRAGGING case: an instruction pops up in the middle of the press-drag-release inter-
action (i.e., the user has not yet released the mouse button) asking the participant to
stop and to put the object back where she grabbed it (Cancel);

— DROPPED case: an instruction pops up as soon as the participant has dropped the
object at the target location (i.e., the user has just released the mouse button) asking
her to restore the object to its previous location (Undo).

In both cases, we considered four scenarios involving different graphical objects (Fig-
ure 12): a desktop icon (Sicon), a scrollbar knob (Sscrollbar), a window (Swindow), and a
geometrical shape in a vector graphics editor (Seditor). As mentioned before, the an-
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DRAGGING case (would like to do, usually do)

Strategies
Scenarios Sicon Swindow Seditor Sscrollbar

Manual 9 9 10 12 8 4 12 11
Escape Key 2 2 1 0 1 1 0 0
Menubar drop 0 0 0 0 0 0 0 1
Drop-then-Undo 1 1 1 0 3 7 0 0

DROPPED case (would like to do, usually do)

Strategies
Scenarios Sicon Swindow Seditor Sscrollbar

Manual 9 11 8 11 3 1 10 11
Cmd-Z 3 1 4 1 8 10 2 1
Toolbar button - - - - 1 1 - -
Menu item 0 0 0 0 0 0 0 0

Fig. 13. Strategies reported in the interactive questionnaire for each scenario in both the DRAGGING case
(top) and the DROPPED case (bottom). Each cell corresponds to a strategy and contains two numbers: first
the number of participants who effectively used this strategy in the questionnaire, second the number of
participants who usually employ this strategy.

swer can be highly dependent on the context of use as there is no unified way of doing
such a cancel/undo operation across systems. This sample of scenarios was aimed at
collecting answers representative of the different contexts of use. We also believe that
asking participants to interactively show us what they would do in each scenario, as
opposed to simply telling us in response to a verbal description, captures answers that
have higher ecological validity.

We asked questions for the four scenarios, first in the DRAGGING case, and then
in the DROPPED case. We decided to use a fixed presentation order for the two cases
because the DRAGGING case can always be solved the same way the corresponding
DROPPED case is, i.e., the user can always decide to commit his current drag by releas-
ing the mouse button and then undo it. Within both cases, the scenario presentation
order was counterbalanced using a Latin Square.

Our interactive questionnaire presented the user with a desktop environment where
all existing techniques were made available, in all contexts we tested. This means
that the drag-and-drop of any graphical object could be cancelled by right-clicking,
dropping in the menu bar, or pressing the Escape key. Once committed (i.e., mouse
button released), the user could undo the last action by either using the Cmd-Z keyboard
shortcut or by selecting an Undo item in the menu bar (always displayed at the top edge
of the screen). In scenario (Seditor), there was an additional possibility: an undo button
in a toolbar, as most applications of this kind actually feature one. Our environment
offered a kind of “ideal setting” by making all possible techniques available, whatever
the scenario. Our goal was to let participants show us both what they would like to do
(Q1), and what they usually do with their current system (Q2) in each situation.

Figure 13 summarizes the answers from our participants. It first shows a clear differ-
ence between the graphical editor scenario (Seditor), in which participants manipulate
content (functional level), and the other scenarios, in which they modify the view con-
figuration (view level). With Seditor, many more participants employed another tech-
nique than manually reverting. Ten participants reported using the Cmd-Z keyboard
shortcut once they have DROPPED the object. Seven participants usually choose to
drop and then undo when they are still DRAGGING. Very few participants used the
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Fig. 14. Outline of the discovery-and-use experiment’s design.

Escape key and no participant used the right-click technique to abort and cancel the
current action. In the other three scenarios, participants mainly restored the object to
its original position manually, i.e., by performing the same action in the opposite direc-
tion. This is even more pronounced in the DRAGGING case, where participants almost
never used another technique.

There was almost no difference between answers to what participants would like to
do and answers to what they usually do. However, we did collect a few surprising an-
swers. For instance, one participant said that she usually used Cmd-Z in the DROPPED
case under all the presented scenarios while her system only supports undo for the
Seditor scenario. This indicates that some users might expect their system to be consis-
tent over these four scenarios. Three participants told us that they usually use Cmd-Z

to move back a desktop icon (Sicon) to its original position, and four thought they were
using it to restore the past position of a window (Swindow). They might have been think-
ing they can do this because undo works when the user drops an icon to a new folder,
i.e., a command at the functional level. This reinforces our intuition that the distinc-
tion between the view level and the functional level is not always clear to users: in one
case, the path of the file remains unchanged in the file system, while in the other case,
the same interaction causes the file to be moved to a new folder.

Some participants made interesting comments during this interactive question-
naire. In particular, four participants told us that they would like to have an undo
mechanism when scrolling, such as a button or an implicit bookmarking system.
Expression of such a need for better revisitation mechanisms supports findings re-
ported in previous studies (such as, e.g., [Ko et al. 2006]). Topaz [Myers 1998] includes
scrolling operations in its history to allow users to selectively undo them. But users
have to locate these specific navigation actions within the whole history of commands.
As we will see later, Dwell-and-Spring is particularly well-suited to canceling on-going,
or undoing just-performed, scrolling actions directly on the scrollbar, which could be
additionally augmented with some colored marks, as in [Alexander et al. 2009].

3.3. Discovery and Use: Experiment Design
After the interactive questionnaire, participants ran an experiment whose purpose
was to study the following questions:

(1) Is Dwell-and-Spring easy to discover?
(2) Will people be willing to use Dwell-and-Spring once they have discovered it?

Figure 14 outlines our experimental design. As in the questionnaire, we considered
both cases DRAGGING and DROPPED. Trials were blocked by case, with the DRAGGING
case always presented first. As mentioned before, we chose this fixed presentation or-
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(a) (b) (c)-Cancel (c)-Continue

Fig. 15. Discovery task used in Experiment 1. (a) Participants are instructed to move an icon, highlighted
in green, towards a target location, which is highlighted in red. (b) In the middle of their drag-and-drop, a
message pops up to ask them to stop their movement. (c)-Cancel-(c)-Continue Participants are instructed to
either put back the icon to its initial location or keep on dragging the icon to the target location.

der because the DRAGGING case can always be considered as a DROPPED case. We also
expect that, in a real context of use, there should be transfer from the situations mod-
eled by the DRAGGING case to the situations modeled by the DROPPED case. Dwelling
in the middle of a movement that the user finally wants to cancel seems rather natu-
ral: consider, e.g., the scenario where the user takes a quick look at a given object in
a scrollable view before coming back to the location where she was editing; or the sce-
nario where the user temporarily moves a window to look at the graphical scene under
it. We expect this case to lead to discovery of Dwell-and-Spring so that users will more
easily understand they can adopt a similar approach in the DROPPED case.

To limit the length of the experiment, we only considered the desktop icon scenario
(Sicon). The task consisted in moving the icon to a target location shown as a red rect-
angle (Figure 15). In the DRAGGING case, participants were told before starting that
they would be interrupted in the middle of their move by a pop-up message that would
give them further instructions about how to finish the trial. The instruction would be
either to put the icon back to its original location (Cancel condition) or to finish the cur-
rent operation, i.e., move the icon to drop it at the intended target location (Continue
condition). Once they had followed the new instructions, participants had to press the
Space bar to end the trial.

In the DROPPED case, participants also had to drag-and-drop a desktop icon to a
target location. As soon as they had dropped the icon, they got a message asking them
to either put it back where it was before they moved it, and then press the Space bar
(Undo condition), or to just press the Space bar immediately (Continue condition). In
both cases, when they were told to restore the icon to its original location (Cancel and
Undo conditions), the instruction explicitly mentioned that “various techniques may
be available” to help them.

In both cases, trials were organized into 4 blocks of 24. For instance, when DRAG-
GING, a block contained 12 trials in the Cancel condition and 12 trials in the Continue
condition, presented randomly. The 12 trials in the same condition always involved
an icon of 48x48 pixels, located 800 pixels from the target location. Only the direction
of movement varied across trials to take into account the fact that the spring’s orien-
tation depends on the movement direction. To vary movement direction, we laid out
icons and target locations in a circular way.

There were two phases for each case: discovery and use. For the first two blocks, par-
ticipants did not receive any indication about available techniques. They were simply
encouraged to explore the interface. After completion of these two discovery blocks, the
experimenter demonstrated each available technique before participants ran into the
two other use blocks. These last two blocks were aimed at observing what strategy par-
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ticipants adopted once they had been exposed to all techniques, with clear instructions
about how to use them.

Because we were interested in observing how people behave with the Dwell-and-
Spring technique in a traditional desktop environment, but also in contexts where the
hardware does not feature additional physical buttons or keys (e.g., a touchscreen as in
Figure 5), the environment only proposed techniques that rely on “single-point input”.
The environment only proposed: the Dwell-and-Spring technique (Dwell-and-Spring),
the technique that consists in dropping the icon in the top menu bar (MenuBar), an
undo menu item (EditMenu) and, of course, the manual technique that basically con-
sists in dragging the icon back manually (Manual).

3.4. Discovering Techniques
We first analyze data we collected in the discovery phase of both cases DRAGGING and
DROPPED.

3.4.1. DRAGGING Case. 4 out of 12 participants discovered how to use the Dwell-and-
Spring technique. This is less than we expected since the spring popped up in 96% of
the trials and we thought that the spring offered powerful feedforward. The experi-
menter’s observations help explain this low rate of discovery: several participants only
used the spring as a visual guide, and not as a reactive graphical object. When the
spring popped up after a dwell, some participants brought the cursor over the spring
handle but did not activate the spring by releasing the mouse button as soon as the cur-
sor was over the handle. Instead, they brought the spring handle towards the spring’s
origin (thus compressing the spring) and only then released the mouse button. The
same participants spontaneously said to the experimenter that the spring was useful
because it showed the icon’s original position. Quantitative evidence backs this inter-
pretation: participants who did not discover the technique grabbed but dropped the
spring in about 70% of all cases (under the Cancel condition; this happened in only 3%
of the cases under the Continue condition).

The four participants who discovered the Dwell-and-Spring technique understood
how to use it during the first block: at first try for two of them, at second and sixth try
for the two others. Once discovered, they used the technique a lot: in 100%, 92%, 79%
and 70% of all cases (Cancel condition). They also made a few errors in the first block
where they activated the spring under the Continue condition, but no such accidental
spring activation was observed in the second block.

This suggests that feedforward about spring activation should be stronger. A simple
solution consists in making the spring more difficult to drop, to offer more opportuni-
ties to activate it (e.g., by enlarging the area where the spring is visible around the
activation point or by making it more difficult to compress). Another approach would
consist in removing the need for a release event to activate the spring (the spring
would get activated as soon as the cursor enters the spring’s handle). However these
design solutions would make the spring hard to discard in case the user does not want
to activate it. An interesting trade-off might be to come up with a way of discarding the
spring that is a function of expertise: the spring could be made difficult to drop only
the first few times the user explicitly interacts with it.

3.4.2. DROPPED Case. 7 participants discovered how to use Dwell-and-Spring. This
may seem like a lot, given that contrary to case DRAGGING, the spring would not
spontaneously pop up; participants had to explicitly press and dwell on the object to
see the spring. But once a participant had found how to invoke the spring, they already
knew how to use it as they had all learnt how to do so in the DRAGGING case. This
observation tends to support our expectation of a learning effect between the cancel
and undo conditions during the experiment.
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Fig. 16. Use of Dwell-and-Spring in the last block for both DRAGGING and DROPPED, per participant.

As in the DRAGGING case, participants discovered the spring technique in the first
block: 2 at first try, 2 at third try, 2 at fourth try, and 1 at eighth try. Then, as in
the DRAGGING case, they used the Dwell-and-Spring technique a lot: 95%, 92%, 68%,
100%, 88%, 87% and 86%.

3.5. Using Techniques
The above analysis reveals that users who discovered the Dwell-and-Spring technique
made extensive use of it. In the following, we analyze data collected in the use phase
(after discovery), to find out whether the other participants, who did not discover the
technique by themselves, eventually adopted Dwell-and-Spring once exposed to it and
to the other techniques (MenuBar, EditMenu or Manual) by the experimenter.

3.5.1. Frequency of Use & Qualitative Results. Figure 16 shows the frequency of use of
Dwell-and-Spring in the last block2 for conditions Undo (DROPPED case) and Cancel
(DRAGGING case). The only other technique that was used significantly is Manual:
MenuBar was used only twice and EditMenu was used six times.

Except for P3, P7 and P10, participants used Dwell-and-Spring very often, with P1

and P4 using it systematically. The three participants who used Dwell-and-Spring in
less than 50% of the trials in the DROPPED case said that they were not willing to wait
for the spring to pop up to precisely reposition the icon, as precision did not matter
much. They also stated that they would have used Dwell-and-Spring, had precision
been an issue, e.g., had the task been to reposition a scrollbar knob. We discuss this
speed-accuracy trade-off in the next section. We can also observe that the frequency of
use is a bit lower in the DROPPED case than in the DRAGGING case. This is probably
due to the fact that doing a long press on an object to undo its last move is less natural
than making a pause during a movement the user wants to cancel.

The above results show that most participants quickly adopted Dwell-and-Spring.
Of course, the Hawthorne effect [Landsberger 1958] may have led to higher frequency
of use than we would have observed in a real setting. However, the qualitative com-
ments we collected at the end of the experiment were very positive and showed a real
interest for the technique. Several participants spent a lot of time discussing design
issues with the experimenter. Interestingly, more than half of the participants sug-
gested that Dwell-and-Spring should enable users to trigger multiple undos in a single
“spring step”.

2We analyze data in the last block only, as it is more likely that participants had made a “definitive” choice
by then.

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 6, Article 29, Publication date: September 2015.



29:20 C. Appert et al.

Dragging Dropped

M
T

 (
m

s
)

0
2

0
0

0
4

0
0

0

Manual Spring

Dragging Dropped

P
re

c
is

io
n

 E
rr

o
r 

(p
x
)

0
2

0
4

0
6

0
8

0

Manual Spring

Fig. 17. Movement time (left) and precision error in pixels (right) for Manual and Dwell-and-Spring, in
both cases DRAGGING and DROPPED (under Cancel and Undo). Error bars show the 95% confidence limits.

3.5.2. Outliers and Errors. For our analyses, we first filter out trials that end while the
icon is more than 400 pixels away from the ideal position it should have been put
at. As the distance between start and target icon locations is initially 800 pixels and
the message pops up either at the end of the movement in the DROPPED case or in
the middle of the movement in the DRAGGING case, this 400-pixel criterion captures
outlier trials where something unexpected occurred. In the DROPPED case, these are
trials where participants pressed the space bar before putting the icon back to its
original position in the Undo condition (i.e., instruction ignored, possibly because of
mechanical routine). This happened in 2.09% of the trials in the DROPPED case. In
the DRAGGING case, these are trials where participants either ignored the instruction
that asked them to put the icon back where it was (Cancel condition) or activated the
spring while they should have continued their current move (Continue condition). This
happened in 2.78% of the trials in the DRAGGING case (∼2% in the Cancel condition
and ∼0.75% in the Continue condition). This shows that participants activated the
spring while they should not have in less than 1% of the cases. All remaining trials,
which ended with the icon being less than 400 pixels away from the target location,
are kept for further analyses.

Regarding accidental interactions with the spring, we also recorded occurrences of
participants grabbing the spring without activating it while they should not have used
it (Continue condition). This happened in 3.86% of the trials in the DRAGGING case
and in only one trial in the DROPPED case. All these trials ended without any error,
indicating that participants were able to drop the spring. In the DROPPED case, a
cancel spring popped up in about 6.62% of the trials under the Continue condition
(typically just before the end of the task), but participants never activated it. These
observations tend to show that the Dwell-and-Spring technique minimizes accidental
triggers and enables easy repair.

3.5.3. Movement Time & Precision. Figure 17 shows movement time and precision (dis-
tance between the icon’s original location and its position at trial end time) for trials in
the Cancel and Undo conditions, after having removed the outliers mentioned above.
In the DRAGGING case, we observe very similar movement time for Dwell-and-Spring
and Manual, and a better precision (distance close to zero) for Dwell-and-Spring than
for Manual3. In the DROPPED case, Manual was about 1.2 seconds faster than Dwell-
and-Spring, but Manual was far less precise than Dwell-and-Spring. It is not sur-
prising that Dwell-and-Spring offers a much better precision, since it automatically
performs the ideal reciprocal manipulation, putting the object back to its exact orig-

3The small imprecision observed in Figure 17-right is due to accidental clicks before pressing the space bar.
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Fig. 18. The DnD-List (List) technique (after playing the scenario in Figure 10).

inal location. The average precision error with Manual was 71.5 pixels (median 69
pixels). Our experimental design allowed participants to choose which technique they
wanted to use. This resulted in an unbalanced number of collected measures between
the Manual and Dwell-and-Spring conditions, thus violating the assumptions made
when running a statistical test comparing conditions. However, Figure 17 suggests a
trade-off between movement time and precision when comparing Dwell-and-Spring
and Manual in the DROPPED case. The precision error is lower in the DRAGGING case
than in the DROPPED case as the spring was always popping up at the moment par-
ticipants had to pause in the middle of their drag movement. In such cases, the spring
visually helped participants revert the icon back to its exact previous location.

3.6. Summary
Collecting users’ habits in different contexts of use revealed that they always repair
their direct manipulation errors manually, except when the direct manipulation acts at
the functional level of the corresponding application. Observing users when they are in
an environment where Dwell-and-Spring is available revealed that one third of users
spontaneously tried to make use of it, and that demonstrating the technique even a
single time is sufficient for users to understand and adopt it. Our quantitative analysis
highlighted the speed-accuracy trade-off that users may face with such a technique.
While it may be a bit slower in some cases, Dwell-and-Spring allows users to accurately
cancel or undo a direct manipulation, which can be a significant advantage for precise
positioning.

4. EXPERIMENT 2: USABILITY OF DND−1 COMBINED WITH DWELL-AND-SPRING
We conducted a second experiment to test if users could understand and use the
DND−1 model effectively when they have to restore the position of either a single
object or a group of objects. We also wanted to assess the relevance of the Dwell-and-
Spring technique (abbreviated Spring) in comparison with a baseline technique which
exposes the full history (abbreviated List).
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Fig. 19. Thumbnail creation process for DnD-List. When users initiate a drag-and-drop on a multiple selec-
tion (here, {folder 2, folder 3}) for the first time, DnD-List takes a screen shot, crops it and applies a mask
to emphasize the objects that actually belong to the group.

4.1. The DnD-List (List) technique
As the DND−1 model is novel, we wanted to gather observations about its usability
independently from its combination with Dwell-and-Spring. We thus designed a base-
line technique that exposes the full history of DND−1 in a standard list presentation,
close to the one found in, e.g., Adode Photoshop. This technique, DnD-List (List), con-
sists of a separate window, that remains always visible on top of other windows. As
illustrated in Figure 18, this window shows a scrollable list. Each row displays the
history of moves for a given group of objects G. An image of G is on the left, and the
list of paths that lead to all past locations of G is on the right. A path is displayed as a
series of arrows whose orientation matches that of the actual movements that brought
G where it currently is. The user can click on any of these paths to actually execute
the reciprocal drag-and-drop that reverts this series of movements. As DnD-List is im-
plemented according to the DND−1 model, a reciprocal drag-and-drop is appended to
the history, following the inverse model of selective undo (as Dwell-and-Spring does –
see Section 2.2).

As illustrated in Figure 19, List makes a screen capture each time users press the
mouse button, and creates a thumbnail picture of a group G when users select and
move it for the first time. List crops the minimal square that fully contains the group
and adds a white translucent mask on top of this image to emphasize the objects that
actually belong to the group. Objects that fall within the bounding box of the multiple
selection but that are not part of the group are still visible, but faded out.

Groups are sorted by the number of objects they contain (largest groups at the bot-
tom of the list). Groups that feature the same number of objects are sorted according
to the timestamp of their last move (a group is below another group if it has been
moved more recently). Each time a move occurs, resulting from either a manual drag-
and-drop or a reciprocal drag-and-drop, the path item that has just been inserted is
highlighted and the window auto-scrolls to make it fully visible inside the list’s view-
port. Also, when the mouse cursor hovers an item, the bounding boxes of objects that
belong to the associated group appear, along with a polyline showing what will become
the center of this group if the user selects this item. Figure 18 illustrates this. Gdesk
has just been moved (Figure 10-e) and the cursor hovers a path item to restore a past
position of Gmeeting. This hovering feedforward mechanism, which is intended to pre-
vent errors, is hosted on a transparent layer on top of any application that implements
the communication protocol described in the implementation section above.
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Forward Backward

Fig. 20. Move and Undo instructions for a single object.

4.2. Hypotheses
Our main hypothesis is that users can interact with DND−1 using both techniques
(factor TECH = {Spring ,List}). We hypothesize that DND−1 enables them to minimize
the number of operations required to revert a sequence of moves.

Our secondary hypothesis is that the cost of using a technique depends on the struc-
ture of the History relative to the reciprocalDnD(G, P) operation to do. This cost is
a function of both local and global depths. Let us consider a group G at position P .
The performance of Spring, which operates object-wise, will be mainly impacted by
local depth, i.e., the number of positions that G visited until it was eventually put in
P (LOCAL-DEPTH). The performance of List, on the contrary, will also and mainly be
impacted by the number of manipulations that have been performed on other objects
since G left position P . Indeed, this entails that the right item is deeper in the list
and that retrieving it requires more scrolling. To operationalize this notion of cost, we
consider two secondary factors: LOCAL-DEPTH and LIST-SCROLL, as detailed later.

The experiment was divided into two parts and took 70 minutes on average. In each
part, participants had to both perform movements of objects using drag-and-drop op-
erations and apply undo operations in order to reach a specific graphical layout. In the
first part, the difference between the target and the current layouts can be corrected
with a reciprocal drag-and-drop on an individual object, whereas in the second part,
solving the difference requires performing a reciprocal drag-and-drop on a group of ob-
jects. In both cases, if users make an optimal use of the DND−1, they are able to solve
the difference with a single (optimal) reciprocal drag-and-drop.

4.2.1. Participants. Twelve volunteers (5 female), all right-handed, aged 24 to 40 years-
old (average 30.0, median 28.5), daily computer users, participated in the experiment.

4.2.2. Apparatus. We used a Mac Pro workstation running Mac OS X, equipped with
a high-end graphics card connected to a 30” LCD display (100 dpi, 2560 × 1600 pixels)
and an Apple Mighty Mouse set with the default transfer function.

4.3. Part 1: Multi-step Reciprocal Drag-and-Drop for Individual Objects
4.3.1. Experiment Scene and Task. Starting from a graphical scene composed of 16 dif-

ferent shapes (Figure 20), participants are instructed to follow a scenario that consists
of a series of Forward and Backward instructions. Participants have to press the space
bar in order to get the specific instruction and perform it. In the case of a Forward
instruction (Figure 20-a), the next position Pnext where the shape S has to be moved is
shown by displaying an outline of S in Pnext with an arrow linking the center of S to
Pnext. In the case of a Backward instruction (Figure 20-b), the past position Ppast (that
needs to be restored) of shape S is illustrated with a grayed out copy of S centered
on Ppast. To avoid any ambiguity when interpreting instructions, any two shapes ei-
ther differ in their geometry (circle, star, square, hexagon, triangle or clover) or in both
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Participant Block 1 Block 2
P01 Spring Spratice, S4, S2, S5 List Spratice, S6, S1, S3

P07 List Spratice, S4, S2, S5 Spring Spratice, S6, S1, S3

P02 Spring Spratice, S1, S6, S4 List Spratice, S3, S2, S5

P08 List Spratice, S1, S6, S4 Spring Spratice, S3, S2, S5

P03 Spring Spratice, S3, S5, S1 List Spratice, S2, S4, S6

P09 List Spratice, S3, S5, S1 Spring Spratice, S2, S4, S6

P04 Spring Spratice, S5, S4, S6 List Spratice, S1, S3, S2

P10 List Spratice, S5, S4, S6 Spring Spratice, S1, S3, S2

P05 Spring Spratice, S6, S3, S2 List Spratice, S4, S5, S1

P11 List Spratice, S6, S3, S2 Spring Spratice, S4, S5, S1

P06 Spring Spratice, S2, S1, S3 List Spratice, S5, S6, S4

P12 List Spratice, S2, S1, S3 Spring Spratice, S5, S6, S4

Fig. 21. Experiment 2. Presentation order of the 6 scenarios and TECH conditions across participants.

their size (small or large) and outline stroke (dotted or solid). In the List condition, the
size of the history list window is set to 250 × 300 pixels, meaning that a maximum of
four objects with up to two past locations fit in its viewport at the same time. To avoid
introducing variability in the way participants navigated the list, its window could not
be resized and it could only be browsed using the scroll bar.

The experiment program also controls the History’s structure, ensuring that it is
exactly the same across participants. Drag-and-drop interactions are enabled only for
Forward instructions. Conversely, the technique for restoring a past position (Spring
or List) is enabled only for Backward instructions. During a Forward instruction, par-
ticipants are allowed to move only the shape that has to be moved. Any other move
makes the application beep and cancel the move without recording it in History. Sim-
ilarly, during a Backward instruction, participants are allowed to restore a past po-
sition only for the shape that differs from the indicated layout. Any other reciprocal
drag-and-drop causes a beep and is ignored. However, participants are not forced to
perform the reciprocal drag-and-drop in a single (optimal) operation. They can choose
to perform a series of reciprocal drag-and-drop operations as long as they perform
them on the right shape. The program logs the number of operations and proposes the
next instruction as soon as the shape is placed in the indicated position. Each time the
program beeps, it counts a misinterpretation and reinitializes the timer used to record
task completion time. We logged 3.8% such errors for Spring and 3.6% for List.

4.3.2. Design and Procedure. The experiment is divided into two blocks. One group of 6
participants see the Spring block first, followed by the List block, while the other half
start with List and then see Spring. At the beginning of each block, the operator intro-
duces the technique that participants are about to use (3 min). Participants then have
to complete four scenarios, with the first one serving as a practice session (Spractice).

We collect measures (for analysis) on 6 scenarios (S1, ..., S6) per participant, i.e., 3
scenarios per TECH block. We use the 6 same scenarios for all participants. We compute
6 possible scenario presentation orders with a Latin Square. Each order is assigned to
two participants, one participant starting with List and another participant starting
with Spring (Figure 21). Overall, each scenario is played 6 times with List and 6 times
with Spring.

As explained above, a scenario consists of a series of Forward and Backward instruc-
tions. More precisely, a scenario contains twelve Backward instructions interleaved
with some Forward instructions, 4.75 in average (min=1 and max=8), for a total of 57
Forward instructions. Each scenario is generated in a pseudo-random manner, ensur-
ing a balanced number of measures per LOCAL-DEPTH × LIST-SCROLL and satisfying

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 6, Article 29, Publication date: September 2015.



Reciprocal Drag-and-Drop 29:25

1 2 3

Scenario Presentation Order

T
C

T
 (

s
)

0
2

4
6

Spring List

No Yes

LIST−SCROLL

T
C

T
 (

s
)

0
2

4
6

Spring List

(a) (b)

Effect for TCT n, d Fn,d p η2G
TECH 1,11 4.70 0.0530 0.04
LOCAL-DEPTH 2,22 8.89 0.0015 0.12
LIST-SCROLL 1,11 102 < 0.0001 0.45
TECH× LOCAL-DEPTH 2,22 1.55 0.2346 0.02
TECH× LIST-SCROLL 1,11 105 < 0.0001 0.38
LOCAL-DEPTH× LIST-SCROLL 2,22 1.74 0.1949 0.01
TECH× LOCAL-DEPTH× LIST-SCROLL 2,22 2.73 0.0873 0.02

(c) TCT ∼ TECH× LOCAL-DEPTH× LIST-SCROLL×Rand(PARTICIPANT)

Fig. 22. (a) TCT by scenario presentation order for each TECH. (b) TCT by TECH × LIST-SCROLL for the
third scenario. (c) ANOVA results.

three criteria: (1) the twelve Backward instructions of a scenario are distributed among
the same four shapes; (2) each shape is involved in three Backward operations with
LOCAL-DEPTH = {1, 3, 5}; (3) half of the Backward instructions can be performed by
clicking an item that is initially visible when using List (LIST-SCROLL=NO), while the
other half requires scrolling the viewport (LIST-SCROLL=YES).

4.3.3. Results for Part 1. Among the 864 (12 instructions × 6 scenarios × 12 partic-
ipants) Backward instructions measured, 850 were completed by invoking a single
reciprocal drag-and-drop. This shows that participants were able to use DND−1 in an
optimal way for 98.38% of the Backward instructions they had to perform. The dis-
tribution of non-optimal trials plays against List (10 for List and 4 for Spring), and a
pairwise Wilcoxon test (n = 12) confirms a significant effect of TECH on the number of
non-optimal trials (p = 0.048). However, there is no significant effect of the structure of
History on the number of such trials: neither LOCAL-DEPTH nor LIST-SCROLL has a
significant effect.

For trial completion time (TCT) analyses, we only keep trials completed in an optimal
way. Among the 850 trials that were completed with a single reciprocal drag-and-drop,
participants scrolled the viewport even though it was not required in 11.11% of the
cases in the List condition. In these trials, participants failed to recognize the right
shape in the list’s thumbnails even though they were visible without scrolling (LIST-
SCROLL=NO). This is not surprising, as searching through a list of graphical objects
to find a target is a difficult task, that is costly in terms of both visual and cognitive
processing [Salvucci 2001]. We filter out these trials, as they may be an artefact related
to our experimental task. In a real context of use, objects may be either easier or harder
to recognize in these thumbnails, depending on the type of graphics in the scene.

We look at the evolution of performance over the three scenarios per technique in
order to check for a potential learning effect. As illustrated in Figure 22-a, we observe
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such an effect only for List, not for Spring. An ANOVA shows a significant interaction
between TECH and the scenario presentation order on TCT (F2,22 = 3.76, p = 0.0392, η2G =
0.06). A post-hoc (Holm corrected) t-test reveals that TCT significantly differs between
each pair of conditions that vary in their scenario presentation order for List, while
this is not the case for Spring. A t-test also shows that Spring is significantly faster
than List in the first (p = 0.0133) and second (p = 0.0188) scenarios, but not in the third
scenario (p = 0.2136).

So as not to disadvantage List by ignoring the fact that users’ performance will bene-
fit from learning, we analyze effects on TCT only for trials collected in the third scenario.
Figure 22-c reports the results of an ANOVA for model TCT∼ TECH× LOCAL-DEPTH× LIST-
SCROLL×Rand(PARTICIPANT). It shows that, in our experiment, the structure of History
impacts the performance of both Spring and List.

More specifically, both LOCAL-DEPTH and LIST-SCROLL have an impact on TCT for
both techniques. First, the local depth of History for an object (LOCAL-DEPTH), which
sets either the number of spring handles to traverse with Spring or the number
of items per object thumbnail with List, has an impact on the performance of both
Spring and List. Second, LIST-SCROLL, which is related to the global depth of History,
has a large effect on TCT. This mainly comes from the fact that the performance
of List strongly degrades when users need to scroll the list of items, as illustrated
in Figure 22-b. Indeed, the effect of TECH is marginal, whereas interaction effect
TECH× LIST-SCROLL is very large. A post-hoc t-test (with Bonferroni correction) ac-
tually shows that (i) List is significantly faster than Spring when LIST-SCROLL=NO
(p = 0.0003) and that (ii) Spring is significantly faster than List when LIST-SCROLL=YES
(p = 0.0001).

While our analyses consider trials that better reflect the behavior of expert users,
results are similar when analyzing the entire set of measured trials. The only differ-
ence lies in the performance of List, which is slightly worse than that of Spring. For
instance, interaction effect TECH× LIST-SCROLL remains very strong, but there is a
significant difference between both techniques only when LIST-SCROLL=YES, whereas
List is not significantly faster than Spring when LIST-SCROLL=NO.

In summary, DND−1, combined with either Spring or List, lets users restore past
locations of individual objects in an optimal way. However, the performance of List suf-
fers from a high variability depending on the reciprocal drag-and-drop considered and
on the history structure. On the opposite, by adopting a per-object navigation strategy,
Spring limits this cost, yielding more constant performance figures across reciprocal
drag-and-drop actions.

4.4. Part 2: Reciprocal Drag-and-Drop for Groups of Objects
4.4.1. Experiment Scene and Task. In the second part of the experiment, the application

enables users to perform multiple rectangular selections through rubber-band interac-
tion. It also allows them to add and remove individual objects using Shift+Click. The
graphical scene is the same as in Part 1, but every Forward and Backward instruction
involves several objects. Also, as opposed to Part 1, in which Forward and Backward
instructions were interlaced, a scenario in Part 2 gives a series of Forward instructions
and ends with a single Backward instruction. This final instruction indicates a target
layout that can always be reached with a single (optimal) DND−1 operation.

As in Part 1, the application ensures that History is the same across participants by
constraining their interactions. For a Forward instruction, participants have to move
all shapes involved at the same time, using the correct multiple selection. Otherwise,
the application beeps and ignores the last move. For the final Backward instruction,
the application enables any sequence of reciprocal drag-and-drop actions. It records
them until the target layout is reached. Participants were also allowed to skip a trial
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Fig. 23. (a) Total number of trials completed with a single optimal DND−1 among the six trials each par-
ticipant performed with each TECH. (b) TCT by TECH × LIST-SCROLL.

on demand, if they were confused and unable to figure out how to reach the target
layout. This could have happened if they had chained a large number of reciprocal
drag-and-drop actions.

4.4.2. Design and Procedure. As in Part 1, each participant has to complete two blocks,
one per TECH. When a block starts, the operator gives a 2-minute introduction about
how to use the technique on a group of objects. Participants then complete a practice
scenario, followed by six measured scenarios. We generate 12 scenarios (2 series of 6) in
advance, that we present to all participants. To make sure each scenario is performed
with each technique across participants, the presentation order between the two series
of 6 scenarios is always the same, but the presentation order between the two TECH
conditions varies (6 participants start with Spring, the 6 others start with List). We
also counterbalance the presentation order of the 6 scenarios within a series by using
a 6×6 Latin square.

In Part 2, each scenario contains from 9 to 11 Forward instructions that involve 3
or 4 subgroups of 6 specific graphical shapes among the 16 shapes in the scene. A sub-
group consists of 2, 3, 4 or 6 shapes and is involved in 1 to 5 Forward instructions. The
direction and amplitude of the drag-and-drop is randomly generated while avoiding
overlap between shapes. The final Backward instruction is generated by picking one of
a subgroup’s past locations (the chosen subgroup must have been moved at least four
times). The past location is either 1, 2 or 3 step(s) backward (LOCAL-DEPTH ∈ {1, 2, 3}).
Half of the scenarios require scrolling with List (LIST-SCROLL=YES), while the other
half does not (LIST-SCROLL=NO). In order to ensure an equivalent difficulty among the
2 sets of 6 scenarios, we generated six pairs of scenarios. Paired scenarios feature the
same number of subgroups, which have the same size, and a similar sequence of in-
structions. They only differ in the shape of objects they contain, and in the amplitude
and direction of each drag-and-drop.

4.4.3. Results for Part 2. As explained above, each final Backward instruction can be
performed in a single optimal reciprocal drag-and-drop. The percentage of trials that
were completed in such an optimal way was high in our experiment, with no significant
difference between Spring (90.3%) and List (84.7%). Figure 23-a reports the number
of trials that were completed in such an optimal way, per participant. Eight of the
twelve participants made either 0 or 1 error. Moreover, among the 18 trials that were
not completed with an optimal use of DND−1, 9 required only 2 or 3 reciprocal drag-
and-drop operations, and only 3 were considered as too difficult and skipped at the
participant’s request. These results show that, even if the notion of group necessarily
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Fig. 24. Participants’ subjective rating of difficulty with each TECH for both the single and group Backward
instructions on a five-point Likert scale (1: best, ..., 5: worst).

introduces some difficulty in the task, participants succeed in using the DND−1 model
to apply reciprocal drag-and-drop on groups of objects.

For our analysis of TCT, we first remove the 18 non-optimal trials mentioned above.
As we did in Part 1, we also remove 11.45% of trials in the List condition, which cor-
respond to cases where participants scrolled the viewport even though this was not
necessary (LIST-SCROLL = NO). However, as opposed to our earlier observations about
reciprocal drag-and-drop on single objects, there was no significant learning effect on
TCT, neither for Spring nor List. Figure 23-b reports TCT by TECH for both LIST-SCROLL
conditions and shows the same TECH × LIST-SCROLL interaction effect we already ob-
served in Part 1. A t-test shows that Spring is significantly faster than List when LIST-
SCROLL = YES (p = 0.006), while this difference is not significant when LIST-SCROLL =
NO (p = 1.0). Finally, LOCAL-DEPTH did not have a significant effect on TCT.

4.5. Qualitative Questionnaire
At the end of the experiment, participants had to fill a questionnaire. They were asked
about their preferred technique, and about their perception of how easy it was to use
each technique for undoing moves on both individual objects and on groups of objects.
All participants said that Dwell-and-Spring was their preferred technique, which is in
accordance with the perceived difficulty of the different experimental tasks. Figure 24
illustrates this perception of difficulty as a score on a five-point Likert scale ([1: very
easy ... 5: very difficult]). A pairwise Wilcoxon test with Holm correction reveals that
this score significantly differs for all six pairs of tasks. In particular, participants found
that Spring was easier to use than List for tasks on both individual objects and groups
of objects.

4.6. Summary
Our empirical results suggest that the DND−1 model can effectively support undo for
direct manipulations on both individual objects and multiple selections. This does not
mean that participants understood all the details of DND−1, but that they were able
to use it effectively for the layout problem that they had to solve.

All participants expressed a preference for technique Spring over List. This proba-
bly comes from the fact that List is a global technique that displays the whole history
of all objects, consequently suffering from issues related to the difficulty in identifying
the right manipulation in the history. The first issue is the cost of searching in terms
of motor control: the longer the history, the larger the number of required scrolling ac-
tions. The second issue is the cost of recognizing an object or a group of objects as what
can be shown in the thumbnails is limited. Designing more meaningful thumbnails by
emphasizing differentiating features between groups would help, but this is difficult to
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achieve in an application-independent manner since we do not have any information
regarding the semantics of the objects manipulated. By using an object as a reference
to provide a contextual history in place, Spring does not suffer from such problems. In
particular, Spring scales better than List with the size of the history, and better fits
with the per-object nature of the DND−1 model.

5. RELATED WORK
Most applications handle a history of commands, as well as meta commands UNDO and
REDO to navigate it. We review the different models implemented by existing applica-
tions to offer such functionalities. However, the DND−1 model should not be directly
compared to any of these undo models. It is not intended to replace any of them, but
rather to complement them. DND−1 helps users make a precise drag-and-drop and, if
this manipulation actually invokes an application command, it will be handled by the
application’s undo model. In that regard, DND−1 is rather an enhancement to direct
manipulation than an undo model.

5.1. Undo Models
In the most common case, the history of commands can be represented as a tree whose
nodes are interface states. In the linear undo model, only a single child is associated
with each node (the most recently visited one). This makes it impossible to access some
previous states of the interface via undo. A few applications like Emacs [Gosling 1982;
Yang 1992] provide users with a better experience, in terms of exploration, by making
any previous state recoverable. This is achieved by considering UNDO as a regular com-
mand that also gets stored in the history. While this model is very powerful – any state
can be restored – it remains a bit confusing, as users have to figure out how to break a
flow of undo commands. Also, this model is global: reverting an object to a given past
state entails undoing all commands that were performed afterwards, no matter which
objects they were performed on. As the US&R model [Vitter 1984], the DND−1 model
makes the whole branching of drag-and-drop history accessible. However, DND−1 pro-
vides a direct path to any past location, while the US&R model prompts the user each
time a redo command is issued on nodes that have several children.

Selective Undo [Prakash and Knister 1994; Berlage 1994] lets users select a com-
mand to undo anywhere in the history. The original mechanism [Prakash and Knister
1994] basically removed the command to undo from the history, and then redid the
commands that were coming after it in the history. However, this interpretation of the
history of commands as a script may not always match users’ mental model of the undo
command [Cass et al. 2006]. With direct selective undo [Berlage 1994], application de-
velopers can implement an undo behavior that is more appropriate in this context, by
adding an inverse command at the end of the history. The Amulet toolkit [Myers and
Kosbie 1996] provides a good architecture to enable support for such undo mechanisms
in graphical applications. However, selective undo remains difficult to implement since
what the semantics of a reverse command should be is difficult to predict, as it depends
on the current interface state. The DND−1 model can be described as direct selective
undo for drag-and-drop at the level of individual objects and group of objects. It defines
the inverse move to be appended to the history of an object or group as the straight
movement from the latter’s current location to one of its past locations.

Edwards et al. [2000] experimented with a clever approach to handle undo in Flat-
land. It consists of introducing commands that will be nested with past commands
already stored in the history. As Flatland is a system intended to be used by several
users, undo commands can also be region-based, regardless of when they happened.
This concept of regional undo has also been applied to spreadsheet editors [Kawasaki
and Igarashi 2004], interactive large displays [Seifried et al. 2012], code editors [Yoon

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 6, Article 29, Publication date: September 2015.



29:30 C. Appert et al.

et al. 2013], VLSI systems [Zhou and Imamiya 1997], sketch-based interfaces [Oe et al.
2013] and painting applications [Myers et al. 2015]. However, to support such an ad-
vanced model of undo, applications must take into account a complex system of de-
pendencies and causal relationships. The CAUSALITY model [Nancel and Cockburn
2014] identifies the different components and relations that an application should use
to store their interaction history in order to support any advanced undo model.

Our model, DND−1, focuses on direct manipulation. It is not intended to replace the
functional undo model of applications, but to run in parallel with them. DND−1 uses
a direct selective undo model to provide users with shortcuts that bring objects back
to their exact past positions, which is something that would otherwise be difficult to
do. In a sense, DND−1 offers a quick way to perform forward recovery [Abowd and Dix
1992], i.e., to do the right manipulation from the present state to reach a novel state
that is similar to a past state for some objects’ location. Actually, when users restore
object O to a past location P , DND−1 simply sends a message asking the underlying
application to translate O from its current location to P . But DND−1 does not have
any idea of what the semantics of this object’s move are in the application. If this move
triggers the invocation of a command in the application, the command will be added
to the undo model of that application, no matter the complexity of this model. If this
move does not invoke any command, it will simply be ignored by the application’s undo
model. For instance, in a graphical editor, if DND−1 moves a slider that controls trans-
parency while an object is selected on the canvas, the setTransparency command will
be stored in the application’s command history of the graphical editor. But if there is
no object selected when DND−1 moves the slider, the application will ignore it. Object
movements performed by DND−1 can have functional effects in a given application.
Those effects can be appended to the application’s own history of commands, as any
object movement that is performed by users, no matter the complexity of the underly-
ing history model.

5.2. Navigation in Command Histories
A few applications allow users to access their interaction’s history. The most basic
history representation is a list of text items as in, e.g., Adobe Photoshop. Clicking on
an item reverts the document back to the state in which it was before this command
got invoked, following a linear undo model. The most elaborate history representa-
tion is probably the Chronicle system [Grossman et al. 2010] that was also designed
for image editing. This system proposes a sophisticated timeline of user actions and
serves chronicle widgets on demand. A chronicle is an augmented video clip of what
happened between two time stamps on a given image area. This approach provides
a very exhaustive visualization of commands performed, that supports reflection and
communication with others for, e.g., creating tutorials. But it is not intended to sup-
port undo navigation by restoring a previous state as Rekimoto envisioned with the
Time-Machine concept [Rekimoto 1999].

Other approaches have been designed more specifically for selective undo. In the
GINA system [Berlage 1994], history is a list of text commands. Users can filter them
out using string pattern matching expressions. As it may be difficult to refer to a graph-
ical object textually, users can also drag-and-drop an object onto the list to get the
partial history specifically related to it. Other systems represent the history graphi-
cally. For instance, Meng et al. [1998] propose two types of history widgets for selec-
tive undo, with which users can browse a collection of snapshots that illustrate the
different interface states. Representing the history as a picture list has also been in-
vestigated in a collaborative web site design tool [Klemmer et al. 2002], in a painting
application to perform selective undo [Myers et al. 2015] and for representing users’
operations on large and complex visualizations [Heer et al. 2008]. Chimera [Kurlander
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and Feiner 1992] also exposes the history as a list of graphical panels, allowing users
to edit an object in the history and propagate changes to the current state. Chimera re-
lies on an application-dependent visual language to create a graphical representation
of the command. This representation conveys the command’s semantics better than a
scaled-down snapshot of the full interface would, while using less screen real-estate.
Nakamura and Igarashi [2008] later showed how to adopt such a comic strip metaphor
in an application-independent manner, by emphasizing low-level user events and by
using the Phosphor afterglow effect [Baudisch et al. 2006] on affected widgets. These
systems can be powerful, but browsing collections of pictures requires heavy-weight
widgets, which makes them ill-suited to performing fast iterations in graphical layout
design tasks.

Dwell-and-Spring is a light-weight widget, that works in an application-independent
manner, both in terms of graphical rendering and interaction with the widget. This is
made possible by the fact that Dwell-and-Spring works at the local level (focus on ob-
jects or groups of objects), and has a more focused role: contrary to the heavy-weight
widgets mentioned above, Dwell-and-Spring is not intended to navigate the whole his-
tory of an application, but is designed to navigate the history of past locations of the
object it has been invoked on.

5.3. Enhancements to Direct Manipulation
As mentioned above, DND−1 focuses on the history of direct manipulations, provid-
ing shortcuts to drag-and-drop interactions that move objects and groups of objects.
UIMarks [Chapuis and Roussel 2010] also offers shortcuts for graphical interfaces,
enabling users to explicitly put some marks on the user interface and configure them
to, e.g., facilitate invocation of frequently-used widgets. The drag-and-pop technique
[Baudisch et al. 2003] also accelerates drag-and-drop interactions by using the direc-
tion of movement to predict and bring potential targets close to the dragged object.

Dwell-and-Spring implicitly records the start and end points of any press-drag-
release interaction with which users can interact by using a dwell time to trigger a
widget. Using the time dimension during a drag-and-drop to avoid having to rely on
an additional modality (e.g., the keyboard) is not new and is, for example, used in some
systems to reveal the content of a folder when dwelling over its icon. Another exam-
ple is Scriboli [Hinckley et al. 2005], that suggests the use of dwelling after a lasso
selection to pop up a contextual menu.

Allowing users to interact during a press-drag-release interaction can also be ad-
dressed with other approaches such as crossing or gesture dynamics. For instance,
Fold-and-Drop [Dragicevic 2004] proposes to cross window borders to fold windows
during a drag-and-drop to facilitate navigation over windows. The trailing widget [For-
lines et al. 2006] follows the cursor and can be grabbed with a quick movement to
access a menu. Boomerang [Kobayashi and Igarashi 2007] allows users to suspend a
drag-and-drop by using a throwing gesture.

Most graphical editors support an explicit grouping command, but very few systems
support more lightweight grouping definitions as DND−1 does by keeping a trace of
multiple selections. Among them, Bubble clusters [Watanabe et al. 2007] automatically
cluster objects that have been brought close-by via direct manipulation. The Dynomite
notebook application [Wilcox et al. 1997] groups graphical strokes that are spatially
and temporally related, to enable users to undo the creation of a set of hand-written
letters, in the same spirit as a text editor does with a series of characters that belong
to the same word unit. QuickSelect [Su et al. 2009] proposes a similar propagation
mechanism for enlarging the current selection based on previous multiple selections.
Finally, Handle Flags [Grossman et al. 2009] also proposes extra grouping widgets
(handles) that appear when the stylus approaches hand-written strokes. There are as
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many handles as the number of potential groups, which are computed based on how
the strokes are spatially clustered and how the user actually refined proposed groups
to perform previous multiple selections. However, if these techniques also keep trace
of previous selections as DND−1 does, they focus on the quick selection of these groups
and do not address interaction with their history.

6. DISCUSSION AND LIMITATIONS
DND−1 provides users with a simple way of putting individual objects and groups of
objects back to any location in their respective histories, regardless of what other move-
ments were applied to other objects in the scene. As graphical user interfaces heavily
rely on direct manipulation and object movements at large, DND−1 can be helpful
in many cases, at both the system level and the application level: as discussed in this
article (Section 2), reciprocal drag-and-drop actions may be useful for desktop and win-
dow management, view navigation, direct manipulation in vector graphics editors, and
control of widgets such as sliders, scrollbars, color wheels, manipulation handles, etc.

Both the operating system and applications can register object moves to DND−1.
A naive implementation would consist in systematically registering the translation
vector between the mouse press and release events (or the finger touch and lift events).
However, this will fail in some cases, as graphical objects feature some tolerance with
respect to the input movement, in order to make the motor action easier to perform.
For example, when a snapping mechanism is implemented, or when users manipulate
an object that only has a single degree of freedom (such as a slider using a 2D input
device), the input movement performed by the user does not necessarily match the
actual graphical object’s movement. In such cases, what should be registered in DND−1
is the object’s actual move rather than what the input device receives.

Another issue to consider is that some object movements are performed using an-
other input device than the pointing device. For instance, users can scroll a docu-
ment or move the currently selected object using arrow keys. The resulting object
movements can still be registered in DND−1. For example, when scrolling a docu-
ment by maintaining the UP key pressed, the system can send a moved(scrollbarknob,

d) to the model when the key is released. By doing so, the scrolling operation is fea-
tured in DND−1’s history and can be reverted. To avoid registering successive micro-
movements, application designers can implement any policy for aggregating moves
before sending a message to DND−1. Sending moved messages would be triggered as
soon as an input event of another type occurs, including those related to DND−1’s in-
vocation. For example, several small moves, applied in sequence to an object using
arrow keys, can be aggregated into a single moved message with the overall amplitude
corresponding to the sum of the small successive moves. The message would get sent
as soon as users hit any other key or use a mouse button.

DND−1 has been designed to be application-independent. The downside of this choice
is that it has no knowledge of the semantics of object movements in the underlying
applications. In some cases, a reciprocal drag-and-drop will thus not correspond to
the undo of the command that was invoked by the initial drag-and-drop. For example,
when an icon is moved from one window to another, and the window arrangement is
changed afterwards, moving back this icon using the inverse displacement might not
put it back in the window (and folder) from which it was taken. In that regard, DND−1
shares one of the limitations of scripting systems that replay sequences based on cursor
movements (an issue raised in [Myers 1998]). This is why the interaction techniques
that are proposed to navigate DND−1 must provide a clear feedforward of what the
result of a reciprocal drag-and-drop will be (as Dwell-and-Spring and DnD-List do), so
as to help users anticipate and prevent such errors.
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DND−1 can also be qualified as selection agnostic. There are two main reasons for
making this choice. First, an application-independent approach requires establishing
a common vocabulary across all applications for the communication protocol between
the model and the applications. As selection mechanisms can be different from one
application to another4, establishing a common protocol that would consider an or-
thogonal notion of selection could have been confusing and would have inherently led
to more complexity in the communication protocol. Second, objects belonging to a given
selection may have different histories. This is an issue with regional undo that is far
from trivial to address [Li and Li 2003; Yoon et al. 2013]. As our approach is focused
on drag-and-drop, the notion of group is independent from the current selection, and
is only implicitly defined when users move several objects together by mean of a drag-
and-drop on a multiple selection. While this is a restriction of our model, it has the
advantage of containing its complexity.

Even if the DND−1 model itself does not conceptually interfere with the notion of se-
lection in applications, the choice of interaction technique used to navigate the history
may still have a side effect on the application’s selection, if the input events it re-
lies on interfere with those used by the selection mechanism. For example, a reciprocal
drag-and-drop invoked using DnD-List does not require any direct interaction with the
application’s objects and will thus always let the current selection unmodified. On the
contrary, invoking Dwell-and-Spring requires performing a long press directly on the
object or group that should be reverted. If the application relies on a click (quick press-
release sequence) to select an object, Dwell-and-Spring will not interfere and will leave
the selection as is. But if the application relies on a simple press to select an object,
the object on which Dwell-and-Spring has been invoked will become the new selection.
Also, on touch screens that have a limited input vocabulary, long press events may al-
ready be mapped to another action, such as entering an edit mode (e.g., for moving app
icons on home screens on a smartphone) or invoking a contextual menu. The spring
handle is offset with respect to the user’s finger and should allow him to ignore it if he
does not actually want to trigger a reciprocal drag-and-drop. However, additional UI
design work may be required to handle some specific cases where Dwell-and-Spring’s
footprint may still interfere with the application’s controls.

Finally, the extended version of Dwell-and-Spring that we introduced in Section 2
may generate some visual clutter, especially if the object on which it is invoked has
been moved a large number of times or if it has been involved in numerous multi-
ple selections. How much visual interference this might cause depends on the nature
of the graphical scene below, and on how past locations and target locations are dis-
tributed over it. To reduce potential clutter, the DND−1 model can be implemented
with a maximum length of past steps per group of objects kept in history5. But a more
interesting solution would consist in designing a graphical footprint that progressively
becomes less intrusive as users get increasingly familiar with the widget. The feedfor-
ward of a reciprocal drag-and-drop could be displayed as a simple straight line, rather
than as a series of springs that explicitly represent the full sequence of drag-and-drop
that will get reverted. We believe that a richer graphical representation helps explore
the history and understand the widget, but that it is not necessary to effectively use
it. Our experience with it makes us think that what is the most important, once fa-

4Consider, e.g., advanced selection mechanisms like that of Adobe Illustrator, where there are two levels
of selection – vertex and shape – in comparison with the absence of the notion of selection on graphical
controllers such a slider knob.
5The number of past steps has an impact on the widget’s footprint, which may overflow the screen when
invoked close to its left or bottom edge. In such cases, the widget’s layout could be mirrored vertically and/or
offset in the spirit of how contextual menus behave in desktop interfaces.
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miliar with how the widget works, is the overlaid feedforward that helps anticipate
the result when brushing through the different spring handles. We plan to enhance
DND−1’s communication protocol in order to let the application developer specify, at
the object level, the best type of feedforward (a series of lines or springs, or a simple
line or spring). This could be especially relevant for objects that are always moved
along a single axis, such as scrollbar knobs or sliders.

7. CONCLUSION
We introduced DND−1, a model that keeps track of all past locations of objects that
can be moved through drag-and-drop interactions in a graphical user interface, in-
cluding windows and other view management widgets. We have extended the Dwell-
and-Spring technique and combined it with DND−1 in order to cover a large number
of scenarios in which users need to perform a reciprocal drag-and-drop action and that
were identified as limitations in [Appert et al. 2012]. With this extended version of
Dwell-and-Spring, users can now recover any past location of a single object or group
of objects. First, they have access to the whole history of locations that an object has
visited, and can thus revert a series of drag-and-drop actions in a single step. Second,
they have access to the history of drag-and-drop actions on past multiple object selec-
tions, and can thus revert a drag-and-drop on a group of objects without breaking the
current active selection.

In the experiments that we conducted, participants were able to understand how
the technique works and how it makes it easier to perform reciprocal drag-and-drop
actions. They were also able to use it to solve graphical layout tasks in which advanced
reciprocal drag-and-drop actions are required. We plan to run a field study that will
focus on the potential distractions that the widget popping up might cause. However,
as discussed in this article, we advocate for an implementation where the graphical
representation of Dwell-and-Spring gets lighter as the user becomes familiar with it.
The analogy with a physical spring is especially useful in the discovery phase of the
technique, but it probably becomes less so when users actually know how to use it and
want to optimize time.
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